Knowledge

Heterotroph

Source 📝

554: 469:) – to a flask and stimulated them with electricity that resembled lightning present on early Earth. The experiment resulted in the discovery that early Earth conditions were supportive of the production of amino acids, with recent re-analyses of the data recognizing that over 40 different amino acids were produced, including several not currently used by life. This experiment heralded the beginning of the field of synthetic prebiotic chemistry, and is now known as the 20: 714:, the process of converting organic compounds to inorganic forms. When the organic nutrient source taken in by the heterotroph contains essential elements such as N, S, P in addition to C, H, and O, they are often removed first to proceed with the oxidation of organic nutrient and production of ATP via respiration. S and N in organic carbon source are transformed into H 434:. While these authors agreed on the gasses present and the progression of events to a point, Oparin championed a progressive complexity of organic matter prior to the formation of cells, while Haldane had more considerations about the concept of genes as units of heredity and the possibility of light playing a role in chemical synthesis ( 965:"The purpose of saprotrophs and their internal nutrition, as well as the main two types of fungi that are most often referred to, as well as describes, visually, the process of saprotrophic nutrition through a diagram of hyphae, referring to the Rhizobium on damp, stale whole-meal bread or rotting fruit." 476:
On early Earth, oceans and shallow waters were rich with organic molecules that could have been used by primitive heterotrophs. This method of obtaining energy was energetically favorable until organic carbon became more scarce than inorganic carbon, providing a potential evolutionary pressure to
505:
was the main carbon source at the early Earth, suggesting that early cellular life were autotrophs that relied upon inorganic substrates as an energy source and lived at alkaline hydrothermal vents or acidic geothermal ponds. Simple biomolecules transported from space was considered to have been
398:
Heterotrophs, by consuming reduced carbon compounds, are able to use all the energy that they obtain from food for growth and reproduction, unlike autotrophs, which must use some of their energy for carbon fixation. Both heterotrophs and autotrophs alike are usually dependent on the metabolic
391:(or facultative chemolithotroph) can use either carbon dioxide or organic carbon as the carbon source, meaning that mixotrophs have the ability to use both heterotrophic and autotrophic methods. Although mixotrophs have the ability to grow under both heterotrophic and autotrophic conditions, 477:
become autotrophic. Following the evolution of autotrophs, heterotrophs were able to utilize them as a food source instead of relying on the limited nutrients found in their environment. Eventually, autotrophic and heterotrophic cells were engulfed by these early heterotrophs and formed a
497:
relationships that provide needed resources to both organisms. One example of this is the mutualism between corals and algae, where the former provides protection and necessary compounds for photosynthesis while the latter provides oxygen.
399:
activities of other organisms for nutrients other than carbon, including nitrogen, phosphorus, and sulfur, and can die from lack of food that supplies these nutrients. This applies not only to animals and fungi but also to bacteria.
362:
and purple non-sulfur bacteria synthesize organic compounds using sunlight coupled with oxidation of organic substances. They use organic compounds to build structures. They do not fix carbon dioxide and apparently do not have the
493:, allowing the differentiation of tissues and development into multicellularity. This advancement allowed the further diversification of heterotrophs. Today, many heterotrophs and autotrophs also utilize 1659:
Preiner, Martina; Asche, Silke; Becker, Sidney; Betts, Holly C.; Boniface, Adrien; Camprubi, Eloi; Chandru, Kuhan; Erastova, Valentina; Garg, Sriram G.; Khawaja, Nozair; Kostyrka, Gladys (2020-02-26).
265:
to organic carbon compounds and energy to sustain their life. Comparing the two in basic terms, heterotrophs (such as animals) eat either autotrophs (such as plants) or other heterotrophs, or both.
175:, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but not producers. Living organisms that are heterotrophic include all 644:). They release the chemical energy of nutrient molecules by oxidizing carbon and hydrogen atoms from carbohydrates, lipids, and proteins to carbon dioxide and water, respectively. 750:
formed from deamination is further oxidized by lithotrophs to the forms available to plants. Heterotrophs' ability to mineralize essential elements is critical to plant survival.
355:. Phototrophs utilize light to obtain energy and carry out metabolic processes, whereas chemotrophs use the energy obtained by the oxidation of chemicals from their environment. 612:
that use organic carbon (e.g. glucose) as their carbon source, and organic chemicals (e.g. carbohydrates, lipids, proteins) as their electron sources. Heterotrophs function as
525:. Domain Bacteria includes a variety of metabolic activity including photoheterotrophs, chemoheterotrophs, organotrophs, and heterolithotrophs. Within Domain Eukarya, kingdoms 423:, which further reacted to form more complex compounds and eventually resulted in life. Alternative theories of an autotrophic origin of life contradict this theory. 1066:"Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent" 889: 628:. They break down complex organic compounds (e.g., carbohydrates, fats, and proteins) produced by autotrophs into simpler compounds (e.g., carbohydrates into 933:. Cold Spring Harbor Symposia on Quantitative Biology. Vol. XI (5th ed.). Cold Spring Harbor, N.Y.: The Biological Laboratory. pp. 302–303. 2268: 1159:
Liang, Yanna (July 2009). "Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions".
979: 664: 1133: 981:
The Environmental Geochemistry of Mineral Deposits: Part A: Processes, Techniques, and Health Issues Part B: Case Studies and Research Topics
506:
either too reduced to have been fermented or too heterogeneous to support microbial growth. Heterotrophic microbes likely originated at low H
934: 1106: 2307: 707:
into the atmosphere, making it available for autotrophs as a source of nutrient and plants as a cellulose synthesis substrate.
2191: 2145: 1747: 1365: 1143: 1116: 1064:
Miroshnichenko, M.L.; L'Haridon, S.; Jeanthon, C.; Antipov, A.N.; Kostrikina, N.A.; Tindall, B.J.; et al. (1 May 2003).
1045: 992: 870: 703:
O into the atmosphere. Heterotrophic microbes' respiration and fermentation account for a large portion of the release of CO
1427:"The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates" 430:, and eventually published “The Origin of Life.” It was independently proposed for the first time in English in 1929 by 533:
are entirely heterotrophic, though most fungi absorb nutrients through their environment. Most organisms within Kingdom
2358: 1215: 137: 419:
and energy sources such as electrical energy in the form of lightning, which resulted in reactions that formed simple
364: 2426: 1832:"Major evolutionary transitions of life, metabolic scaling and the number and size of mitochondria and chloroplasts" 900: 545:
plants. Lastly, Domain Archaea varies immensely in metabolic functions and contains many methods of heterotrophy.
218:
Heterotrophs may be subdivided according to their energy source. If the heterotroph uses chemical energy, it is a
1942:
Muchowska, K. B.; Varma, S. J.; Chevallot-Beroux, E.; Lethuillier-Karl, L.; Li, G.; Moran, J. (October 2, 2017).
656: 655:
that carry out fermentation in low oxygen environments, in which the production of ATP is commonly coupled with
395:
have higher biomass and lipid productivity when growing under heterotrophic compared to autotrophic conditions.
154: 2447: 2275: 2007:
Weiss, Madeline C.; Preiner, Martina; Xavier, Joana C.; Zimorski, Verena; Martin, William F. (2018-08-16).
998: 510:
partial pressures. Bases, amino acids, and ribose are considered to be the first fermentation substrates.
780:
Animals are classified as heterotrophs by ingestion, fungi are classified as heterotrophs by absorption.
426:
The theory of a chemical origin of life beginning with heterotrophic life was first proposed in 1924 by
2178:, Ecological Studies, vol. 157, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 375–413, 470: 446: 204: 2075: 1037: 684: 227: 2452: 711: 1387: 679:
for removing organic fermentation products from anaerobic environments. Heterotrophs can undergo
347:, to obtain electrons. Another way of classifying different heterotrophs is by assigning them as 292: 761:
are heterotrophic; in particular, all animals and fungi are heterotrophs. Some animals, such as
617: 335:
from plants and animals. On the other hand, lithoheterotrophs use inorganic compounds, such as
130: 52: 2009:"The last universal common ancestor between ancient Earth chemistry and the onset of genetics" 1063: 925: 896: 613: 603: 1030: 2225: 1955: 1672: 1614: 1559: 1547: 1345: 1340:, in Gargaud, Muriel; Irvine, William M.; Amils, Ricardo; Cleaves, Henderson James (eds.), 1247: 680: 48: 1337: 734:. The conversion of N and S from organic form to inorganic form is a critical part of the 8: 1236:"New insights into prebiotic chemistry from Stanley Miller's spark discharge experiments" 816: 746:
S formed from desulfurylation is further oxidized by lithotrophs and phototrophs while NH
621: 494: 416: 2300: 2229: 1959: 1676: 1618: 1563: 1349: 1251: 295:
in processing decayed organic matter. The process is most often facilitated through the
2364: 2339: 2151: 2056: 2043: 2008: 1984: 1943: 1924: 1864: 1807: 1703: 1660: 1638: 1528: 1459: 1184: 769:
relationships with autotrophs and obtain organic carbon in this way. Furthermore, some
652: 625: 663:, sulfide). These products can then serve as the substrates for other bacteria in the 415:
with heterotrophs. The summary of this theory is as follows: early Earth had a highly
2422: 2354: 2249: 2241: 2187: 2155: 2141: 2103: 2095: 2048: 2030: 1989: 1971: 1916: 1908: 1869: 1851: 1812: 1794: 1743: 1708: 1690: 1630: 1583: 1575: 1520: 1512: 1492: 1464: 1446: 1407: 1361: 1318: 1310: 1271: 1263: 1211: 1176: 1139: 1112: 1087: 1041: 988: 866: 774: 727: 542: 359: 2368: 2060: 1928: 1642: 1532: 2346: 2233: 2179: 2133: 2087: 2038: 2020: 1979: 1963: 1900: 1859: 1843: 1802: 1786: 1735: 1698: 1680: 1622: 1603:"The 1953 Stanley L. Miller experiment: Fifty years of prebiotic organic chemistry" 1602: 1567: 1504: 1454: 1438: 1399: 1357: 1353: 1302: 1255: 1188: 1168: 1077: 589: 584: 431: 427: 420: 372: 296: 288: 223: 70: 2173: 1727: 171:
that cannot produce its own food, instead taking nutrition from other sources of
2183: 2025: 1775:"Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes" 1739: 1571: 862: 821: 770: 412: 192: 2213: 1774: 796: 2237: 1790: 801: 735: 572: 567: 442: 408: 262: 258: 254: 200: 172: 44: 28: 2350: 2091: 1967: 1941: 1626: 1508: 1403: 1172: 777:
consume animals to augment their nitrogen supply while remaining autotrophic.
2441: 2245: 2099: 2034: 1975: 1912: 1855: 1798: 1694: 1579: 1516: 1450: 1314: 1267: 1204: 731: 647:
They can catabolize organic compounds by respiration, fermentation, or both.
553: 490: 324: 234: 1831: 1290: 836: 2253: 2127: 2107: 2052: 1993: 1920: 1873: 1847: 1816: 1712: 1634: 1587: 1524: 1481:
Haldane, J.B.S. (1929) The Origin of Life. The Rationalist Annual, 3, 3-10.
1468: 1411: 1322: 1275: 1180: 1091: 739: 676: 648: 557:
Flowchart to determine if a species is autotroph, heterotroph, or a subtype
482: 196: 2137: 1082: 1065: 323:. Organotrophs exploit reduced carbon compounds as electron sources, like 1889:"Multispecies Microbial Mutualisms on Coral Reefs: The Host as a Habitat" 1685: 923: 754: 723: 641: 633: 609: 486: 450: 380: 316: 300: 268: 1830:
Okie, Jordan G.; Smith, Val H.; Martin-Cereceda, Mercedes (2016-05-25).
222:(e.g., humans and mushrooms). If it uses light for energy, then it is a 19: 1661:"The Future of Origin of Life Research: Bridging Decades-Old Divisions" 1548:"A Production of Amino Acids Under Possible Primitive Earth Conditions" 1426: 1306: 1259: 1235: 758: 352: 348: 320: 284: 219: 212: 1442: 1344:, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 2010–2014, 2074:
Schönheit, Peter; Buckel, Wolfgang; Martin, William F. (2016-01-01).
766: 562: 478: 435: 388: 238: 160: 143: 24: 1888: 1904: 637: 514: 489:
while the endosymbiosis of smaller heterotrophs developed into the
384: 371:
obtain energy from the oxidation of inorganic compounds, including
336: 332: 276: 272: 250: 184: 168: 2175:
Mycorrhizal Specificity and Function in Myco-heterotrophic Plants
1070:
International Journal of Systematic and Evolutionary Microbiology
629: 534: 522: 518: 340: 208: 188: 687:. This leads to the release of oxidized carbon wastes such as CO 2172:
Taylor, D. L.; Bruns, T. D.; Leake, J. R.; Read, D. J. (2002),
1386:
Schönheit, Peter; Buckel, Wolfgang; Martin, William F. (2016).
530: 526: 376: 344: 233:
Heterotrophs represent one of the two mechanisms of nutrition (
176: 40: 85: 47:(green arrow). Both types of organisms use such compounds via 1734:, Cham: Springer International Publishing, pp. 157–199, 762: 538: 304: 280: 180: 43:
and complex organic compounds, mainly through the process of
36: 959: 449:
in which he added gasses that were thought to be present on
2214:"Animals and the invention of the Phanerozoic Earth system" 485:
of autotrophic cells is suggested to have evolved into the
100: 88: 79: 2345:. Springer Series in Microbiology (2 ed.). Springer. 2301:"Heterotrophic nutrition and control of bacterial density" 2006: 118: 1036:(4th ed.). Jones & Bartlett Publishers. p.  773:
have also turned fully or partially heterotrophic, while
513:
Heterotrophs are currently found in each domain of life:
328: 1829: 924:
Lwoff, A.; C.B. van Niel; P.J. Ryan; E.L. Tatum (1946).
1836:
Proceedings of the Royal Society B: Biological Sciences
1658: 2126:
Kim, Byung Hong; Gadd, Geoffrey Michael (2019-05-04).
2073: 1944:"Metals promote sequences of the reverse Krebs cycle" 1385: 850: 121: 109: 103: 91: 2269:"The role of bacteria in environmental geochemistry" 2171: 987:. Society of Economic Geologists. pp. 125–132. 710:
Respiration in heterotrophs is often accompanied by
659:
and the production of end products (e.g. alcohol, CO
115: 112: 97: 94: 82: 2421:. Oxford: Oxford University Press. pp. 79–98. 927:
Nomenclature of nutritional types of microorganisms
441:Evidence grew to support this theory in 1953, when 76: 73: 2338: 1203: 1201: 1029: 16:Organism that ingests organic carbon for nutrition 2395:MICB 201: Introductory Environmental Microbiology 1210:(7th ed.). Benjamin-Cummings Publishing Co. 303:within the internal mycelium and its constituent 2439: 651:heterotrophs are either facultative or obligate 1135:The prokaryotes: ecophysiology and biochemistry 1098: 279:(decomposing plant and animal parts as well as 207:. The term is now used in many fields, such as 1886: 1607:Origins of Life and Evolution of the Biosphere 1424: 501:However this hypothesis is controversial as CO 411:hypothesis suggests that life originated in a 1425:Sanger, F.; Thompson, E. O. P. (1953-02-01). 1111:(2nd ed.). Academic Press. p. 192. 402: 1773:Zachar, István; Boza, Gergely (2020-02-01). 955:(3rd ed.). Academic Press. p. 700. 950: 726:, respectively. Heterotrophs also allow for 2211: 1601:Lazcano, Antonio; Bada, Jeffrey L. (2003). 1600: 1125: 541:is almost entirely autotrophic, except for 2336: 1772: 1732:Evolution from a Thermodynamic Perspective 683:, in which ATP production is coupled with 2042: 2024: 1983: 1863: 1806: 1702: 1684: 1493:"J. B. S. Haldane and the origin of life" 1458: 1081: 1023: 1021: 1019: 249:= nutrition). Autotrophs use energy from 2416: 1887:Knowlton, Nancy; Rohwer, Forest (2003). 1032:Botany: An introduction to plant biology 967:Advanced Biology Principles, p 296. 552: 27:and heterotrophs. Autotrophs use light, 18: 2125: 1335: 1288: 1138:(3rd ed.). Springer. p. 988. 1131: 1027: 257:) or oxidation of inorganic compounds ( 199:in 1946 as part of a classification of 2440: 1768: 1766: 1764: 1725: 1654: 1652: 1545: 1490: 1229: 1227: 1108:Introduction to Marine Biogeochemistry 1016: 884: 882: 2412: 2410: 2408: 2406: 2404: 2388: 2386: 2384: 2382: 2380: 2378: 2332: 2330: 2328: 2167: 2165: 2129:Prokaryotic Metabolism and Physiology 2121: 2119: 2117: 1158: 1104: 977: 675:, which is an important step for the 2392: 1779:Cellular and Molecular Life Sciences 1233: 953:Limnology: Lake and river ecosystems 856: 839:. Biology Dictionary. April 28, 2017 1761: 1728:"A Thermodynamic View of Evolution" 1649: 1291:"Primordial soup that cooks itself" 1224: 879: 616:: they obtain these nutrients from 13: 2401: 2375: 2325: 2162: 2114: 14: 2464: 2266: 2218:Trends in Ecology & Evolution 2212:Butterfield, Nicholas J. (2011). 1546:Miller, Stanley L. (1953-05-15). 358:Photoorganoheterotrophs, such as 940:from the original on 2017-11-07. 537:are heterotrophic while Kingdom 195:. The term heterotroph arose in 69: 2313:from the original on 2011-05-24 2293: 2260: 2205: 2076:"On the Origin of Heterotrophy" 2067: 2000: 1935: 1880: 1823: 1719: 1594: 1539: 1484: 1475: 1418: 1388:"On the Origin of Heterotrophy" 1379: 1329: 1282: 1195: 1152: 1057: 657:substrate-level phosphorylation 2419:Processes in Microbial Ecology 2132:. Cambridge University Press. 1948:Nature Ecology & Evolution 1358:10.1007/978-3-662-44185-5_1275 971: 944: 917: 829: 822:Merriam-Webster.com Dictionary 809: 789: 367:. Chemolithoheterotrophs like 271:are heterotrophs which obtain 1: 783: 432:John Burdon Sanderson Haldane 287:(also called lysotrophs) are 2337:Gottschalk, Gerhard (2012). 2184:10.1007/978-3-540-38364-2_15 2026:10.1371/journal.pgen.1007518 1740:10.1007/978-3-030-85186-6_12 1572:10.1126/science.117.3046.528 1342:Encyclopedia of Astrobiology 897:McGraw-Hill Higher Education 722:through desulfurylation and 548: 7: 2417:Kirchman, David L. (2014). 1202:Campbell and Reece (2002). 59:and water (two red arrows). 10: 2469: 2238:10.1016/j.tree.2010.11.012 1791:10.1007/s00018-020-03462-6 1028:Mauseth, James D. (2008). 890:"How Cells Harvest Energy" 667:, and be converted into CO 601: 597: 428:Alexander Ivanovich Oparin 403:Origin and diversification 299:of such materials through 153: 150: 'other' and 136: 2351:10.1007/978-1-4612-1072-6 2092:10.1016/j.tim.2015.10.003 1968:10.1038/s41559-017-0311-7 1509:10.1007/s12041-017-0831-6 1491:Tirard, Stéphane (2017). 1404:10.1016/j.tim.2015.10.003 1336:Lazcano, Antonio (2015), 1289:Bracher, Paul J. (2015). 1234:Bada, Jeffrey L. (2013). 1173:10.1007/s10529-009-9975-7 802:Dictionary.com Unabridged 691:and reduced wastes like H 685:oxidative phosphorylation 228:green non-sulfur bacteria 167: 'nutrition') is an 1240:Chemical Society Reviews 1132:Dworkin, Martin (2006). 1105:Libes, Susan M. (2009). 837:"Heterotroph Definition" 310: 1893:The American Naturalist 1726:Jordan, Carl F (2022), 1627:10.1023/A:1024807125069 1052:heterotroph fix carbon. 614:consumers in food chain 610:chemoorganoheterotrophs 369:Oceanithermus profundus 293:extracellular digestion 261:) to convert inorganic 203:based on their type of 2080:Trends in Microbiology 1848:10.1098/rspb.2016.0611 1392:Trends in Microbiology 859:Essential Microbiology 608:Many heterotrophs are 558: 471:Miller–Urey experiment 60: 2393:Wade, Bingle (2016). 2138:10.1017/9781316761625 1161:Biotechnology Letters 1083:10.1099/ijs.0.02367-0 951:Wetzel, R.G. (2001). 857:Hogg, Stuart (2013). 604:Consumer (food chain) 556: 22: 2341:Bacterial Metabolism 1686:10.3390/life10030020 978:Mills, A.L. (1997). 640:, and proteins into 315:Heterotrophs can be 211:, in describing the 49:cellular respiration 2448:Biology terminology 2397:. pp. 236–250. 2230:2011TEcoE..26...81B 1960:2017NatEE...1.1716M 1677:2020Life...10...20P 1619:2003OLEB...33..235L 1564:1953Sci...117..528M 1497:Journal of Genetics 1431:Biochemical Journal 1350:2015enas.book.2010L 1252:2013CSRev..42.2186B 417:reducing atmosphere 237:), the other being 1842:(1831): 20160611. 1307:10.1038/nchem.2219 1260:10.1039/c3cs35433d 825:. Merriam-Webster. 775:carnivorous plants 626:holozoic nutrients 559: 543:myco-heterotrophic 481:relationship. The 465:), and hydrogen (H 61: 2193:978-3-540-00204-8 2147:978-1-316-76162-5 1954:(11): 1716–1721. 1785:(18): 3503–3523. 1749:978-3-030-85185-9 1558:(3046): 528–529. 1443:10.1042/bj0530353 1367:978-3-662-44184-8 1338:"Primordial Soup" 1145:978-0-387-25492-0 1118:978-0-12-088530-5 1047:978-0-7637-5345-0 994:978-1-62949-013-7 872:978-1-119-97890-9 728:dephosphorylation 421:organic compounds 360:Rhodospirillaceae 289:chemoheterotrophs 55:and again form CO 51:to both generate 2460: 2433: 2432: 2414: 2399: 2398: 2390: 2373: 2372: 2344: 2334: 2323: 2322: 2320: 2318: 2312: 2305: 2297: 2291: 2290: 2288: 2286: 2280: 2274:. Archived from 2273: 2264: 2258: 2257: 2209: 2203: 2202: 2201: 2200: 2169: 2160: 2159: 2123: 2112: 2111: 2071: 2065: 2064: 2046: 2028: 2004: 1998: 1997: 1987: 1939: 1933: 1932: 1884: 1878: 1877: 1867: 1827: 1821: 1820: 1810: 1770: 1759: 1758: 1757: 1756: 1723: 1717: 1716: 1706: 1688: 1656: 1647: 1646: 1598: 1592: 1591: 1543: 1537: 1536: 1488: 1482: 1479: 1473: 1472: 1462: 1422: 1416: 1415: 1383: 1377: 1376: 1375: 1374: 1333: 1327: 1326: 1295:Nature Chemistry 1286: 1280: 1279: 1246:(5): 2186–2196. 1231: 1222: 1221: 1209: 1199: 1193: 1192: 1167:(7): 1043–1049. 1156: 1150: 1149: 1129: 1123: 1122: 1102: 1096: 1095: 1085: 1061: 1055: 1054: 1035: 1025: 1014: 1013: 1011: 1009: 1003: 997:. Archived from 986: 975: 969: 963: 957: 956: 948: 942: 941: 939: 932: 921: 915: 914: 912: 911: 905: 899:. Archived from 894: 886: 877: 876: 861:(2nd ed.). 854: 848: 847: 845: 844: 833: 827: 826: 813: 807: 806: 793: 771:parasitic plants 665:anaerobic digest 590:Photoheterotroph 585:Chemoheterotroph 383:, and molecular 373:hydrogen sulfide 297:active transport 224:photoheterotroph 220:chemoheterotroph 193:parasitic plants 164: 157: 147: 140: 128: 127: 124: 123: 120: 117: 114: 111: 106: 105: 102: 99: 96: 93: 90: 87: 84: 81: 78: 75: 2468: 2467: 2463: 2462: 2461: 2459: 2458: 2457: 2453:Trophic ecology 2438: 2437: 2436: 2429: 2415: 2402: 2391: 2376: 2361: 2335: 2326: 2316: 2314: 2310: 2303: 2299: 2298: 2294: 2284: 2282: 2281:on 6 April 2019 2278: 2271: 2265: 2261: 2210: 2206: 2198: 2196: 2194: 2170: 2163: 2148: 2124: 2115: 2072: 2068: 2019:(8): e1007518. 2005: 2001: 1940: 1936: 1899:(S4): S51–S62. 1885: 1881: 1828: 1824: 1771: 1762: 1754: 1752: 1750: 1724: 1720: 1657: 1650: 1599: 1595: 1544: 1540: 1489: 1485: 1480: 1476: 1423: 1419: 1384: 1380: 1372: 1370: 1368: 1334: 1330: 1287: 1283: 1232: 1225: 1218: 1200: 1196: 1157: 1153: 1146: 1130: 1126: 1119: 1103: 1099: 1062: 1058: 1048: 1026: 1017: 1007: 1005: 1004:on 6 April 2019 1001: 995: 984: 976: 972: 964: 960: 949: 945: 937: 930: 922: 918: 909: 907: 903: 892: 888: 887: 880: 873: 863:Wiley-Blackwell 855: 851: 842: 840: 835: 834: 830: 815: 814: 810: 795: 794: 790: 786: 749: 745: 721: 717: 706: 702: 698: 694: 690: 674: 670: 662: 606: 600: 551: 509: 504: 468: 464: 460: 457:O), methane (CH 456: 405: 313: 259:lithoautotrophs 255:photoautotrophs 108: 72: 68: 58: 34: 17: 12: 11: 5: 2466: 2456: 2455: 2450: 2435: 2434: 2427: 2400: 2374: 2360:978-0387961538 2359: 2324: 2292: 2259: 2204: 2192: 2161: 2146: 2113: 2066: 1999: 1934: 1905:10.1086/378684 1879: 1822: 1760: 1748: 1718: 1648: 1613:(3): 235–242. 1593: 1538: 1503:(5): 735–739. 1483: 1474: 1437:(3): 353–366. 1417: 1378: 1366: 1328: 1301:(4): 273–274. 1281: 1223: 1217:978-0805371710 1216: 1194: 1151: 1144: 1124: 1117: 1097: 1076:(3): 747–752. 1056: 1046: 1015: 993: 970: 958: 943: 916: 878: 871: 865:. p. 86. 849: 828: 808: 805:(Online). n.d. 787: 785: 782: 747: 743: 719: 715: 712:mineralization 704: 700: 696: 692: 688: 672: 668: 660: 602:Main article: 599: 596: 595: 594: 593: 592: 587: 577: 576: 575: 573:Photoautotroph 570: 568:Chemoautotroph 550: 547: 507: 502: 466: 462: 461:), ammonia (NH 458: 454: 443:Stanley Miller 413:prebiotic soup 409:origin of life 404: 401: 312: 309: 263:carbon dioxide 235:trophic levels 201:microorganisms 173:organic carbon 56: 45:photosynthesis 32: 29:carbon dioxide 23:Cycle between 15: 9: 6: 4: 3: 2: 2465: 2454: 2451: 2449: 2446: 2445: 2443: 2430: 2428:9780199586936 2424: 2420: 2413: 2411: 2409: 2407: 2405: 2396: 2389: 2387: 2385: 2383: 2381: 2379: 2370: 2366: 2362: 2356: 2352: 2348: 2343: 2342: 2333: 2331: 2329: 2309: 2302: 2296: 2277: 2270: 2263: 2255: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2208: 2195: 2189: 2185: 2181: 2177: 2176: 2168: 2166: 2157: 2153: 2149: 2143: 2139: 2135: 2131: 2130: 2122: 2120: 2118: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2070: 2062: 2058: 2054: 2050: 2045: 2040: 2036: 2032: 2027: 2022: 2018: 2014: 2013:PLOS Genetics 2010: 2003: 1995: 1991: 1986: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1949: 1945: 1938: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1883: 1875: 1871: 1866: 1861: 1857: 1853: 1849: 1845: 1841: 1837: 1833: 1826: 1818: 1814: 1809: 1804: 1800: 1796: 1792: 1788: 1784: 1780: 1776: 1769: 1767: 1765: 1751: 1745: 1741: 1737: 1733: 1729: 1722: 1714: 1710: 1705: 1700: 1696: 1692: 1687: 1682: 1678: 1674: 1670: 1666: 1662: 1655: 1653: 1644: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1597: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1542: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1487: 1478: 1470: 1466: 1461: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1421: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1382: 1369: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1332: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1285: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1230: 1228: 1219: 1213: 1208: 1207: 1198: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1155: 1147: 1141: 1137: 1136: 1128: 1120: 1114: 1110: 1109: 1101: 1093: 1089: 1084: 1079: 1075: 1071: 1067: 1060: 1053: 1049: 1043: 1039: 1034: 1033: 1024: 1022: 1020: 1000: 996: 990: 983: 982: 974: 968: 962: 954: 947: 936: 929: 928: 920: 906:on 2012-07-31 902: 898: 891: 885: 883: 874: 868: 864: 860: 853: 838: 832: 824: 823: 818: 817:"heterotroph" 812: 804: 803: 798: 797:"heterotroph" 792: 788: 781: 778: 776: 772: 768: 764: 760: 756: 751: 741: 737: 733: 732:decomposition 729: 725: 713: 708: 686: 682: 678: 666: 658: 654: 650: 645: 643: 639: 635: 631: 627: 623: 619: 615: 611: 605: 591: 588: 586: 583: 582: 581: 578: 574: 571: 569: 566: 565: 564: 561: 560: 555: 546: 544: 540: 536: 532: 528: 524: 520: 516: 511: 499: 496: 492: 488: 484: 483:endosymbiosis 480: 474: 472: 452: 448: 445:conducted an 444: 439: 437: 433: 429: 424: 422: 418: 414: 410: 407:The chemical 400: 396: 394: 390: 386: 382: 378: 374: 370: 366: 361: 356: 354: 350: 346: 342: 338: 334: 330: 326: 325:carbohydrates 322: 318: 308: 306: 302: 298: 294: 290: 286: 282: 278: 275:by consuming 274: 270: 266: 264: 260: 256: 252: 248: 244: 240: 236: 231: 229: 225: 221: 216: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 163: 156: 152: 149: 146: 139: 135: 132: 131:Ancient Greek 126: 66: 54: 50: 46: 42: 38: 30: 26: 21: 2418: 2394: 2340: 2315:. Retrieved 2295: 2283:. Retrieved 2276:the original 2267:Mills, A.L. 2262: 2224:(2): 81–87. 2221: 2217: 2207: 2197:, retrieved 2174: 2128: 2086:(1): 12–25. 2083: 2079: 2069: 2016: 2012: 2002: 1951: 1947: 1937: 1896: 1892: 1882: 1839: 1835: 1825: 1782: 1778: 1753:, retrieved 1731: 1721: 1668: 1664: 1610: 1606: 1596: 1555: 1551: 1541: 1500: 1496: 1486: 1477: 1434: 1430: 1420: 1398:(1): 12–25. 1395: 1391: 1381: 1371:, retrieved 1341: 1331: 1298: 1294: 1284: 1243: 1239: 1205: 1197: 1164: 1160: 1154: 1134: 1127: 1107: 1100: 1073: 1069: 1059: 1051: 1031: 1006:. Retrieved 999:the original 980: 973: 966: 961: 952: 946: 926: 919: 908:. Retrieved 901:the original 858: 852: 841:. Retrieved 831: 820: 811: 800: 791: 779: 755:opisthokonts 752: 740:sulfur cycle 709: 677:carbon cycle 646: 632:, fats into 618:saprotrophic 607: 579: 512: 500: 491:mitochondria 487:chloroplasts 475: 440: 425: 406: 397: 392: 375:, elemental 368: 365:Calvin cycle 357: 317:organotrophs 314: 269:Detritivores 267: 246: 242: 232: 217: 197:microbiology 161: 158: 151: 144: 141: 134: 64: 62: 2317:19 November 2285:19 November 759:prokaryotes 730:as part of 724:deamination 681:respiration 642:amino acids 634:fatty acids 580:Heterotroph 495:mutualistic 451:early Earth 393:C. vulgaris 381:thiosulfate 353:phototrophs 349:chemotrophs 321:lithotrophs 301:endocytosis 285:Saprotrophs 191:, and many 129:; from 65:heterotroph 2442:Categories 2199:2022-04-23 1755:2022-04-23 1373:2022-04-23 910:2010-10-10 843:2023-12-02 784:References 649:Fermenting 453:– water (H 447:experiment 438:).   436:autotrophy 389:Mixotrophs 239:autotrophs 213:food chain 25:autotrophs 2246:0169-5347 2156:165100369 2100:0966-842X 2035:1553-7404 1976:2397-334X 1913:0003-0147 1856:0962-8452 1799:1420-682X 1695:2075-1729 1671:(3): 20. 1580:0036-8075 1517:0022-1333 1451:0306-3283 1315:1755-4330 1268:0306-0012 1008:9 October 767:symbiotic 653:anaerobes 622:parasitic 563:Autotroph 549:Flowchart 479:symbiotic 291:that use 273:nutrients 205:nutrition 2369:32635137 2308:Archived 2254:21190752 2108:26578093 2061:52019935 2053:30114187 1994:28970480 1929:24127308 1921:14583857 1874:27194700 1817:32008087 1713:32110893 1643:19515024 1635:14515862 1588:13056598 1533:28775520 1525:29237880 1469:13032078 1412:26578093 1323:25803461 1276:23340907 1181:19322523 1092:12807196 935:Archived 736:nitrogen 718:S and NH 638:glycerol 535:Protista 531:Animalia 515:Bacteria 385:hydrogen 337:ammonium 333:proteins 277:detritus 251:sunlight 245:= self, 189:protists 185:bacteria 169:organism 39:to form 2226:Bibcode 2044:6095482 1985:5659384 1956:Bibcode 1865:4892803 1808:7452879 1704:7151616 1673:Bibcode 1615:Bibcode 1560:Bibcode 1552:Science 1460:1198157 1346:Bibcode 1248:Bibcode 1206:Biology 1189:1989922 765:, form 699:S, or N 630:glucose 598:Ecology 539:Plantae 523:Eukarya 519:Archaea 341:nitrite 226:(e.g., 209:ecology 183:, some 177:animals 145:héteros 35:), and 2425:  2367:  2357:  2252:  2244:  2190:  2154:  2144:  2106:  2098:  2059:  2051:  2041:  2033:  1992:  1982:  1974:  1927:  1919:  1911:  1872:  1862:  1854:  1815:  1805:  1797:  1746:  1711:  1701:  1693:  1641:  1633:  1586:  1578:  1531:  1523:  1515:  1467:  1457:  1449:  1410:  1364:  1321:  1313:  1274:  1266:  1214:  1187:  1179:  1142:  1115:  1090:  1044:  991:  869:  763:corals 671:and CH 521:, and 377:sulfur 345:sulfur 331:, and 305:hyphae 162:trophḗ 138:ἕτερος 41:oxygen 2365:S2CID 2311:(PDF) 2304:(PDF) 2279:(PDF) 2272:(PDF) 2152:S2CID 2057:S2CID 1925:S2CID 1639:S2CID 1529:S2CID 1185:S2CID 1002:(PDF) 985:(PDF) 938:(PDF) 931:(PDF) 904:(PDF) 893:(PDF) 753:Most 624:, or 527:Fungi 343:, or 311:Types 281:feces 247:troph 181:fungi 155:τροφή 133: 37:water 2423:ISBN 2355:ISBN 2319:2017 2287:2017 2250:PMID 2242:ISSN 2188:ISBN 2142:ISBN 2104:PMID 2096:ISSN 2049:PMID 2031:ISSN 1990:PMID 1972:ISSN 1917:PMID 1909:ISSN 1870:PMID 1852:ISSN 1813:PMID 1795:ISSN 1744:ISBN 1709:PMID 1691:ISSN 1665:Life 1631:PMID 1584:PMID 1576:ISSN 1521:PMID 1513:ISSN 1465:PMID 1447:ISSN 1408:PMID 1362:ISBN 1319:PMID 1311:ISSN 1272:PMID 1264:ISSN 1212:ISBN 1177:PMID 1140:ISBN 1113:ISBN 1088:PMID 1042:ISBN 1010:2017 989:ISBN 867:ISBN 757:and 738:and 695:O, H 636:and 529:and 329:fats 243:auto 187:and 179:and 2347:doi 2234:doi 2180:doi 2134:doi 2088:doi 2039:PMC 2021:doi 1980:PMC 1964:doi 1901:doi 1897:162 1860:PMC 1844:doi 1840:283 1803:PMC 1787:doi 1736:doi 1699:PMC 1681:doi 1623:doi 1568:doi 1556:117 1505:doi 1455:PMC 1439:doi 1400:doi 1354:doi 1303:doi 1256:doi 1169:doi 1078:doi 1038:252 742:. H 351:or 319:or 283:). 230:). 53:ATP 31:(CO 2444:: 2403:^ 2377:^ 2363:. 2353:. 2327:^ 2306:. 2248:. 2240:. 2232:. 2222:26 2220:. 2216:. 2186:, 2164:^ 2150:. 2140:. 2116:^ 2102:. 2094:. 2084:24 2082:. 2078:. 2055:. 2047:. 2037:. 2029:. 2017:14 2015:. 2011:. 1988:. 1978:. 1970:. 1962:. 1950:. 1946:. 1923:. 1915:. 1907:. 1895:. 1891:. 1868:. 1858:. 1850:. 1838:. 1834:. 1811:. 1801:. 1793:. 1783:77 1781:. 1777:. 1763:^ 1742:, 1730:, 1707:. 1697:. 1689:. 1679:. 1669:10 1667:. 1663:. 1651:^ 1637:. 1629:. 1621:. 1611:33 1609:. 1605:. 1582:. 1574:. 1566:. 1554:. 1550:. 1527:. 1519:. 1511:. 1501:96 1499:. 1495:. 1463:. 1453:. 1445:. 1435:53 1433:. 1429:. 1406:. 1396:24 1394:. 1390:. 1360:, 1352:, 1317:. 1309:. 1297:. 1293:. 1270:. 1262:. 1254:. 1244:42 1242:. 1238:. 1226:^ 1183:. 1175:. 1165:31 1163:. 1086:. 1074:53 1072:. 1068:. 1050:. 1040:. 1018:^ 895:. 881:^ 819:. 799:. 620:, 517:, 473:. 387:. 379:, 339:, 327:, 307:. 215:. 107:,- 101:oʊ 86:ər 63:A 2431:. 2371:. 2349:: 2321:. 2289:. 2256:. 2236:: 2228:: 2182:: 2158:. 2136:: 2110:. 2090:: 2063:. 2023:: 1996:. 1966:: 1958:: 1952:1 1931:. 1903:: 1876:. 1846:: 1819:. 1789:: 1738:: 1715:. 1683:: 1675:: 1645:. 1625:: 1617:: 1590:. 1570:: 1562:: 1535:. 1507:: 1471:. 1441:: 1414:. 1402:: 1356:: 1348:: 1325:. 1305:: 1299:7 1278:. 1258:: 1250:: 1220:. 1191:. 1171:: 1148:. 1121:. 1094:. 1080:: 1012:. 913:. 875:. 846:. 748:4 744:2 720:4 716:2 705:2 701:2 697:2 693:2 689:2 673:4 669:2 661:2 508:2 503:2 467:2 463:3 459:4 455:2 253:( 241:( 165:) 159:( 148:) 142:( 125:/ 122:f 119:ɒ 116:r 113:t 110:ˌ 104:f 98:r 95:t 92:ˌ 89:ə 83:t 80:ɛ 77:h 74:ˈ 71:/ 67:( 57:2 33:2

Index


autotrophs
carbon dioxide
water
oxygen
photosynthesis
cellular respiration
ATP
/ˈhɛtərəˌtrf,-ˌtrɒf/
Ancient Greek
ἕτερος
τροφή
organism
organic carbon
animals
fungi
bacteria
protists
parasitic plants
microbiology
microorganisms
nutrition
ecology
food chain
chemoheterotroph
photoheterotroph
green non-sulfur bacteria
trophic levels
autotrophs
sunlight

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.