Knowledge

History of special relativity

Source 📝

2665:(1908) he mentioned Voigt, Lorentz and Einstein. Minkowski himself considered Einstein's theory as a generalization of Lorentz's and credited Einstein for completely stating the relativity of time, but he criticized his predecessors for not fully developing the relativity of space. However, modern historians of science argue that Minkowski's claim for priority was unjustified, because Minkowski (like Wien or Abraham) adhered to the electromagnetic world picture and apparently did not fully understand the difference between Lorentz's electron theory and Einstein's kinematics. In 1908, Einstein and Laub rejected the four-dimensional electrodynamics of Minkowski as overly complicated "learned superfluousness" and published a "more elementary", non-four-dimensional derivation of the basic equations for moving bodies. But it was Minkowski's geometric model that (a) showed that the special relativity is a complete and internally self-consistent theory, (b) added the Lorentz invariant proper time interval (which accounts for the actual readings shown by moving clocks), and (c) served as a basis for further development of relativity. Eventually, Einstein (1912) recognized the importance of Minkowski's geometric spacetime model and used it as the basis for his work on the foundations of 2818:", where he replaced the clocks by persons (Langevin never used the word "twins" but his description contained all other features of the paradox). Langevin solved the paradox by alluding to the fact that one twin accelerates and changes direction, so Langevin could show that the symmetry is broken and the accelerated twin is younger. However, Langevin himself interpreted this as a hint as to the existence of an aether. Although Langevin's explanation is still accepted by some, his conclusions regarding the aether were not generally accepted. Laue (1913) pointed out that any acceleration can be made arbitrarily small in relation to the inertial motion of the twin, and that the real explanation is that one twin is at rest in two different inertial frames during his journey, while the other twin is at rest in a single inertial frame. Laue was also the first to analyze the situation based on Minkowski's spacetime model for special relativity – showing how the world lines of inertially moving bodies maximize the proper time elapsed between two events. 1670:(1904) continued to develop his alternative model (as described above), and while comparing his theory with that of Lorentz, he discovered some important physical interpretations of the Lorentz transformations. He illustrated (like Joseph Larmor in the same year) this transformation by using rods and clocks: If they are at rest in the aether, they indicate the true length and time, and if they are moving, they indicate contracted and dilated values. Like Poincaré, Cohn defined local time as the time that is based on the assumption of isotropic propagation of light. Contrary to Lorentz and Poincaré it was noticed by Cohn, that within Lorentz's theory the separation of "real" and "apparent" coordinates is artificial, because no experiment can distinguish between them. Yet according to Cohn's own theory, the Lorentz transformed quantities would only be valid for optical phenomena, while mechanical clocks would indicate the "real" time. 486: 2299:
theory and based on the data in tables concluded (p. 828) that the agreement with his theory "is seen to come out no less satisfactory than" with Abraham's theory. A recent reanalysis of the data from Kaufmann (1903) confirms that Lorentz's theory (1904a) does agree substantially better than Abraham's theory when applied to data from Kaufmann (1903). Kaufmann (1905, 1906) presented further results, this time with electrons from cathode rays. They represented, in his opinion, a clear refutation of the relativity principle and the Lorentz-Einstein-Theory, and a confirmation of Abraham's theory. For some years Kaufmann's experiments represented a weighty objection against the relativity principle, although it was criticized by Planck and
2799:
period of clock A is the distance between the mirrors divided by the speed of light. But if the observer looks at clock B, he sees that within that clock the signal traces out a longer, angled path, thus clock B is slower than A. However, for the observer moving alongside B the situation is completely in reverse: Clock B is faster and A is slower. Lorentz (1910–1912) discussed the reciprocity of time dilation and analyzed a clock "paradox", which apparently occurs as a consequence of the reciprocity of time dilation. Lorentz showed that there is no paradox if one considers that in one system only one clock is used, while in the other system two clocks are necessary, and the relativity of simultaneity is fully taken into account.
3189: 2082:
further. Concerning myself, I knew only Lorentz's important work of 1895 but not Lorentz's later work, nor the consecutive investigations by Poincaré. In this sense my work of 1905 was independent. The new feature of it was the realization of the fact that the bearing of the Lorentz transformation transcended its connection with Maxwell's equations and was concerned with the nature of space and time in general. A further new result was that the "Lorentz invariance" is a general condition for any physical theory. This was for me of particular importance because I had already previously found that Maxwell's theory did not account for the micro-structure of radiation and could therefore have no general validity.
2235:. Einstein considered the equivalency equation to be of paramount importance because it showed that a massive particle possesses an energy, the "rest energy", distinct from its classical kinetic and potential energies. As it was shown above, many authors before Einstein arrived at similar formulas (including a 4/3-factor) for the relation of mass to energy. However, their work was focused on electromagnetic energy which (as we know today) only represents a small part of the entire energy within matter. So it was Einstein who was the first to: (a) ascribe this relation to all forms of energy, and (b) understand the connection of mass–energy equivalence with the relativity principle. 2019: – in a few pages, while prior to 1905 his competitors had devoted years of long, complicated work to arrive at the same mathematical formalism. Before 1905 Lorentz and Poincaré had adopted these same principles, as necessary to achieve their final results, but did not recognize that they were also sufficient in the sense that there was no immediate logical need to assume the existence of a stationary aether in order to arrive at the Lorentz transformations. As Lorentz later said, "Einstein simply postulates what we have deduced". Another reason for Einstein's early rejection of the aether in any form (which he later partially retracted) may have been related to his work on 1844:(1904) seemed to threaten the entire theory of Lorentz, but this problem was quickly solved. However, although in his philosophical writings Poincaré rejected the ideas of absolute space and time, in his physical papers he continued to refer to an (undetectable) aether. He also continued (1900b, 1904, 1906, 1908b) to describe coordinates and phenomena as local/apparent (for moving observers) and true/real (for observers at rest in the aether). So, with a few exceptions, most historians of science argue that Poincaré did not invent what is now called special relativity, although it is admitted that Poincaré anticipated much of Einstein's methods and terminology. 2721:(1911) argued that this derivation is incomplete and needs additional assumptions. Their own calculation was based on the assumptions that: (a) the Lorentz transformation forms a homogeneous linear group, (b) when changing frames, only the sign of the relative speed changes, (c) length contraction solely depends on the relative speed. However, according to Pauli and Miller such models were insufficient to identify the invariant speed in their transformation with the speed of light — for example, Ignatowski was forced to seek recourse in electrodynamics to include the speed of light. So Pauli and others argued that both 2271:"). On the other hand, Einstein himself and many others continued to refer simply to the new method as the "relativity principle". And in an important overview article on the relativity principle (1908a), Einstein described SR as a "union of Lorentz's theory and the relativity principle", including the fundamental assumption that Lorentz's local time can be described as real time. (Yet, Poincaré's contributions were rarely mentioned in the first years after 1905.) All of those expressions, (Lorentz–Einstein theory, relativity principle, relativity theory) were used by different physicists alternately in the next years. 2308:
electrons from cathode rays only showed a qualitative mass increase of moving electrons, but they were not precise enough to distinguish between the models of Lorentz-Einstein and Abraham. It was not until 1940, when experiments with electrons from cathode rays were repeated with sufficient accuracy for confirming the Lorentz-Einstein formula. However, this problem occurred only with this kind of experiment. The investigations of the fine structure of the hydrogen lines already in 1917 provided a clear confirmation of the Lorentz-Einstein formula and the refutation of Abraham's theory.
2077:. Before Einstein, Poincaré also developed a similar physical interpretation of local time and noticed the connection with signal velocity, but contrary to Einstein he continued to argue that clocks at rest in the stationary aether show the true time, while clocks in inertial motion relative to the aether show only the apparent time. Eventually, near the end of his life in 1953 Einstein described the advantages of his theory over that of Lorentz as follows (although Poincaré had already stated in 1905 that Lorentz invariance is an exact condition for any physical theory): 3136:. This implied that the light being measured would have had a velocity different from that of the original source. He concluded that there was likely as yet no acceptable proof of the second postulate of special relativity. This surprising gap in the experimental record was quickly closed in the ensuing years, by experiments by Fox, and by Alvager et al., which used gamma rays sourced from high energy mesons. The high energy levels of the measured photons, along with very careful accounting for extinction effects, eliminated any significant doubt from their results. 302:. He could not determine any relative motion, so he interpreted the result as a confirmation of the thesis of Stokes. However, Lorentz (1886) showed Michelson's calculations were wrong and that he had overestimated the accuracy of the measurement. This, together with the large margin of error, made the result of Michelson's experiment inconclusive. In addition, Lorentz showed that Stokes' completely dragged aether led to contradictory consequences, and therefore he supported an aether theory similar to Fresnel's. To check Fresnel's theory again, Michelson and 1526:, but the moving observers fail to recognize this because they are unaware of their movement. So, contrary to Lorentz, Poincaré-defined local time can be measured and indicated by clocks. Therefore, in his recommendation of Lorentz for the Nobel Prize in 1902, Poincaré argued that Lorentz had convincingly explained the negative outcome of the aether drift experiments by inventing the "diminished" or "local" time, i.e. a time coordinate in which two events at different places could appear as simultaneous, although they are not simultaneous in reality. 508:
velocity of light is totally independent of the velocity of the source. Lorentz gave no statements about the mechanical nature of the aether and the electromagnetic processes, but, rather, tried to explain the mechanical processes by electromagnetic ones and therefore created an abstract electromagnetic æther. In the framework of his theory, Lorentz calculated, like Heaviside, the contraction of the electrostatic fields. Lorentz (1895) also introduced what he called the "Theorem of Corresponding States" for terms of first order in
2803: 1703:, which he elaborated in May in a letter to Lorentz). Poincaré used for the first time the term "Lorentz transformation", and he gave the transformations their symmetrical form used to this day. He introduced a non-electrical binding force (the so-called "Poincaré stresses") to ensure the stability of the electrons and to explain length contraction. He also sketched a Lorentz-invariant model of gravitation (including gravitational waves) by extending the validity of Lorentz-invariance to non-electrical forces. 1863: 1553:, Lorentz (1904) was following the suggestion of Poincaré and attempted to create a formulation of electrodynamics, which explains the failure of all known aether drift experiments, i.e. the validity of the relativity principle. He tried to prove the applicability of the Lorentz transformation for all orders, although he did not succeed completely. Like Wien and Abraham, he argued that there exists only electromagnetic mass, not mechanical mass, and derived the correct expression for longitudinal and 2497: 2468:(1910) placed an observer in the middle between two clocks A and B. From this observer a signal is sent to both clocks, and in the frame in which A and B are at rest, they synchronously start to run. But from the perspective of a system in which A and B are moving, clock B is first set in motion, and then comes clock A – so the clocks are not synchronized. Also Einstein (1917) created a model with an observer in the middle between A and B. However, in his description two signals are sent 2452:. Already in 1909–11, Franz Harress (1912) performed an experiment which can be considered as a synthesis of the experiments of Fizeau and Sagnac. He tried to measure the dragging coefficient within glass. Contrary to Fizeau he used a rotating device so he found the same effect as Sagnac. While Harress himself misunderstood the meaning of the result, it was shown by Laue that the theoretical explanation of Harress' experiment is in accordance with the Sagnac effect. Eventually, the 2701:
particle theory. He extended Minkowski's expressions for electromagnetic processes to all possible forces and thereby clarified the concept of mass–energy equivalence. Laue also showed that non-electrical forces are needed to ensure the proper Lorentz transformation properties, and for the stability of matter – he could show that the "Poincaré stresses" (as mentioned above) are a natural consequence of relativity theory so that the electron can be a closed system.
9787: 2368:(1906) by extending Hasenöhrl's calculation of black-body radiation in a cavity, derived the same expression for the additional mass of a body due to electromagnetic radiation as Hasenöhrl. Hasenöhrl's idea was that the mass of bodies included a contribution from the electromagnetic field, he imagined a body as a cavity containing light. His relationship between mass and energy, like all other pre-Einstein ones, contained incorrect numerical prefactors (see 2991:(1914), that in this model gravitation can be completely described in terms of spacetime curvature. Although Nordström's theory is without contradiction, from Einstein's point of view a fundamental problem persisted: It does not fulfill the important condition of general covariance, as in this theory preferred frames of reference can still be formulated. So contrary to those "scalar theories", Einstein (1911–1915) developed a "tensor theory" (i.e. 1463:. He assumed that two observers who are moving in the aether synchronize their clocks by optical signals. Since they believe themselves to be at rest, they consider only the transmission time of the signals and then cross-reference their observations to examine whether their clocks are synchronous. From the point of view of an observer at rest in the aether, the clocks are not synchronous and indicate the local time 306:(1886) performed a repetition of the Fizeau experiment. Fresnel's dragging coefficient was confirmed very exactly on that occasion, and Michelson was now of the opinion that Fresnel's stationary aether theory was correct. To clarify the situation, Michelson and Morley (1887) repeated Michelson's 1881 experiment, and they substantially increased the accuracy of the measurement. However, this now famous 2995:), which fulfills both the equivalence principle and general covariance. As a consequence, the notion of a complete "special relativistic" theory of gravitation had to be given up, as in general relativity the constancy of light speed (and Lorentz covariance) is only locally valid. The decision between those models was brought about by Einstein, when he was able to exactly derive the 1304:, which included: detailed philosophical discussions on the relativity of space, time, and on the conventionality of distant simultaneity; the conjecture that a violation of the relativity principle can never be detected; the possible non-existence of the aether, together with some arguments supporting the aether; and many remarks on non-Euclidean vs. Euclidean geometry. 2303:(1906). Other physicists working with beta rays from radium, like Alfred Bucherer (1908) and Günther Neumann (1914), following on Bucherer's work and improving on his methods, also examined the velocity-dependence of mass and this time it was thought that the "Lorentz-Einstein theory" and the relativity principle were confirmed, and Abraham's theory disproved. 2971:
Sommerfeld (1910). However, it was shown by Abraham (1912) that those models belong to the class of "vector theories" of gravitation. The fundamental defect of those theories is that they implicitly contain a negative value for the gravitational energy in the vicinity of matter, which would violate the energy principle. As an alternative, Abraham (1912) and
1635:
electrons, non-electric forces were needed in order to guarantee the stability of matter. However, in Abraham's theory of the rigid electron, no such forces were needed. Thus the question arose whether the Electromagnetic conception of the world (compatible with Abraham's theory) or the Relativity Principle (compatible with Lorentz's Theory) was correct.
2251:(1905, 1906) was probably the first who referred to Einstein's work. He compared the theories of Lorentz and Einstein and, although he said Einstein's method is to be preferred, he argued that both theories are observationally equivalent. Therefore, he spoke of the relativity principle as the "Lorentz–Einsteinian" basic assumption. Shortly afterwards, 1533:(1903) believed in the validity of the relativity principle within the domain of electrodynamics, but contrary to Poincaré, Bucherer even assumed that this implies the nonexistence of the aether. However, the theory that he created later in 1906 was incorrect and not self-consistent, and the Lorentz transformation was absent within his theory as well. 840:
for Lorentz (1899), the integration of the speed-dependence of masses recognized by Thomson was especially important. He noticed that the mass not only varied due to speed, but is also dependent on the direction, and he introduced what Abraham later called "longitudinal" and "transverse" mass. (The transverse mass corresponds to what later was called
2069:
relativity makes any reference to an aether unnecessary (at least as to the description of electrodynamics in inertial frames). As he wrote in 1907 and in later papers, the apparent contradiction between those principles can be resolved if it is admitted that Lorentz's local time is not an auxiliary quantity, but can simply be defined as
717:(1881) recognized that charged bodies are harder to set in motion than uncharged bodies. Electrostatic fields behave as if they add an "electromagnetic mass" to the mechanical mass of the bodies. I.e., according to Thomson, electromagnetic energy corresponds to a certain mass. This was interpreted as some form of self- 288: 2680:(that unifies the subject) had not yet come into widespread use. Cayley's matrix calculus notation was used by Minkowski (1908) in formulating relativistic electrodynamics, even though it was later replaced by Sommerfeld using vector notation. According to a recent source the Lorentz transformations are equivalent to 1073:(1902–1904), who was a supporter of the electromagnetic world view, quickly offered an explanation for Kaufmann's experiments by deriving expressions for the electromagnetic mass. Together with this concept, Abraham introduced (like Poincaré in 1900) the notion of "electromagnetic momentum" which is proportional to 173:. However, a distinction was made between optical and electrodynamical phenomena so it was necessary to create specific aether models for all phenomena. Attempts to unify those models or to create a complete mechanical description of them did not succeed, but after considerable work by many scientists, including 468:). This was in connection with the work of Heaviside (1887), who determined that the electrostatic fields in motion were deformed (Heaviside Ellipsoid), which leads to physically undetermined conditions at the speed of light. However, FitzGerald's idea remained widely unknown and was not discussed before 2934:
Planck, in 1909, compared the implications of the modern relativity principle — he particularly referred to the relativity of time – with the revolution by the Copernican system. Poincaré made a similar analogy in 1905. An important factor in the adoption of special relativity by physicists
2925:
and others) whether length contraction is "real" or "apparent", and whether there is a difference between the dynamic contraction of Lorentz and the kinematic contraction of Einstein. However, it was rather a dispute over words because, as Einstein said, the kinematic length contraction is "apparent"
2733:
Minkowski in his earlier works in 1907 and 1908 followed Poincaré in representing space and time together in complex form (x,y,z,ict) emphasizing the formal similarity with Euclidean space. He noted that spacetime is in a certain sense a four-dimensional non-Euclidean manifold. Sommerfeld (1910) used
2700:
formulation of the relativistic velocity addition rule, which according to Sommerfeld, removes much of the strangeness of that concept. Other important contributions were made by Laue (1911, 1913), who used the spacetime formalism to create a relativistic theory of deformable bodies and an elementary
2081:
There is no doubt, that the special theory of relativity, if we regard its development in retrospect, was ripe for discovery in 1905. Lorentz had already recognized that the transformations named after him are essential for the analysis of Maxwell's equations, and Poincaré deepened this insight still
1690:
submitted the summary of a work which closed the existing gaps of Lorentz's work. (This short paper contained the results of a more complete work which would be published later, in January 1906.) He showed that Lorentz's equations of electrodynamics were not fully Lorentz-covariant. So he pointed out
1458:
In some other papers (1895, 1900b), Poincaré argued that experiments like that of Michelson and Morley show the impossibility of detecting the absolute motion of matter, i.e., the relative motion of matter in relation to the aether. He called this the "principle of relative motion". In the same year,
839:
is the electromagnetic energy. Heaviside and Searle also recognized that the increase of the mass of a body is not constant and varies with its velocity. Consequently, Searle noted the impossibility of superluminal velocities, because infinite energy would be needed to exceed the speed of light. Also
611:
and the Fizeau experiment as well. However, Lorentz's local time was only an auxiliary mathematical tool to simplify the transformation from one system into another – it was Poincaré in 1900 who recognized that "local time" is actually indicated by moving clocks. Lorentz also recognized that his
2298:
Kaufmann (1903) presented results of his experiments on the charge-to-mass ratio of beta rays from a radium source, showing the dependence of the velocity on mass. He announced that these results confirmed Abraham's theory. However, Lorentz (1904a) reanalyzed results from Kaufmann (1903) against his
2001:
was required, such as the contraction hypothesis, local time, the Poincaré stresses, etc.. This method was criticized by many scholars, since the assumption of a conspiracy of effects which completely prevent the discovery of the aether drift is considered to be very improbable, and it would violate
1066:
decreased with the speed, showing that, assuming the charge constant, the mass of the electron increased with the speed. He also believed that those experiments confirmed the assumption of Wien, that there is no "real" mechanical mass, but only the "apparent" electromagnetic mass, or in other words,
2970:
is many times faster than the speed of light, is not valid within a relativistic theory. That is, in a relativistic theory of gravitation, planetary orbits are stable even when the speed of gravity is equal to that of light. Similar models to that of Poincaré were discussed by Minkowski (1907b) and
2961:
The first attempt to formulate a relativistic theory of gravitation was undertaken by Poincaré (1905). He tried to modify Newton's law of gravitation so that it assumes a Lorentz-covariant form. He noted that there were many possibilities for a relativistic law, and he discussed two of them. It was
2826:
Einstein (1908) tried – as a preliminary in the framework of special relativity – also to include accelerated frames within the relativity principle. In the course of this attempt he recognized that for any single moment of acceleration of a body one can define an inertial reference frame
2307:
A distinction needs to be made between work with beta ray electrons and cathode ray electrons since beta rays from radium have a substantially larger velocities than cathode-ray electrons and so relativistic effects are very substantially easier to detect with beta rays. Kaufmann's experiments with
2006:
as well. Einstein is considered the first who completely dispensed with such auxiliary hypotheses and drew the direct conclusions from the facts stated above: that the relativity principle is correct and the directly observed speed of light is the same in all inertial reference frames. Based on his
272:
dragged by matter (later this view was also shared by Hertz). In this model the aether might be (by analogy with pine pitch) rigid for fast objects and fluid for slower objects. Thus the Earth could move through it fairly freely, but it would be rigid enough to transport light. Fresnel's theory was
83:
restating it precisely for mechanical systems. This can be stated as: as far as the laws of mechanics are concerned, all observers in inertial motion are equally privileged, and no preferred state of motion can be attributed to any particular inertial observer. However, as to electromagnetic theory
2798:
by using two light clocks A and B, traveling with a certain relative velocity to each other. The clocks consist of two plane mirrors parallel to one another and to the line of motion. Between the mirrors a light signal is bouncing, and for the observer resting in the same reference frame as A, the
2068:
had considerable influence on his thinking. He said in 1909 and 1912 that he borrowed that principle from Lorentz's stationary aether (which implies validity of Maxwell's equations and the constancy of light in the aether frame), but he recognized that this principle together with the principle of
1634:
Lorentz's theory was criticized by Abraham, who demonstrated that on one side the theory obeys the relativity principle, and on the other side the electromagnetic origin of all forces is assumed. Abraham showed, that both assumptions were incompatible, because in Lorentz's theory of the contracted
131:
in which, again based on the relativity principle, he independently derived and radically reinterpreted the Lorentz transformations by changing the fundamental definitions of space and time intervals, while abandoning the absolute simultaneity of Galilean kinematics, thus avoiding the need for any
1419:
In the second half of the 19th century, there were many attempts to develop a worldwide clock network synchronized by electrical signals. For that endeavor, the finite propagation speed of light had to be considered, because synchronization signals could travel no faster than the speed of light.
507:
which he separated from the aether, and by replacing the "Maxwell–Hertz" equations by the "Maxwell–Lorentz" equations. In his model, the aether is completely motionless and, contrary to Fresnel's theory, also is not partially dragged by matter. An important consequence of this notion was that the
310:
again yielded a negative result, i.e., no motion of the apparatus through the aether was detected (although the Earth's velocity is 60 km/s different in the northern winter than summer). So the physicists were confronted with two seemingly contradictory experiments: the 1886 experiment as an
225:
and Hertz further developed the theory and introduced modernized versions of Maxwell's equations. The "Maxwell–Hertz" or "Heaviside–Hertz" equations subsequently formed an important basis for the further development of electrodynamics, and Heaviside's notation is still used today. Other important
2888:
Einstein (1907b) discussed the question of whether, in rigid bodies, as well as in all other cases, the velocity of information can exceed the speed of light, and explained that information could be transmitted under these circumstances into the past, thus causality would be violated. Since this
1124:
suggested that part of the mass of a body (which he called apparent mass) can be thought of as radiation bouncing around a cavity. The "apparent mass" of radiation depends on the temperature (because every heated body emits radiation) and is proportional to its energy. Hasenöhrl stated that this
1116:
physical entity. Abraham also noted (like Lorentz in 1899) that this mass also depends on the direction and coined the names "longitudinal" and "transverse" mass. In contrast to Lorentz, he did not incorporate the contraction hypothesis into his theory, and therefore his mass terms differed from
472:
published a summary of the idea in 1892. Also Lorentz (1892b) proposed length contraction independently from FitzGerald in order to explain the Michelson–Morley experiment. For plausibility reasons, Lorentz referred to the analogy of the contraction of electrostatic fields. However, even Lorentz
1706:
Eventually Poincaré (independently of Einstein) finished a substantially extended work of his June paper (the so-called "Palermo paper", received July 23, printed December 14, published January 1906 ). He spoke literally of "the postulate of relativity". He showed that the transformations are a
2831:
that was used by Einstein in the course of that investigation, which expresses the equality of inertial and gravitational mass and the equivalence of accelerated frames and homogeneous gravitational fields, transcended the limits of special relativity and resulted in the formulation of general
2472:
A and B to an observer aboard a moving train. From the perspective of the frame in which A and B are at rest, the signals are sent at the same time and the observer "is hastening towards the beam of light coming from B, whilst he is riding on ahead of the beam of light coming from A. Hence the
1648:
The Principle of Relativity, according to which the laws of physical phenomena must be the same for a stationary observer as for one carried along in a uniform motion of translation, so that we have no means, and can have none, of determining whether or not we are being carried along in such a
1269:
are essentially metaphysical concepts and thus scientifically meaningless, and suggested that only relative motion between material bodies is a useful concept in physics. Mach argued that even effects that according to Newton depend on accelerated motion with respect to absolute space, such as
213:
aetherial medium that is the cause of electric and magnetic phenomena. However, Maxwell's theory was unsatisfactory regarding the optics of moving bodies, and while he was able to present a complete mathematical model, he was not able to provide a coherent mechanical description of the aether.
2435:
In 1911 Laue also discussed a situation where on a platform a beam of light is split and the two beams are made to follow a trajectory in opposite directions. On return to the point of entry the light is allowed to exit the platform in such a way that an interference pattern is obtained. Laue
2947:
qualified his position by arguing that one can speak about a relativistic aether, but the "idea of motion" cannot be applied to it. Lorentz and Poincaré had always argued that motion through the aether was undetectable. Einstein used the expression "special theory of relativity" in 1915, to
854:
mass is of electromagnetic origin, which was formulated in the context that all forces of nature are electromagnetic ones (the "Electromagnetic World View"). Wien stated that, if it is assumed that gravitation is an electromagnetic effect too, then there has to be a proportionality between
1568:
At the same time, when Lorentz worked out his theory, Wien (1903) recognized an important consequence of the velocity dependence of mass. He argued that superluminal velocities were impossible, because that would require an infinite amount of energy — the same was already noted by
2290:, and Alfred Bucherer. von Laue, who learned about the theory from Planck, published the first definitive monograph on relativity in 1911. By 1911, Sommerfeld altered his plan to speak about relativity at the Solvay Congress because the theory was already considered well established. 1447:
The simultaneity of two events, or the order of their succession, the equality of two durations, are to be so defined that the enunciation of the natural laws may be as simple as possible. In other words, all these rules, all these definitions are only the fruit of an unconscious
2317: 2057:, where Poincaré presented the Principle of Relativity (which, as has been reported by Einstein's friend Maurice Solovine, was closely studied and discussed by Einstein and his friends over a period of years before the publication of Einstein's 1905 paper), and the writings of 2341:(1908, 1909) by defining mass as the ratio of momentum to velocity. So the older definition of longitudinal and transverse mass, in which mass was defined as the ratio of force to acceleration, became superfluous. Finally, Tolman (1912) interpreted relativistic mass simply as 2770:(1914) employed such methods as well. One historian argues that the non-Euclidean style had little to show "in the way of creative power of discovery", but it offered notational advantages in some cases, particularly in the law of velocity addition. (So in the years before 103:
based on an immobile luminiferous aether (about whose material constitution Lorentz did not speculate), physical length contraction, and a "local time" in which Maxwell's equations retain their form in all inertial frames of reference. Working with Lorentz's aether theory,
3177:, or philosophical reasons. Although there still are critics of relativity outside the scientific mainstream, the overwhelming majority of scientists agree that Special Relativity has been verified in many different ways and there are no inconsistencies within the theory. 2328:
and gave the correct values for the longitudinal and transverse mass by correcting a slight mistake of the expression given by Einstein in 1905. Planck's expressions were in principle equivalent to those used by Lorentz in 1899. Based on the work of Planck, the concept of
1412: 3131:
pointed out that all previous experimental tests of the constancy of the speed of light were conducted using light which had passed through stationary material: glass, air, or the incomplete vacuum of deep space. As a result, all were thus subject to the effects of the
2473:
observer will see the beam of light emitted from B earlier than he will see that emitted from A. Observers who take the railway train as their reference-body must therefore come to the conclusion that the lightning flash B took place earlier than the lightning flash A."
2436:
calculated a displacement of the interference pattern if the platform is in rotation – because the speed of light is independent of the velocity of the source, so one beam has covered less distance than the other beam. An experiment of this kind was performed by
463:
FitzGerald (1889) offered another explanation of the negative result of the Michelson–Morley experiment. Contrary to Voigt, he speculated that the intermolecular forces are possibly of electrical origin so that material bodies would contract in the line of motion
1890:), which served as the axiomatic basis of his theory. To better understand Einstein's step, a summary of the situation before 1905, as it was described above, shall be given (it must be remarked that Einstein was familiar with the 1895 theory of Lorentz, and 2023:. Einstein discovered that light can also be described (at least heuristically) as a kind of particle, so the aether as the medium for electromagnetic "waves" (which was highly important for Lorentz and Poincaré) no longer fitted into his conceptual scheme. 619:(1897, 1900). Larmor was the first to put Lorentz's 1895 transformation into a form algebraically equivalent to the modern Lorentz transformations, however, he stated that his transformations preserved the form of Maxwell's equations only to second order of 4759: 2026:
It's notable that Einstein's paper contains no direct references to other papers. However, many historians of science like Holton, Miller, Stachel, have tried to find out possible influences on Einstein. He stated that his thinking was influenced by the
1557:, which were in agreement with Kaufmann's experiments (even though those experiments were not precise enough to distinguish between the theories of Lorentz and Abraham). And using the electromagnetic momentum, he could explain the negative result of the 2658:, etc.; and most notably he presented a four-dimensional formulation of electrodynamics. Similar to Poincaré he tried to formulate a Lorentz-invariant law of gravity, but that work was subsequently superseded by Einstein's elaborations on gravitation. 2975:(1913) proposed different "scalar theories" of gravitation. While Mie never formulated his theory in a consistent way, Abraham completely gave up the concept of Lorentz-covariance (even locally), and therefore it was irreconcilable with relativity. 2943: – although it was decided by the Nobel committee not to award the prize for special relativity. Only a minority of theoretical physicists such as Abraham, Lorentz, Poincaré, or Langevin still believed in the existence of an aether. Einstein 3115:
in 1938 and by measuring the decay rates of moving particles in 1940. All of those experiments have been repeated several times with increased precision. In addition, that the speed of light is unreachable for massive bodies was measured in many
258:(and subsequently Lorentz). This model (Stationary Aether Theory) supposed that light propagates as a transverse wave and aether is partially dragged with a certain coefficient by matter. Based on this assumption, Fresnel was able to explain the 1903:) Maxwell's electrodynamics, as presented by Lorentz in 1895, was the most successful theory at this time. Here, the speed of light is constant in all directions in the stationary aether and completely independent of the velocity of the source; 3470: 2827:
in which the accelerated body is temporarily at rest. It follows that in accelerated frames defined in this way, the application of the constancy of the speed of light to define simultaneity is restricted to small localities. However, the
2361:
theorem. On that occasion, he noted that the formal mathematical content of Poincaré's paper on the center of mass (1900b) and his own paper were mainly the same, although the physical interpretation was different in light of relativity.
2835:
Nearly simultaneously with Einstein, Minkowski (1908) considered the special case of uniform accelerations within the framework of his spacetime formalism. He recognized that the worldline of such an accelerated body corresponds to a
2202: 1431:
described some important consequences of this process and explained that astronomers, in determining the speed of light, simply assumed that light has a constant speed and that this speed is the same in all directions. Without this
2676:, but at the time special relativity was being developed the field of linear algebra was still in its infancy. There were no textbooks on linear algebra as modern vector space and transformation theory, and the matrix notation of 1270:
rotation, could be described purely with reference to material bodies, and that the inertial effects cited by Newton in support of absolute space might instead be related purely to acceleration with respect to the fixed stars.
5515: 5005: 2432:(1907) who derived the coefficient for terms of all orders by using the colinear case of the relativistic velocity addition law. In addition, Laue's calculation was much simpler than the complicated methods used by Lorentz. 2868:(1912), whereby his formulation is also valid for general relativity. Concerning the further development of the description of accelerated motion in special relativity, the works by Langevin and others for rotating frames ( 2207:
for the kinetic energy of an electron. In elaboration of this he published a paper (received September 27, November 1905), in which Einstein showed that when a material body lost energy (either radiation or heat) of amount
687:
for electron orbits. Larmor specified his considerations in 1900 and 1904. Independently of Larmor, Lorentz (1899) extended his transformation for second-order terms and noted a (mathematical) time dilation effect as well.
6647: 5699: 3563:
Bucherer, A. H. (1908), "Messungen an Becquerelstrahlen. Die experimentelle Bestätigung der Lorentz–Einsteinschen Theorie. (Measurements of Becquerel rays. The Experimental Confirmation of the Lorentz–Einstein Theory)",
4807: 1878:. Einstein's paper includes a fundamental description of the kinematics of the rigid body, and it did not require an absolutely stationary space, such as the aether. Einstein identified two fundamental principles, the 2978:
In addition, all of those models violated the equivalence principle, and Einstein argued that it is impossible to formulate a theory which is both Lorentz-covariant and satisfies the equivalence principle. However,
5746: 6438: 6243: 6396: 540:. This theorem states that a moving observer (relative to the aether) in his "fictitious" field makes the same observations as a resting observer in his "real" field. An important part of it was local time 6207: 3745: 399: 92:. According to Maxwell's theory, all optical and electrical phenomena propagate through that medium, which suggested that it should be possible to experimentally determine motion relative to the aether. 1793: 6674:"71 years earlier, this scientist beat Einstein to relativity - Michael Faraday's 1834 law of induction was the key experiment behind the eventual discovery of relativity. Einstein admitted it himself" 4135:"The Hypotheses Relating to the Luminous Aether, and an Experiment which Appears to Demonstrate that the Motion of Bodies Alters the Velocity with which Light Propagates itself in their Interior"  1629: 2632: 2864:. Under those transformations the equations preserve their form for some types of accelerated motions. A general covariant formulation of electrodynamics in Minkowski space was eventually given by 2448:
theories the speed of light is independent of the velocity of the source. This effect can be understood as the electromagnetic counterpart of the mechanics of rotation, for example in analogy to a
1524: 8332: 2444:). While Sagnac himself concluded that his theory confirmed the theory of an aether at rest, Laue's earlier calculation showed that it is compatible with special relativity as well because in 1646:, Poincaré drew some consequences from Lorentz's theory and defined (in modification of Galileo's Relativity Principle and Lorentz's Theorem of Corresponding States) the following principle: " 597: 458: 4310: 5178: 699:, the fixed stars as a reference frame instead. Due to inconsistencies within his theory, like different light speeds in different directions, it was superseded by Lorentz's and Einstein's. 6160: 2774:, the acceptance of the non-Euclidean style was approximately equal to that of the initial spacetime formalism, and it continued to be employed in relativity textbooks of the 20th century. 2983:(1912, 1913) was able to create a model which fulfilled both conditions. This was achieved by making both the gravitational and the inertial mass dependent on the gravitational potential. 1986:
The speed of light in moving media is not composed of the speed of light when the medium is at rest and the velocity of the medium, but is determined by Fresnel's dragging coefficient, by
1830: 1393: 1247: 1185: 789: 7836:
Whittaker, E. T (1953) A History of the Theories of Aether and Electricity: Vol 2 The Modern Theories 1900–1926. Chapter II: The Relativity Theory of Poincaré and Lorentz, Nelson, London.
4387: 3292: 3047: 1573:(1893) and Searle (1897). And in June 1904, after he had read Lorentz's 1904 paper, he noticed the same in relation to length contraction, because at superluminal velocities the factor 2064:
Regarding his views on Electrodynamics and the Principle of the Constancy of Light, Einstein stated that Lorentz's theory of 1895 (or the Maxwell–Lorentz electrodynamics) and also the
902: 942: 1110: 2263:, in this formulation. He described Einstein's theory as a "generalization" of Lorentz's theory and, to this "Lorentz–Einstein Theory", he gave the name "relative theory"; while 8624: 4493: 1064: 980: 681: 649: 538: 1356: 695:(1900, 1901) created an alternative electrodynamics in which he, as one of the first, discarded the existence of the aether (at least in the previous form) and would use, like 4978: 4824: 1028: 1004: 837: 813: 3043: 1795:
is invariant. While elaborating his gravitational theory, he said the Lorentz transformation is merely a rotation in four-dimensional space about the origin, by introducing
2661:
In 1907 Minkowski named four predecessors who contributed to the formulation of the relativity principle: Lorentz, Einstein, Poincaré and Planck. And in his famous lecture
1651:" He also specified his clock synchronization method and explained the possibility of a "new method" or "new mechanics", in which no velocity can surpass that of light for 5128: 3051: 6637: 6137: 1403:-dimensional spaces and non-Euclidean geometry, so his philosophical model bears only little resemblance with spacetime physics, as it was later developed by Minkowski. 136:, in which he introduced a 4-dimensional geometric "spacetime" model for Einstein's version of special relativity, paved the way for Einstein's later development of his 3143:. However, no sign of anisotropy of the speed of light has been found even at the 10 level, and some experiments even ruled out Lorentz violations at the 10 level, see 2734:
Minkowski's complex representation to combine non-collinear velocities by spherical geometry and so derive Einstein's addition formula. Subsequent writers, principally
8241: 4272: 3604: 2410: 859:(1900b) found another way of combining the concepts of mass and energy. He recognized that electromagnetic energy behaves like a fictitious fluid with mass density of 4563: 4542: 3591: 2935:
was its development by Poincaré and Minkowski into a spacetime theory. Consequently, by about 1911, most theoretical physicists accepted special relativity. In 1912
1994:
In order to make the principle of relativity as required by Poincaré an exact law of nature in the immobile aether theory of Lorentz, the introduction of a variety
2638:. Using similar methods, Minkowski succeeded in formulating a geometrical interpretation of the Lorentz transformation. He completed, for example, the concept of 4525: 1292:
a reference frame in which a mass point thrown from the same point in three different (non-co-planar) directions follows rectilinear paths each time it is thrown
5204:
Lorentz, Hendrik Antoon; Lorentz, H. A.; Miller, D. C.; Kennedy, R. J.; Hedrick, E. R.; Epstein, P. S. (1928), "Conference on the Michelson–Morley Experiment",
2103: 2905:, in which, due to length contraction, the circumference of a rotating disk is shortened while the radius stays the same. This question was also considered by 2725:
are needed to derive the Lorentz transformation. However, until today, others continued the attempts to derive special relativity without the light postulate.
1971:
The speed of light is not composed of the speed of light in vacuum and the velocity of an aether that would be dragged within or in the vicinity of matter, by
1125:
energy-apparent-mass relation only holds as long as the body radiates, i.e., if the temperature of a body is greater than 0 K. At first he gave the expression
2738:, dispensed with the imaginary time coordinate, and wrote in explicitly non-Euclidean (i.e. Lobachevskian) form reformulating relativity using the concept of 9533: 5941: 5917: 3202: 7412: 2456:(1925, a variation of the Sagnac experiment) indicated the angular velocity of the Earth itself in accordance with special relativity and a resting aether. 1711:
and developed the properties of the Poincaré stresses. He demonstrated in more detail the group characteristics of the transformation, which he called the
2513: 2047:) and the various negative aether drift experiments were important for him to accept that principle — but he denied any significant influence of the 254:
Regarding the relative motion and the mutual influence of matter and aether, there were two theories, neither entirely satisfactory. One was developed by
9031: 2713:(1910) for example used for this purpose (a) the principle of relativity, (b) homogeneity and isotropy of space, and (c) the requirement of reciprocity. 3173:
Some criticized Special Relativity for various reasons, such as lack of empirical evidence, internal inconsistencies, rejection of mathematical physics
1443:
Poincaré also noted that the propagation speed of light can be (and in practice often is) used to define simultaneity between spatially separate events:
116:), used this principle in 1905 to correct Lorentz's preliminary transformation formulas, resulting in an exact set of equations that are now called the 9597: 8352: 4632: 2913:(1910), and von Laue (1911). It was recognized by Laue that the classic concept is not applicable in SR since a "rigid" body possesses infinitely many 1274:(1870) introduced a "Body alpha", which represents some sort of rigid and fixed body for defining inertial motion. Based on the definition of Neumann, 944:) and defined a fictitious electromagnetic momentum as well. However, he arrived at a radiation paradox which was fully explained by Einstein in 1905. 3111:
in 1932, by which the independence of the speed of light from the velocity of the apparatus was confirmed. Time dilation was directly measured in the
9270: 8822: 8400: 9632: 2696:(1910) replaced Minkowski's matrix notation by an elegant vector notation and coined the terms "four vector" and "six vector". He also introduced a 9314: 6683: 5733: 4909:
Lewis, Gilbert N.; Wilson, Edwin B. (1912), "The Space-time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics",
9564: 1399:). However, Palagyi's time coordinate is not connected to the speed of light. He also rejected any connection with the existing constructions of 1331:, in which space and time were only two sides of some sort of "spacetime". He used time as an imaginary fourth dimension, which he gave the form 2357:
Einstein (1906) showed that the inertia of energy (mass–energy equivalence) is a necessary and sufficient condition for the conservation of the
1565:
could be explained. Another important step was the postulate that the Lorentz transformation has to be valid for non-electrical forces as well.
311:
apparent confirmation of Fresnel's stationary aether, and the 1887 experiment as an apparent confirmation of Stokes' completely dragged aether.
3107:
were conducted, confirming relativity to even higher precision than the original experiment. Another type of interferometer experiment was the
2897:(1909) in the course of his above-mentioned work concerning accelerated motion, tried to include the concept of rigid bodies into SR. However, 5510: 3085: 2304: 4996: 9348: 9223: 5715:
Planck, Max (1906b), "Die Kaufmannschen Messungen der Ablenkbarkeit der β-Strahlen in ihrer Bedeutung für die Dynamik der Elektronen" [
1282:
do not measure any signs of rotation inertial motion is related to a "Fundamental body" and a "Fundamental Coordinate System". Eventually,
9084: 9236: 5716: 1913:
the validity of the relativity principle as the consequence of the negative results of all aether drift experiments and effects like the
8948:(translated). The proof consists in showing that the Lorentz transformation takes Galilean form when written in Lobachevski coordinates. 3104: 6419: 3139:
Many other tests of special relativity have been conducted, testing possible violations of Lorentz invariance in certain variations of
2914: 298:(1881) tried to measure the relative motion of the Earth and aether (Aether-Wind), as it was expected in Fresnel's theory, by using an 6433: 9297: 3117: 2453: 2420:
As was explained above, already in 1895 Lorentz succeeded in deriving Fresnel's dragging coefficient (to first order of v/c) and the
1643: 612:
theory violated the principle of action and reaction, since the aether acts on matter, but matter cannot act on the immobile aether.
8220:
Interpretationen und Fehlinterpretationen der speziellen und der allgemeinen Relativitätstheorie durch Zeitgenossen Albert Einsteins
327: 9607: 9521: 7584:
Varićak (1910) The Theory of Relativity and Lobachevskian geometry, see section §3 "Lorentz–Einstein transformation as translation"
6373: 1561:, in which a charged parallel-plate capacitor moving through the aether should orient itself perpendicular to the motion. Also the 8408:
Kostro, L. (1992), "An outline of the history of Einstein's relativistic ether concept", in Jean Eisenstaedt; Anne J. Kox (eds.),
2856:(1910) showed that Maxwell's equations are invariant under a much wider group of transformation than the Lorentz group, i.e., the 683:. Larmor noticed on that occasion that length contraction was derivable from the model; furthermore, he calculated some manner of 336: 9742: 9668: 9161: 8262:
A Comparison between Lorentz's Ether Theory and Special Relativity in the Light of the Experiments of Trouton and Noble, (thesis)
1718: 1681: 5140: 3354: 3155:
Some claim that Poincaré and Lorentz, not Einstein, are the true discoverers of special relativity. For more see the article on
2984: 2889:
contravenes radically against every experience, superluminal velocities are thought impossible. He added that a dynamics of the
1544: 494: 6316: 3531: 2996: 1576: 9663: 9134: 9067: 9017: 8925: 8907: 8812: 8752: 8734: 8716: 8672: 8633: 8554: 8496: 8417: 8385: 8250: 8227: 8158: 8137: 8103: 8014: 7992: 7971: 7887: 7680: 3740: 3144: 3133: 2551: 5173: 2944: 2709:
There were some attempts to derive the Lorentz transformation without the postulate of the constancy of the speed of light.
9675: 9420: 9387: 4631: 6107: 4012: 9765: 9732: 2040: 1914: 485: 3958: 3896: 3853: 3811: 3769: 2345:
mass of the body. However, many modern textbooks on relativity do not use the concept of relativistic mass anymore, and
9538: 3212: 2939:
recommended both Lorentz (for the mathematical framework) and Einstein (for reducing it to a simple principle) for the
2491: 651:. Lorentz later noted that these transformations did in fact preserve the form of Maxwell's equations to all orders of 3994: 2999:, while the other theories gave erroneous results. In addition, only Einstein's theory gave the correct value for the 1466: 691:
Other physicists besides Lorentz and Larmor also tried to develop a consistent model of electrodynamics. For example,
9435: 9410: 9285: 9275: 9265: 5016: 4653: 4488: 3668: 3207: 3093: 2845: 1562: 725:
is increased by a constant quantity. Thomson's work was continued and perfected by FitzGerald, Heaviside (1888), and
178: 2504:
Poincaré's attempt of a four-dimensional reformulation of the new mechanics was not continued by himself, so it was
9615: 9326: 9216: 6089: 4995: 3108: 2722: 1798: 1361: 1290:
and "inertial time scale" as operational replacements for absolute space and time; he defined "inertial frame" as "
1190: 1128: 732: 8979: 5717:
The Measurements of Kaufmann on the Deflectability of β-Rays in their Importance for the Dynamics of the Electrons
5235: 4957:
Lorentz, Hendrik Antoon (1892a), "La Théorie electromagnétique de Maxwell et son application aux corps mouvants",
3325:
Alväger, Farley; Kjellmann, Walle (1964), "Test of the second postulate of special relativity in the GeV region",
3188: 2684:. However Varicak (1910) had shown that the standard Lorentz transformation is a translation in hyperbolic space. 543: 404: 9571: 9509: 9343: 9309: 6391: 6155: 6133:"L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre en rotation uniforme"  4305: 3081: 2662: 2092: 726: 307: 4613: 2840:. This notion was further developed by Born (1909) and Sommerfeld (1910), with Born introducing the expression " 2464:
The first derivations of relativity of simultaneity by synchronization with light signals were also simplified.
221:
in 1887 demonstrated the existence of electromagnetic waves, Maxwell's theory was widely accepted. In addition,
9440: 9338: 4344:"Electromagnetic waves, the propagation of potential, and the electromagnetic effects of a moving charge"  3168: 3097: 3055: 2841: 6673: 862: 84:
and electrodynamics, during the 19th century the wave theory of light as a disturbance of a "light medium" or
9747: 9494: 9447: 2857: 907: 322:
for waves propagating in an incompressible elastic medium and deduced transformation relations that left the
19: 5446:
Michelson, Albert A.; Gale, Henry G. (1925), "The Effect of the Earth's Rotation on the Velocity of Light",
5406: 4673:"On a Dynamical Theory of the Electric and Luminiferous Medium, Part 3, Relations with material media"  3309: 1956:
The speed of light is not composed of the speed of light in vacuum and the velocity of the light source, by
1832:
as a fourth imaginary coordinate (contrary to Palagyi, he included the speed of light), and he already used
1076: 950:(1901–1903) was the first to confirm the velocity dependence of electromagnetic mass by analyzing the ratio 9516: 9489: 9467: 9425: 9321: 9156: 6315: 5836: 3112: 3089: 3059: 2791: 1965: 1558: 1550: 8853: 6424:
Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen
5509: 4672: 2917:. Yet, while Born's definition was not applicable on rigid bodies, it was very useful in describing rigid 9816: 9811: 9790: 9760: 9543: 9504: 9452: 9209: 8365: 5322: 3217: 3156: 3071: 2248: 2224: 2012: 1655:
observers. However, he critically noted that the relativity principle, Newton's action and reaction, the
1287: 947: 603:
and which he introduced independently of Voigt. With the help of this concept, Lorentz could explain the
460:
which later was called "local time". However, Voigt's work was completely ignored by his contemporaries.
8113: 5364: 2926:
for a co-moving observer, but for an observer at rest it is "real" and the consequences are measurable.
1037: 953: 654: 622: 511: 9620: 9482: 9372: 9292: 6586: 6161:
On the proof of the reality of the luminiferous aether by the experiment with a rotating interferometer
5053: 4944:
Lorentz, Hendrik Antoon (1886), "De l'influence du mouvement de la terre sur les phénomènes lumineux",
2346: 1334: 1312: 6156:"Sur la preuve de la réalité de l'éther lumineux par l'expérience de l'interférographe tournant"  5745:
Planck, Max (1908), "Bemerkungen zum Prinzip der Aktion und Reaktion in der allgemeinen Dynamik" [
4877: 2376:, including the binding forces within matter. He acknowledged the priority of Einstein's 1905 work on 1695:
characteristics of the transformation, and he corrected Lorentz's formulas for the transformations of
1009: 985: 818: 794: 9727: 9696: 9576: 9472: 9367: 8646: 8545:
Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911)
4851: 2783: 1708: 1700: 227: 206: 8787: 8727:
Henri Poincaré : electrons to special relativity: translation of selected papers and discussion
8694: 8471: 2061:, from whom he borrowed the terms "Maxwell–Hertz equations" and "longitudinal and transverse mass". 9826: 9821: 9752: 9625: 9581: 9499: 9477: 9331: 9166: 8505:
Messager, V.; Gilmore, R.; Letellier, C. (2012), "Henri Poincaré and the principle of relativity",
8426: 6432: 5520:
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
4935:
The Space-time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics
4267: 3244:
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
2525: 2372:). Eventually Planck (1907) derived the mass–energy equivalence in general within the framework of 1570: 1460: 1283: 326:
in free space unchanged, and explained the negative result of the Michelson–Morley experiment. The
158: 4633:"Sur l'impossibilité physique de mettre en évidence le mouvement de translation de la Terre"  3993: 3406: 729:(1896, 1897). For the electromagnetic mass they gave — in modern notation — the formula 9658: 9360: 9302: 9280: 7960:
Catoni, Francesco; Boccaletti, Dino; Cannata, Roberto; Catoni, Vincenzo; Zampetti, Paolo (2011).
5072:"Electromagnetic phenomena in a system moving with any velocity smaller than that of light"  5015: 3667: 2541: 2016: 1879: 1266: 1258: 76: 72: 5936: 4806:
Laue, Max von (1911b), "Zur Diskussion über den starren Körper in der Relativitätstheorie" [
4722: 4359:"On the Electromagnetic Effects due to the Motion of Electrification through a Dielectric"  9096: 8782: 8605:"Einstein, Nordström and the early demise of scalar, lorentz covariant theories of gravitation" 8466: 6032:
Sechs Vorträge über ausgewählte Gegenstände aus der reinen Mathematik und mathematischen Physik
5885: 3695: 3432: 2940: 2053: 1980: 1892: 1871: 1660: 1424: 1300: 600: 274: 202: 117: 8966: 7687: 6539: 6505: 6178: 5698:
Planck, Max (1906a), "Das Prinzip der Relativität und die Grundgleichungen der Mechanik" [
4388:
On bodies that are to be designated as "rigid" from the standpoint of the relativity principle
4249: 2379: 1121: 473:
admitted that that was not a necessary reason and length contraction consequently remained an
9653: 9648: 9602: 9459: 9258: 9085:"A Short History of the Concept of Relative Simultaneity in the Special Theory of Relativity" 8992: 7573: 6612: 6471: 5912: 5264: 3501:
Brecher, Kenneth (1977), "Is the Speed of Light Independent of the Velocity of the Source?",
2828: 2465: 2274:
Following Planck, other German physicists quickly became interested in relativity, including
1328: 500: 265: 255: 162: 100: 8260: 7432:(Braunschweig: Vieweg, 1911; second edition 1913); later editions published under the title 4612: 4358: 4134: 3530: 3253: 2758:(1913) showed how parallel transport in non-Euclidean space provides the kinematic basis of 1941:
with the following consequences for the speed of light and the theories known at that time:
1187:
for the apparent mass; however, Abraham and Hasenöhrl himself in 1905 changed the result to
9253: 9122: 8876: 8837: 8774: 8576: 8514: 8304: 8206: 8083: 8032: 7933: 6552: 6518: 6484: 6450: 6255: 6219: 6132: 6098: 5953: 5817: 5664: 5622: 5574: 5489: 5455: 5419: 5377: 5335: 5277: 5213: 4771: 4735: 4685: 4575: 4467: 4433: 4399: 4322: 4284: 4229: 4197: 4168: 4097: 4027: 3973: 3946: 3911: 3868: 3826: 3784: 3757: 3708: 3631: 3544: 3510: 3482: 3369: 3334: 3266: 3121: 3016: 2963: 2786:
as a direct consequence of time dilation. And in fact, that effect was measured in 1938 by
2747: 2424:
by using the electromagnetic theory and the concept of local time. After first attempts by
2334: 1656: 708: 108:, having earlier proposed the "relativity principle" as a general law of nature (including 9191: 9051:
A History of the theories of aether and electricity; Vol. 2: The modern theories 1900–1926
6084: 5652: 5610: 4511: 4217: 4159:
Fox, J.G. (1962), "Experimental Evidence for the Second Postulate of Special Relativity",
3739: 3287: 2197:{\displaystyle E_{kin}=mc^{2}\left({\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}-1\right)} 8: 9706: 9195: 9152: 8953: 8867:(1982), "Einstein and Michelson: the Context of Discovery and Context of Justification", 6317:"On the Electric and Magnetic Effects produced by the Motion of Electrified Bodies"  6120: 5476: 5172: 5096: 4977:
Lorentz, Hendrik Antoon (1892b), "De relatieve beweging van de aarde en den aether" [
3449: 2877: 2853: 2710: 2692:
Minkowski's spacetime formalism was quickly accepted and further developed. For example,
2681: 2635: 2537: 2508:(1907), who worked out the consequences of that notion (other contributions were made by 1945:
The speed of light is not composed of the speed of light in vacuum and the velocity of a
1934: 1841: 1692: 1551:
Electromagnetic phenomena in a system moving with any velocity smaller than that of light
604: 295: 259: 235: 231: 182: 170: 89: 85: 32: 9126: 8880: 8841: 8778: 8580: 8518: 8430: 8308: 8210: 8087: 8036: 7937: 7900: 6556: 6522: 6488: 6454: 6390: 6304: 6259: 6223: 6102: 6073: 5957: 5874: 5668: 5626: 5599: 5578: 5493: 5459: 5423: 5405: 5381: 5339: 5281: 5217: 5161: 5103: 4967: 4796: 4775: 4760:
The Entrainment of Light by Moving Bodies in Accordance with the Principle of Relativity
4739: 4689: 4579: 4471: 4437: 4403: 4384:"Über den vom Standpunkt des Relativitätsprinzips aus als starr zu bezeichnenden Körper" 4343: 4326: 4304: 4288: 4233: 4201: 4172: 4101: 4056: 4031: 3977: 3950: 3915: 3872: 3830: 3788: 3761: 3712: 3635: 3548: 3514: 3486: 3373: 3338: 3270: 3120:. Therefore, knowledge of those relativistic effects is required in the construction of 2980: 2922: 2735: 2051:
experiment: the Michelson–Morley experiment. Other likely influences include Poincaré's
1436:, it would be impossible to infer the speed of light from astronomical observations, as 9701: 9382: 9232: 9112: 9006: 8682: 8592: 8543: 8530: 8454: 8320: 8196: 8056: 8003: 7949: 7923: 7876: 6041: 5979: 5764: 5561: 5435: 5393: 5351: 5310: 5293: 5162:
The theory of electrons and its applications to the phenomena of light and radiant heat
5157:
The theory of electrons and its applications to the phenomena of light and radiant heat
4926: 4898: 4595: 4487: 4121: 4043: 3884: 3721: 3655: 3385: 3000: 2992: 2767: 2666: 2655: 2509: 2373: 2365: 2260: 465: 137: 128: 44: 9185: 8604: 8128:(1989), "The Swiss Years: Writings, 1900–1909", in Stachel, John; et al. (eds.), 4998:
Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern
4934: 4671: 3076:
Important early experiments confirming special relativity as mentioned above were the
2844:". He noted that uniform acceleration can be used as an approximation for any form of 9772: 9691: 9377: 9355: 9245: 9130: 9063: 9013: 8921: 8903: 8808: 8748: 8730: 8712: 8668: 8629: 8550: 8534: 8492: 8413: 8394: 8381: 8246: 8223: 8154: 8133: 8099: 8048: 8010: 7988: 7967: 7912:"The origins of length contraction: I. The FitzGerald–Lorentz deformation hypothesis" 7883: 7676: 6138:
The demonstration of the luminiferous aether by an interferometer in uniform rotation
5983: 5686: 5551: 5511:"Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern"  5439: 5397: 5355: 5321: 5297: 4113: 4047: 3888: 3854:"Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie" 3845: 3647: 3393: 3389: 3346: 3077: 3012: 2902: 2865: 2759: 2693: 2643: 2545: 2505: 2449: 2421: 2338: 2330: 2300: 2275: 2065: 1995: 1924: 1275: 1257:
Some scientists and philosophers of science were critical of Newton's definitions of
1112:. But unlike the fictitious quantities introduced by Poincaré, he considered it as a 841: 474: 281: 133: 56: 8993:"Breaking in the 4-vectors: The four-dimensional movement in gravitation, 1905–1910" 8762: 8596: 8564: 8324: 8283: 8270: 8168: 8060: 7911: 7863: 5974: 5897: 5363: 5115: 4125: 4084: 3659: 3618: 2516:(1908)). This was based on the work of many mathematicians of the 19th century like 2255:(1906a) was the first who publicly defended the theory and interested his students, 1687: 1428: 1295: 856: 132:
reference to a luminiferous aether in classical electrodynamics. Subsequent work of
105: 40: 9711: 8884: 8845: 8792: 8584: 8522: 8476: 8373: 8344: 8312: 8091: 8040: 7953: 7941: 7858: 6560: 6526: 6492: 6458: 6355: 6329: 6308: 6287: 6263: 6227: 6191: 6124: 6077: 6007: 5969: 5961: 5905:, vol. 1, Boston and New York: Houghton, Mifflin and Company, pp. 604–622 5878: 5851: 5672: 5638: 5630: 5603: 5582: 5497: 5463: 5427: 5385: 5343: 5314: 5285: 5221: 5190: 5165: 5107: 4971: 4938: 4918: 4890: 4864: 4800: 4779: 4743: 4693: 4583: 4475: 4441: 4407: 4371: 4330: 4292: 4237: 4218:"Über die Transformation der Raum-Zeitkoordinaten von ruhenden auf bewegte Systeme" 4205: 4176: 4147: 4105: 4035: 3981: 3919: 3876: 3834: 3803: 3792: 3681: 3639: 3552: 3518: 3490: 3419: 3377: 3342: 3274: 2967: 2873: 2869: 2751: 2533: 2003: 1396: 1324: 303: 278: 222: 186: 18:"History of relativity" redirects here. For the history of general relativity, see 9049:
Whittaker, Edmund Taylor (1953), "The relativity theory of Poincaré and Lorentz",
9042:
A History of the Theories of Aether and Electricity Vol. 1: The classical theories
8271:"From classical to relativistic mechanics: Electromagnetic models of the electron" 7846: 6638:"Relativity Wasn't Einstein's Miracle; It Was Waiting In Plain Sight For 71 Years" 6506:"Über die Differentialgleichungen der Elektrodynamik für bewegte Körper. II"  4876: 4109: 9104: 9026: 8704: 8526: 8377: 8295:
Katzir, Shaul (2005), "Poincaré's Relativistic Physics: Its Origins and Nature",
8125: 7982: 7961: 7670: 6472:"Über die Differentialgleichungen der Elektrodynamik für bewegte Körper. I"  6414: 5562:"Theorie der stationären Strahlung in einem gleichförmig bewegten Hohlraum"  5117:
Das Relativitätsprinzip. Drei Vorlesungen gehalten in Teylers Stiftung zu Haarlem
4850: 4188:
Filippas, T.A.; Fox, J.G. (1964), "Velocity of Gamma Rays from a Moving Source",
3577:
Cohn, Emil (1901), "Über die Gleichungen der Electrodynamik für bewegte Körper",
3471:
The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity
3140: 2906: 2787: 2487: 2264: 2074: 2020: 1946: 1554: 1530: 239: 174: 166: 141: 124: 109: 96: 80: 48: 36: 9201: 8796: 8364: 7419:, Birkhaüser Verlag, Basel, 1999 1422–6944/99/020184–31. Retrieved 6 April 2019. 6154: 6026: 4070: 3995:"The Development of Our Views on the Composition and Essence of Radiation"  3931: 3522: 2044: 1862: 1316: 855:
electromagnetic energy, inertial mass and gravitational mass. In the same paper
850:(1900) assumed (following the works of Thomson, Heaviside, and Searle) that the 88:
was widely accepted, the theory reaching its most developed form in the work of
9737: 9399: 8642: 8565:"Einstein's Investigations of Galilean Covariant Electrodynamics prior to 1905" 5738:
Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften, Berlin
5017:"Simplified Theory of Electrical and Optical Phenomena in Moving Systems"  4823:
Laue, Max von (1911c), "Über einen Versuch zur Optik der bewegten Körper" [
3669:"The principle of Relativity in Electrodynamics and an Extension Thereof"  3643: 3194: 3032: 3024: 3020: 2988: 2898: 2728: 2673: 2437: 2358: 2287: 1696: 608: 331: 319: 315: 299: 218: 8849: 8588: 8316: 6434:"Über die Möglichkeit einer elektromagnetischen Begründung der Mechanik"  6359: 6333: 6291: 6195: 5431: 5389: 5347: 4868: 4756:"Die Mitführung des Lichtes durch bewegte Körper nach dem Relativitätsprinzip" 4375: 4209: 4151: 3423: 3405: 3042:
Many other domains have since been reformulated with relativistic treatments:
2755: 2496: 9805: 9181: 9177: 9173: 8236: 8146: 8023:
Darrigol, Olivier (2004), "The Mystery of the Einstein–Poincaré Connection",
6564: 6530: 6496: 6462: 6368: 6267: 6231: 5835: 5676: 5643: 5634: 5586: 5501: 4968:
La Théorie electromagnétique de Maxwell et son application aux corps mouvants
4783: 4747: 4649: 4587: 4479: 4445: 4411: 4334: 4296: 4241: 4039: 3985: 3923: 3880: 3839: 3797: 3685: 3556: 3494: 3278: 2921:
of bodies. In connection to the Ehrenfest paradox, it was also discussed (by
2910: 2861: 2849: 2811: 2795: 2718: 2714: 2677: 2517: 2441: 1712: 714: 684: 616: 323: 243: 8888: 8480: 8348: 8095: 4454: 4420: 8895: 8864: 8619: 8440: 8052: 6669: 6633: 5818:"Les relations entre la physique expérimentale et la physique mathématique" 5525: 5289: 5203: 5035: 4698: 4524:
Kaufmann, Walter (1902), "Die elektromagnetische Masse des Elektrons" [
4117: 4013:"Relativität und Gravitation. Erwiderung auf eine Bemerkung von M. Abraham" 3694: 3651: 3467:"Die Theorie des starren Körpers in der Kinematik des Relativitätsprinzips" 2936: 2815: 2697: 2529: 2440:
in 1913, who actually measured a displacement of the interference pattern (
2429: 2279: 2267:
changed Planck's nomenclature into the now common "theory of relativity" ("
2256: 1271: 847: 469: 287: 68: 8187:
Goenner, Hubert (2008), "On the history of geometrization of space-time",
6538: 6504: 6177: 5534: 4614:"The Relations of Physics of Electrons to Other Branches of Science"  4266: 3932:"Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen" 2097:
Already in §10 of his paper on electrodynamics, Einstein used the formula
1437: 8984:
Albert Einstein, Chief Engineer of the Universe: 100 Authors for Einstein
8360: 6470: 5935: 5263: 4596:"Ueber die wissenschaftliche Fassung des Galileischen Beharrungsgesetzes" 3027:
showed in 1928 that quantum fields could be made to be relativistic, and
2771: 2763: 2743: 2651: 2646:
for the depiction of spacetime; he was the first to use expressions like
2639: 2521: 2058: 2011:
obtained by his predecessors – and in addition the formulas for the
1837: 1833: 1320: 1070: 1031: 190: 113: 9117: 8068: 5516:
The Fundamental Equations for Electromagnetic Processes in Moving Bodies
5006:
Attempt of a Theory of Electrical and Optical Phenomena in Moving Bodies
4930: 4902: 4357: 4133: 3252: 1870:
On September 26, 1905 (received June 30), Albert Einstein published his
31:
consists of many theoretical results and empirical findings obtained by
6342: 5965: 5244: 5195: 5071: 4721: 4455:"Über die Grundgleichungen der Elektrodynamik für bewegte Körper"  4421:"Über die Grundgleichungen der Elektrodynamik für ruhende Körper"  3609:
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
3596:
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
3532:"Über den Einfluß der Erdbewegung auf die Intensität des Lichtes"  3381: 3036: 3028: 2972: 2890: 2802: 2647: 2425: 2252: 2036: 2032: 2028: 1663:
are not fully established and are even threatened by some experiments.
1406: 1262: 718: 696: 198: 52: 8954:"Minkowski, mathematicians, and the mathematical theory of relativity" 7945: 7928: 5911: 5700:
The Principle of Relativity and the Fundamental Equations of Mechanics
5407:"On the Relative Motion of the Earth and the Luminiferous Ether"  5097:
Lorentz, Hendrik Antoon; Einstein, Albert; Minkowski, Hermann (1913),
4180: 3286: 3238: 2412:, but Planck judged his own approach as more general than Einstein's. 721:
of the electromagnetic field. He also noticed that the mass of a body
95:
The failure of any experiment to detect motion through the aether led
6678: 5653:"Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips" 5403: 5361: 4922: 4894: 4808:
On the Discussion Concerning Rigid Bodies in the Theory of Relativity
4547:
Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften
3741:"Gleichförmige Rotation starrer Körper und Relativitätstheorie"  3128: 2837: 1667: 1639: 1433: 1308: 1279: 1249:, the same value as for the electromagnetic mass for a body at rest. 692: 194: 6275: 6239: 6203: 5174:"Deux Mémoires de Henri Poincaré sur la Physique Mathématique"  4755: 4559: 4541:
Kaufmann, Walter (1905), "Über die Konstitution des Elektrons" [
4383: 4342: 4055: 3466: 8268: 8044: 7896: 7871: 6392:"Über die nichteuklidische Interpretation der Relativtheorie"  5903:
Congress of arts and science, universal exposition, St. Louis, 1904
5763: 5467: 5323:"The Relative Motion of the Earth and the Luminiferous Ether"  5226: 4874: 4306:"Zur Theorie der Strahlung in bewegten Körpern. Berichtigung"  3812:"Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" 3720: 2894: 2739: 2325: 2283: 504: 8412:, vol. 3, Boston-Basel-Berlin: Birkhäuser, pp. 260–280, 8201: 6585:
For many other experiments on light constancy and relativity, see
6121:
Optical Geometry of Motion: A New View of the Theory of Relativity
6116:
Optical Geometry of Motion: A New View of the Theory of Relativity
5445: 5365:"Influence of Motion of the Medium on the Velocity of Light"  4489:"Einige allgemeine Bemerkungen über das Relativitätsprinzip"  4083: 3959:"Über die elektromagnetischen Grundgleichungen für bewegte Körper" 3897:"Über die vom Relativitätsprinzip geforderte Trägheit der Energie" 2704: 2428:(1907) to create a relativistic "optics of moving bodies", it was 9008:
Masters of Theory: Cambridge and the Rise of Mathematical Physics
5803: 5747:
Notes on the Principle of Action and Reaction in General Dynamics
5685: 5077:
Proceedings of the Royal Netherlands Academy of Arts and Sciences
5041:
Proceedings of the Royal Netherlands Academy of Arts and Sciences
5022:
Proceedings of the Royal Netherlands Academy of Arts and Sciences
4908: 4510: 3727:
Proceedings of the Royal Netherlands Academy of Arts and Sciences
3701:
Proceedings of the Royal Netherlands Academy of Arts and Sciences
3603:
Cohn, Emil (1904), "Zur Elektrodynamik bewegter Systeme II" [
1699:
and current density (which implicitly contained the relativistic
8760: 8363:(1921) , "Über die geometrischen Grundlagen der Lorentzgruppe", 6439:
On the Possibility of an Electromagnetic Foundation of Mechanics
6244:
On the Theory of Relativity II: Four-dimensional Vector Analysis
6175: 5896: 5475: 4878:"The Principle of Relativity, and Non-Newtonian Mechanics"  3617: 3590:
Cohn, Emil (1904), "Zur Elektrodynamik bewegter Systeme I" [
1953:. This contradicts the theory of the (nearly) stationary aether. 8938:[The Theory of Relativity and Lobachevskian Geometry], 8918:
Einstein's generation. The origins of the relativity revolution
8625:
Subtle is the Lord: The Science and the Life of Albert Einstein
6642: 6413: 6397:
On the Non-Euclidean Interpretation of the Theory of Relativity
5992: 5890:, London and Newcastle-on-Tyne: The Walter Scott publishing Co. 5787:
Poincaré, Henri (1895), "A propos de la Théorie de M. Larmor",
4852:"A revision of the Fundamental Laws of Matter and Energy"  4708: 3355:"Il calorico raggiante e il secondo principio di termodynamica" 3324: 8330: 7675:(illustrated ed.). Oxford University Press. p. 203. 6909: 6907: 6208:
On the Theory of Relativity I: Four-dimensional Vector Algebra
6040: 5858:
Poincaré, Henri (1901a), "Sur les principes de la mécanique",
5560: 147: 7959: 5783:
Preface partly reprinted in "Science and Hypothesis", Ch. 12.
3746:
Uniform Rotation of Rigid Bodies and the Theory of Relativity
2316: 8281: 4215: 4069: 3956: 3407:"The Transformation of the Electrodynamical Equations"  2794:). And Lewis and Tolman (1909) described the reciprocity of 2729:
Non-euclidean formulations without imaginary time coordinate
394:{\displaystyle \scriptstyle {1/{\sqrt {1-{v^{2}}/{c^{2}}}}}} 8935: 7778: 7776: 6904: 6204:"Zur Relativitätstheorie I: Vierdimensionale Vektoralgebra" 5114: 5054:"Weiterbildung der Maxwellschen Theorie. Elektronentheorie" 1788:{\displaystyle \scriptstyle {x^{2}+y^{2}+z^{2}-c^{2}t^{2}}} 1411: 8242:
Thematic Origins of Scientific Thought: Kepler to Einstein
6131: 6006: 4081: 3035:
for electrons, and in so doing predicted the existence of
2762:
twelve years before its experimental discovery by Thomas;
1896:
by Poincaré, but possibly not their papers of 1904–1905):
9082: 8936:"Die Relativtheorie und die Lobatschefskijsche Geometrie" 8176:
Preprint, Max-Planck Institut für Wissenschaftsgeschichte
7984:
Pseudo-Riemannian Geometry, δ-invariants and Applications
7905:, London & New York: Pergamon Press, pp. 189–206 6367: 5842:
Archives Néerlandaises des Sciences Exactes et Naturelles
5797:
Reprinted in Poincaré, Oeuvres, tome IX, pp. 395–413
4959:
Archives Néerlandaises des Sciences Exactes et Naturelles
4946:
Archives Néerlandaises des Sciences Exactes et Naturelles
3696:"A proof of the constancy of the velocity of light"  3579:
Archives Néerlandaises des Sciences Exactes et Naturelles
9048: 9039: 9025: 8504: 7773: 6888: 6886: 6179:"On the Steady Motion of an Electrified Ellipsoid"  5837:"La théorie de Lorentz et le principe de réaction"  5732:
Planck, Max (1907), "Zur Dynamik bewegter Systeme" [
5104:
Das Relativitätsprinzip. Eine Sammlung von Abhandlungen.
5068: 5051: 4956: 4911:
Proceedings of the American Academy of Arts and Sciences
4883:
Proceedings of the American Academy of Arts and Sciences
4453: 4419: 2293: 1624:{\displaystyle \scriptstyle {\sqrt {1-{v^{2}}/{c^{2}}}}} 205:. He first proposed that light was in fact undulations ( 152: 8807:, Oxford: Pergamon Press, pp. 99–117 und 255–273, 8333:"Intimations Of Relativity: Relativity Before Einstein" 7384: 7382: 7256: 7254: 6959: 6957: 6955: 6025: 5308:, vol. 2, London: Macmillan & Co., p. 391 5265:"A Dynamical Theory of the Electromagnetic Field"  5170: 5154: 5126: 5112: 5099:
Das Relativitätsprinzip. Eine Sammlung von Abhandlungen
5087: 5034: 5032: 5013: 4993: 4943: 4311:
On the Theory of Radiation in Moving Bodies. Correction
4187: 3015:
was one of the major motivations in the development of
2627:{\displaystyle x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}} 1459:
he interpreted Lorentz's local time as the result of a
1327:(1895). In 1901 a philosophical model was developed by 284:, which measured the speed of light in moving liquids. 8956:, in H. Goenner; J. Renn; J. Ritter; T. Sauer (eds.), 8709:
Personal Knowledge: Towards a Post-Critical Philosophy
8132:, vol. 2, Princeton: Princeton University Press, 6273: 6085:"Recherches critiques sur l'Électrodynamique Générale" 5533: 3615: 2672:
Today special relativity is seen as an application of
1802: 1722: 1673: 1580: 1470: 1365: 1338: 1194: 1132: 1080: 1041: 1013: 989: 957: 911: 866: 822: 798: 736: 658: 626: 547: 515: 408: 401:
for the y- and z-coordinates, and a new time variable
340: 8802: 8489:
Kinematics: the lost origins of Einstein's relativity
8486: 8432:
Die geschichtliche Entwicklung des Bewegungsbegriffes
6883: 6587:
What is the experimental basis of special relativity?
6540:"Erwiderung auf die Kritik des Hrn. M. Abraham"  6339: 4638:
Comptes Rendus des Séances de l'Académie des Sciences
4268:"Zur Theorie der Strahlung in bewegten Körpern"  3454:
Comptes Rendus des Séances de l'Académie des Sciences
3437:
Comptes Rendus des Séances de l'Académie des Sciences
3293:
The Fundamental Hypotheses of the Theory of Electrons
3203:
Timeline of special relativity and the speed of light
2901:(1909) showed that Born's concept lead the so-called 2883: 2782:
Einstein (1907a) proposed a method for detecting the
2687: 2554: 2382: 2106: 1909:) The inability to find an absolute state of motion, 1801: 1721: 1579: 1469: 1364: 1337: 1193: 1131: 1120:
Based on the preceding work on electromagnetic mass,
1079: 1067:
the mass of all bodies is of electromagnetic origin.
1040: 1012: 988: 956: 910: 865: 821: 797: 735: 657: 625: 546: 514: 407: 339: 7629:
Goettingen lecture 1907, see comments in Walter 1999
7411:
Brush, Stephen G., "Early Reception of Relativity",
7379: 7251: 6952: 6401:
Jahresbericht der Deutschen Mathematiker-Vereinigung
6313: 5860:
Bibliothèque du Congrès International de Philosophie
5600:
Ueber die Principien der Galilei–Newtonschen Theorie
5595:
Ueber die Principien der Galilei–Newtonschen Theorie
5319: 5303: 5261: 5179:
Two Papers of Henri Poincaré on Mathematical Physics
4302: 4264: 3665: 3184: 2987:
was remarkable because it was shown by Einstein and
2893:
must be created in the framework of SR. Eventually,
1440:did based on observations of the moons of Jupiter. 1407:
Light constancy and the principle of relative motion
9032:
A History of the Theories of Aether and Electricity
8967:"The non-Euclidean style of Minkowskian relativity" 8767:
Studies in History and Philosophy of Modern Physics
8151:
Einstein's Clocks, Poincaré's Maps: Empires of Time
7516: 7514: 6341: 5558: 5070: 2929: 2754:(1912) introduced a vector notation for spacetime; 2415: 1857: 1682:
History of Lorentz transformations § Poincare3
165:(1816), it was believed that light propagates as a 9005: 8986:, vol. 3, Berlin: Wiley-VCH, pp. 162–165 8763:"The turning point for Einstein's annus mirabilis" 8542: 8002: 7875: 6297: 6237: 6201: 6053:Poincaré, Henri (1912), "L'hypothèse des quanta", 5830:. Reprinted in "Science and Hypothesis", Ch. 9–10. 5531: 5507: 5473: 3237: 2626: 2404: 2196: 1824: 1787: 1623: 1545:History of Lorentz transformations § Lorentz2 1518: 1387: 1350: 1241: 1179: 1104: 1058: 1022: 998: 974: 936: 896: 831: 807: 783: 675: 643: 591: 532: 495:History of Lorentz transformations § Lorentz1 452: 393: 9231: 9198:, explanations of Einstein's thought experiments 9150: 8999:, vol. 3, Berlin: Springer, pp. 193–252 8964: 8951: 8933: 8742: 8540: 8275:Interactions: Mathematics, Physics and Philosophy 8166: 8066: 8022: 8000: 6388: 6365: 6034:, Leipzig und Berlin: B.G.Teubner, pp. 41–47 5864:. Reprinted in "Science and Hypothesis", Ch. 6–7. 5809:The Foundations of Science (The Value of Science) 5765:"General Dynamics. Principle of Relativity"  5704:Verhandlungen Deutsche Physikalische Gesellschaft 5683: 5650: 4848: 4508: 4485: 4355: 4340: 3809: 3767: 3722:"On the constancy of the velocity of light"  3718: 3692: 3450:"La cinématique dans la théorie de la relativité" 3288:"Die Grundhypothesen der Elektronentheorie"  2777: 2311: 9803: 8990: 8977: 8703: 8452: 8217: 8124: 7909: 7511: 7312: 7310: 5909: 5867: 5857: 5833: 5815: 5608: 5404:Michelson, Albert A.; Morley, Edward W. (1887), 5362:Michelson, Albert A.; Morley, Edward W. (1886), 4557: 4540: 4523: 4494:Some General Remarks on the Relativity Principle 4451: 4417: 4381: 4247: 4067: 4010: 3991: 3929: 3894: 3851: 3500: 2007:axiomatic approach, Einstein was able to derive 1519:{\displaystyle \scriptstyle {t'=t-{vx}/{c^{2}}}} 1461:synchronization procedure based on light signals 1278:(1883) argued that in a coordinate system where 480: 314:A possible solution to the problem was shown by 9003: 8915: 8641: 8602: 8562: 8285:The Optics and Electrodynamics of Moving Bodies 8258: 8186: 8120:, Metaphysics Research Lab, Stanford University 8111: 7844: 7669:Hawley, John F.; Holcomb, Katherine A. (2005). 6916: 6876: 6874: 6411: 6152: 6129: 6113: 6066: 6052: 6038: 6023: 6004: 5998:The foundations of science (Science and Method) 5989: 5933: 5894: 5883: 5822:Revue Générale des Sciences Pures et Appliquées 5800: 5786: 5776: 5270:Philosophical Transactions of the Royal Society 4979:The Relative Motion of the Earth and the Aether 4678:Philosophical Transactions of the Royal Society 4053: 3737: 3562: 3528: 3433:"La théorie de la relativité et la cinématique" 3352: 2705:Lorentz transformation without second postulate 1319:, and by some authors in the 19th century like 1307:There were also some attempts to use time as a 226:contributions to Maxwell's theory were made by 8745:Relativity: Special, General, and Cosmological 8724: 8651:Encyclopädie der Mathematischen Wissenschaften 8269:Janssen, Michel; Mecklenburg, Matthew (2007), 8235: 8145: 7226: 7224: 6855: 6853: 6851: 6572: 6536: 6502: 6468: 6240:"Zur Relativitätstheorie II: Vierdimensionale" 5898:"The Principles of Mathematical Physics"  5058:Encyclopädie der Mathematischen Wissenschaften 4875:Lewis, Gilbert N.; Tolman, Richard C. (1909), 4825:On an Experiment on the Optics of Moving Bodie 4822: 4805: 4789: 4705: 4669: 4629: 4610: 3674:Proceedings of the London Mathematical Society 3412:Proceedings of the London Mathematical Society 3403: 9217: 9103: 9035:(1. ed.), Dublin: Longman, Green and Co. 8980:"Henri Poincaré and the theory of relativity" 8894: 8863: 8618: 8399:: CS1 maint: DOI inactive as of April 2024 ( 8294: 7668: 7307: 6430: 5802: 5611:"Die träge Masse schnell bewegter Elektronen" 5592: 4839: 4753: 4593: 2459: 1825:{\displaystyle \scriptstyle {ct{\sqrt {-1}}}} 1388:{\displaystyle \scriptstyle {i={\sqrt {-1}}}} 1242:{\displaystyle \scriptstyle {m=(4/3)E/c^{2}}} 1180:{\displaystyle \scriptstyle {m=(8/3)E/c^{2}}} 784:{\displaystyle \scriptstyle {m=(4/3)E/c^{2}}} 8410:Studies in the history of general relativity 8359: 7407: 7405: 7403: 7300: 7298: 6871: 6841: 6839: 6626: 6602:Principia, Corollary 5 to the Laws of Motion 6082: 5946:Rendiconti del Circolo Matematico di Palermo 5781:, vol. 1, Paris: G. Carré & C. Naud 5714: 5697: 5550:Various English translations on Wikisource: 4085:"The Ether and the Earth's Atmosphere"  3447: 3430: 3307: 3284: 3254:"Prinzipien der Dynamik des Elektrons"  3250: 3235: 1286:(1885) was the first to coin the expression 713:During his development of Maxwell's Theory, 592:{\displaystyle \scriptstyle {t'=t-vx/c^{2}}} 453:{\displaystyle \scriptstyle {t'=t-vx/c^{2}}} 9111:, Moscow: Nauka, pp. physics/0408077, 9060:Einstein's Revolution: A Study in Heuristic 9057: 8971:The Symbolic Universe: Geometry and Physics 8761:Rynasiewicz, Robert; Renn, Jürgen. (2006), 8729:, Cham: Springer International Publishing, 7221: 6848: 6000:, New York: Science Press, pp. 486–522 5991: 5811:, New York: Science Press, pp. 222–234 5761: 5744: 5731: 5233: 4719: 4707: 4273:On the Theory of Radiation in Moving Bodies 3605:On the Electrodynamics of Moving Systems II 2876:and others for uniform accelerated frames ( 2634:and its invariance was defined in terms of 148:Aether and electrodynamics of moving bodies 43:and others. It culminated in the theory of 9224: 9210: 9062:, Chicago: Open Court Publishing Company, 8973:, Oxford University Press, pp. 91–127 8612:The Genesis of General Relativity (Vol. 1) 8407: 8273:, in V. F. Hendricks; et al. (eds.), 7646: 7644: 7089:Galison (2002), Ch. 4 – Etherial Time 6662: 6305:Die physikalischen Grundlagen der Mechanik 6300:Die physikalischen Grundlagen der Mechanik 4619:International Congress of Arts and Science 4131: 4058:Relativity: The Special and General Theory 3939:Jahrbuch der Radioaktivität und Elektronik 3602: 3592:On the Electrodynamics of Moving Systems I 3589: 3576: 3314:Jahrbuch der Radioaktivität und Elektronik 2086: 2039:. Regarding the Relativity Principle, the 1252: 9116: 8960:, vol. 7, Birkhäuser, pp. 45–86 8786: 8662: 8470: 8447:, Braunschweig: Friedr. Vieweg & Sohn 8331:Keswani, G. H.; Kilmister, C. W. (1983), 8200: 8069:"The Genesis of the theory of relativity" 7927: 7895: 7870: 7862: 7400: 7372: 7370: 7295: 6836: 6176:Searle, George Frederick Charles (1897), 5973: 5642: 5225: 5194: 4697: 4158: 3838: 3796: 3464: 3118:tests of relativistic energy and momentum 2369: 1979:. This contradicts the hypothesis of the 1836:. He wrote that the discovery of magneto- 268:, who stated in 1845 that the aether was 9012:, Chicago: University of Chicago Press, 8920:, Chicago: University of Chicago Press, 7550: 7548: 7546: 7544: 7342: 7340: 7160: 7158: 4976: 4648: 4526:The Electromagnetic Mass of the Electron 3065: 3011:The need to put together relativity and 2951: 2948:distinguish it from general relativity. 2814:in 1911 with what was later called the " 2801: 2495: 2481: 2349:is considered as an invariant quantity. 2324:Planck (1906a) defined the relativistic 2315: 1861: 1410: 1298:published a collection of essays titled 897:{\displaystyle \scriptstyle {m=E/c^{2}}} 484: 286: 249: 9162:MacTutor History of Mathematics Archive 8820: 8282:Janssen, Michel; Stachel, John (2008), 8130:The Collected Papers of Albert Einstein 8118:The Stanford Encyclopedia of Philosophy 8005:Electrodynamics from Ampére to Einstein 7641: 7288: 7286: 7284: 6802: 6800: 5311:A Treatise on electricity and magnetism 5306:A Treatise on electricity and magnetism 4216:Frank, Philipp; Rothe, Hermann (1910), 3957:Einstein, Albert; Laub, Jakob (1908b), 3006: 2962:shown by Poincaré that the argument of 1536: 937:{\displaystyle \scriptstyle {E=mc^{2}}} 702: 499:Lorentz (1892a) set the foundations of 185:(1864) developed an accurate theory of 9804: 8455:"A Note on Relativity Before Einstein" 8277:, Dordrecht: Springer, pp. 65–134 7367: 6668: 6632: 6415:"Ueber das Doppler'sche Princip"  5937:"Sur la dynamique de l'électron"  5913:"Sur la dynamique de l'électron"  5304:Maxwell, James Clerk (1873), "§ 792", 2846:acceleration within special relativity 2093:Mass–energy equivalence § History 1644:The Principles of Mathematical Physics 1105:{\displaystyle \scriptstyle {E/c^{2}}} 9205: 8628:, New York: Oxford University Press, 8569:Archive for History of Exact Sciences 8425: 8367:Gesammelte Mathematische Abhandlungen 8222:, Basel – Boston – Bonn: Birkhäuser, 7541: 7337: 7319: 7155: 6027:"The New Mechanics (Göttingen)"  6008:"La Mécanique nouvelle (Lille)"  5772:, New York: Columbia University Press 5770:Eight lectures on theoretical physics 5090:Lecture on theoretical physics, Vol.3 5036:"Considerations on Gravitation"  4723:"Zur Optik der bewegten Körper"  4560:"Über die Konstitution des Elektrons" 3145:Modern searches for Lorentz violation 3086:Kaufmann–Bucherer–Neumann experiments 2305:Kaufmann–Bucherer–Neumann experiments 2294:Kaufmann–Bucherer-Neumann experiments 1917:which only depend on relative motion; 1847: 1715:, and he showed that the combination 264:The other hypothesis was proposed by 153:Aether models and Maxwell's equations 9676:Noisy intermediate-scale quantum era 9109:Henri Poincaré and relativity theory 8614:, Printed in the Netherlands: Kluwer 8439: 7980: 7281: 6797: 6369:"Zum Ehrenfestschen Paradoxon"  6048:, Leipzig & Berlin: B.G. Teubner 5688:Neue Theorie des Raumes und der Zeit 5243:, Leipzig: Brockhaus, archived from 5159:, Leipzig & Berlin: B.G. Teubner 5101:, Leipzig & Berlin: B.G. Teubner 3770:"Zur Elektrodynamik bewegter Körper" 2476: 2243: 1311:. This was done as early as 1754 by 615:A very similar model was created by 7116:Miller (1981), Chap. 1, Footnote 57 6931:Whittaker (1951), 306ff; (1953) 51f 4564:On the Constitution of the Electron 4543:On the Constitution of the Electron 4082:FitzGerald, George Francis (1889), 3619:"The Principle of Relativity"  2810:A similar situation was created by 2540:, formulating concepts such as the 2212:, its mass decreased by the amount 2041:moving magnet and conductor problem 1915:moving magnet and conductor problem 1884:principle of the constancy of light 1674:Poincaré's dynamics of the electron 13: 9083:Bjerknes, Christopher Jon (2002), 8805:Nineteenth-century aether theories 8491:, Johns Hopkins University Press, 6686:from the original on June 28, 2023 6063:Reprinted in Poincaré 1913, Ch. 6. 5779:Théorie mathématique de la lumière 5122:, Leipzig and Berlin: B.G. Teubner 4844:(2 ed.), Braunschweig: Vieweg 4666:(translated by J. B. Sykes, 1973). 4250:"Sur la diffraction de la lumière" 4072:Ether and the Theory of Relativity 3228: 3213:History of Lorentz transformations 3048:relativistic statistical mechanics 2884:Rigid bodies and Ehrenfest paradox 2688:Vector notation and closed systems 2492:History of Lorentz transformations 2352: 2238: 2043:(possibly after reading a book of 1059:{\displaystyle \scriptstyle {e/m}} 975:{\displaystyle \scriptstyle {e/m}} 676:{\displaystyle \scriptstyle {v/c}} 644:{\displaystyle \scriptstyle {v/c}} 533:{\displaystyle \scriptstyle {v/c}} 189:by deriving a set of equations in 14: 9838: 9144: 9040:Whittaker, Edmund Taylor (1951), 8997:The Genesis of General Relativity 8372:, vol. 1, pp. 533–552, 8114:"Space and Time: Inertial Frames" 6650:from the original on July 3, 2023 6343:"The mass of a moving body"  5734:On the Dynamics of Moving Systems 5237:Die Mechanik in ihrer Entwicklung 5088:Lorentz, Hendrik Antoon (1931) , 5069:Lorentz, Hendrik Antoon (1904b), 5052:Lorentz, Hendrik Antoon (1904a), 4654:"The evolution of space and time" 3105:Michelson–Morley type experiments 3094:experiments of Rayleigh and Brace 2985:Nordström's theory of gravitation 2454:Michelson–Gale–Pearson experiment 1563:experiments of Rayleigh and Brace 1351:{\displaystyle \scriptstyle {it}} 9786: 9785: 9186:Poincaré Contemplates Copernicus 9053:, London: Nelson, pp. 27–77 7963:Geometry of Minkowski Space-Time 7830: 7821: 7812: 7803: 7794: 7785: 7764: 7755: 7746: 7737: 7728: 7719: 7710: 7701: 7692: 7662: 7653: 7632: 7623: 7499:Laue (1921), 25–26 & 204–206 6090:Annales de Chimie et de Physique 5524:(English translation in 1920 by 5171:Lorentz, Hendrik Antoon (1921), 5155:Lorentz, Hendrik Antoon (1916), 5127:Lorentz, Hendrik Antoon (1914), 5113:Lorentz, Hendrik Antoon (1914), 5033:Lorentz, Hendrik Antoon (1900), 5014:Lorentz, Hendrik Antoon (1899), 4994:Lorentz, Hendrik Antoon (1895), 4517:Archiv der Mathematik und Physik 4254:Annales de Chimie et de Physique 3187: 2997:perihelion precession of Mercury 2930:Acceptance of special relativity 2416:Experiments by Fizeau and Sagnac 2269:Einsteinsche Relativitätstheorie 1858:Electrodynamics of moving bodies 1852: 1023:{\displaystyle \scriptstyle {m}} 999:{\displaystyle \scriptstyle {e}} 832:{\displaystyle \scriptstyle {E}} 815:is the electromagnetic mass and 808:{\displaystyle \scriptstyle {m}} 169:within an elastic medium called 127:published his original paper on 123:A little later in the same year 8112:DiSalle, Robert (Summer 2002), 7878:Einstein's Theory of Relativity 7864:10.1090/S0002-9904-1914-02511-X 7672:Foundations of Modern Cosmology 7614: 7605: 7596: 7587: 7578: 7566: 7557: 7532: 7523: 7502: 7493: 7484: 7475: 7466: 7457: 7448: 7439: 7422: 7391: 7358: 7349: 7328: 7272: 7263: 7242: 7233: 7212: 7203: 7194: 7185: 7176: 7167: 7146: 7137: 7128: 7119: 7110: 7101: 7092: 7083: 7074: 7065: 7056: 7047: 7038: 7029: 7020: 7011: 7002: 6993: 6984: 6975: 6966: 6943: 6934: 6925: 6895: 6862: 6827: 6818: 6809: 6788: 6779: 6770: 6761: 6752: 6743: 6734: 6579: 6274:Stokes, George Gabriel (1845), 5942:On the Dynamics of the Electron 5918:On the Dynamics of the Electron 5740:, Erster Halbband (29): 542–570 5477:"Das Relativitätsprinzip"  4512:"Das Relativitätsprinzip"  4351:, vol. 2, pp. 490–499 3616:Comstock, Daniel Frost (1910), 2821: 1638:In a September 1904 lecture in 727:George Frederick Charles Searle 503:, by assuming the existence of 99:, starting in 1892, to develop 62: 8803:Schaffner, Kenneth F. (1972), 8487:Mart́ínez, Alberto A. (2009), 8449:. = 4. Edition of Laue (1911). 6725: 6716: 6707: 6698: 6617: 6605: 6596: 6340:Tolman, Richard Chase (1912), 3666:Cunningham, Ebenezer (1910) , 3208:Einstein's thought experiments 3169:Criticism of relativity theory 3056:relativistic quantum chemistry 2956: 2858:spherical wave transformations 2778:Time dilation and twin paradox 2312:Relativistic momentum and mass 1216: 1202: 1154: 1140: 758: 744: 1: 9044:(2. ed.), London: Nelson 8711:, Chicago: University Press, 7490:Laue (1921), 25 & 146–148 6913:Janssen/Stachel (2004), 31–32 6785:Janssen/Stachel (2004), 19–20 6776:Janssen/Stachel (2004), 18–19 6314:Thomson, Joseph John (1881), 6071:, New York: Dover Publication 5320:Michelson, Albert A. (1881), 5262:Maxwell, James Clerk (1864), 4303:Hasenöhrl, Friedrich (1905), 4265:Hasenöhrl, Friedrich (1904), 4110:10.1126/science.ns-13.328.390 3310:"Neuere Gravitationstheorien" 3239:"Dynamik des Electrons"  3223: 3162: 2656:Lorentz invariance/covariance 1034:. He found that the value of 599:, which paved the way to the 481:Lorentz's theory of electrons 318:(1887), who investigated the 29:history of special relativity 20:history of general relativity 8527:10.1080/00107514.2012.721300 8435:, Leipzig: Wilhelm Engelmann 8378:10.1007/978-3-642-51960-4_31 8245:, Harvard University Press, 8116:, in Edward N. Zalta (ed.), 7847:"Time as a fourth dimension" 7688:See also extract of page 203 7413:Why was Relativity Accepted? 7107:Janssen (1995), Ch. 3.3, 3.4 6749:Janssen/Stachel (2004), 4–15 6276:"On the Aberration of Light" 5693:, Leipzig: Wilhelm Engelmann 5559:Mosengeil, Kurd von (1907), 5532:Minkowski, Hermann (1909) , 5508:Minkowski, Hermann (1908) , 5474:Minkowski, Hermann (1915) , 4983:Zittingsverlag Akad. V. Wet. 4715:, Cambridge University Press 3347:10.1016/0031-9163(64)91095-9 3109:Kennedy–Thorndike experiment 3060:relativistic heat conduction 1874:paper on what is now called 140:and laid the foundations of 138:general theory of relativity 7: 9598:Cosmic microwave background 8797:10.1016/j.shpsb.2005.12.002 8747:, Oxford University Press, 8549:, Reading: Addison–Wesley, 8380:(inactive April 14, 2024), 8009:, Oxford: Clarendon Press, 7916:American Journal of Physics 7563:Walter (1999a), 49 & 71 7218:Holton (1973/1988), 196–206 6573:Notes and secondary sources 6420:On the Principle of Doppler 6298:Streintz, Heinrich (1883), 6238:Sommerfeld, Arnold (1910), 6202:Sommerfeld, Arnold (1910), 5804:"The Measure of Time"  5412:American Journal of Science 5370:American Journal of Science 5328:American Journal of Science 4341:Heaviside, Oliver (1894) , 4161:American Journal of Physics 3523:10.1103/PhysRevLett.39.1051 3218:Tests of special relativity 3180: 3157:relativity priority dispute 3150: 3082:Michelson–Morley experiment 3072:Tests of special relativity 3044:relativistic thermodynamics 2013:relativistic Doppler effect 1288:inertial frame of reference 308:Michelson–Morley experiment 262:and many optical phenomena. 142:relativistic field theories 101:a theory of electrodynamics 10: 9843: 8965:Walter, Scott A. (1999b), 8952:Walter, Scott A. (1999a), 8934:Varićak, Vladimir (1910), 8821:Shapiro, Irwin I. (1999), 8743:Rindler, Wolfgang (2001), 8541:Miller, Arthur I. (1981), 8169:"Das Problem der Trägheit" 8167:Giulini, Domenico (2001), 8067:Darrigol, Olivier (2005), 8001:Darrigol, Olivier (2000), 7602:Janssen/Mecklenburg (2007) 6722:Janssen/Stachel (2004), 20 6389:Varičak, Vladimir (1912), 6366:Varičak, Vladimir (1911), 6043:Die neue Mechanik (Berlin) 5684:Palagyi, Menyhért (1901), 5651:Nordström, Gunnar (1913), 4849:Lewis, Gilbert N. (1908), 4829:Münchener Sitzungsberichte 4509:Ignatowsky, W. v. (1911). 4486:Ignatowsky, W. v. (1910). 4382:Herglotz, Gustav (1910) , 4356:Heaviside, Oliver (1889), 3930:Einstein, Albert (1908) , 3810:Einstein, Albert (1905b), 3768:Einstein, Albert (1905a), 3719:De Sitter, Willem (1913), 3693:De Sitter, Willem (1913), 3644:10.1126/science.31.803.767 3166: 3103:In the 1920s, a series of 3098:Trouton–Rankine experiment 3069: 3052:relativistic hydrodynamics 2485: 2460:Relativity of simultaneity 2347:mass in special relativity 2090: 1679: 1542: 706: 492: 17: 9781: 9720: 9684: 9641: 9590: 9554: 9398: 9244: 8991:Walter, Scott A. (2007), 8978:Walter, Scott A. (2005), 8940:Physikalische Zeitschrift 8869:Astronomische Nachrichten 8850:10.1103/revmodphys.71.s41 8830:Reviews of Modern Physics 8823:"A century of relativity" 8647:"Die Relativitätstheorie" 8610:, in Renn, Jürgen (ed.), 8589:10.1007/s00407-004-0085-6 8453:Macrossan, M. N. (1986), 8317:10.1007/s00016-004-0234-y 8218:Hentschel, Klaus (1990), 8153:, New York: W.W. Norton, 7910:Brown, Harvey R. (2001), 7782:Miller (1981), Ch. 7.4.12 7593:Miller (1981), Ch. 12.5.8 6378:Physikalische Zeitschrift 6360:10.1080/14786440308637231 6334:10.1080/14786448108627008 6292:10.1080/14786444508645215 6196:10.1080/14786449708621072 6067:Poincaré, Henri (1963) , 6024:Poincaré, Henri (1910) , 5993:"The New Mechanics"  5990:Poincaré, Henri (1913) , 5934:Poincaré, Henri (1906) , 5910:Poincaré, Henri (1905b), 5895:Poincaré, Henri (1906) , 5872:, Paris: Gauthier-Villars 5868:Poincaré, Henri (1901b), 5834:Poincaré, Henri (1900b), 5816:Poincaré, Henri (1900a), 5801:Poincaré, Henri (1913) , 5751:Physikalische Zeitschrift 5721:Physikalische Zeitschrift 5609:Neumann, Günther (1914), 5540:Physikalische Zeitschrift 5448:The Astrophysical Journal 5432:10.2475/ajs.s3-34.203.333 5390:10.2475/ajs.s3-31.185.377 5348:10.2475/ajs.s3-22.128.120 5206:The Astrophysical Journal 5009:], Leiden: E.J. Brill 4869:10.1080/14786441108636549 4812:Physikalische Zeitschrift 4558:Kaufmann, Walter (1906), 4530:Physikalische Zeitschrift 4498:Physikalische Zeitschrift 4452:Hertz, Heinrich (1890b), 4418:Hertz, Heinrich (1890a), 4376:10.1080/14786448908628362 4248:Augustin Fresnel (1816), 4210:10.1103/PhysRev.135.B1071 4152:10.1080/14786445108646934 4068:Einstein, Albert (1922), 4011:Einstein, Albert (1912), 4000:Physikalische Zeitschrift 3992:Einstein, Albert (1909), 3895:Einstein, Albert (1907), 3852:Einstein, Albert (1906), 3750:Physikalische Zeitschrift 3566:Physikalische Zeitschrift 3353:Bartoli, Adolfo (1884) , 3297:Physikalische Zeitschrift 2862:conformal transformations 2784:transverse Doppler effect 2742:previously introduced by 1709:principle of least action 1701:velocity-addition formula 207:electromagnetic radiation 75:, he also adhered to the 9182:Who Invented Relativity? 9167:University of St Andrews 9027:Whittaker, Edmund Taylor 9004:Warwick, Andrew (2003), 8916:Staley, Richard (2009), 8900:Einstein from "B" to "Z" 8603:Norton, John D. (2005), 8563:Norton, John D. (2004), 8259:Janssen, Michel (1995), 7902:Physics in my generation 7845:Archibald, R.C. (1914), 7538:Miller (1981), Ch. 7.4.6 7098:Darrigol (2000), 369–372 6565:10.1002/andp.19043190817 6531:10.1002/andp.18943180403 6497:10.1002/andp.18943180402 6463:10.1002/andp.19013100703 6412:Voigt, Woldemar (1887), 6268:10.1002/andp.19103381402 6232:10.1002/andp.19103370904 6153:Sagnac, Georges (1913), 6130:Sagnac, Georges (1913), 6114:Robb, Alfred A. (1911), 6039:Poincaré, Henri (1911), 6005:Poincaré, Henri (1909), 5975:2027/uiug.30112063899089 5884:Poincaré, Henri (1905), 5777:Poincaré, Henri (1889), 5677:10.1002/andp.19133471303 5635:10.1002/andp.19143502005 5587:10.1002/andp.19073270504 5502:10.1002/andp.19153521505 4784:10.1002/andp.19073281015 4748:10.1002/andp.19073280910 4611:Langevin, Paul (1908) , 4588:10.1002/andp.19063240303 4480:10.1002/andp.18902771102 4446:10.1002/andp.18902760803 4412:10.1002/andp.19103360208 4335:10.1002/andp.19053210312 4297:10.1002/andp.19043201206 4242:10.1002/andp.19113390502 4054:Einstein Albert (1916), 4040:10.1002/andp.19123431014 3986:10.1002/andp.19083310806 3924:10.1002/andp.19073280713 3881:10.1002/andp.19063250814 3840:10.1002/andp.19053231314 3798:10.1002/andp.19053221004 3738:Ehrenfest, Paul (1909), 3611:, 1904/2 (43): 1404–1416 3598:, 1904/2 (40): 1294–1303 3557:10.1002/andp.19033160604 3529:Bucherer, A. H. (1903), 3495:10.1002/andp.19093351102 3404:Bateman, Harry (1910) , 3279:10.1002/andp.19023150105 3113:Ives–Stilwell experiment 3090:Trouton–Noble experiment 2792:Ives–Stilwell experiment 2526:William Kingdon Clifford 2405:{\displaystyle E=mc^{2}} 1559:Trouton–Noble experiment 9733:Chandrasekhar–Eddington 9659:Golden age of cosmology 9591:On specific discoveries 9539:Lorentz transformations 8889:10.1002/asna.2103030110 8725:Popp, Bruce D. (2020), 8445:Die Relativitätstheorie 8096:10.1007/3-7643-7436-5_1 7981:Chen, Bang-yen (2011), 7572:Catoni, et al. (2011), 7434:Die Relatititätstheorie 7430:Das Relatititätsprinzip 7334:Rynasiewicz/Renn (2006) 7209:Messager, et al. (2012) 7182:Whittaker (1953), 27–77 7053:Hentschel (1990), 153f. 6940:Janssen (1995), Ch. 3.4 6892:Janssen (1995), Ch. 3.1 6845:Janssen (1995), Ch. 3.3 6767:Whittaker (1951), 386ff 6731:Whittaker (1951), 107ff 6713:Whittaker (1951), 319ff 6704:Whittaker (1951), 240ff 6623:Whittaker (1951), 128ff 6537:Wien, Wilhelm (1904b), 6503:Wien, Wilhelm (1904a), 6469:Wien, Wilhelm (1904a), 6302:, Leipzig: B.G. Teubner 5597:, Leipzig: B.G. Teubner 5139:: 28–59, archived from 4842:Das Relativitätsprinzip 4797:Das Relativitätsprinzip 4792:Das Relativitätsprinzip 4790:Laue, Max von (1911a), 4706:Larmor, Joseph (1900), 4670:Larmor, Joseph (1897), 4630:Langevin, Paul (1905), 3503:Physical Review Letters 3424:10.1112/plms/s2-8.1.223 3327:Physical Review Letters 2225:mass–energy equivalence 2223:This led to the famous 2087:Mass–energy equivalence 2017:relativistic aberration 1964:. This contradicts the 1880:principle of relativity 1313:Jean le Rond d'Alembert 1267:absolute time and space 1259:absolute space and time 1253:Absolute space and time 118:Lorentz transformations 77:principle of relativity 73:absolute time and space 51:and subsequent work of 9664:Medieval Islamic world 9407:Computational physics 9349:Variational principles 9276:Electrical engineering 9192:All in Einstein's Head 8902:, Boston: Birkhäuser, 7882:, Dover Publications, 7851:Bull. Amer. Math. Soc. 7698:Miller (1981), 257–264 7659:Miller (1981), 245–253 7620:Miller (1981), 218–219 7481:Miller (1981), 359–367 7463:Miller (1981), 329–330 7388:Miller (1981), 334–352 7269:Katzir (2005), 286–288 7260:Darrigol (2005), 15–18 7248:Hentschel (1990), 3–13 7173:Miller (1981), 216–217 7152:Katzir (2005), 280–288 7134:Katzir (2005), 275–277 7080:Darrigol (2005), 10–11 7071:Katzir (2005), 272–275 6990:Miller (1981), 359–360 6963:Darrigol (2005), 18–21 6949:Miller (1981), 46, 103 6794:Miller (1981), 114–115 6758:Whittaker (1951), 390f 6740:Whittaker (1951), 386f 6431:Wien, Wilhelm (1900), 6374:On Ehrenfest's Paradox 6348:Philosophical Magazine 6322:Philosophical Magazine 6280:Philosophical Magazine 6184:Philosophical Magazine 6118:, Cambridge: W. Heffer 5887:Science and Hypothesis 5875:Électricité et optique 5870:Électricité et optique 5789:L'Éclairage électrique 5593:Neumann, Carl (1870), 5290:10.1098/rstl.1865.0008 4857:Philosophical Magazine 4840:Laue, Max von (1913), 4794:, Braunschweig: Vieweg 4754:Laue, Max von (1907), 4699:10.1098/rsta.1897.0020 4600:Philosophische Studien 4594:Lange, Ludwig (1885), 4519:. 17, 18: 1–24, 17–40. 4364:Philosophical Magazine 4140:Philosophical Magazine 3686:10.1112/plms/s2-8.1.77 2966:, who argued that the 2941:Nobel Prize in Physics 2807: 2628: 2548:in which the interval 2501: 2406: 2321: 2198: 2084: 2073:and is connected with 2054:Science and Hypothesis 1893:Science and Hypothesis 1867: 1826: 1789: 1661:conservation of energy 1625: 1520: 1456: 1416: 1389: 1352: 1301:Science and Hypothesis 1243: 1181: 1106: 1060: 1024: 1000: 976: 938: 898: 833: 809: 785: 677: 645: 601:Lorentz transformation 593: 534: 490: 489:Hendrik Antoon Lorentz 454: 395: 292: 273:preferred because his 157:Following the work of 9654:Golden age of physics 9649:Copernican Revolution 8995:, in Renn, J. (ed.), 8982:, in Renn, J. (ed.), 8481:10.1093/bjps/37.2.232 8349:10.1093/bjps/34.4.343 7761:Pauli (1921), 556–557 7752:Pauli (1921), 690–691 7716:Pauli (1921), 626–628 7611:Pauli (1921), 555–556 7554:Walter (1999b), Ch. 3 7472:Pauli (1921), 634–636 7454:Pauli (1921), 636–637 7325:Janssen (1995), Ch. 4 7191:Zahar (1989), 149–200 7008:Giulini (2001), Ch. 4 6815:Miller (1981), 99–100 6806:Pais (1982), Chap. 6b 6083:Ritz, Walter (1908), 5762:Planck, Max (1915) , 5535:"Raum und Zeit"  5234:Mach, Ernst (1912) , 3448:Borel, Émile (1913), 3431:Borel, Émile (1913), 3308:Abraham, Max (1914), 3285:Abraham, Max (1904), 3251:Abraham, Max (1903), 3236:Abraham, Max (1902), 3122:particle accelerators 3066:Experimental evidence 2952:Relativistic theories 2880:) must be mentioned. 2829:equivalence principle 2805: 2629: 2528:, who contributed to 2499: 2482:Minkowski's spacetime 2466:Daniel Frost Comstock 2407: 2319: 2199: 2079: 1866:Albert Einstein, 1921 1865: 1827: 1790: 1680:Further information: 1626: 1543:Further information: 1521: 1445: 1414: 1390: 1353: 1244: 1182: 1107: 1061: 1025: 1001: 977: 939: 899: 834: 810: 786: 678: 646: 594: 535: 501:Lorentz aether theory 493:Further information: 488: 455: 396: 328:Voigt transformations 290: 277:was confirmed by the 266:George Gabriel Stokes 250:Search for the aether 163:Augustin-Jean Fresnel 71:based his physics on 9757:Relativity priority 9612:Subatomic particles 9572:Loop quantum gravity 9561:Quantum information 9510:Quantum field theory 9310:Gravitational theory 9174:Corresponding States 9157:"Special relativity" 9153:Robertson, Edmund F. 9058:Zahar, Elie (1989), 8969:, in J. Gray (ed.), 8665:Theory of Relativity 8507:Contemporary Physics 8189:414. Heraeus-Seminar 7987:, World Scientific, 7707:Pais (2000), 177–183 7364:Miller (1981), 86–92 7355:Darrigol (2004), 624 7239:Pais (1982), 126–128 7164:Walter (2007), Ch. 1 7143:Miller (1981), 79–86 6981:Miller (1981), 61–67 6972:Miller (1981), 47–54 6833:Miller (1981), 27–29 4720:Laub, Jakob (1907), 3399:on December 17, 2008 3017:quantum field theory 3007:Quantum field theory 2964:Pierre-Simon Laplace 2790:and G. R. Stilwell ( 2748:Edwin Bidwell Wilson 2682:hyperbolic rotations 2552: 2380: 2370:Electromagnetic mass 2335:Gilbert Newton Lewis 2104: 1981:complete aether drag 1799: 1719: 1657:conservation of mass 1577: 1537:Lorentz's 1904 model 1467: 1453:Henri Poincaré, 1898 1362: 1335: 1191: 1129: 1077: 1038: 1010: 986: 954: 908: 863: 819: 795: 733: 709:Electromagnetic mass 703:Electromagnetic mass 655: 623: 544: 512: 405: 337: 275:dragging coefficient 9721:Scientific disputes 9707:Via Panisperna boys 9608:Gravitational waves 9555:Recent developments 9286:Maxwell's equations 9178:The End of My Latin 9151:O'Connor, John J.; 9127:2004physics...8077L 9099:on December 4, 2008 8881:1982AN....303...47S 8842:1999RvMPS..71...41S 8779:2006SHPMP..37....5R 8663:Pauli, W. (1981) . 8581:2004AHES...59...45N 8519:2012ConPh..53..397M 8459:Br. J. Philos. Sci. 8337:Br. J. Philos. Sci. 8309:2005PhP.....7..268K 8211:2008arXiv0811.4529G 8088:2006eins.book....1D 8037:2004Isis...95..614D 7938:2001AmJPh..69.1044B 7445:Popp (2020), 178-83 7125:Miller (1981), 75ff 7044:Boyce Gibson (1928) 6557:1904AnP...319..635W 6523:1904AnP...318..663W 6489:1904AnP...318..641W 6455:1901AnP...310..501W 6260:1910AnP...338..649S 6224:1910AnP...337..749S 6103:1908AChPh..13..145R 5958:1906RCMP...21..129P 5852:English translation 5669:1913AnP...347..533N 5627:1914AnP...350..529N 5579:1907AnP...327..867V 5494:1915AnP...352..927M 5460:1925ApJ....61..140M 5424:1887AmJS...34..333M 5382:1886AmJS...31..377M 5340:1881AmJS...22..120M 5282:1865RSPT..155..459M 5218:1928ApJ....68..341M 5143:on December 6, 2008 5092:, London: MacMillan 4776:1907AnP...328..989L 4740:1907AnP...328..738L 4690:1897RSPTA.190..205L 4580:1906AnP...324..487K 4472:1890AnP...277..369H 4438:1890AnP...276..577H 4404:1910AnP...336..393H 4327:1905AnP...321..589H 4289:1904AnP...320..344H 4234:1911AnP...339..825F 4202:1964PhRv..135.1071F 4173:1962AmJPh..30..297F 4132:Fizeau, H. (1851). 4102:1889Sci....13..390F 4077:, Methuen & Co. 4032:1912AnP...343.1059E 3978:1908AnP...331..532E 3951:1908JRE.....4..411E 3916:1907AnP...328..371E 3873:1906AnP...325..627E 3846:English translation 3831:1905AnP...323..639E 3804:English translation 3789:1905AnP...322..891E 3762:1909PhyZ...10..918E 3713:1913KNAB...15.1297D 3636:1910Sci....31..767C 3549:1903AnP...316..270B 3515:1977PhRvL..39.1051B 3487:1909AnP...335....1B 3374:1884NCim...15..193B 3339:1964PhL....12..260A 3271:1902AnP...315..105A 3001:deflection of light 2878:Rindler coordinates 2854:Ebenezer Cunningham 2711:Vladimir Ignatowski 2636:hyperbolic geometry 2623: 2605: 2587: 2569: 2542:Cayley–Klein metric 2538:projective geometry 1935:aberration of light 1842:Paul Ulrich Villard 1707:consequence of the 1631:becomes imaginary. 1425:The Measure of Time 1265:(1883) argued that 1122:Friedrich Hasenöhrl 605:aberration of light 296:Albert A. Michelson 260:aberration of light 236:John Henry Poynting 232:Joseph John Thomson 203:Maxwell's equations 183:James Clerk Maxwell 171:luminiferous aether 90:James Clerk Maxwell 86:luminiferous aether 33:Albert A. Michelson 9817:History of physics 9812:Special relativity 9766:General relativity 9761:Special relativity 9702:Oxford Calculators 9529:Special relativity 9448:General relativity 9233:History of physics 8076:Séminaire Poincaré 7650:Walter (1999b), 23 7520:Walter (1999a), 49 7417:Phys. Perspect., 1 6545:Annalen der Physik 6511:Annalen der Physik 6477:Annalen der Physik 6443:Annalen der Physik 6248:Annalen der Physik 6212:Annalen der Physik 6055:Revue Scientifique 6013:Revue Scientifique 5966:10.1007/BF03013466 5657:Annalen der Physik 5615:Annalen der Physik 5567:Annalen der Physik 5482:Annalen der Physik 5196:10.1007/BF02392073 4764:Annalen der Physik 4728:Annalen der Physik 4568:Annalen der Physik 4460:Annalen der Physik 4426:Annalen der Physik 4392:Annalen der Physik 4315:Annalen der Physik 4277:Annalen der Physik 4222:Annalen der Physik 4196:(4B): B1071–1075, 4020:Annalen der Physik 3966:Annalen der Physik 3904:Annalen der Physik 3861:Annalen der Physik 3819:Annalen der Physik 3777:Annalen der Physik 3537:Annalen der Physik 3475:Annalen der Physik 3465:Born, Max (1909), 3382:10.1007/bf02737234 3259:Annalen der Physik 3134:extinction theorem 2993:general relativity 2915:degrees of freedom 2860:, being a form of 2808: 2768:Ludwik Silberstein 2667:general relativity 2624: 2609: 2591: 2573: 2555: 2514:Richard Hargreaves 2510:Roberto Marcolongo 2502: 2402: 2374:special relativity 2366:Kurd von Mosengeil 2322: 2261:Kurd von Mosengeil 2194: 1876:special relativity 1868: 1848:Special relativity 1822: 1821: 1785: 1784: 1621: 1620: 1516: 1515: 1417: 1385: 1384: 1348: 1347: 1239: 1238: 1177: 1176: 1117:those of Lorentz. 1102: 1101: 1056: 1055: 1020: 1019: 1006:is the charge and 996: 995: 972: 971: 934: 933: 894: 893: 829: 828: 805: 804: 781: 780: 673: 672: 641: 640: 589: 588: 530: 529: 491: 466:length contraction 450: 449: 391: 390: 293: 282:experiment in 1851 129:special relativity 45:special relativity 9799: 9798: 9773:Transfermium Wars 9692:Harvard Computers 9517:Subatomic physics 9490:Quantum mechanics 9426:Superconductivity 9417:Condensed matter 9246:Classical physics 9196:Discover magazine 9136:978-5-02-033964-4 9069:978-0-8126-9067-5 9019:978-0-226-87375-6 8927:978-0-226-77057-4 8909:978-0-8176-4143-6 8814:978-0-08-015674-3 8754:978-0-19-850836-6 8736:978-3-030-48038-7 8718:978-0-226-67288-5 8674:978-0-486-64152-2 8667:. Vol. 165. 8635:978-0-19-520438-4 8556:978-0-201-04679-3 8498:978-0-8018-9135-9 8419:978-0-8176-3479-7 8387:978-3-642-51898-0 8355:on March 26, 2009 8252:978-0-674-87747-4 8229:978-3-7643-2438-4 8160:978-0-393-32604-8 8139:978-0-691-08526-5 8105:978-3-7643-7435-8 8016:978-0-19-850594-5 7994:978-9-814-32963-7 7973:978-3-642-17977-8 7946:10.1119/1.1379733 7922:(10): 1044–1054, 7889:978-0-486-60769-6 7734:Pauli (1921), 704 7682:978-0-19-853096-1 7397:Miller (1981), 88 6922:Miller (1981), 46 6672:(June 28, 2023). 6636:(March 1, 2019). 5644:2027/uc1.b2608188 4710:Aether and Matter 4349:Electrical papers 4181:10.1119/1.1941992 4026:(10): 1059–1064, 3509:(17): 1051–1054, 3078:Fizeau experiment 3013:quantum mechanics 2945:later (1918–1920) 2903:Ehrenfest paradox 2866:Friedrich Kottler 2842:hyperbolic motion 2760:Thomas precession 2694:Arnold Sommerfeld 2644:Minkowski diagram 2642:; he created the 2546:hyperboloid model 2506:Hermann Minkowski 2500:Hermann Minkowski 2477:Spacetime physics 2450:Foucault pendulum 2422:Fizeau experiment 2339:Richard C. Tolman 2333:was developed by 2331:relativistic mass 2301:Adolf Bestelmeyer 2276:Arnold Sommerfeld 2244:First assessments 2181: 2180: 2178: 2066:Fizeau experiment 1949:of reference, by 1925:Fizeau experiment 1818: 1686:On June 5, 1905, 1618: 1381: 1276:Heinrich Streintz 842:relativistic mass 475:ad hoc hypothesis 387: 228:George FitzGerald 134:Hermann Minkowski 57:Hermann Minkowski 9834: 9789: 9788: 9712:Women in physics 9464:Nuclear physics 9388:Perpetual motion 9322:Material science 9266:Electromagnetism 9226: 9219: 9212: 9203: 9202: 9169: 9139: 9120: 9100: 9095:, archived from 9072: 9054: 9045: 9036: 9022: 9011: 9000: 8987: 8974: 8961: 8958:Einstein Studies 8947: 8930: 8912: 8891: 8860: 8858: 8852:, archived from 8827: 8817: 8799: 8790: 8757: 8739: 8721: 8705:Polanyi, Michael 8698: 8692: 8688: 8686: 8678: 8658: 8638: 8615: 8609: 8599: 8559: 8548: 8537: 8501: 8483: 8474: 8448: 8436: 8422: 8404: 8398: 8390: 8371: 8356: 8351:, archived from 8327: 8291: 8290: 8278: 8265: 8255: 8232: 8213: 8204: 8183: 8173: 8163: 8142: 8126:Einstein, Albert 8121: 8108: 8073: 8063: 8019: 8008: 7997: 7977: 7956: 7931: 7906: 7892: 7881: 7867: 7866: 7837: 7834: 7828: 7825: 7819: 7816: 7810: 7807: 7801: 7798: 7792: 7789: 7783: 7780: 7771: 7770:Pais (1982), 11a 7768: 7762: 7759: 7753: 7750: 7744: 7741: 7735: 7732: 7726: 7723: 7717: 7714: 7708: 7705: 7699: 7696: 7690: 7686: 7666: 7660: 7657: 7651: 7648: 7639: 7636: 7630: 7627: 7621: 7618: 7612: 7609: 7603: 7600: 7594: 7591: 7585: 7582: 7576: 7570: 7564: 7561: 7555: 7552: 7539: 7536: 7530: 7527: 7521: 7518: 7509: 7506: 7500: 7497: 7491: 7488: 7482: 7479: 7473: 7470: 7464: 7461: 7455: 7452: 7446: 7443: 7437: 7426: 7420: 7409: 7398: 7395: 7389: 7386: 7377: 7376:Born (1956), 193 7374: 7365: 7362: 7356: 7353: 7347: 7344: 7335: 7332: 7326: 7323: 7317: 7314: 7305: 7302: 7293: 7290: 7279: 7278:Whittaker (1951) 7276: 7270: 7267: 7261: 7258: 7249: 7246: 7240: 7237: 7231: 7228: 7219: 7216: 7210: 7207: 7201: 7198: 7192: 7189: 7183: 7180: 7174: 7171: 7165: 7162: 7153: 7150: 7144: 7141: 7135: 7132: 7126: 7123: 7117: 7114: 7108: 7105: 7099: 7096: 7090: 7087: 7081: 7078: 7072: 7069: 7063: 7060: 7054: 7051: 7045: 7042: 7036: 7035:Archibald (1914) 7033: 7027: 7024: 7018: 7015: 7009: 7006: 7000: 6997: 6991: 6988: 6982: 6979: 6973: 6970: 6964: 6961: 6950: 6947: 6941: 6938: 6932: 6929: 6923: 6920: 6914: 6911: 6902: 6901:Macrossan (1986) 6899: 6893: 6890: 6881: 6878: 6869: 6866: 6860: 6857: 6846: 6843: 6834: 6831: 6825: 6822: 6816: 6813: 6807: 6804: 6795: 6792: 6786: 6783: 6777: 6774: 6768: 6765: 6759: 6756: 6750: 6747: 6741: 6738: 6732: 6729: 6723: 6720: 6714: 6711: 6705: 6702: 6696: 6695: 6693: 6691: 6666: 6660: 6659: 6657: 6655: 6630: 6624: 6621: 6615: 6609: 6603: 6600: 6589: 6583: 6567: 6542: 6533: 6508: 6499: 6474: 6465: 6436: 6427: 6417: 6408: 6394: 6385: 6371: 6362: 6354:(135): 375–380, 6345: 6336: 6319: 6309:Internet Archive 6303: 6294: 6270: 6234: 6198: 6190:(269): 329–341, 6181: 6172: 6158: 6149: 6135: 6125:Internet Archive 6119: 6105: 6078:Internet Archive 6072: 6062: 6049: 6047: 6035: 6029: 6020: 6010: 6001: 5995: 5986: 5977: 5939: 5929: 5915: 5906: 5900: 5891: 5879:Internet Archive 5873: 5863: 5849: 5839: 5829: 5812: 5806: 5796: 5782: 5773: 5767: 5758: 5741: 5728: 5711: 5694: 5692: 5680: 5647: 5646: 5604:Internet Archive 5598: 5589: 5564: 5547: 5537: 5523: 5513: 5504: 5479: 5470: 5442: 5418:(203): 333–345, 5409: 5400: 5376:(185): 377–386, 5367: 5358: 5334:(128): 120–129, 5325: 5315:Internet Archive 5309: 5300: 5267: 5258: 5257: 5255: 5250:on July 13, 2011 5249: 5242: 5230: 5229: 5199: 5198: 5183:Acta Mathematica 5176: 5166:Internet Archive 5160: 5151: 5150: 5148: 5129:"La Gravitation" 5123: 5121: 5108:Internet Archive 5102: 5093: 5084: 5074: 5065: 5048: 5038: 5029: 5019: 5010: 5002: 4990: 4972:Internet Archive 4966: 4953: 4939:Internet Archive 4933: 4923:10.2307/20022840 4905: 4895:10.2307/20022495 4880: 4871: 4854: 4845: 4836: 4819: 4801:Internet Archive 4795: 4786: 4750: 4725: 4716: 4714: 4702: 4701: 4675: 4665: 4645: 4635: 4626: 4616: 4607: 4590: 4554: 4537: 4520: 4514: 4505: 4491: 4482: 4457: 4448: 4423: 4414: 4378: 4370:(167): 324–339, 4361: 4352: 4346: 4337: 4308: 4299: 4270: 4261: 4244: 4212: 4184: 4155: 4137: 4128: 4087: 4078: 4076: 4064: 4062: 4050: 4017: 4007: 3997: 3988: 3963: 3953: 3936: 3926: 3901: 3891: 3858: 3843: 3842: 3816: 3801: 3800: 3774: 3764: 3743: 3734: 3724: 3715: 3707:(2): 1297–1298, 3698: 3689: 3671: 3662: 3630:(803): 767–772, 3621: 3612: 3599: 3586: 3573: 3559: 3534: 3525: 3497: 3461: 3444: 3427: 3409: 3400: 3398: 3392:, archived from 3359: 3349: 3321: 3304: 3290: 3281: 3256: 3247: 3241: 3197: 3192: 3191: 2981:Gunnar Nordström 2968:speed of gravity 2923:Vladimir Varićak 2874:Wolfgang Rindler 2870:Born coordinates 2752:Gilbert N. Lewis 2633: 2631: 2630: 2625: 2622: 2617: 2604: 2599: 2586: 2581: 2568: 2563: 2534:invariant theory 2411: 2409: 2408: 2403: 2401: 2400: 2222: 2203: 2201: 2200: 2195: 2193: 2189: 2182: 2179: 2177: 2176: 2167: 2166: 2157: 2149: 2145: 2138: 2137: 2122: 2121: 1831: 1829: 1828: 1823: 1820: 1819: 1811: 1794: 1792: 1791: 1786: 1783: 1782: 1781: 1772: 1771: 1759: 1758: 1746: 1745: 1733: 1732: 1630: 1628: 1627: 1622: 1619: 1617: 1616: 1615: 1605: 1600: 1599: 1598: 1582: 1525: 1523: 1522: 1517: 1514: 1513: 1512: 1511: 1501: 1496: 1479: 1454: 1397:imaginary number 1394: 1392: 1391: 1386: 1383: 1382: 1374: 1357: 1355: 1354: 1349: 1346: 1329:Menyhért Palágyi 1325:The Time Machine 1309:fourth dimension 1248: 1246: 1245: 1240: 1237: 1236: 1235: 1226: 1212: 1186: 1184: 1183: 1178: 1175: 1174: 1173: 1164: 1150: 1111: 1109: 1108: 1103: 1100: 1099: 1098: 1089: 1065: 1063: 1062: 1057: 1054: 1050: 1029: 1027: 1026: 1021: 1018: 1005: 1003: 1002: 997: 994: 981: 979: 978: 973: 970: 966: 943: 941: 940: 935: 932: 931: 930: 903: 901: 900: 895: 892: 891: 890: 881: 838: 836: 835: 830: 827: 814: 812: 811: 806: 803: 790: 788: 787: 782: 779: 778: 777: 768: 754: 682: 680: 679: 674: 671: 667: 650: 648: 647: 642: 639: 635: 598: 596: 595: 590: 587: 586: 585: 576: 556: 539: 537: 536: 531: 528: 524: 459: 457: 456: 451: 448: 447: 446: 437: 417: 400: 398: 397: 392: 389: 388: 386: 385: 384: 374: 369: 368: 367: 351: 349: 304:Edward W. Morley 223:Oliver Heaviside 187:electromagnetism 9842: 9841: 9837: 9836: 9835: 9833: 9832: 9831: 9827:Hendrik Lorentz 9822:Aether theories 9802: 9801: 9800: 9795: 9777: 9748:Joule–von Mayer 9716: 9680: 9637: 9586: 9550: 9441:Big Bang theory 9394: 9293:Fluid mechanics 9240: 9230: 9147: 9142: 9137: 9118:physics/0408077 9070: 9020: 8928: 8910: 8859:on July 6, 2011 8856: 8825: 8815: 8788:10.1.1.524.1969 8755: 8737: 8719: 8690: 8689: 8680: 8679: 8675: 8643:Pauli, Wolfgang 8636: 8607: 8557: 8499: 8472:10.1.1.679.5898 8420: 8392: 8391: 8388: 8297:Phys. Perspect. 8288: 8253: 8230: 8171: 8161: 8140: 8106: 8071: 8017: 7995: 7974: 7890: 7840: 7835: 7831: 7826: 7822: 7817: 7813: 7808: 7804: 7799: 7795: 7791:Pais (1982), 7c 7790: 7786: 7781: 7774: 7769: 7765: 7760: 7756: 7751: 7747: 7742: 7738: 7733: 7729: 7724: 7720: 7715: 7711: 7706: 7702: 7697: 7693: 7683: 7667: 7663: 7658: 7654: 7649: 7642: 7637: 7633: 7628: 7624: 7619: 7615: 7610: 7606: 7601: 7597: 7592: 7588: 7583: 7579: 7571: 7567: 7562: 7558: 7553: 7542: 7537: 7533: 7528: 7524: 7519: 7512: 7508:Bjerknes (2002) 7507: 7503: 7498: 7494: 7489: 7485: 7480: 7476: 7471: 7467: 7462: 7458: 7453: 7449: 7444: 7440: 7427: 7423: 7415:" pp. 192–195, 7410: 7401: 7396: 7392: 7387: 7380: 7375: 7368: 7363: 7359: 7354: 7350: 7345: 7338: 7333: 7329: 7324: 7320: 7316:Jannssen (1995) 7315: 7308: 7303: 7296: 7291: 7282: 7277: 7273: 7268: 7264: 7259: 7252: 7247: 7243: 7238: 7234: 7229: 7222: 7217: 7213: 7208: 7204: 7199: 7195: 7190: 7186: 7181: 7177: 7172: 7168: 7163: 7156: 7151: 7147: 7142: 7138: 7133: 7129: 7124: 7120: 7115: 7111: 7106: 7102: 7097: 7093: 7088: 7084: 7079: 7075: 7070: 7066: 7061: 7057: 7052: 7048: 7043: 7039: 7034: 7030: 7025: 7021: 7016: 7012: 7007: 7003: 6998: 6994: 6989: 6985: 6980: 6976: 6971: 6967: 6962: 6953: 6948: 6944: 6939: 6935: 6930: 6926: 6921: 6917: 6912: 6905: 6900: 6896: 6891: 6884: 6879: 6872: 6867: 6863: 6858: 6849: 6844: 6837: 6832: 6828: 6823: 6819: 6814: 6810: 6805: 6798: 6793: 6789: 6784: 6780: 6775: 6771: 6766: 6762: 6757: 6753: 6748: 6744: 6739: 6735: 6730: 6726: 6721: 6717: 6712: 6708: 6703: 6699: 6689: 6687: 6667: 6663: 6653: 6651: 6631: 6627: 6622: 6618: 6610: 6606: 6601: 6597: 6593: 6592: 6584: 6580: 6575: 6570: 6328:(68): 229–249, 6254:(14): 649–689, 5850:. See also the 5663:(13): 533–554, 5621:(20): 529–579, 5488:(15): 927–938, 5253: 5251: 5247: 5240: 5146: 5144: 4917:(11): 387–507, 4889:(25): 709–726, 4863:(95): 705–717, 4770:(10): 989–990, 4466:(11): 369–399, 4283:(12): 344–370, 4190:Physical Review 4015: 3961: 3934: 3899: 3856: 3844:. See also the 3825:(13): 639–641, 3814: 3783:(10): 891–921, 3772: 3396: 3357: 3231: 3229:Primary sources 3226: 3193: 3186: 3183: 3171: 3165: 3153: 3141:quantum gravity 3074: 3068: 3009: 2959: 2954: 2932: 2907:Gustav Herglotz 2886: 2848:. In addition, 2824: 2788:Herbert E. Ives 2780: 2731: 2707: 2690: 2618: 2613: 2600: 2595: 2582: 2577: 2564: 2559: 2553: 2550: 2549: 2494: 2488:Minkowski space 2486:Main articles: 2484: 2479: 2462: 2418: 2396: 2392: 2381: 2378: 2377: 2355: 2353:Mass and energy 2314: 2296: 2265:Alfred Bucherer 2249:Walter Kaufmann 2246: 2241: 2239:Early reception 2213: 2172: 2168: 2162: 2158: 2156: 2144: 2143: 2139: 2133: 2129: 2111: 2107: 2105: 2102: 2101: 2095: 2089: 2075:signal velocity 2021:quantum physics 1966:emission theory 1947:preferred frame 1888:light principle 1872:annus mirabilis 1860: 1855: 1850: 1810: 1803: 1800: 1797: 1796: 1777: 1773: 1767: 1763: 1754: 1750: 1741: 1737: 1728: 1724: 1723: 1720: 1717: 1716: 1684: 1676: 1611: 1607: 1606: 1601: 1594: 1590: 1589: 1581: 1578: 1575: 1574: 1555:transverse mass 1547: 1539: 1531:Alfred Bucherer 1529:Like Poincaré, 1507: 1503: 1502: 1497: 1489: 1472: 1471: 1468: 1465: 1464: 1455: 1452: 1409: 1373: 1366: 1363: 1360: 1359: 1339: 1336: 1333: 1332: 1255: 1231: 1227: 1222: 1208: 1195: 1192: 1189: 1188: 1169: 1165: 1160: 1146: 1133: 1130: 1127: 1126: 1094: 1090: 1085: 1081: 1078: 1075: 1074: 1046: 1042: 1039: 1036: 1035: 1014: 1011: 1008: 1007: 990: 987: 984: 983: 962: 958: 955: 952: 951: 948:Walter Kaufmann 926: 922: 912: 909: 906: 905: 886: 882: 877: 867: 864: 861: 860: 823: 820: 817: 816: 799: 796: 793: 792: 773: 769: 764: 750: 737: 734: 731: 730: 711: 705: 663: 659: 656: 653: 652: 631: 627: 624: 621: 620: 581: 577: 572: 549: 548: 545: 542: 541: 520: 516: 513: 510: 509: 497: 483: 442: 438: 433: 410: 409: 406: 403: 402: 380: 376: 375: 370: 363: 359: 358: 350: 345: 341: 338: 335: 334: 291:A. A. Michelson 263: 252: 240:Hendrik Lorentz 175:Michael Faraday 167:transverse wave 155: 150: 125:Albert Einstein 110:electrodynamics 97:Hendrik Lorentz 81:Galileo Galilei 65: 49:Albert Einstein 37:Hendrik Lorentz 23: 12: 11: 5: 9840: 9830: 9829: 9824: 9819: 9814: 9797: 9796: 9794: 9793: 9782: 9779: 9778: 9776: 9775: 9770: 9769: 9768: 9763: 9755: 9753:Shapley–Curtis 9750: 9745: 9743:Leibniz–Newton 9740: 9738:Galileo affair 9735: 9730: 9724: 9722: 9718: 9717: 9715: 9714: 9709: 9704: 9699: 9694: 9688: 9686: 9682: 9681: 9679: 9678: 9673: 9672: 9671: 9661: 9656: 9651: 9645: 9643: 9639: 9638: 9636: 9635: 9633:Speed of light 9630: 9629: 9628: 9623: 9618: 9610: 9605: 9600: 9594: 9592: 9588: 9587: 9585: 9584: 9579: 9577:Nanotechnology 9574: 9569: 9568: 9567: 9558: 9556: 9552: 9551: 9549: 9548: 9547: 9546: 9541: 9536: 9526: 9525: 9524: 9514: 9513: 9512: 9507: 9502: 9497: 9487: 9486: 9485: 9480: 9475: 9470: 9462: 9457: 9456: 9455: 9445: 9444: 9443: 9438: 9430: 9429: 9428: 9423: 9415: 9414: 9413: 9404: 9402: 9400:Modern physics 9396: 9395: 9393: 9392: 9391: 9390: 9385: 9380: 9375: 9368:Thermodynamics 9365: 9364: 9363: 9353: 9352: 9351: 9346: 9336: 9335: 9334: 9329: 9319: 9318: 9317: 9307: 9306: 9305: 9300: 9290: 9289: 9288: 9283: 9278: 9273: 9263: 9262: 9261: 9250: 9248: 9242: 9241: 9229: 9228: 9221: 9214: 9206: 9200: 9199: 9190:Berger, Andy " 9188: 9170: 9146: 9145:External links 9143: 9141: 9140: 9135: 9101: 9077:Non mainstream 9074: 9073: 9068: 9055: 9046: 9037: 9023: 9018: 9001: 8988: 8975: 8962: 8949: 8931: 8926: 8913: 8908: 8892: 8861: 8836:(2): S41–S53, 8818: 8813: 8800: 8758: 8753: 8740: 8735: 8722: 8717: 8701: 8700: 8699: 8691:|journal= 8673: 8639: 8634: 8616: 8600: 8560: 8555: 8538: 8513:(5): 397–415, 8502: 8497: 8484: 8465:(2): 232–234, 8450: 8437: 8423: 8418: 8405: 8386: 8357: 8343:(4): 343–354, 8328: 8303:(3): 268–292, 8292: 8279: 8266: 8256: 8251: 8237:Holton, Gerald 8233: 8228: 8215: 8184: 8182:: 11–12, 25–26 8164: 8159: 8147:Galison, Peter 8143: 8138: 8122: 8109: 8104: 8064: 8045:10.1086/430652 8031:(4): 614–626, 8020: 8015: 7998: 7993: 7978: 7972: 7957: 7907: 7893: 7888: 7868: 7857:(8): 409–412, 7841: 7839: 7838: 7829: 7827:Shapiro (1999) 7820: 7811: 7802: 7793: 7784: 7772: 7763: 7754: 7745: 7743:Rindler (2001) 7736: 7727: 7725:Warwick (2003) 7718: 7709: 7700: 7691: 7681: 7661: 7652: 7640: 7638:Walter (1999b) 7631: 7622: 7613: 7604: 7595: 7586: 7577: 7565: 7556: 7540: 7531: 7522: 7510: 7501: 7492: 7483: 7474: 7465: 7456: 7447: 7438: 7421: 7399: 7390: 7378: 7366: 7357: 7348: 7346:Stachel (1982) 7336: 7327: 7318: 7306: 7294: 7280: 7271: 7262: 7250: 7241: 7232: 7220: 7211: 7202: 7200:Logunov (2004) 7193: 7184: 7175: 7166: 7154: 7145: 7136: 7127: 7118: 7109: 7100: 7091: 7082: 7073: 7064: 7062:Galison (2003) 7055: 7046: 7037: 7028: 7026:Goenner (2008) 7019: 7017:DiSalle (2002) 7010: 7001: 6992: 6983: 6974: 6965: 6951: 6942: 6933: 6924: 6915: 6903: 6894: 6882: 6880:Galison (2002) 6870: 6861: 6847: 6835: 6826: 6817: 6808: 6796: 6787: 6778: 6769: 6760: 6751: 6742: 6733: 6724: 6715: 6706: 6697: 6661: 6625: 6616: 6604: 6594: 6591: 6590: 6577: 6576: 6574: 6571: 6569: 6568: 6551:(8): 635–637, 6534: 6517:(4): 663–668, 6500: 6483:(4): 641–662, 6466: 6449:(7): 501–513, 6428: 6409: 6386: 6363: 6337: 6311: 6295: 6271: 6235: 6218:(9): 749–776, 6199: 6173: 6165:Comptes Rendus 6150: 6142:Comptes Rendus 6127: 6111: 6106:, see English 6080: 6064: 6050: 6036: 6021: 6002: 5987: 5931: 5922:Comptes Rendus 5907: 5892: 5881: 5865: 5855: 5831: 5813: 5798: 5784: 5774: 5759: 5742: 5729: 5712: 5695: 5681: 5648: 5606: 5590: 5573:(5): 867–904, 5556: 5555: 5554: 5552:Space and Time 5529: 5505: 5471: 5468:10.1086/142879 5443: 5401: 5359: 5317: 5301: 5259: 5231: 5227:10.1086/143148 5201: 5189:(1): 293–308, 5168: 5152: 5124: 5110: 5094: 5085: 5066: 5049: 5030: 5011: 4991: 4974: 4954: 4941: 4906: 4872: 4846: 4837: 4820: 4803: 4787: 4751: 4734:(9): 738–744, 4717: 4703: 4667: 4646: 4627: 4608: 4591: 4574:(3): 487–553, 4555: 4538: 4521: 4506: 4483: 4449: 4432:(8): 577–624, 4415: 4398:(2): 393–415, 4379: 4353: 4338: 4321:(3): 589–592, 4300: 4262: 4245: 4228:(5): 825–855, 4213: 4185: 4167:(1): 297–300, 4156: 4129: 4079: 4065: 4051: 4008: 3989: 3972:(8): 532–540, 3954: 3927: 3910:(7): 371–384, 3892: 3867:(8): 627–633, 3849: 3807: 3765: 3735: 3716: 3690: 3663: 3613: 3600: 3587: 3574: 3560: 3543:(6): 270–283, 3526: 3498: 3462: 3445: 3428: 3418:(1): 223–264, 3401: 3368:(1): 196–202, 3350: 3333:(3): 260–262, 3322: 3305: 3282: 3265:(1): 105–179, 3248: 3232: 3230: 3227: 3225: 3222: 3221: 3220: 3215: 3210: 3205: 3199: 3198: 3195:Physics portal 3182: 3179: 3167:Main article: 3164: 3161: 3152: 3149: 3070:Main article: 3067: 3064: 3033:Dirac equation 3025:Wolfgang Pauli 3021:Pascual Jordan 3008: 3005: 3003:near the Sun. 2989:Adriaan Fokker 2958: 2955: 2953: 2950: 2931: 2928: 2899:Paul Ehrenfest 2885: 2882: 2823: 2820: 2779: 2776: 2730: 2727: 2706: 2703: 2689: 2686: 2674:linear algebra 2663:Space and Time 2621: 2616: 2612: 2608: 2603: 2598: 2594: 2590: 2585: 2580: 2576: 2572: 2567: 2562: 2558: 2483: 2480: 2478: 2475: 2461: 2458: 2438:Georges Sagnac 2417: 2414: 2399: 2395: 2391: 2388: 2385: 2359:center of mass 2354: 2351: 2313: 2310: 2295: 2292: 2288:Paul Ehrenfest 2245: 2242: 2240: 2237: 2205: 2204: 2192: 2188: 2185: 2175: 2171: 2165: 2161: 2155: 2152: 2148: 2142: 2136: 2132: 2128: 2125: 2120: 2117: 2114: 2110: 2091:Main article: 2088: 2085: 2049:most important 1992: 1991: 1984: 1969: 1954: 1939: 1938: 1928: 1918: 1904: 1859: 1856: 1854: 1851: 1849: 1846: 1817: 1814: 1809: 1806: 1780: 1776: 1770: 1766: 1762: 1757: 1753: 1749: 1744: 1740: 1736: 1731: 1727: 1697:charge density 1688:Henri Poincaré 1675: 1672: 1614: 1610: 1604: 1597: 1593: 1588: 1585: 1538: 1535: 1510: 1506: 1500: 1495: 1492: 1488: 1485: 1482: 1478: 1475: 1450: 1429:Henri Poincaré 1415:Henri Poincaré 1408: 1405: 1380: 1377: 1372: 1369: 1345: 1342: 1296:Henri Poincaré 1254: 1251: 1234: 1230: 1225: 1221: 1218: 1215: 1211: 1207: 1204: 1201: 1198: 1172: 1168: 1163: 1159: 1156: 1153: 1149: 1145: 1142: 1139: 1136: 1097: 1093: 1088: 1084: 1053: 1049: 1045: 1017: 993: 969: 965: 961: 929: 925: 921: 918: 915: 889: 885: 880: 876: 873: 870: 857:Henri Poincaré 826: 802: 776: 772: 767: 763: 760: 757: 753: 749: 746: 743: 740: 707:Main article: 704: 701: 670: 666: 662: 638: 634: 630: 609:Doppler effect 584: 580: 575: 571: 568: 565: 562: 559: 555: 552: 527: 523: 519: 482: 479: 445: 441: 436: 432: 429: 426: 423: 420: 416: 413: 383: 379: 373: 366: 362: 357: 354: 348: 344: 332:Lorentz factor 320:Doppler effect 316:Woldemar Voigt 300:interferometer 251: 248: 219:Heinrich Hertz 154: 151: 149: 146: 106:Henri Poincaré 64: 61: 41:Henri Poincaré 9: 6: 4: 3: 2: 9839: 9828: 9825: 9823: 9820: 9818: 9815: 9813: 9810: 9809: 9807: 9792: 9784: 9783: 9780: 9774: 9771: 9767: 9764: 9762: 9759: 9758: 9756: 9754: 9751: 9749: 9746: 9744: 9741: 9739: 9736: 9734: 9731: 9729: 9728:Bohr–Einstein 9726: 9725: 9723: 9719: 9713: 9710: 9708: 9705: 9703: 9700: 9698: 9695: 9693: 9690: 9689: 9687: 9683: 9677: 9674: 9670: 9667: 9666: 9665: 9662: 9660: 9657: 9655: 9652: 9650: 9647: 9646: 9644: 9640: 9634: 9631: 9627: 9624: 9622: 9619: 9617: 9614: 9613: 9611: 9609: 9606: 9604: 9601: 9599: 9596: 9595: 9593: 9589: 9583: 9582:String theory 9580: 9578: 9575: 9573: 9570: 9566: 9563: 9562: 9560: 9559: 9557: 9553: 9545: 9542: 9540: 9537: 9535: 9532: 9531: 9530: 9527: 9523: 9520: 9519: 9518: 9515: 9511: 9508: 9506: 9503: 9501: 9498: 9496: 9493: 9492: 9491: 9488: 9484: 9481: 9479: 9476: 9474: 9471: 9469: 9466: 9465: 9463: 9461: 9458: 9454: 9451: 9450: 9449: 9446: 9442: 9439: 9437: 9434: 9433: 9431: 9427: 9424: 9422: 9419: 9418: 9416: 9412: 9409: 9408: 9406: 9405: 9403: 9401: 9397: 9389: 9386: 9384: 9381: 9379: 9376: 9374: 9371: 9370: 9369: 9366: 9362: 9359: 9358: 9357: 9354: 9350: 9347: 9345: 9342: 9341: 9340: 9337: 9333: 9332:Metamaterials 9330: 9328: 9325: 9324: 9323: 9320: 9316: 9313: 9312: 9311: 9308: 9304: 9301: 9299: 9296: 9295: 9294: 9291: 9287: 9284: 9282: 9279: 9277: 9274: 9272: 9269: 9268: 9267: 9264: 9260: 9257: 9256: 9255: 9252: 9251: 9249: 9247: 9243: 9238: 9234: 9227: 9222: 9220: 9215: 9213: 9208: 9207: 9204: 9197: 9194:" June 2016, 9193: 9189: 9187: 9183: 9179: 9175: 9171: 9168: 9164: 9163: 9158: 9154: 9149: 9148: 9138: 9132: 9128: 9124: 9119: 9114: 9110: 9106: 9105:Logunov, A.A. 9102: 9098: 9094: 9090: 9086: 9081: 9080: 9079: 9078: 9071: 9065: 9061: 9056: 9052: 9047: 9043: 9038: 9034: 9033: 9028: 9024: 9021: 9015: 9010: 9009: 9002: 8998: 8994: 8989: 8985: 8981: 8976: 8972: 8968: 8963: 8959: 8955: 8950: 8945: 8941: 8937: 8932: 8929: 8923: 8919: 8914: 8911: 8905: 8901: 8897: 8896:Stachel, John 8893: 8890: 8886: 8882: 8878: 8874: 8870: 8866: 8865:Stachel, John 8862: 8855: 8851: 8847: 8843: 8839: 8835: 8831: 8824: 8819: 8816: 8810: 8806: 8801: 8798: 8794: 8789: 8784: 8780: 8776: 8772: 8768: 8764: 8759: 8756: 8750: 8746: 8741: 8738: 8732: 8728: 8723: 8720: 8714: 8710: 8706: 8702: 8696: 8684: 8676: 8670: 8666: 8660: 8659: 8656: 8652: 8648: 8644: 8640: 8637: 8631: 8627: 8626: 8621: 8620:Pais, Abraham 8617: 8613: 8606: 8601: 8598: 8594: 8590: 8586: 8582: 8578: 8575:(1): 45–105, 8574: 8570: 8566: 8561: 8558: 8552: 8547: 8546: 8539: 8536: 8532: 8528: 8524: 8520: 8516: 8512: 8508: 8503: 8500: 8494: 8490: 8485: 8482: 8478: 8473: 8468: 8464: 8460: 8456: 8451: 8446: 8442: 8441:Laue, Max von 8438: 8434: 8433: 8428: 8427:Lange, Ludwig 8424: 8421: 8415: 8411: 8406: 8402: 8396: 8389: 8383: 8379: 8375: 8370: 8368: 8362: 8358: 8354: 8350: 8346: 8342: 8338: 8334: 8329: 8326: 8322: 8318: 8314: 8310: 8306: 8302: 8298: 8293: 8287: 8286: 8280: 8276: 8272: 8267: 8264: 8263: 8257: 8254: 8248: 8244: 8243: 8238: 8234: 8231: 8225: 8221: 8216: 8212: 8208: 8203: 8198: 8194: 8190: 8185: 8181: 8177: 8170: 8165: 8162: 8156: 8152: 8148: 8144: 8141: 8135: 8131: 8127: 8123: 8119: 8115: 8110: 8107: 8101: 8097: 8093: 8089: 8085: 8081: 8077: 8070: 8065: 8062: 8058: 8054: 8050: 8046: 8042: 8038: 8034: 8030: 8026: 8021: 8018: 8012: 8007: 8006: 7999: 7996: 7990: 7986: 7985: 7979: 7975: 7969: 7965: 7964: 7958: 7955: 7951: 7947: 7943: 7939: 7935: 7930: 7929:gr-qc/0104032 7925: 7921: 7917: 7913: 7908: 7904: 7903: 7898: 7894: 7891: 7885: 7880: 7879: 7873: 7869: 7865: 7860: 7856: 7852: 7848: 7843: 7842: 7833: 7824: 7818:Walter (2007) 7815: 7809:Norton (2005) 7806: 7800:Kostro (1992) 7797: 7788: 7779: 7777: 7767: 7758: 7749: 7740: 7731: 7722: 7713: 7704: 7695: 7689: 7684: 7678: 7674: 7673: 7665: 7656: 7647: 7645: 7635: 7626: 7617: 7608: 7599: 7590: 7581: 7575: 7569: 7560: 7551: 7549: 7547: 7545: 7535: 7526: 7517: 7515: 7505: 7496: 7487: 7478: 7469: 7460: 7451: 7442: 7435: 7431: 7425: 7418: 7414: 7408: 7406: 7404: 7394: 7385: 7383: 7373: 7371: 7361: 7352: 7343: 7341: 7331: 7322: 7313: 7311: 7301: 7299: 7292:Holton (1988) 7289: 7287: 7285: 7275: 7266: 7257: 7255: 7245: 7236: 7230:Miller (1981) 7227: 7225: 7215: 7206: 7197: 7188: 7179: 7170: 7161: 7159: 7149: 7140: 7131: 7122: 7113: 7104: 7095: 7086: 7077: 7068: 7059: 7050: 7041: 7032: 7023: 7014: 7005: 6996: 6987: 6978: 6969: 6960: 6958: 6956: 6946: 6937: 6928: 6919: 6910: 6908: 6898: 6889: 6887: 6877: 6875: 6865: 6859:Miller (1982) 6856: 6854: 6852: 6842: 6840: 6830: 6821: 6812: 6803: 6801: 6791: 6782: 6773: 6764: 6755: 6746: 6737: 6728: 6719: 6710: 6701: 6685: 6681: 6680: 6675: 6671: 6670:Siegel, Ethan 6665: 6649: 6645: 6644: 6639: 6635: 6634:Siegel, Ethan 6629: 6620: 6614: 6611:Chen (2011), 6608: 6599: 6595: 6588: 6582: 6578: 6566: 6562: 6558: 6554: 6550: 6546: 6541: 6535: 6532: 6528: 6524: 6520: 6516: 6512: 6507: 6501: 6498: 6494: 6490: 6486: 6482: 6478: 6473: 6467: 6464: 6460: 6456: 6452: 6448: 6444: 6440: 6435: 6429: 6425: 6421: 6416: 6410: 6406: 6402: 6398: 6393: 6387: 6383: 6379: 6375: 6370: 6364: 6361: 6357: 6353: 6349: 6344: 6338: 6335: 6331: 6327: 6323: 6318: 6312: 6310: 6307: at the 6306: 6301: 6296: 6293: 6289: 6286:(177): 9–15, 6285: 6281: 6277: 6272: 6269: 6265: 6261: 6257: 6253: 6249: 6245: 6241: 6236: 6233: 6229: 6225: 6221: 6217: 6213: 6209: 6205: 6200: 6197: 6193: 6189: 6185: 6180: 6174: 6170: 6166: 6162: 6157: 6151: 6147: 6143: 6139: 6134: 6128: 6126: 6123: at the 6122: 6117: 6112: 6109: 6104: 6100: 6096: 6092: 6091: 6086: 6081: 6079: 6076: at the 6075: 6070: 6065: 6060: 6056: 6051: 6046: 6044: 6037: 6033: 6028: 6022: 6018: 6014: 6009: 6003: 5999: 5994: 5988: 5985: 5981: 5976: 5971: 5967: 5963: 5959: 5955: 5951: 5947: 5943: 5938: 5932: 5927: 5923: 5919: 5914: 5908: 5904: 5899: 5893: 5889: 5888: 5882: 5880: 5877: at the 5876: 5871: 5866: 5861: 5856: 5853: 5847: 5843: 5838: 5832: 5827: 5823: 5819: 5814: 5810: 5805: 5799: 5794: 5790: 5785: 5780: 5775: 5771: 5766: 5760: 5757:(23): 828–830 5756: 5752: 5748: 5743: 5739: 5735: 5730: 5726: 5722: 5718: 5713: 5709: 5705: 5701: 5696: 5691: 5689: 5682: 5678: 5674: 5670: 5666: 5662: 5658: 5654: 5649: 5645: 5640: 5636: 5632: 5628: 5624: 5620: 5616: 5612: 5607: 5605: 5602: at the 5601: 5596: 5591: 5588: 5584: 5580: 5576: 5572: 5568: 5563: 5557: 5553: 5549: 5548: 5545: 5541: 5536: 5530: 5527: 5521: 5517: 5512: 5506: 5503: 5499: 5495: 5491: 5487: 5483: 5478: 5472: 5469: 5465: 5461: 5457: 5453: 5449: 5444: 5441: 5437: 5433: 5429: 5425: 5421: 5417: 5413: 5408: 5402: 5399: 5395: 5391: 5387: 5383: 5379: 5375: 5371: 5366: 5360: 5357: 5353: 5349: 5345: 5341: 5337: 5333: 5329: 5324: 5318: 5316: 5313: at the 5312: 5307: 5302: 5299: 5295: 5291: 5287: 5283: 5279: 5275: 5271: 5266: 5260: 5246: 5239: 5238: 5232: 5228: 5223: 5219: 5215: 5211: 5207: 5202: 5197: 5192: 5188: 5184: 5180: 5175: 5169: 5167: 5164: at the 5163: 5158: 5153: 5142: 5138: 5134: 5130: 5125: 5120: 5118: 5111: 5109: 5106: at the 5105: 5100: 5095: 5091: 5086: 5082: 5078: 5073: 5067: 5063: 5059: 5055: 5050: 5046: 5042: 5037: 5031: 5027: 5023: 5018: 5012: 5008: 5007: 5001: 4999: 4992: 4988: 4984: 4980: 4975: 4973: 4970: at the 4969: 4964: 4960: 4955: 4951: 4947: 4942: 4940: 4937: at the 4936: 4932: 4928: 4924: 4920: 4916: 4912: 4907: 4904: 4900: 4896: 4892: 4888: 4884: 4879: 4873: 4870: 4866: 4862: 4858: 4853: 4847: 4843: 4838: 4834: 4830: 4826: 4821: 4817: 4813: 4809: 4804: 4802: 4799: at the 4798: 4793: 4788: 4785: 4781: 4777: 4773: 4769: 4765: 4761: 4757: 4752: 4749: 4745: 4741: 4737: 4733: 4729: 4724: 4718: 4713: 4711: 4704: 4700: 4695: 4691: 4687: 4683: 4679: 4674: 4668: 4663: 4659: 4655: 4651: 4647: 4643: 4639: 4634: 4628: 4624: 4620: 4615: 4609: 4605: 4601: 4597: 4592: 4589: 4585: 4581: 4577: 4573: 4569: 4565: 4561: 4556: 4552: 4548: 4544: 4539: 4535: 4531: 4527: 4522: 4518: 4513: 4507: 4503: 4499: 4495: 4490: 4484: 4481: 4477: 4473: 4469: 4465: 4461: 4456: 4450: 4447: 4443: 4439: 4435: 4431: 4427: 4422: 4416: 4413: 4409: 4405: 4401: 4397: 4393: 4389: 4385: 4380: 4377: 4373: 4369: 4365: 4360: 4354: 4350: 4345: 4339: 4336: 4332: 4328: 4324: 4320: 4316: 4312: 4307: 4301: 4298: 4294: 4290: 4286: 4282: 4278: 4274: 4269: 4263: 4259: 4255: 4251: 4246: 4243: 4239: 4235: 4231: 4227: 4223: 4219: 4214: 4211: 4207: 4203: 4199: 4195: 4191: 4186: 4182: 4178: 4174: 4170: 4166: 4162: 4157: 4153: 4149: 4145: 4141: 4136: 4130: 4127: 4123: 4119: 4115: 4111: 4107: 4103: 4099: 4095: 4091: 4086: 4080: 4075: 4073: 4066: 4061: 4059: 4052: 4049: 4045: 4041: 4037: 4033: 4029: 4025: 4021: 4014: 4009: 4006:(22): 817–825 4005: 4001: 3996: 3990: 3987: 3983: 3979: 3975: 3971: 3967: 3960: 3955: 3952: 3948: 3944: 3940: 3933: 3928: 3925: 3921: 3917: 3913: 3909: 3905: 3898: 3893: 3890: 3886: 3882: 3878: 3874: 3870: 3866: 3862: 3855: 3850: 3847: 3841: 3836: 3832: 3828: 3824: 3820: 3813: 3808: 3805: 3799: 3794: 3790: 3786: 3782: 3778: 3771: 3766: 3763: 3759: 3755: 3751: 3747: 3742: 3736: 3732: 3728: 3723: 3717: 3714: 3710: 3706: 3702: 3697: 3691: 3687: 3683: 3679: 3675: 3670: 3664: 3661: 3657: 3653: 3649: 3645: 3641: 3637: 3633: 3629: 3625: 3620: 3614: 3610: 3606: 3601: 3597: 3593: 3588: 3584: 3580: 3575: 3572:(22): 755–762 3571: 3567: 3561: 3558: 3554: 3550: 3546: 3542: 3538: 3533: 3527: 3524: 3520: 3516: 3512: 3508: 3504: 3499: 3496: 3492: 3488: 3484: 3480: 3476: 3472: 3468: 3463: 3459: 3455: 3451: 3446: 3442: 3438: 3434: 3429: 3425: 3421: 3417: 3413: 3408: 3402: 3395: 3391: 3387: 3383: 3379: 3375: 3371: 3367: 3363: 3362:Nuovo Cimento 3356: 3351: 3348: 3344: 3340: 3336: 3332: 3328: 3323: 3320:(4): 470–520. 3319: 3315: 3311: 3306: 3302: 3298: 3294: 3289: 3283: 3280: 3276: 3272: 3268: 3264: 3260: 3255: 3249: 3245: 3240: 3234: 3233: 3219: 3216: 3214: 3211: 3209: 3206: 3204: 3201: 3200: 3196: 3190: 3185: 3178: 3176: 3170: 3160: 3158: 3148: 3146: 3142: 3137: 3135: 3130: 3125: 3123: 3119: 3114: 3110: 3106: 3101: 3099: 3095: 3091: 3087: 3083: 3079: 3073: 3063: 3061: 3057: 3053: 3049: 3045: 3040: 3038: 3034: 3031:produced the 3030: 3026: 3022: 3018: 3014: 3004: 3002: 2998: 2994: 2990: 2986: 2982: 2976: 2974: 2969: 2965: 2949: 2946: 2942: 2938: 2927: 2924: 2920: 2916: 2912: 2911:Fritz Noether 2908: 2904: 2900: 2896: 2892: 2881: 2879: 2875: 2871: 2867: 2863: 2859: 2855: 2851: 2850:Harry Bateman 2847: 2843: 2839: 2833: 2830: 2819: 2817: 2813: 2812:Paul Langevin 2804: 2800: 2797: 2796:time dilation 2793: 2789: 2785: 2775: 2773: 2769: 2765: 2761: 2757: 2753: 2749: 2745: 2741: 2737: 2726: 2724: 2720: 2719:Hermann Rothe 2716: 2715:Philipp Frank 2712: 2702: 2699: 2698:trigonometric 2695: 2685: 2683: 2679: 2678:Arthur Cayley 2675: 2670: 2668: 2664: 2659: 2657: 2653: 2649: 2645: 2641: 2637: 2619: 2614: 2610: 2606: 2601: 2596: 2592: 2588: 2583: 2578: 2574: 2570: 2565: 2560: 2556: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2519: 2518:Arthur Cayley 2515: 2511: 2507: 2498: 2493: 2489: 2474: 2471: 2467: 2457: 2455: 2451: 2447: 2443: 2442:Sagnac effect 2439: 2433: 2431: 2427: 2423: 2413: 2397: 2393: 2389: 2386: 2383: 2375: 2371: 2367: 2363: 2360: 2350: 2348: 2344: 2340: 2336: 2332: 2327: 2318: 2309: 2306: 2302: 2291: 2289: 2285: 2281: 2277: 2272: 2270: 2266: 2262: 2258: 2254: 2250: 2236: 2234: 2231: =  2230: 2226: 2220: 2216: 2211: 2190: 2186: 2183: 2173: 2169: 2163: 2159: 2153: 2150: 2146: 2140: 2134: 2130: 2126: 2123: 2118: 2115: 2112: 2108: 2100: 2099: 2098: 2094: 2083: 2078: 2076: 2072: 2067: 2062: 2060: 2056: 2055: 2050: 2046: 2042: 2038: 2034: 2031:philosophers 2030: 2024: 2022: 2018: 2014: 2010: 2005: 2004:Occam's razor 2000: 1998: 1989: 1985: 1982: 1978: 1974: 1970: 1967: 1963: 1959: 1955: 1952: 1948: 1944: 1943: 1942: 1936: 1932: 1929: 1926: 1922: 1919: 1916: 1912: 1908: 1905: 1902: 1899: 1898: 1897: 1895: 1894: 1889: 1885: 1881: 1877: 1873: 1864: 1853:Einstein 1905 1845: 1843: 1839: 1835: 1815: 1812: 1807: 1804: 1778: 1774: 1768: 1764: 1760: 1755: 1751: 1747: 1742: 1738: 1734: 1729: 1725: 1714: 1713:Lorentz group 1710: 1704: 1702: 1698: 1694: 1689: 1683: 1678: 1671: 1669: 1664: 1662: 1658: 1654: 1650: 1645: 1641: 1636: 1632: 1612: 1608: 1602: 1595: 1591: 1586: 1583: 1572: 1566: 1564: 1560: 1556: 1552: 1549:In his paper 1546: 1541: 1534: 1532: 1527: 1508: 1504: 1498: 1493: 1490: 1486: 1483: 1480: 1476: 1473: 1462: 1449: 1444: 1441: 1439: 1435: 1430: 1426: 1423:In his paper 1421: 1413: 1404: 1402: 1398: 1378: 1375: 1370: 1367: 1343: 1340: 1330: 1326: 1323:in his novel 1322: 1318: 1314: 1310: 1305: 1303: 1302: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1268: 1264: 1260: 1250: 1232: 1228: 1223: 1219: 1213: 1209: 1205: 1199: 1196: 1170: 1166: 1161: 1157: 1151: 1147: 1143: 1137: 1134: 1123: 1118: 1115: 1095: 1091: 1086: 1082: 1072: 1068: 1051: 1047: 1043: 1033: 1030:the mass) of 1015: 991: 967: 963: 959: 949: 945: 927: 923: 919: 916: 913: 887: 883: 878: 874: 871: 868: 858: 853: 849: 845: 843: 824: 800: 774: 770: 765: 761: 755: 751: 747: 741: 738: 728: 724: 720: 716: 715:J. J. Thomson 710: 700: 698: 694: 689: 686: 685:time dilation 668: 664: 660: 636: 632: 628: 618: 617:Joseph Larmor 613: 610: 606: 602: 582: 578: 573: 569: 566: 563: 560: 557: 553: 550: 525: 521: 517: 506: 502: 496: 487: 478: 476: 471: 467: 461: 443: 439: 434: 430: 427: 424: 421: 418: 414: 411: 381: 377: 371: 364: 360: 355: 352: 346: 342: 333: 329: 325: 324:wave equation 321: 317: 312: 309: 305: 301: 297: 289: 285: 283: 280: 276: 271: 267: 261: 257: 247: 245: 244:Joseph Larmor 241: 237: 233: 229: 224: 220: 215: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 160: 145: 143: 139: 135: 130: 126: 121: 119: 115: 111: 107: 102: 98: 93: 91: 87: 82: 78: 74: 70: 60: 58: 54: 50: 46: 42: 38: 34: 30: 25: 21: 16: 9697:The Martians 9528: 9361:Spectroscopy 9303:Aerodynamics 9281:Field theory 9160: 9108: 9097:the original 9092: 9088: 9076: 9075: 9059: 9050: 9041: 9030: 9007: 8996: 8983: 8970: 8957: 8943: 8939: 8917: 8899: 8875:(1): 47–53, 8872: 8868: 8854:the original 8833: 8829: 8804: 8770: 8766: 8744: 8726: 8708: 8664: 8661:In English: 8657:(2): 539–776 8654: 8650: 8623: 8611: 8572: 8568: 8544: 8510: 8506: 8488: 8462: 8458: 8444: 8431: 8409: 8366: 8361:Klein, Felix 8353:the original 8340: 8336: 8300: 8296: 8284: 8274: 8261: 8240: 8219: 8192: 8188: 8179: 8175: 8150: 8129: 8117: 8079: 8075: 8028: 8024: 8004: 7983: 7966:. Springer. 7962: 7919: 7915: 7901: 7877: 7854: 7850: 7832: 7823: 7814: 7805: 7796: 7787: 7766: 7757: 7748: 7739: 7730: 7721: 7712: 7703: 7694: 7671: 7664: 7655: 7634: 7625: 7616: 7607: 7598: 7589: 7580: 7568: 7559: 7534: 7529:Klein (1910) 7525: 7504: 7495: 7486: 7477: 7468: 7459: 7450: 7441: 7433: 7429: 7424: 7416: 7393: 7360: 7351: 7330: 7321: 7274: 7265: 7244: 7235: 7214: 7205: 7196: 7187: 7178: 7169: 7148: 7139: 7130: 7121: 7112: 7103: 7094: 7085: 7076: 7067: 7058: 7049: 7040: 7031: 7022: 7013: 7004: 6999:Lange (1886) 6995: 6986: 6977: 6968: 6945: 6936: 6927: 6918: 6897: 6868:Zahar (1989) 6864: 6829: 6824:Brown (2001) 6820: 6811: 6790: 6781: 6772: 6763: 6754: 6745: 6736: 6727: 6718: 6709: 6700: 6688:. Retrieved 6677: 6664: 6652:. Retrieved 6641: 6628: 6619: 6607: 6598: 6581: 6548: 6544: 6514: 6510: 6480: 6476: 6446: 6442: 6423: 6404: 6400: 6381: 6377: 6351: 6347: 6325: 6321: 6299: 6283: 6279: 6251: 6247: 6215: 6211: 6187: 6183: 6168: 6164: 6145: 6141: 6115: 6094: 6088: 6068: 6058: 6054: 6042: 6031: 6016: 6012: 5997: 5949: 5945: 5925: 5921: 5902: 5886: 5869: 5859: 5845: 5841: 5825: 5821: 5808: 5792: 5788: 5778: 5769: 5754: 5750: 5737: 5724: 5720: 5707: 5703: 5687: 5660: 5656: 5618: 5614: 5594: 5570: 5566: 5543: 5539: 5526:Meghnad Saha 5519: 5485: 5481: 5451: 5447: 5415: 5411: 5373: 5369: 5331: 5327: 5305: 5273: 5269: 5252:, retrieved 5245:the original 5236: 5209: 5205: 5186: 5182: 5156: 5145:, retrieved 5141:the original 5136: 5132: 5116: 5098: 5089: 5080: 5076: 5064:(2): 145–288 5061: 5057: 5044: 5040: 5025: 5021: 5004: 4997: 4986: 4982: 4962: 4958: 4949: 4945: 4914: 4910: 4886: 4882: 4860: 4856: 4841: 4832: 4828: 4815: 4811: 4791: 4767: 4763: 4731: 4727: 4709: 4681: 4677: 4661: 4657: 4650:Langevin, P. 4641: 4637: 4622: 4618: 4603: 4599: 4571: 4567: 4550: 4546: 4533: 4529: 4516: 4501: 4497: 4463: 4459: 4429: 4425: 4395: 4391: 4367: 4363: 4348: 4318: 4314: 4280: 4276: 4257: 4253: 4225: 4221: 4193: 4189: 4164: 4160: 4143: 4139: 4096:(328): 390, 4093: 4089: 4071: 4057: 4023: 4019: 4003: 3999: 3969: 3965: 3942: 3938: 3907: 3903: 3864: 3860: 3822: 3818: 3802:. See also: 3780: 3776: 3753: 3749: 3733:(1): 395–396 3730: 3726: 3704: 3700: 3680:(1): 77–98, 3677: 3673: 3627: 3623: 3608: 3595: 3582: 3578: 3569: 3565: 3540: 3536: 3506: 3502: 3481:(11): 1–56, 3478: 3474: 3457: 3453: 3440: 3436: 3415: 3411: 3394:the original 3365: 3361: 3330: 3326: 3317: 3313: 3300: 3296: 3262: 3258: 3243: 3174: 3172: 3154: 3138: 3126: 3102: 3075: 3041: 3010: 2977: 2960: 2937:Wilhelm Wien 2933: 2918: 2887: 2834: 2832:relativity. 2825: 2822:Acceleration 2816:twin paradox 2809: 2806:Max von Laue 2781: 2732: 2708: 2691: 2671: 2660: 2640:four vectors 2530:group theory 2503: 2469: 2463: 2445: 2434: 2430:Max von Laue 2419: 2364: 2356: 2342: 2323: 2297: 2280:Wilhelm Wien 2273: 2268: 2257:Max von Laue 2247: 2232: 2228: 2218: 2214: 2209: 2206: 2096: 2080: 2070: 2063: 2052: 2048: 2045:August Föppl 2025: 2008: 1996: 1993: 1987: 1976: 1972: 1961: 1957: 1950: 1940: 1930: 1920: 1910: 1906: 1900: 1891: 1887: 1883: 1875: 1869: 1838:cathode rays 1834:four-vectors 1705: 1685: 1677: 1665: 1652: 1647: 1637: 1633: 1567: 1548: 1540: 1528: 1457: 1448:opportunism. 1446: 1442: 1422: 1418: 1400: 1317:Encyclopédie 1306: 1299: 1294:". In 1902, 1291: 1284:Ludwig Lange 1272:Carl Neumann 1256: 1119: 1113: 1069: 1032:cathode rays 946: 851: 848:Wilhelm Wien 846: 722: 712: 690: 614: 498: 470:Oliver Lodge 462: 330:include the 313: 294: 269: 253: 216: 210: 159:Thomas Young 156: 122: 94: 69:Isaac Newton 66: 63:Introduction 59:and others. 47:proposed by 28: 26: 24: 15: 9621:Higgs boson 9172:Mathpages: 8773:(1): 5–35, 7304:Pais (1982) 6171:: 1410–1413 6108:translation 6097:: 145–275, 6074:Last Essays 6069:Last Essays 5952:: 129–176, 5928:: 1504–1508 5828:: 1163–1175 5454:: 140–145, 5276:: 459–512, 5212:: 345–351, 4684:: 205–300, 4644:: 1171–1173 4536:(1b): 54–56 4146:: 568–573. 4063:, Springery 3945:: 411–462, 2957:Gravitation 2772:World War I 2766:(1910) and 2764:Felix Klein 2756:Émile Borel 2744:Alfred Robb 2652:proper time 2522:Felix Klein 2512:(1906) and 2059:Max Abraham 2009:all results 1321:H. G. Wells 1071:Max Abraham 191:electricity 179:Lord Kelvin 161:(1804) and 114:gravitation 9806:Categories 9642:By periods 9460:Geophysics 9432:Cosmology 7428:Max Laue, 6426:(2): 41–51 4504:: 972–976. 3224:References 3163:Criticisms 3096:, and the 3037:antimatter 3029:Paul Dirac 2973:Gustav Mie 2891:rigid body 2872:), and by 2723:postulates 2648:world line 2426:Jakob Laub 2320:Max Planck 2253:Max Planck 2037:Ernst Mach 2033:David Hume 2029:empiricist 1999:hypotheses 1659:, and the 1280:gyroscopes 1263:Ernst Mach 719:inductance 697:Ernst Mach 199:inductance 53:Max Planck 9685:By groups 9669:Astronomy 9505:Molecules 9339:Mechanics 9254:Astronomy 8946:: 287–293 8783:CiteSeerX 8693:ignored ( 8683:cite book 8535:120504430 8467:CiteSeerX 8202:0811.4529 7897:Born, Max 7872:Born, Max 6679:Big Think 6407:: 103–127 6148:: 708–710 6061:: 225–232 6019:: 170–177 5984:120211823 5862:: 457–494 5848:: 252–278 5727:: 753–761 5710:: 136–141 5440:124333204 5398:131116577 5356:130423116 5298:186207827 5083:: 809–831 5047:: 559–574 5028:: 427–442 4965:: 363–552 4952:: 103–176 4835:: 405–412 4625:: 121–156 4606:: 266–297 4553:: 949–956 4260:: 239–281 4048:120162895 3889:120361282 3585:: 516–523 3460:: 703–705 3443:: 215–218 3390:121845138 3303:: 576–579 3129:J. G. Fox 2838:hyperbola 2607:− 2227:formula: 2184:− 2154:− 1813:− 1761:− 1668:Emil Cohn 1640:St. Louis 1587:− 1487:− 1438:Ole Rømer 1434:postulate 1376:− 723:in motion 693:Emil Cohn 564:− 505:electrons 425:− 356:− 209:) in the 195:magnetism 67:Although 9791:Category 9616:timeline 9603:Graphene 9565:timeline 9534:timeline 9522:timeline 9495:timeline 9436:timeline 9421:timeline 9411:timeline 9373:timeline 9344:timeline 9327:timeline 9315:timeline 9298:timeline 9271:timeline 9259:timeline 9237:timeline 9107:(2004), 9089:Episteme 9029:(1910), 8898:(2002), 8707:(1974), 8645:(1921), 8622:(1982), 8597:17459755 8443:(1921), 8429:(1886), 8395:citation 8325:14751280 8239:(1988), 8195:(2008), 8149:(2003), 8082:: 1–22, 8061:26997100 8053:16011297 7899:(1956), 7874:(1964), 6684:Archived 6648:Archived 5522:: 53–111 5254:March 4, 5147:March 4, 5133:Scientia 4931:20022840 4903:20022495 4658:Scientia 4652:(1911), 4126:43610293 4118:17819387 3660:33246058 3652:17758464 3181:See also 3151:Priority 3127:In 1962 2909:(1910), 2895:Max Born 2746:(1911); 2740:rapidity 2326:momentum 2284:Max Born 1882:and the 1477:′ 1451:—  1427:(1898), 791:, where 554:′ 415:′ 201:, named 9626:Neutron 9483:Weapons 9468:Fission 9383:Entropy 9123:Bibcode 8877:Bibcode 8838:Bibcode 8775:Bibcode 8577:Bibcode 8515:Bibcode 8305:Bibcode 8207:Bibcode 8084:Bibcode 8033:Bibcode 7954:2945585 7934:Bibcode 7574:Page 18 6690:July 3, 6654:July 3, 6613:Page 92 6553:Bibcode 6519:Bibcode 6485:Bibcode 6451:Bibcode 6441:], 6422:], 6399:], 6376:], 6256:Bibcode 6246:], 6220:Bibcode 6210:], 6163:], 6140:], 6099:Bibcode 5954:Bibcode 5944:], 5920:], 5749:], 5736:], 5719:], 5702:], 5665:Bibcode 5623:Bibcode 5575:Bibcode 5546:: 75–88 5518:], 5490:Bibcode 5456:Bibcode 5420:Bibcode 5378:Bibcode 5336:Bibcode 5278:Bibcode 5214:Bibcode 5181:], 4989:: 74–79 4981:], 4827:], 4818:: 85–87 4810:], 4772:Bibcode 4762:], 4736:Bibcode 4686:Bibcode 4664:: 31–54 4576:Bibcode 4566:], 4545:], 4528:], 4496:]. 4468:Bibcode 4434:Bibcode 4400:Bibcode 4390:], 4323:Bibcode 4313:], 4285:Bibcode 4275:], 4230:Bibcode 4198:Bibcode 4169:Bibcode 4098:Bibcode 4090:Science 4028:Bibcode 3974:Bibcode 3947:Bibcode 3912:Bibcode 3869:Bibcode 3827:Bibcode 3785:Bibcode 3758:Bibcode 3756:: 918, 3748:], 3709:Bibcode 3632:Bibcode 3624:Science 3607:], 3594:], 3545:Bibcode 3511:Bibcode 3483:Bibcode 3473:], 3370:Bibcode 3335:Bibcode 3295:], 3267:Bibcode 3246:: 20–41 3062:, etc. 2919:motions 2736:Varićak 2544:or the 1649:motion. 1571:Thomson 1395:, i.e. 1358:(where 1315:in the 982:(where 256:Fresnel 9473:Fusion 9378:Energy 9356:Optics 9133:  9066:  9016:  8924:  8906:  8811:  8785:  8751:  8733:  8715:  8671:  8632:  8595:  8553:  8533:  8495:  8469:  8416:  8384:  8369:  8323:  8249:  8226:  8157:  8136:  8102:  8059:  8051:  8013:  7991:  7970:  7952:  7886:  7679:  6643:Forbes 6045:  5982:  5795:: 5–14 5690:  5438:  5396:  5354:  5296:  5119:  5000:  4929:  4901:  4712:  4124:  4116:  4074:  4060:  4046:  3887:  3658:  3650:  3388:  3175:per se 3092:, the 3088:, the 3084:, the 3080:, the 1997:ad hoc 1975:, and 1933:) The 1923:) The 1642:named 852:entire 607:, the 279:Fizeau 242:, and 217:After 9544:tests 9500:Atoms 9478:Power 9453:tests 9113:arXiv 8857:(PDF) 8826:(PDF) 8608:(PDF) 8593:S2CID 8531:S2CID 8321:S2CID 8289:(PDF) 8197:arXiv 8172:(PDF) 8072:(PDF) 8057:S2CID 7950:S2CID 7924:arXiv 6437:[ 6418:[ 6395:[ 6384:: 169 6372:[ 6324:, 5, 6242:[ 6206:[ 6186:, 5, 6159:[ 6136:[ 5980:S2CID 5940:[ 5916:[ 5514:[ 5436:S2CID 5394:S2CID 5352:S2CID 5294:S2CID 5248:(PDF) 5241:(PDF) 5177:[ 5003:[ 4927:JSTOR 4899:JSTOR 4758:[ 4562:[ 4492:[ 4386:[ 4366:, 5, 4309:[ 4271:[ 4122:S2CID 4044:S2CID 4016:(PDF) 3962:(PDF) 3935:(PDF) 3900:(PDF) 3885:S2CID 3857:(PDF) 3815:(PDF) 3773:(PDF) 3744:[ 3656:S2CID 3469:[ 3397:(PDF) 3386:S2CID 3358:(PDF) 3291:[ 2524:, or 1693:group 1666:Also 270:fully 9131:ISBN 9064:ISBN 9014:ISBN 8922:ISBN 8904:ISBN 8809:ISBN 8749:ISBN 8731:ISBN 8713:ISBN 8695:help 8669:ISBN 8630:ISBN 8551:ISBN 8493:ISBN 8414:ISBN 8401:link 8382:ISBN 8247:ISBN 8224:ISBN 8155:ISBN 8134:ISBN 8100:ISBN 8049:PMID 8025:Isis 8011:ISBN 7989:ISBN 7968:ISBN 7884:ISBN 7677:ISBN 6692:2023 6656:2023 5256:2009 5149:2009 4833:1911 4114:PMID 3648:PMID 3023:and 2852:and 2750:and 2717:and 2536:and 2490:and 2470:from 2446:both 2337:and 2259:and 2071:time 2035:and 2015:and 1973:a, c 1960:and 1911:i.e. 1691:the 1114:real 904:(or 211:same 197:and 177:and 112:and 27:The 8885:doi 8873:303 8846:doi 8793:doi 8585:doi 8523:doi 8477:doi 8374:doi 8345:doi 8313:doi 8193:414 8180:190 8092:doi 8041:doi 7942:doi 7859:doi 6561:doi 6549:319 6527:doi 6515:318 6493:doi 6481:318 6459:doi 6447:310 6356:doi 6330:doi 6288:doi 6264:doi 6252:338 6228:doi 6216:337 6192:doi 6169:157 6146:157 5970:hdl 5962:doi 5926:140 5673:doi 5661:347 5639:hdl 5631:doi 5619:350 5583:doi 5571:327 5498:doi 5486:352 5464:doi 5428:doi 5386:doi 5344:doi 5286:doi 5274:155 5222:doi 5191:doi 4919:doi 4891:doi 4865:doi 4780:doi 4768:328 4744:doi 4732:328 4694:doi 4682:190 4642:140 4584:doi 4572:324 4476:doi 4464:277 4442:doi 4430:276 4408:doi 4396:336 4372:doi 4331:doi 4319:321 4293:doi 4281:320 4238:doi 4226:339 4206:doi 4194:135 4177:doi 4148:doi 4106:doi 4036:doi 3982:doi 3970:331 3920:doi 3908:328 3877:doi 3865:325 3835:doi 3823:323 3793:doi 3781:322 3682:doi 3640:doi 3553:doi 3541:316 3519:doi 3491:doi 3479:335 3458:157 3441:156 3420:doi 3378:doi 3343:doi 3275:doi 3263:315 2343:the 1840:by 1653:all 844:.) 79:of 9808:: 9184:, 9180:, 9176:, 9165:, 9159:, 9155:, 9129:, 9121:, 9091:, 9087:, 8944:11 8942:, 8883:, 8871:, 8844:, 8834:71 8832:, 8828:, 8791:, 8781:, 8771:31 8769:, 8765:, 8687:: 8685:}} 8681:{{ 8653:, 8649:, 8591:, 8583:, 8573:59 8571:, 8567:, 8529:, 8521:, 8511:53 8509:, 8475:, 8463:37 8461:, 8457:, 8397:}} 8393:{{ 8341:34 8339:, 8335:, 8319:, 8311:, 8299:, 8205:, 8191:, 8178:, 8174:, 8098:, 8090:, 8078:, 8074:, 8055:, 8047:, 8039:, 8029:95 8027:, 7948:, 7940:, 7932:, 7920:69 7918:, 7914:, 7855:20 7853:, 7849:, 7775:^ 7643:^ 7543:^ 7513:^ 7402:^ 7381:^ 7369:^ 7339:^ 7309:^ 7297:^ 7283:^ 7253:^ 7223:^ 7157:^ 6954:^ 6906:^ 6885:^ 6873:^ 6850:^ 6838:^ 6799:^ 6682:. 6676:. 6646:. 6640:. 6559:, 6547:, 6543:, 6525:, 6513:, 6509:, 6491:, 6479:, 6475:, 6457:, 6445:, 6405:21 6403:, 6382:12 6380:, 6352:23 6350:, 6346:, 6326:11 6320:, 6284:27 6282:, 6278:, 6262:, 6250:, 6226:, 6214:, 6188:44 6182:, 6167:, 6144:, 6095:13 6093:, 6087:, 6059:17 6057:, 6030:, 6017:47 6015:, 6011:, 5996:, 5978:, 5968:, 5960:, 5950:21 5948:, 5924:, 5901:, 5844:, 5840:, 5826:11 5824:, 5820:, 5807:, 5791:, 5768:, 5753:, 5723:, 5706:, 5671:, 5659:, 5655:, 5637:, 5629:, 5617:, 5613:, 5581:, 5569:, 5565:, 5544:10 5542:, 5538:, 5528:). 5496:, 5484:, 5480:, 5462:, 5452:61 5450:, 5434:, 5426:, 5416:34 5414:, 5410:, 5392:, 5384:, 5374:31 5372:, 5368:, 5350:, 5342:, 5332:22 5330:, 5326:, 5292:, 5284:, 5272:, 5268:, 5220:, 5210:68 5208:, 5187:38 5185:, 5137:16 5135:, 5131:, 5079:, 5075:, 5060:, 5056:, 5043:, 5039:, 5024:, 5020:, 4985:, 4963:25 4961:, 4950:21 4948:, 4925:, 4915:48 4913:, 4897:, 4887:44 4885:, 4881:, 4861:16 4859:, 4855:, 4831:, 4816:12 4814:, 4778:, 4766:, 4742:, 4730:, 4726:, 4692:, 4680:, 4676:, 4660:, 4656:, 4640:, 4636:, 4621:, 4617:, 4602:, 4598:, 4582:, 4570:, 4551:45 4549:, 4532:, 4515:. 4502:11 4500:. 4474:, 4462:, 4458:, 4440:, 4428:, 4424:, 4406:, 4394:, 4368:27 4362:, 4347:, 4329:, 4317:, 4291:, 4279:, 4256:, 4252:, 4236:, 4224:, 4220:, 4204:, 4192:, 4175:, 4165:30 4163:, 4142:. 4138:. 4120:, 4112:, 4104:, 4094:13 4092:, 4088:, 4042:, 4034:, 4024:38 4022:, 4018:, 4004:10 4002:, 3998:, 3980:, 3968:, 3964:, 3941:, 3937:, 3918:, 3906:, 3902:, 3883:, 3875:, 3863:, 3859:, 3833:, 3821:, 3817:, 3791:, 3779:, 3775:, 3754:10 3752:, 3731:16 3729:, 3725:, 3705:15 3703:, 3699:, 3676:, 3672:, 3654:, 3646:, 3638:, 3628:31 3626:, 3622:, 3581:, 3568:, 3551:, 3539:, 3535:, 3517:, 3507:39 3505:, 3489:, 3477:, 3456:, 3452:, 3439:, 3435:, 3414:, 3410:, 3384:, 3376:, 3366:15 3364:, 3360:, 3341:, 3331:12 3329:, 3318:11 3316:, 3312:, 3299:, 3273:, 3261:, 3257:, 3242:, 3159:. 3147:. 3124:. 3100:. 3058:, 3054:, 3050:, 3046:, 3039:. 3019:. 2669:. 2654:, 2650:, 2532:, 2520:, 2286:, 2282:, 2278:, 2233:mc 1261:. 477:. 246:. 238:, 234:, 230:, 193:, 181:, 144:. 120:. 55:, 39:, 35:, 9239:) 9235:( 9225:e 9218:t 9211:v 9125:: 9115:: 9093:6 8887:: 8879:: 8848:: 8840:: 8795:: 8777:: 8697:) 8677:. 8655:5 8587:: 8579:: 8525:: 8517:: 8479:: 8403:) 8376:: 8347:: 8315:: 8307:: 8301:7 8214:. 8209:: 8199:: 8094:: 8086:: 8080:1 8043:: 8035:: 7976:. 7944:: 7936:: 7926:: 7861:: 7685:. 7436:. 6694:. 6658:. 6563:: 6555:: 6529:: 6521:: 6495:: 6487:: 6461:: 6453:: 6358:: 6332:: 6290:: 6266:: 6258:: 6230:: 6222:: 6194:: 6110:. 6101:: 5972:: 5964:: 5956:: 5930:. 5854:. 5846:5 5793:5 5755:9 5725:7 5708:8 5679:. 5675:: 5667:: 5641:: 5633:: 5625:: 5585:: 5577:: 5500:: 5492:: 5466:: 5458:: 5430:: 5422:: 5388:: 5380:: 5346:: 5338:: 5288:: 5280:: 5224:: 5216:: 5200:; 5193:: 5081:6 5062:5 5045:2 5026:1 4987:1 4921:: 4893:: 4867:: 4782:: 4774:: 4746:: 4738:: 4696:: 4688:: 4662:X 4623:7 4604:2 4586:: 4578:: 4534:4 4478:: 4470:: 4444:: 4436:: 4410:: 4402:: 4374:: 4333:: 4325:: 4295:: 4287:: 4258:1 4240:: 4232:: 4208:: 4200:: 4183:. 4179:: 4171:: 4154:. 4150:: 4144:2 4108:: 4100:: 4038:: 4030:: 3984:: 3976:: 3949:: 3943:4 3922:: 3914:: 3879:: 3871:: 3848:. 3837:: 3829:: 3806:. 3795:: 3787:: 3760:: 3711:: 3688:. 3684:: 3678:8 3642:: 3634:: 3583:5 3570:9 3555:: 3547:: 3521:: 3513:: 3493:: 3485:: 3426:. 3422:: 3416:8 3380:: 3372:: 3345:: 3337:: 3301:5 3277:: 3269:: 2620:2 2615:4 2611:x 2602:2 2597:3 2593:x 2589:+ 2584:2 2579:2 2575:x 2571:+ 2566:2 2561:1 2557:x 2398:2 2394:c 2390:m 2387:= 2384:E 2229:E 2221:. 2219:c 2217:/ 2215:E 2210:E 2191:) 2187:1 2174:2 2170:c 2164:2 2160:v 2151:1 2147:1 2141:( 2135:2 2131:c 2127:m 2124:= 2119:n 2116:i 2113:k 2109:E 1990:. 1988:c 1983:. 1977:d 1968:. 1962:c 1958:a 1951:b 1937:; 1931:d 1927:; 1921:c 1907:b 1901:a 1886:( 1816:1 1808:t 1805:c 1779:2 1775:t 1769:2 1765:c 1756:2 1752:z 1748:+ 1743:2 1739:y 1735:+ 1730:2 1726:x 1613:2 1609:c 1603:/ 1596:2 1592:v 1584:1 1509:2 1505:c 1499:/ 1494:x 1491:v 1484:t 1481:= 1474:t 1401:n 1379:1 1371:= 1368:i 1344:t 1341:i 1233:2 1229:c 1224:/ 1220:E 1217:) 1214:3 1210:/ 1206:4 1203:( 1200:= 1197:m 1171:2 1167:c 1162:/ 1158:E 1155:) 1152:3 1148:/ 1144:8 1141:( 1138:= 1135:m 1096:2 1092:c 1087:/ 1083:E 1052:m 1048:/ 1044:e 1016:m 992:e 968:m 964:/ 960:e 928:2 924:c 920:m 917:= 914:E 888:2 884:c 879:/ 875:E 872:= 869:m 825:E 801:m 775:2 771:c 766:/ 762:E 759:) 756:3 752:/ 748:4 745:( 742:= 739:m 669:c 665:/ 661:v 637:c 633:/ 629:v 583:2 579:c 574:/ 570:x 567:v 561:t 558:= 551:t 526:c 522:/ 518:v 464:( 444:2 440:c 435:/ 431:x 428:v 422:t 419:= 412:t 382:2 378:c 372:/ 365:2 361:v 353:1 347:/ 343:1 22:.

Index

history of general relativity
Albert A. Michelson
Hendrik Lorentz
Henri Poincaré
special relativity
Albert Einstein
Max Planck
Hermann Minkowski
Isaac Newton
absolute time and space
principle of relativity
Galileo Galilei
luminiferous aether
James Clerk Maxwell
Hendrik Lorentz
a theory of electrodynamics
Henri Poincaré
electrodynamics
gravitation
Lorentz transformations
Albert Einstein
special relativity
Hermann Minkowski
general theory of relativity
relativistic field theories
Thomas Young
Augustin-Jean Fresnel
transverse wave
luminiferous aether
Michael Faraday

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.