Knowledge

Shannon–Hartley theorem

Source 📝

1952: 1409:
uncertainty as to the original signal's value. If the receiver has some information about the random process that generates the noise, one can in principle recover the information in the original signal by considering all possible states of the noise process. In the case of the Shannon–Hartley theorem, the noise is assumed to be generated by a Gaussian process with a known variance. Since the variance of a Gaussian process is equivalent to its power, it is conventional to call this variance the noise power.
49: 1405:
symbol pulse, with each slightly different level being assigned a different meaning or bit sequence. Taking into account both noise and bandwidth limitations, however, there is a limit to the amount of information that can be transferred by a signal of a bounded power, even when sophisticated multi-level encoding techniques are used.
2593: 2202: 1412:
Such a channel is called the Additive White Gaussian Noise channel, because Gaussian noise is added to the signal; "white" means equal amounts of noise at all frequencies within the channel bandwidth. Such noise can arise both from random sources of energy and also from coding and measurement error
1404:
Bandwidth and noise affect the rate at which information can be transmitted over an analog channel. Bandwidth limitations alone do not impose a cap on the maximum information rate because it is still possible for the signal to take on an indefinitely large number of different voltage levels on each
790:
Hartley argued that the maximum number of distinguishable pulse levels that can be transmitted and received reliably over a communications channel is limited by the dynamic range of the signal amplitude and the precision with which the receiver can distinguish amplitude levels. Specifically, if the
1400:
If there were such a thing as a noise-free analog channel, one could transmit unlimited amounts of error-free data over it per unit of time (Note that an infinite-bandwidth analog channel could not transmit unlimited amounts of error-free data absent infinite signal power). Real channels, however,
1942:
noise. This formula's way of introducing frequency-dependent noise cannot describe all continuous-time noise processes. For example, consider a noise process consisting of adding a random wave whose amplitude is 1 or −1 at any point in time, and a channel that adds such a wave to the source
1408:
In the channel considered by the Shannon–Hartley theorem, noise and signal are combined by addition. That is, the receiver measures a signal that is equal to the sum of the signal encoding the desired information and a continuous random variable that represents the noise. This addition creates
2813:(1 + 10) = 1443 bit/s. These values are typical of the received ranging signals of the GPS, where the navigation message is sent at 50 bit/s (below the channel capacity for the given S/N), and whose bandwidth is spread to around 1 MHz by a pseudo-noise multiplication before transmission. 1943:
signal. Such a wave's frequency components are highly dependent. Though such a noise may have a high power, it is fairly easy to transmit a continuous signal with much less power than one would need if the underlying noise was a sum of independent noises in each frequency band.
1199:
symbols per second. Some authors refer to it as a capacity. But such an errorless channel is an idealization, and if M is chosen small enough to make the noisy channel nearly errorless, the result is necessarily less than the Shannon capacity of the noisy channel of bandwidth
2816:
As stated above, channel capacity is proportional to the bandwidth of the channel and to the logarithm of SNR. This means channel capacity can be increased linearly either by increasing the channel's bandwidth given a fixed SNR requirement or, with fixed bandwidth, by using
2430: 1249:
versus levels of noise interference and data corruption. The proof of the theorem shows that a randomly constructed error-correcting code is essentially as good as the best possible code; the theorem is proved through the statistics of such random codes.
2035: 1385:
the probability of error at the receiver increases without bound as the rate is increased. So no useful information can be transmitted beyond the channel capacity. The theorem does not address the rare situation in which rate and capacity are equal.
1413:
at the sender and receiver respectively. Since sums of independent Gaussian random variables are themselves Gaussian random variables, this conveniently simplifies analysis, if one assumes that such error sources are also Gaussian and independent.
2808:
What is the channel capacity for a signal having a 1 MHz bandwidth, received with a SNR of −30 dB ? That means a signal deeply buried in noise. −30 dB means a S/N = 10. It leads to a maximal rate of information of 10
1329:
there exists a coding technique which allows the probability of error at the receiver to be made arbitrarily small. This means that theoretically, it is possible to transmit information nearly without error up to nearly a limit of
1793: 1600:
pulse levels can be literally sent without any confusion. More levels are needed to allow for redundant coding and error correction, but the net data rate that can be approached with coding is equivalent to using that
1521: 1168:
The concept of an error-free capacity awaited Claude Shannon, who built on Hartley's observations about a logarithmic measure of information and Nyquist's observations about the effect of bandwidth limitations.
2286: 2376: 230:
in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after
3208:- gives an entertaining and thorough introduction to Shannon theory, including two proofs of the noisy-channel coding theorem. This text also discusses state-of-the-art methods from coding theory, such as 394: 2651: 2772: 2588:{\displaystyle \log _{2}\left(1+{\frac {S}{N}}\right)={\frac {1}{\ln 2}}\cdot \ln \left(1+{\frac {S}{N}}\right)\approx {\frac {1}{\ln 2}}\cdot {\frac {S}{N}}\approx 1.44\cdot {S \over N};} 1568: 1397:
in Hartley's line rate formula in terms of a signal-to-noise ratio, but achieving reliability through error-correction coding rather than through reliably distinguishable pulse levels.
1241:
during World War II provided the next big step in understanding how much information could be reliably communicated through noisy channels. Building on Hartley's foundation, Shannon's
2197:{\displaystyle \log _{2}\left(1+{\frac {S}{N}}\right)\approx \log _{2}{\frac {S}{N}}={\frac {\ln 10}{\ln 2}}\cdot \log _{10}{\frac {S}{N}}\approx 3.32\cdot \log _{10}{\frac {S}{N}},} 844: 1132: 1996: 921: 1141:
should depend on the noise statistics of the channel, or how the communication could be made reliable even when individual symbol pulses could not be reliably distinguished to
3244: 2723: 660: 605:
developed the concept of channel capacity, based in part on the ideas of Nyquist and Hartley, and then formulated a complete theory of information and its transmission.
2420: 1655:
is the total power of the received signal and noise together. A generalization of the above equation for the case where the additive noise is not white (or that the
1380: 1324: 2684: 951: 690: 1910: 1876: 1683: 1653: 601:
as a communications system. At the time, these concepts were powerful breakthroughs individually, but they were not part of a comprehensive theory. In the 1940s,
566: 1197: 1004: 960:
Hartley then combined the above quantification with Nyquist's observation that the number of independent pulses that could be put through a channel of bandwidth
762: 733: 1932: 1845: 1819: 1619: 1598: 1348: 1295: 1275: 1218: 1163: 1075: 1055: 1031: 978: 710: 536: 508: 474: 452: 420: 325: 300: 268: 1573:
The square root effectively converts the power ratio back to a voltage ratio, so the number of levels is approximately proportional to the ratio of signal
787:
bits per second). This method, later known as Hartley's law, became an important precursor for Shannon's more sophisticated notion of channel capacity.
1393:
channel subject to Gaussian noise. It connects Hartley's result with Shannon's channel capacity theorem in a form that is equivalent to specifying the
619:
In 1927, Nyquist determined that the number of independent pulses that could be put through a telegraph channel per unit time is limited to twice the
2797:
If the requirement is to transmit at 50 kbit/s, and a bandwidth of 10 kHz is used, then the minimum S/N required is given by 50000 = 10000 log
1693: 1687:
is not constant with frequency over the bandwidth) is obtained by treating the channel as many narrow, independent Gaussian channels in parallel:
3064: 1436: 171: 2786:
If the SNR is 20 dB, and the bandwidth available is 4 kHz, which is appropriate for telephone communications, then C = 4000 log
2221: 2297: 576:(CNR) of the communication signal to the noise and interference at the receiver (expressed as a linear power ratio, not as logarithmic 2976: 1426:
Comparing the channel capacity to the information rate from Hartley's law, we can find the effective number of distinguishable levels
3056: 334: 3176: 3149: 3003: 510:
is the average received signal power over the bandwidth (in case of a carrier-modulated passband transmission, often denoted
2825:
improves, but at the cost of the SNR requirement. Thus, there is an exponential rise in the SNR requirement if one adopts a
2608: 2839: 31: 103: 2731: 597:
developed a handful of fundamental ideas related to the transmission of information, particularly in the context of the
130: 2915: 3239: 3119: 3013: 2986: 2959: 114: 3033: 17: 1527: 164: 2207:
in which case the capacity is logarithmic in power and approximately linear in bandwidth (not quite linear, since
3249: 2826: 791:
amplitude of the transmitted signal is restricted to the range of volts, and the precision of the receiver is ±Δ
2865: 768:. Nyquist published his results in 1928 as part of his paper "Certain topics in Telegraph Transmission Theory". 538:
is the average power of the noise and interference over the bandwidth, measured in watts (or volts squared); and
88: 3209: 2783:
At a SNR of 0 dB (Signal power = Noise power) the Capacity in bits/s is equal to the bandwidth in hertz.
1955: 1951: 1010: 620: 477: 303: 227: 193: 1580:
This similarity in form between Shannon's capacity and Hartley's law should not be interpreted to mean that
805: 192:
tells the maximum rate at which information can be transmitted over a communications channel of a specified
1242: 1229: 1083: 201: 140: 58: 1961: 868: 3234: 157: 119: 1257:
from a statistical description of a channel, and establishes that given a noisy channel with capacity
2689: 1145:
levels; with Gaussian noise statistics, system designers had to choose a very conservative value of
3205: 2794:(101) = 26.63 kbit/s. Note that the value of S/N = 100 is equivalent to the SNR of 20 dB. 1057:, in bit/s. Other times it is quoted in this more quantitative form, as an achievable line rate of 2010:
For large or small and constant signal-to-noise ratios, the capacity formula can be approximated:
629: 3254: 3219: 2818: 573: 512: 211: 2656:
In this low-SNR approximation, capacity is independent of bandwidth if the noise is white, of
2391: 1958:
channel capacity with the power-limited regime and bandwidth-limited regime indicated. Here,
1389:
The Shannon–Hartley theorem establishes what that channel capacity is for a finite-bandwidth
1246: 1234: 1034: 602: 569: 271: 232: 2801:(1+S/N) so C/B = 5 then S/N = 2 − 1 = 31, corresponding to an SNR of 14.91 dB (10 x log 1359: 1303: 2880: 2662: 929: 781: 668: 83: 63: 1886: 1852: 8: 2822: 1660: 1632: 543: 197: 68: 2884: 1629:
In the simple version above, the signal and noise are fully uncorrelated, in which case
1179: 986: 744: 715: 3089: 3081: 2934: 1939: 1917: 1830: 1804: 1604: 1583: 1333: 1280: 1260: 1238: 1203: 1148: 1060: 1040: 1016: 963: 695: 521: 493: 459: 437: 405: 310: 285: 253: 185: 78: 40: 3182: 3172: 3155: 3145: 3115: 3108: 3052: 3029: 3009: 2982: 2955: 3085: 3201: 3073: 2930: 2898: 2888: 2657: 1822: 1254: 1006:
pulses per second, to arrive at his quantitative measure for achievable line rate.
423: 275: 248: 219: 135: 93: 2949: 1390: 427: 205: 2892: 3077: 1879: 1401:
are subject to limitations imposed by both finite bandwidth and nonzero noise.
279: 215: 2211:
increases with bandwidth, imparting a logarithmic effect). This is called the
3228: 1788:{\displaystyle C=\int _{0}^{B}\log _{2}\left(1+{\frac {S(f)}{N(f)}}\right)df} 1574: 594: 590: 236: 208: 73: 3159: 2821:
that need a very high SNR to operate. As the modulation rate increases, the
3186: 737: 614: 431: 222:
for such a communication link, a bound on the maximum amount of error-free
98: 27:
Theorem that tells the maximum rate at which information can be transmitted
223: 3202:
On-line textbook: Information Theory, Inference, and Learning Algorithms
1009:
Hartley's law is sometimes quoted as just a proportionality between the
3213: 953:
is the pulse rate, also known as the symbol rate, in symbols/second or
48: 1516:{\displaystyle 2B\log _{2}(M)=B\log _{2}\left(1+{\frac {S}{N}}\right)} 776:
During 1928, Hartley formulated a way to quantify information and its
2902: 851: 777: 598: 1421: 1172:
Hartley's rate result can be viewed as the capacity of an errorless
3110:
An Introduction to Information Theory: symbols, signals & noise
2281:{\displaystyle C\approx 0.332\cdot B\cdot \mathrm {SNR\ (in\ dB)} } 858:
that could be sent, Hartley constructed a measure of the line rate
577: 485: 2371:{\displaystyle \mathrm {SNR\ (in\ dB)} =10\log _{10}{S \over N}.} 850:
By taking information per pulse in bit/pulse to be the base-2-
2844: 980: 481: 1223: 1624: 1220:, which is the Hartley–Shannon result that followed later. 954: 2598:
then the capacity is linear in power. This is called the
389:{\displaystyle C=B\log _{2}\left(1+{\frac {S}{N}}\right)} 2686:
watts per hertz, in which case the total noise power is
278:
of data that can be communicated at an arbitrarily low
226:
per time unit that can be transmitted with a specified
2646:{\displaystyle C\approx 1.44\cdot B\cdot {S \over N}.} 3245:
Mathematical theorems in theoretical computer science
2734: 2692: 2665: 2611: 2433: 2394: 2300: 2224: 2038: 1964: 1920: 1889: 1855: 1833: 1807: 1696: 1663: 1635: 1607: 1586: 1530: 1439: 1362: 1336: 1306: 1283: 1263: 1206: 1182: 1151: 1086: 1063: 1043: 1019: 989: 966: 932: 871: 808: 747: 718: 698: 671: 632: 546: 524: 496: 462: 440: 408: 337: 313: 288: 256: 2951:
Information Theory; and its Engineering Applications
1245:(1948) describes the maximum possible efficiency of 302:through an analog communication channel subject to 3107: 2767:{\displaystyle C\approx 1.44\cdot {S \over N_{0}}} 2766: 2717: 2678: 2645: 2587: 2414: 2370: 2280: 2196: 1990: 1926: 1904: 1870: 1839: 1813: 1787: 1677: 1647: 1613: 1592: 1562: 1515: 1374: 1342: 1318: 1289: 1269: 1212: 1191: 1157: 1126: 1069: 1049: 1025: 998: 972: 945: 915: 838: 795:volts, then the maximum number of distinct pulses 756: 727: 704: 692:is the pulse frequency (in pulses per second) and 684: 654: 560: 530: 502: 468: 446: 414: 388: 319: 294: 262: 2866:"Certain topics in telegraph transmission theory" 1422:Comparison of Shannon's capacity to Hartley's law 741:, and transmitting at the limiting pulse rate of 3226: 3167:Wozencraft, John M.; Jacobs, Irwin Mark (1965). 3166: 2424:), applying the approximation to the logarithm: 1137:Hartley did not work out exactly how the number 3065:Proceedings of the Institute of Radio Engineers 2006:can be scaled proportionally for other values. 1416: 3139: 1563:{\displaystyle M={\sqrt {1+{\frac {S}{N}}}}.} 165: 3140:Taub, Herbert; Schilling, Donald L. (1986). 2829:; however, the spectral efficiency improves. 3041:. Urbana, IL: University of Illinois Press. 3001: 1938:Note: the theorem only applies to Gaussian 1277:and information transmitted at a line rate 242: 712:is the bandwidth (in hertz). The quantity 172: 158: 3002:Dunlop, John; Smith, D. Geoffrey (1998). 2981:(2nd ed.). Thomson Delmar Learning. 2013: 1253:Shannon's theorem shows how to compute a 1224:Noisy channel coding theorem and capacity 584: 3169:Principles of Communications Engineering 3057:"Communication in the presence of noise" 3035:The Mathematical Theory of Communication 1950: 1625:Frequency-dependent (colored noise) case 1033:, in Hertz and what today is called the 516:), measured in watts (or volts squared); 488:bandwidth in case of a bandpass signal); 3051: 3028: 2974: 2913: 2863: 282:using an average received signal power 247:The Shannon–Hartley theorem states the 14: 3227: 3105: 2857: 1847:is the bandwidth of the channel in Hz; 839:{\displaystyle M=1+{A \over \Delta V}} 623:of the channel. In symbolic notation, 2386:Similarly, when the SNR is small (if 2381: 1127:{\displaystyle R\leq 2B\log _{2}(M).} 434:(information rate, sometimes denoted 2947: 2029:), the logarithm is approximated by 1991:{\displaystyle {\frac {S}{N_{0}}}=1} 916:{\displaystyle R=f_{p}\log _{2}(M),} 218:. The theorem establishes Shannon's 3142:Principles of Communication Systems 1353:The converse is also important. If 854:of the number of distinct messages 454:) excluding error-correction codes; 430:, a theoretical upper bound on the 104:Limiting density of discrete points 24: 2978:Introduction to Telecommunications 2954:(3rd ed.). New York: Pitman. 2935:10.1002/j.1538-7305.1928.tb01236.x 2329: 2326: 2320: 2317: 2308: 2305: 2302: 2271: 2268: 2262: 2259: 2250: 2247: 2244: 827: 25: 3266: 3220:MIT News article on Shannon Limit 3195: 1946: 115:Asymptotic equipartition property 2840:Nyquist–Shannon sampling theorem 771: 47: 32:Nyquist–Shannon sampling theorem 2914:Hartley, R. V. L. (July 1928). 608: 131:Shannon's source coding theorem 3210:low-density parity-check codes 3106:Pierce, John Robinson (1980). 3099: 3045: 3022: 3005:Telecommunications Engineering 2995: 2968: 2941: 2907: 2718:{\displaystyle N=B\cdot N_{0}} 2332: 2314: 2274: 2256: 1899: 1893: 1865: 1859: 1768: 1762: 1754: 1748: 1465: 1459: 1118: 1112: 907: 901: 766:signalling at the Nyquist rate 200:. It is an application of the 89:Conditional mutual information 13: 1: 3132: 2923:Bell System Technical Journal 2916:"Transmission of Information" 2864:Nyquist, Harry (April 1928). 1577:to noise standard deviation. 1165:to achieve a low error rate. 304:additive white Gaussian noise 1243:noisy channel coding theorem 1230:Noisy-channel coding theorem 735:later came to be called the 655:{\displaystyle f_{p}\leq 2B} 204:to the archetypal case of a 202:noisy-channel coding theorem 141:Noisy-channel coding theorem 7: 2893:10.1109/T-AIEE.1928.5055024 2833: 2777: 1912:is the noise power spectrum 1417:Implications of the theorem 10: 3271: 3078:10.1109/JRPROC.1949.232969 1227: 612: 270:, meaning the theoretical 29: 3240:Telecommunication theory 2975:Gokhale, Anu A. (2004). 2850: 2819:higher-order modulations 2415:{\displaystyle S/N\ll 1} 2213:bandwidth-limited regime 1247:error-correcting methods 243:Statement of the theorem 30:Not to be confused with 2018:When the SNR is large ( 589:During the late 1920s, 190:Shannon–Hartley theorem 146:Shannon–Hartley theorem 3250:Theorems in statistics 2768: 2719: 2680: 2647: 2589: 2416: 2372: 2282: 2198: 2014:Bandwidth-limited case 2007: 1992: 1928: 1906: 1872: 1841: 1815: 1789: 1679: 1649: 1615: 1594: 1564: 1517: 1376: 1375:{\displaystyle R>C} 1344: 1320: 1319:{\displaystyle R<C} 1291: 1271: 1214: 1193: 1159: 1128: 1071: 1051: 1027: 1000: 974: 947: 917: 840: 758: 729: 706: 686: 656: 585:Historical development 574:carrier-to-noise ratio 562: 532: 504: 470: 448: 416: 390: 321: 296: 264: 212:communications channel 120:Rate–distortion theory 2769: 2720: 2681: 2679:{\displaystyle N_{0}} 2648: 2590: 2417: 2373: 2283: 2199: 1993: 1954: 1929: 1907: 1873: 1842: 1816: 1790: 1680: 1650: 1616: 1595: 1565: 1518: 1377: 1345: 1321: 1292: 1272: 1215: 1194: 1160: 1129: 1072: 1052: 1028: 1001: 975: 948: 946:{\displaystyle f_{p}} 918: 841: 764:pulses per second as 759: 730: 707: 687: 685:{\displaystyle f_{p}} 657: 570:signal-to-noise ratio 563: 533: 505: 471: 449: 417: 391: 322: 297: 265: 2948:Bell, D. A. (1962). 2790:(1 + 100) = 4000 log 2732: 2690: 2663: 2609: 2600:power-limited regime 2431: 2392: 2298: 2222: 2036: 1962: 1918: 1905:{\displaystyle N(f)} 1887: 1871:{\displaystyle S(f)} 1853: 1831: 1805: 1694: 1661: 1633: 1605: 1584: 1528: 1437: 1360: 1334: 1304: 1281: 1261: 1204: 1180: 1149: 1084: 1061: 1041: 1017: 987: 964: 930: 869: 806: 782:data signalling rate 745: 716: 696: 669: 630: 544: 522: 494: 460: 438: 406: 335: 311: 286: 254: 84:Directed information 64:Differential entropy 3095:on 8 February 2010. 2885:1928TAIEE..47..617N 2823:spectral efficiency 1934:is frequency in Hz. 1825:in bits per second; 1717: 1678:{\displaystyle S/N} 1648:{\displaystyle S+N} 561:{\displaystyle S/N} 274:upper bound on the 196:in the presence of 69:Conditional entropy 3235:Information theory 2897:Also 2002 Reprint 2764: 2715: 2676: 2643: 2585: 2412: 2382:Power-limited case 2368: 2278: 2194: 2008: 1988: 1940:stationary process 1924: 1902: 1868: 1837: 1811: 1785: 1703: 1675: 1645: 1621:in Hartley's law. 1611: 1590: 1560: 1513: 1372: 1340: 1316: 1287: 1267: 1239:information theory 1237:'s development of 1210: 1192:{\displaystyle 2B} 1189: 1155: 1124: 1067: 1047: 1023: 999:{\displaystyle 2B} 996: 970: 943: 913: 836: 757:{\displaystyle 2B} 754: 728:{\displaystyle 2B} 725: 702: 682: 652: 558: 528: 500: 480:of the channel in 466: 444: 412: 386: 317: 292: 260: 186:information theory 79:Mutual information 41:Information theory 18:Hartley's law 3178:978-0-471-96240-3 3151:978-0-07-062956-1 2762: 2638: 2580: 2561: 2548: 2522: 2492: 2466: 2363: 2325: 2313: 2267: 2255: 2189: 2157: 2131: 2102: 2071: 1980: 1927:{\displaystyle f} 1840:{\displaystyle B} 1814:{\displaystyle C} 1772: 1614:{\displaystyle M} 1593:{\displaystyle M} 1555: 1553: 1506: 1350:bits per second. 1343:{\displaystyle C} 1290:{\displaystyle R} 1270:{\displaystyle C} 1213:{\displaystyle B} 1158:{\displaystyle M} 1077:bits per second: 1070:{\displaystyle R} 1050:{\displaystyle R} 1035:digital bandwidth 1026:{\displaystyle B} 973:{\displaystyle B} 834: 705:{\displaystyle B} 531:{\displaystyle N} 503:{\displaystyle S} 469:{\displaystyle B} 447:{\displaystyle I} 415:{\displaystyle C} 379: 320:{\displaystyle N} 295:{\displaystyle S} 263:{\displaystyle C} 182: 181: 16:(Redirected from 3262: 3190: 3163: 3126: 3125: 3113: 3103: 3097: 3096: 3094: 3088:. Archived from 3061: 3055:(January 1949). 3049: 3043: 3042: 3040: 3026: 3020: 3019: 2999: 2993: 2992: 2972: 2966: 2965: 2945: 2939: 2938: 2920: 2911: 2905: 2903:10.1109/5.989873 2896: 2870: 2861: 2773: 2771: 2770: 2765: 2763: 2761: 2760: 2748: 2724: 2722: 2721: 2716: 2714: 2713: 2685: 2683: 2682: 2677: 2675: 2674: 2658:spectral density 2652: 2650: 2649: 2644: 2639: 2631: 2594: 2592: 2591: 2586: 2581: 2573: 2562: 2554: 2549: 2547: 2533: 2528: 2524: 2523: 2515: 2493: 2491: 2477: 2472: 2468: 2467: 2459: 2443: 2442: 2423: 2421: 2419: 2418: 2413: 2402: 2377: 2375: 2374: 2369: 2364: 2356: 2351: 2350: 2335: 2323: 2311: 2287: 2285: 2284: 2279: 2277: 2265: 2253: 2210: 2203: 2201: 2200: 2195: 2190: 2182: 2177: 2176: 2158: 2150: 2145: 2144: 2132: 2130: 2119: 2108: 2103: 2095: 2090: 2089: 2077: 2073: 2072: 2064: 2048: 2047: 2028: 1997: 1995: 1994: 1989: 1981: 1979: 1978: 1966: 1933: 1931: 1930: 1925: 1911: 1909: 1908: 1903: 1877: 1875: 1874: 1869: 1846: 1844: 1843: 1838: 1823:channel capacity 1820: 1818: 1817: 1812: 1794: 1792: 1791: 1786: 1778: 1774: 1773: 1771: 1757: 1743: 1727: 1726: 1716: 1711: 1686: 1684: 1682: 1681: 1676: 1671: 1654: 1652: 1651: 1646: 1620: 1618: 1617: 1612: 1599: 1597: 1596: 1591: 1569: 1567: 1566: 1561: 1556: 1554: 1546: 1538: 1522: 1520: 1519: 1514: 1512: 1508: 1507: 1499: 1483: 1482: 1455: 1454: 1381: 1379: 1378: 1373: 1349: 1347: 1346: 1341: 1325: 1323: 1322: 1317: 1296: 1294: 1293: 1288: 1276: 1274: 1273: 1268: 1255:channel capacity 1219: 1217: 1216: 1211: 1198: 1196: 1195: 1190: 1176:-ary channel of 1164: 1162: 1161: 1156: 1133: 1131: 1130: 1125: 1108: 1107: 1076: 1074: 1073: 1068: 1056: 1054: 1053: 1048: 1032: 1030: 1029: 1024: 1011:analog bandwidth 1005: 1003: 1002: 997: 979: 977: 976: 971: 952: 950: 949: 944: 942: 941: 922: 920: 919: 914: 897: 896: 887: 886: 845: 843: 842: 837: 835: 833: 822: 763: 761: 760: 755: 734: 732: 731: 726: 711: 709: 708: 703: 691: 689: 688: 683: 681: 680: 661: 659: 658: 653: 642: 641: 567: 565: 564: 559: 554: 537: 535: 534: 529: 509: 507: 506: 501: 475: 473: 472: 467: 453: 451: 450: 445: 424:channel capacity 421: 419: 418: 413: 395: 393: 392: 387: 385: 381: 380: 372: 356: 355: 328: 326: 324: 323: 318: 306:(AWGN) of power 301: 299: 298: 293: 276:information rate 269: 267: 266: 261: 249:channel capacity 220:channel capacity 174: 167: 160: 136:Channel capacity 94:Relative entropy 51: 37: 36: 21: 3270: 3269: 3265: 3264: 3263: 3261: 3260: 3259: 3225: 3224: 3198: 3193: 3179: 3152: 3144:. McGraw-Hill. 3135: 3130: 3129: 3122: 3104: 3100: 3092: 3059: 3050: 3046: 3038: 3027: 3023: 3016: 3000: 2996: 2989: 2973: 2969: 2962: 2946: 2942: 2918: 2912: 2908: 2868: 2862: 2858: 2853: 2836: 2812: 2804: 2800: 2793: 2789: 2780: 2756: 2752: 2747: 2733: 2730: 2729: 2709: 2705: 2691: 2688: 2687: 2670: 2666: 2664: 2661: 2660: 2630: 2610: 2607: 2606: 2572: 2553: 2537: 2532: 2514: 2507: 2503: 2481: 2476: 2458: 2451: 2447: 2438: 2434: 2432: 2429: 2428: 2398: 2393: 2390: 2389: 2387: 2384: 2355: 2346: 2342: 2301: 2299: 2296: 2295: 2243: 2223: 2220: 2219: 2208: 2181: 2172: 2168: 2149: 2140: 2136: 2120: 2109: 2107: 2094: 2085: 2081: 2063: 2056: 2052: 2043: 2039: 2037: 2034: 2033: 2019: 2016: 1974: 1970: 1965: 1963: 1960: 1959: 1949: 1919: 1916: 1915: 1888: 1885: 1884: 1854: 1851: 1850: 1832: 1829: 1828: 1806: 1803: 1802: 1758: 1744: 1742: 1735: 1731: 1722: 1718: 1712: 1707: 1695: 1692: 1691: 1667: 1662: 1659: 1658: 1656: 1634: 1631: 1630: 1627: 1606: 1603: 1602: 1585: 1582: 1581: 1545: 1537: 1529: 1526: 1525: 1498: 1491: 1487: 1478: 1474: 1450: 1446: 1438: 1435: 1434: 1424: 1419: 1391:continuous-time 1361: 1358: 1357: 1335: 1332: 1331: 1305: 1302: 1301: 1282: 1279: 1278: 1262: 1259: 1258: 1232: 1226: 1205: 1202: 1201: 1181: 1178: 1177: 1150: 1147: 1146: 1103: 1099: 1085: 1082: 1081: 1062: 1059: 1058: 1042: 1039: 1038: 1018: 1015: 1014: 988: 985: 984: 965: 962: 961: 937: 933: 931: 928: 927: 892: 888: 882: 878: 870: 867: 866: 826: 821: 807: 804: 803: 780:(also known as 774: 746: 743: 742: 717: 714: 713: 697: 694: 693: 676: 672: 670: 667: 666: 637: 633: 631: 628: 627: 617: 611: 587: 550: 545: 542: 541: 523: 520: 519: 495: 492: 491: 461: 458: 457: 439: 436: 435: 428:bits per second 407: 404: 403: 371: 364: 360: 351: 347: 336: 333: 332: 312: 309: 308: 307: 287: 284: 283: 255: 252: 251: 245: 206:continuous-time 178: 35: 28: 23: 22: 15: 12: 11: 5: 3268: 3258: 3257: 3255:Claude Shannon 3252: 3247: 3242: 3237: 3223: 3222: 3217: 3197: 3196:External links 3194: 3192: 3191: 3177: 3164: 3150: 3136: 3134: 3131: 3128: 3127: 3120: 3098: 3053:Shannon, C. E. 3044: 3030:Shannon, C. E. 3021: 3014: 2994: 2987: 2967: 2960: 2940: 2929:(3): 535–563. 2906: 2855: 2854: 2852: 2849: 2848: 2847: 2842: 2835: 2832: 2831: 2830: 2827:16QAM or 64QAM 2814: 2810: 2806: 2802: 2798: 2795: 2791: 2787: 2784: 2779: 2776: 2775: 2774: 2759: 2755: 2751: 2746: 2743: 2740: 2737: 2712: 2708: 2704: 2701: 2698: 2695: 2673: 2669: 2654: 2653: 2642: 2637: 2634: 2629: 2626: 2623: 2620: 2617: 2614: 2596: 2595: 2584: 2579: 2576: 2571: 2568: 2565: 2560: 2557: 2552: 2546: 2543: 2540: 2536: 2531: 2527: 2521: 2518: 2513: 2510: 2506: 2502: 2499: 2496: 2490: 2487: 2484: 2480: 2475: 2471: 2465: 2462: 2457: 2454: 2450: 2446: 2441: 2437: 2411: 2408: 2405: 2401: 2397: 2383: 2380: 2379: 2378: 2367: 2362: 2359: 2354: 2349: 2345: 2341: 2338: 2334: 2331: 2328: 2322: 2319: 2316: 2310: 2307: 2304: 2289: 2288: 2276: 2273: 2270: 2264: 2261: 2258: 2252: 2249: 2246: 2242: 2239: 2236: 2233: 2230: 2227: 2205: 2204: 2193: 2188: 2185: 2180: 2175: 2171: 2167: 2164: 2161: 2156: 2153: 2148: 2143: 2139: 2135: 2129: 2126: 2123: 2118: 2115: 2112: 2106: 2101: 2098: 2093: 2088: 2084: 2080: 2076: 2070: 2067: 2062: 2059: 2055: 2051: 2046: 2042: 2015: 2012: 1987: 1984: 1977: 1973: 1969: 1948: 1947:Approximations 1945: 1936: 1935: 1923: 1913: 1901: 1898: 1895: 1892: 1882: 1880:power spectrum 1878:is the signal 1867: 1864: 1861: 1858: 1848: 1836: 1826: 1810: 1796: 1795: 1784: 1781: 1777: 1770: 1767: 1764: 1761: 1756: 1753: 1750: 1747: 1741: 1738: 1734: 1730: 1725: 1721: 1715: 1710: 1706: 1702: 1699: 1674: 1670: 1666: 1644: 1641: 1638: 1626: 1623: 1610: 1589: 1571: 1570: 1559: 1552: 1549: 1544: 1541: 1536: 1533: 1523: 1511: 1505: 1502: 1497: 1494: 1490: 1486: 1481: 1477: 1473: 1470: 1467: 1464: 1461: 1458: 1453: 1449: 1445: 1442: 1423: 1420: 1418: 1415: 1383: 1382: 1371: 1368: 1365: 1339: 1327: 1326: 1315: 1312: 1309: 1286: 1266: 1235:Claude Shannon 1228:Main article: 1225: 1222: 1209: 1188: 1185: 1154: 1135: 1134: 1123: 1120: 1117: 1114: 1111: 1106: 1102: 1098: 1095: 1092: 1089: 1066: 1046: 1022: 995: 992: 969: 940: 936: 924: 923: 912: 909: 906: 903: 900: 895: 891: 885: 881: 877: 874: 848: 847: 832: 829: 825: 820: 817: 814: 811: 773: 770: 753: 750: 724: 721: 701: 679: 675: 663: 662: 651: 648: 645: 640: 636: 613:Main article: 610: 607: 603:Claude Shannon 586: 583: 582: 581: 557: 553: 549: 539: 527: 517: 499: 489: 465: 455: 443: 411: 397: 396: 384: 378: 375: 370: 367: 363: 359: 354: 350: 346: 343: 340: 316: 291: 259: 244: 241: 233:Claude Shannon 216:Gaussian noise 180: 179: 177: 176: 169: 162: 154: 151: 150: 149: 148: 143: 138: 133: 125: 124: 123: 122: 117: 109: 108: 107: 106: 101: 96: 91: 86: 81: 76: 71: 66: 61: 53: 52: 44: 43: 26: 9: 6: 4: 3: 2: 3267: 3256: 3253: 3251: 3248: 3246: 3243: 3241: 3238: 3236: 3233: 3232: 3230: 3221: 3218: 3215: 3211: 3207: 3203: 3200: 3199: 3188: 3184: 3180: 3174: 3170: 3165: 3161: 3157: 3153: 3147: 3143: 3138: 3137: 3123: 3121:0-486-24061-4 3117: 3112: 3111: 3102: 3091: 3087: 3083: 3079: 3075: 3071: 3067: 3066: 3058: 3054: 3048: 3037: 3036: 3031: 3025: 3017: 3015:0-7487-4044-9 3011: 3008:. CRC Press. 3007: 3006: 2998: 2990: 2988:1-4018-5648-9 2984: 2980: 2979: 2971: 2963: 2961:9780273417576 2957: 2953: 2952: 2944: 2936: 2932: 2928: 2924: 2917: 2910: 2904: 2900: 2894: 2890: 2886: 2882: 2879:(2): 617–44. 2878: 2874: 2867: 2860: 2856: 2846: 2843: 2841: 2838: 2837: 2828: 2824: 2820: 2815: 2807: 2796: 2785: 2782: 2781: 2757: 2753: 2749: 2744: 2741: 2738: 2735: 2728: 2727: 2726: 2710: 2706: 2702: 2699: 2696: 2693: 2671: 2667: 2659: 2640: 2635: 2632: 2627: 2624: 2621: 2618: 2615: 2612: 2605: 2604: 2603: 2601: 2582: 2577: 2574: 2569: 2566: 2563: 2558: 2555: 2550: 2544: 2541: 2538: 2534: 2529: 2525: 2519: 2516: 2511: 2508: 2504: 2500: 2497: 2494: 2488: 2485: 2482: 2478: 2473: 2469: 2463: 2460: 2455: 2452: 2448: 2444: 2439: 2435: 2427: 2426: 2425: 2409: 2406: 2403: 2399: 2395: 2365: 2360: 2357: 2352: 2347: 2343: 2339: 2336: 2294: 2293: 2292: 2240: 2237: 2234: 2231: 2228: 2225: 2218: 2217: 2216: 2214: 2191: 2186: 2183: 2178: 2173: 2169: 2165: 2162: 2159: 2154: 2151: 2146: 2141: 2137: 2133: 2127: 2124: 2121: 2116: 2113: 2110: 2104: 2099: 2096: 2091: 2086: 2082: 2078: 2074: 2068: 2065: 2060: 2057: 2053: 2049: 2044: 2040: 2032: 2031: 2030: 2026: 2022: 2011: 2005: 2001: 1985: 1982: 1975: 1971: 1967: 1957: 1953: 1944: 1941: 1921: 1914: 1896: 1890: 1883: 1881: 1862: 1856: 1849: 1834: 1827: 1824: 1808: 1801: 1800: 1799: 1782: 1779: 1775: 1765: 1759: 1751: 1745: 1739: 1736: 1732: 1728: 1723: 1719: 1713: 1708: 1704: 1700: 1697: 1690: 1689: 1688: 1672: 1668: 1664: 1642: 1639: 1636: 1622: 1608: 1587: 1578: 1576: 1575:RMS amplitude 1557: 1550: 1547: 1542: 1539: 1534: 1531: 1524: 1509: 1503: 1500: 1495: 1492: 1488: 1484: 1479: 1475: 1471: 1468: 1462: 1456: 1451: 1447: 1443: 1440: 1433: 1432: 1431: 1429: 1414: 1410: 1406: 1402: 1398: 1396: 1392: 1387: 1369: 1366: 1363: 1356: 1355: 1354: 1351: 1337: 1313: 1310: 1307: 1300: 1299: 1298: 1284: 1264: 1256: 1251: 1248: 1244: 1240: 1236: 1231: 1221: 1207: 1186: 1183: 1175: 1170: 1166: 1152: 1144: 1140: 1121: 1115: 1109: 1104: 1100: 1096: 1093: 1090: 1087: 1080: 1079: 1078: 1064: 1044: 1036: 1020: 1012: 1007: 993: 990: 982: 967: 958: 956: 938: 934: 910: 904: 898: 893: 889: 883: 879: 875: 872: 865: 864: 863: 861: 857: 853: 830: 823: 818: 815: 812: 809: 802: 801: 800: 798: 794: 788: 786: 783: 779: 772:Hartley's law 769: 767: 751: 748: 740: 739: 722: 719: 699: 677: 673: 649: 646: 643: 638: 634: 626: 625: 624: 622: 616: 606: 604: 600: 596: 595:Ralph Hartley 592: 591:Harry Nyquist 579: 575: 572:(SNR) or the 571: 555: 551: 547: 540: 525: 518: 515: 514: 497: 490: 487: 483: 479: 463: 456: 441: 433: 429: 425: 409: 402: 401: 400: 382: 376: 373: 368: 365: 361: 357: 352: 348: 344: 341: 338: 331: 330: 329: 314: 305: 289: 281: 277: 273: 257: 250: 240: 238: 237:Ralph Hartley 234: 229: 225: 221: 217: 213: 210: 207: 203: 199: 195: 191: 187: 175: 170: 168: 163: 161: 156: 155: 153: 152: 147: 144: 142: 139: 137: 134: 132: 129: 128: 127: 126: 121: 118: 116: 113: 112: 111: 110: 105: 102: 100: 97: 95: 92: 90: 87: 85: 82: 80: 77: 75: 74:Joint entropy 72: 70: 67: 65: 62: 60: 57: 56: 55: 54: 50: 46: 45: 42: 39: 38: 33: 19: 3206:David MacKay 3168: 3141: 3109: 3101: 3090:the original 3072:(1): 10–21. 3069: 3063: 3047: 3034: 3024: 3004: 2997: 2977: 2970: 2950: 2943: 2926: 2922: 2909: 2876: 2872: 2859: 2655: 2599: 2597: 2385: 2290: 2212: 2206: 2024: 2020: 2017: 2009: 2003: 1999: 1937: 1797: 1628: 1579: 1572: 1427: 1425: 1411: 1407: 1403: 1399: 1394: 1388: 1384: 1352: 1328: 1252: 1233: 1173: 1171: 1167: 1142: 1138: 1136: 1008: 959: 925: 859: 855: 849: 799:is given by 796: 792: 789: 784: 775: 765: 738:Nyquist rate 736: 664: 618: 615:Nyquist rate 609:Nyquist rate 588: 511: 432:net bit rate 398: 246: 189: 183: 145: 99:Entropy rate 3214:Turbo codes 3114:. Courier. 2873:Trans. AIEE 224:information 214:subject to 3229:Categories 3133:References 1297:, then if 280:error rate 3171:. Wiley. 3032:(1998) . 2745:⋅ 2739:≈ 2703:⋅ 2628:⋅ 2622:⋅ 2616:≈ 2570:⋅ 2564:≈ 2551:⋅ 2542:⁡ 2530:≈ 2501:⁡ 2495:⋅ 2486:⁡ 2445:⁡ 2407:≪ 2353:⁡ 2241:⋅ 2235:⋅ 2229:≈ 2179:⁡ 2166:⋅ 2160:≈ 2147:⁡ 2134:⋅ 2125:⁡ 2114:⁡ 2092:⁡ 2079:≈ 2050:⁡ 1729:⁡ 1705:∫ 1485:⁡ 1457:⁡ 1110:⁡ 1091:≤ 899:⁡ 852:logarithm 828:Δ 778:line rate 644:≤ 621:bandwidth 599:telegraph 478:bandwidth 358:⁡ 228:bandwidth 194:bandwidth 3160:12107009 3086:52873253 2834:See also 2778:Examples 578:decibels 486:passband 272:tightest 3187:1325622 2881:Bibcode 2422:⁠ 2388:⁠ 1821:is the 1685:⁠ 1657:⁠ 568:is the 476:is the 422:is the 59:Entropy 3212:, and 3185:  3175:  3158:  3148:  3118:  3084:  3012:  2985:  2958:  2805:(31)). 2324:  2312:  2291:where 2266:  2254:  1798:where 926:where 665:where 399:where 209:analog 188:, the 3204:, by 3093:(PDF) 3082:S2CID 3060:(PDF) 3039:(PDF) 2919:(PDF) 2869:(PDF) 2851:Notes 2845:Eb/N0 2232:0.332 981:hertz 482:hertz 198:noise 3183:OCLC 3173:ISBN 3156:OCLC 3146:ISBN 3116:ISBN 3010:ISBN 2983:ISBN 2956:ISBN 2742:1.44 2619:1.44 2567:1.44 2163:3.32 2002:and 1956:AWGN 1367:> 1311:< 983:was 955:baud 862:as: 593:and 235:and 3074:doi 2931:doi 2899:doi 2889:doi 2809:log 2436:log 2344:log 2170:log 2138:log 2083:log 2041:log 2027:≫ 1 1720:log 1476:log 1448:log 1101:log 890:log 426:in 349:log 184:In 3231:: 3181:. 3154:. 3080:. 3070:37 3068:. 3062:. 2925:. 2921:. 2887:. 2877:47 2875:. 2871:. 2803:10 2725:. 2602:. 2539:ln 2498:ln 2483:ln 2348:10 2340:10 2215:. 2174:10 2142:10 2122:ln 2117:10 2111:ln 1998:; 1430:: 1037:, 1013:, 957:. 580:). 239:. 3216:. 3189:. 3162:. 3124:. 3076:: 3018:. 2991:. 2964:. 2937:. 2933:: 2927:7 2901:: 2895:. 2891:: 2883:: 2811:2 2799:2 2792:2 2788:2 2758:0 2754:N 2750:S 2736:C 2711:0 2707:N 2700:B 2697:= 2694:N 2672:0 2668:N 2641:. 2636:N 2633:S 2625:B 2613:C 2583:; 2578:N 2575:S 2559:N 2556:S 2545:2 2535:1 2526:) 2520:N 2517:S 2512:+ 2509:1 2505:( 2489:2 2479:1 2474:= 2470:) 2464:N 2461:S 2456:+ 2453:1 2449:( 2440:2 2410:1 2404:N 2400:/ 2396:S 2366:. 2361:N 2358:S 2337:= 2333:) 2330:B 2327:d 2321:n 2318:i 2315:( 2309:R 2306:N 2303:S 2275:) 2272:B 2269:d 2263:n 2260:i 2257:( 2251:R 2248:N 2245:S 2238:B 2226:C 2209:N 2192:, 2187:N 2184:S 2155:N 2152:S 2128:2 2105:= 2100:N 2097:S 2087:2 2075:) 2069:N 2066:S 2061:+ 2058:1 2054:( 2045:2 2025:N 2023:/ 2021:S 2004:C 2000:B 1986:1 1983:= 1976:0 1972:N 1968:S 1922:f 1900:) 1897:f 1894:( 1891:N 1866:) 1863:f 1860:( 1857:S 1835:B 1809:C 1783:f 1780:d 1776:) 1769:) 1766:f 1763:( 1760:N 1755:) 1752:f 1749:( 1746:S 1740:+ 1737:1 1733:( 1724:2 1714:B 1709:0 1701:= 1698:C 1673:N 1669:/ 1665:S 1643:N 1640:+ 1637:S 1609:M 1588:M 1558:. 1551:N 1548:S 1543:+ 1540:1 1535:= 1532:M 1510:) 1504:N 1501:S 1496:+ 1493:1 1489:( 1480:2 1472:B 1469:= 1466:) 1463:M 1460:( 1452:2 1444:B 1441:2 1428:M 1395:M 1370:C 1364:R 1338:C 1314:C 1308:R 1285:R 1265:C 1208:B 1187:B 1184:2 1174:M 1153:M 1143:M 1139:M 1122:. 1119:) 1116:M 1113:( 1105:2 1097:B 1094:2 1088:R 1065:R 1045:R 1021:B 994:B 991:2 968:B 939:p 935:f 911:, 908:) 905:M 902:( 894:2 884:p 880:f 876:= 873:R 860:R 856:M 846:. 831:V 824:A 819:+ 816:1 813:= 810:M 797:M 793:V 785:R 752:B 749:2 723:B 720:2 700:B 678:p 674:f 650:B 647:2 639:p 635:f 556:N 552:/ 548:S 526:N 513:C 498:S 484:( 464:B 442:I 410:C 383:) 377:N 374:S 369:+ 366:1 362:( 353:2 345:B 342:= 339:C 327:: 315:N 290:S 258:C 173:e 166:t 159:v 34:. 20:)

Index

Hartley's law
Nyquist–Shannon sampling theorem
Information theory

Entropy
Differential entropy
Conditional entropy
Joint entropy
Mutual information
Directed information
Conditional mutual information
Relative entropy
Entropy rate
Limiting density of discrete points
Asymptotic equipartition property
Rate–distortion theory
Shannon's source coding theorem
Channel capacity
Noisy-channel coding theorem
Shannon–Hartley theorem
v
t
e
information theory
bandwidth
noise
noisy-channel coding theorem
continuous-time
analog
communications channel

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.