Knowledge

Hilbert's fourteenth problem

Source đź“ť

314:
over the complex numbers) and specific linear actions on polynomial rings, i.e. actions coming from finite-dimensional representations of the Lie-group. This finiteness result was later extended by
177: 189:
Some results were obtained confirming Hilbert's conjecture in special cases and for certain classes of rings (in particular the conjecture was proved unconditionally for
808: 205:
found a counterexample to Hilbert's conjecture. The counterexample of Nagata is a suitably constructed ring of invariants for the action of a
647:, Tata Institute of Fundamental Research Lectures on Mathematics, vol. 31, Bombay: Tata Institute of Fundamental Research, 763:Éfendiev, F. F. (1992). "Explicit construction of elements of the ring S(n, r) of invariants of n-ary forms of degree R". 265:
which are invariant under the action. A classical example in nineteenth century was the extensive study (in particular by
801: 944: 933: 938: 928: 388:Éfendiev F.F. (Fuad Efendi) provided symmetric algorithm generating basis of invariants of n-ary forms of degree r. 908: 918: 913: 888: 382: 966: 923: 903: 898: 794: 607: 878: 883: 858: 585: 552:
Several authors have reduced the sizes of the group and the vector space in Nagata's example. For example,
863: 843: 833: 659:
Totaro, Burt (2008), "Hilbert's 14th problem over finite fields and a conjecture on the cone of curves",
873: 868: 853: 848: 838: 828: 615: 359: 240:(or more generally, on a finitely generated algebra defined over a field). In this situation the field 36: 971: 299:) on it. Hilbert himself proved the finite generation of invariant rings in the case of the field of 109: 489:
is a 13-dimensional commutative unipotent algebraic group under addition, and its elements act on
338: 270: 226: 206: 817: 319: 28: 698: 652: 623: 311: 286: 8: 323: 318:
to the class of all semi-simple Lie-groups. A major ingredient in Hilbert's proof is the
94: 47: 32: 735: 668: 573: 686: 341: 55: 772: 745: 678: 635: 603: 363: 218: 202: 639: 694: 648: 619: 234: 300: 282: 274: 786: 749: 682: 377:
Zariski's formulation was shown to be equivalent to the original problem, for
960: 690: 355: 334: 266: 257:
which are invariant under the given action of the algebraic group, the ring
427:=1, 2, 3 that are algebraically independent over the prime field. The ring 315: 706:
Interpretations algebrico-geometriques du quatorzieme probleme de Hilbert
304: 278: 20: 776: 182:
Hilbert conjectured that all such algebras are finitely generated over
726:
Winkelmann, Jörg (2003), "Invariant rings and quasiaffine quotients",
740: 307: 627: 225:
is given as a (suitably defined) ring of polynomial invariants of a
337:'s formulation of Hilbert's fourteenth problem asks whether, for a 708:, Bulletin des Sciences Mathematiques 78 (1954), pp. 155–168. 673: 399:
gave the following counterexample to Hilbert's problem. The field
198: 556:
showed that over any field there is an action of the sum
326:
inside the polynomial ring generated by the invariants.
248:
functions (quotients of polynomials) in the variables
112: 171: 958: 285:in two variables with the natural action of the 816: 802: 641:Lectures on the fourteenth problem of Hilbert 809: 795: 725: 391: 217:The problem originally arose in algebraic 739: 672: 568:of three copies of the additive group on 461:orthogonal to each of the three vectors ( 762: 541:invariant under the action of the group 329: 42:The setting is as follows: Assume that 31:proposed in 1900, asks whether certain 16:Are certain algebras finitely generated 959: 658: 634: 608:"On the fourteenth problem of Hilbert" 602: 553: 439:is a 13-dimensional vector space over 396: 790: 612:Proc. Internat. Congress Math. 1958 281:and also Hilbert) of invariants of 13: 435:in 32 variables. The vector space 403:is a field containing 48 elements 14: 983: 537:. Then the ring of elements of 756: 719: 160: 128: 54:be a subfield of the field of 1: 591: 172:{\displaystyle R:=K\cap k\ .} 586:Locally nilpotent derivation 545:is not a finitely generated 383:Zariski's finiteness theorem 103:defined as the intersection 25:Hilbert's fourteenth problem 7: 579: 576:is not finitely generated. 485:=1, 2, 3. The vector space 443:consisting of all vectors ( 370:is finitely generated over 10: 988: 616:Cambridge University Press 233:acting algebraically on a 212: 824: 750:10.1007/s00209-002-0484-9 683:10.1112/S0010437X08003667 27:, that is, number 14 of 493:by fixing all elements 431:is the polynomial ring 392:Nagata's counterexample 201:in 1954). Then in 1959 661:Compositio Mathematica 227:linear algebraic group 207:linear algebraic group 173: 330:Zariski's formulation 320:Hilbert basis theorem 174: 618:, pp. 459–462, 351:, possibly assuming 312:general linear group 287:special linear group 110: 381:normal. (See also: 310:(in particular the 303:for some classical 967:Hilbert's problems 818:Hilbert's problems 777:10.1007/BF02102130 765:Mathematical Notes 574:ring of invariants 169: 56:rational functions 37:finitely generated 29:Hilbert's problems 954: 953: 636:Nagata, Masayoshi 604:Nagata, Masayoshi 364:regular functions 342:algebraic variety 165: 93:Consider now the 979: 972:Invariant theory 811: 804: 797: 788: 787: 781: 780: 760: 754: 753: 743: 723: 701: 676: 667:(5): 1176–1198, 655: 646: 631: 626:, archived from 567: 566: 244:is the field of 221:. Here the ring 219:invariant theory 203:Masayoshi Nagata 178: 176: 175: 170: 163: 159: 158: 140: 139: 987: 986: 982: 981: 980: 978: 977: 976: 957: 956: 955: 950: 820: 815: 785: 784: 761: 757: 724: 720: 644: 594: 582: 565: 562: 561: 560: 536: 528: 519: 510: 501: 480: 470: 456: 449: 422: 412: 394: 332: 322:applied to the 301:complex numbers 294: 261:is the ring of 256: 235:polynomial ring 215: 154: 150: 135: 131: 111: 108: 107: 84: 75: 17: 12: 11: 5: 985: 975: 974: 969: 952: 951: 949: 948: 941: 936: 931: 926: 921: 916: 911: 906: 901: 896: 891: 886: 881: 876: 871: 866: 861: 856: 851: 846: 841: 836: 831: 825: 822: 821: 814: 813: 806: 799: 791: 783: 782: 771:(2): 204–207. 755: 734:(1): 163–174, 717: 716: 715: 714: 710: 709: 702: 656: 632: 599: 598: 593: 590: 589: 588: 581: 578: 563: 532: 524: 515: 506: 497: 475: 465: 454: 447: 417: 407: 393: 390: 362:, the ring of 331: 328: 292: 252: 214: 211: 180: 179: 168: 162: 157: 153: 149: 146: 143: 138: 134: 130: 127: 124: 121: 118: 115: 91: 90: 80: 73: 15: 9: 6: 4: 3: 2: 984: 973: 970: 968: 965: 964: 962: 946: 942: 940: 937: 935: 932: 930: 927: 925: 922: 920: 917: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 872: 870: 867: 865: 862: 860: 857: 855: 852: 850: 847: 845: 842: 840: 837: 835: 832: 830: 827: 826: 823: 819: 812: 807: 805: 800: 798: 793: 792: 789: 778: 774: 770: 766: 759: 751: 747: 742: 737: 733: 729: 722: 718: 712: 711: 707: 703: 700: 696: 692: 688: 684: 680: 675: 670: 666: 662: 657: 654: 650: 643: 642: 637: 633: 630:on 2011-07-17 629: 625: 621: 617: 613: 609: 605: 601: 600: 596: 595: 587: 584: 583: 577: 575: 571: 559: 555: 554:Totaro (2008) 550: 548: 544: 540: 535: 531: 527: 523: 518: 514: 509: 505: 500: 496: 492: 488: 484: 479: 474: 469: 464: 460: 453: 446: 442: 438: 434: 430: 426: 421: 416: 411: 406: 402: 398: 397:Nagata (1960) 389: 386: 384: 380: 375: 373: 369: 365: 361: 357: 354: 350: 347:over a field 346: 343: 340: 336: 327: 325: 321: 317: 313: 309: 306: 302: 298: 291: 288: 284: 280: 276: 272: 268: 264: 260: 255: 251: 247: 243: 239: 236: 232: 229:over a field 228: 224: 220: 210: 208: 204: 200: 196: 192: 187: 185: 166: 155: 151: 147: 144: 141: 136: 132: 125: 122: 119: 116: 113: 106: 105: 104: 102: 99: 97: 88: 83: 79: 72: 68: 65: 64: 63: 61: 57: 53: 49: 45: 40: 38: 34: 30: 26: 22: 893: 768: 764: 758: 741:math/0007076 731: 727: 721: 705: 704:O. Zariski, 664: 660: 640: 628:the original 611: 597:Bibliography 569: 557: 551: 546: 542: 538: 533: 529: 525: 521: 516: 512: 507: 503: 498: 494: 490: 486: 482: 477: 472: 467: 462: 458: 451: 444: 440: 436: 432: 428: 424: 419: 414: 409: 404: 400: 395: 387: 378: 376: 371: 367: 352: 348: 344: 339:quasi-affine 333: 316:Hermann Weyl 296: 289: 283:binary forms 262: 258: 253: 249: 245: 241: 237: 230: 222: 216: 194: 190: 188: 183: 181: 100: 95: 92: 86: 81: 77: 70: 66: 59: 51: 43: 41: 24: 18: 502:and taking 305:semi-simple 279:Paul Gordan 263:polynomials 62:variables, 21:mathematics 961:Categories 592:References 549:-algebra. 308:Lie groups 713:Footnotes 691:0010-437X 674:0808.0695 606:(1960) , 271:Sylvester 145:… 123:∩ 728:Math. Z. 638:(1965), 580:See also 246:rational 193:= 1 and 98:-algebra 50:and let 33:algebras 699:2457523 653:0215828 624:0116056 423:, for 335:Zariski 275:Clebsch 213:History 199:Zariski 197:= 2 by 85:) over 76:, ..., 697:  689:  651:  622:  572:whose 481:) for 471:, ..., 413:, ..., 360:smooth 356:normal 267:Cayley 164:  736:arXiv 669:arXiv 645:(PDF) 457:) in 450:,..., 324:ideal 48:field 46:is a 687:ISSN 35:are 773:doi 746:doi 732:244 679:doi 665:144 511:to 385:.) 366:on 358:or 58:in 19:In 963:: 945:24 939:23 934:22 929:21 924:20 919:19 914:18 909:17 904:16 899:15 894:14 889:13 884:12 879:11 874:10 769:51 767:. 744:, 730:, 695:MR 693:, 685:, 677:, 663:, 649:MR 620:MR 614:, 610:, 520:+ 476:16 455:16 418:16 374:. 290:SL 277:, 273:, 269:, 209:. 186:. 117::= 39:. 23:, 947:) 943:( 869:9 864:8 859:7 854:6 849:5 844:4 839:3 834:2 829:1 810:e 803:t 796:v 779:. 775:: 752:. 748:: 738:: 681:: 671:: 570:k 564:a 558:G 547:k 543:V 539:R 534:j 530:t 526:j 522:b 517:j 513:x 508:j 504:x 499:j 495:t 491:R 487:V 483:i 478:i 473:a 468:i 466:1 463:a 459:k 452:b 448:1 445:b 441:k 437:V 433:k 429:R 425:i 420:i 415:a 410:i 408:1 405:a 401:k 379:X 372:k 368:X 353:X 349:k 345:X 297:k 295:( 293:2 259:R 254:i 250:x 242:K 238:k 231:k 223:R 195:n 191:n 184:k 167:. 161:] 156:n 152:x 148:, 142:, 137:1 133:x 129:[ 126:k 120:K 114:R 101:R 96:k 89:. 87:k 82:n 78:x 74:1 71:x 69:( 67:k 60:n 52:K 44:k

Index

mathematics
Hilbert's problems
algebras
finitely generated
field
rational functions
k-algebra
Zariski
Masayoshi Nagata
linear algebraic group
invariant theory
linear algebraic group
polynomial ring
Cayley
Sylvester
Clebsch
Paul Gordan
binary forms
special linear group
complex numbers
semi-simple
Lie groups
general linear group
Hermann Weyl
Hilbert basis theorem
ideal
Zariski
quasi-affine
algebraic variety
normal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑