Knowledge

Hydrogen production

Source 📝

690: 574: 2131:(ATR) with integrated capture of carbon dioxide allows higher capture rates at satisfactory energy efficiencies and life cycle assessments have shown lower greenhouse gas emissions for such plants compared to SMRs with carbon dioxide capture. Application of ATR technology with integrated capture of carbon dioxide in Europe has been assessed to have a lower greenhouse gas footprint than burning natural gas, e.g. for the H21 project with a reported reduction of 68% due to a reduced carbon dioxide intensity of natural gas combined with a more suitable reactor type for capture of carbon dioxide. 675:. The lower the energy used by a generator, the higher would be its efficiency; a 100%-efficient electrolyser would consume 39.4 kilowatt-hours per kilogram (142 MJ/kg) of hydrogen, 12,749 joules per litre (12.75 MJ/m). Practical electrolysis typically uses a rotating electrolyser, where centrifugal force helps separate gas bubbles from water. Such an electrolyser at 15 bar pressure may consume 50 kilowatt-hours per kilogram (180 MJ/kg), and a further 15 kilowatt-hours (54 MJ) if the hydrogen is compressed for use in hydrogen cars. 2070: 1590: 1498: 1535: 1634: 138: 723:. The thermodynamic energy required for hydrogen by electrolysis translates to 33 kWh/kg, which is higher than steam reforming with carbon capture and higher than methane pyrolysis. One of the advantages of electrolysis over hydrogen from steam methane reforming (SMR) is that the hydrogen can be produced on-site, meaning that the costly process of delivery via truck or pipeline is avoided. 1880:. William Ayers at Energy Conversion Devices demonstrated and patented the first multijunction high efficiency photoelectrochemical system for direct splitting of water in 1983. This group demonstrated direct water splitting now referred to as an "artificial leaf" or "wireless solar water splitting" with a low cost thin film amorphous silicon multijunction sheet immersed directly in water. 379:(SMR), which uses natural gas. The energy content of the produced hydrogen is around 74% of the energy content of the original fuel, as some energy is lost as excess heat during production. In general, steam reforming emits carbon dioxide, a greenhouse gas, and is known as gray hydrogen. If the carbon dioxide is captured and stored, the hydrogen produced is known as blue hydrogen. 1854:
potentially less energy is required to produce hydrogen. Nuclear heat could be used to split hydrogen from water. High temperature (950–1000 °C) gas cooled nuclear reactors have the potential to split hydrogen from water by thermochemical means using nuclear heat. High-temperature electrolysis has been demonstrated in a laboratory, at 108 
1424:/mol glucose can be produced. Sugars are convertible to volatile fatty acids (VFAs) and alcohols as by-products during this process. Photo fermentative bacteria are able to generate hydrogen from VFAs. Hence, metabolites formed in dark fermentation can be used as feedstock in photo fermentation to enhance the overall yield of hydrogen. 1269:(S-I cycle) is a thermochemical cycle processes which generates hydrogen from water with an efficiency of approximately 50%. The sulfur and iodine used in the process are recovered and reused, and not consumed by the process. The cycle can be performed with any source of very high temperatures, approximately 950 °C, such as by 559:, low pressure electrolysis of water, or a range of other emerging electrochemical processes such as high temperature electrolysis or carbon assisted electrolysis. However, current best processes for water electrolysis have an effective electrical efficiency of 70-80%, so that producing 1 kg of hydrogen (which has a 597:
reforming). Due to their use of water, a readily available resource, electrolysis and similar water-splitting methods have attracted the interest of the scientific community. With the objective of reducing the cost of hydrogen production, renewable sources of energy have been targeted to allow electrolysis.
2232:
by electrolysis. Although requiring expensive technologies, hydrogen can be cooled, compressed and purified for use in other processes on site or sold to a customer via pipeline, cylinders or trucks. The discovery and development of less expensive methods of production of bulk hydrogen is relevant to
1942:
which uses sunlight to obtain the required 800 to 1,200 °C to heat water. Hydrosol II has been in operation since 2008. The design of this 100-kilowatt pilot plant is based on a modular concept. As a result, it may be possible that this technology could be readily scaled up to the megawatt range
596:
Water electrolysis can operate at 50–80 °C (120–180 °F), while steam methane reforming requires temperatures at 700–1,100 °C (1,300–2,000 °F). The difference between the two methods is the primary energy used; either electricity (for electrolysis) or natural gas (for steam methane
566:
In parts of the world, steam methane reforming is between $ 1–3/kg on average excluding hydrogen gas pressurization cost. This makes production of hydrogen via electrolysis cost competitive in many regions already, as outlined by Nel Hydrogen and others, including an article by the IEA examining the
129:
is bonded to oxygen in water. Manufacturing elemental hydrogen requires the consumption of a hydrogen carrier such as a fossil fuel or water. The former carrier consumes the fossil resource and in the steam methane reforming (SMR) process produces greenhouse gas carbon dioxide. However, in the newer
1415:
Among hydrogen production methods biological routes are potentially less energy intensive. In addition, a wide variety of waste and low-value materials such as agricultural biomass as renewable sources can be utilized to produce hydrogen via biochemical or thermochemical pathways. Nevertheless, at
1897:
A method studied by Thomas Nann and his team at the University of East Anglia consists of a gold electrode covered in layers of indium phosphide (InP) nanoparticles. They introduced an iron-sulfur complex into the layered arrangement, which when submerged in water and irradiated with light under a
1005:
is used. The process of coal gasification uses steam and oxygen to break molecular bonds in coal and form a gaseous mixture of hydrogen and carbon monoxide. Carbon dioxide and pollutants may be more easily removed from gas obtained from coal gasification versus coal combustion. Another method for
710:
The US DOE target price for hydrogen in 2020 is $ 2.30/kg, requiring an electricity cost of $ 0.037/kWh, which is achievable given recent PPA tenders for wind and solar in many regions. The report by IRENA.ORG is an extensive factual report of present-day industrial hydrogen production consuming
1853:
Hydrogen can be generated from energy supplied in the form of heat and electricity through high-temperature electrolysis (HTE). Since some of the energy in HTE is supplied in the form of heat, less of the energy must be converted twice from heat to electricity, and then to hydrogen. Therefore,
701:
As of 2020, the cost of hydrogen by electrolysis is around $ 3–8/kg. Considering the industrial production of hydrogen, and using current best processes for water electrolysis (PEM or alkaline electrolysis) which have an effective electrical efficiency of 70–82%, producing 1 kg of hydrogen
678:
Conventional alkaline electrolysis has an efficiency of about 70%, however advanced alkaline water electrolysers with efficiency of up to 82% are available. Accounting for the use of the higher heat value (because inefficiency via heat can be redirected back into the system to create the steam
1883:
Hydrogen evolved on the front amorphous silicon surface decorated with various catalysts while oxygen evolved off the back metal substrate. A Nafion membrane above the multijunction cell provided a path for ion transport. Their patent also lists a variety of other semiconductor multijunction
1468:
Fermentative hydrogen production can be done using direct biophotolysis by green algae, indirect biophotolysis by cyanobacteria, photo-fermentation by anaerobic photosynthetic bacteria and dark fermentation by anaerobic fermentative bacteria. For example, studies on hydrogen production using
1644:
of methane (natural gas) with a one-step process bubbling methane through a molten metal catalyst is a "no greenhouse gas" approach to produce hydrogen that was demonstrated in laboratory conditions in 2017 and now being tested at larger scales. The process is conducted at high temperatures
1392:
systems. However, if this process is assisted by photocatalysts suspended directly in water instead of using photovoltaic and an electrolytic system the reaction is in just one step, it can be made more efficient. Current systems, however have low performance for commercial implementation.
1419:
Biochemical routes to hydrogen are classified as dark and photo fermentation processes. In dark fermentation, carbohydrates are converted to hydrogen by fermentative microorganisms including strict anaerobe and facultative anaerobic bacteria. A theoretical maximum of 4 mol
4029:
Sebbahi, Seddiq; Nabil, Nouhaila; Alaoui-Belghiti, Amine; Laasri, Said; Rachidi, Samir; Hajjaji, Abdelowahed (2022). "Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis".
5379: 747:
Carbon/hydrocarbon assisted water electrolysis (CAWE) has the potential to offer a less energy intensive, cleaner method of using chemical energy in various sources of carbon, such as low-rank and high sulfur coals, biomass, alcohols and methane (Natural Gas), where pure
2061:
in Mali, producing electricity for the surrounding villages. More discoveries of naturally occurring hydrogen in continental, on-shore geological environments have been made in recent years and open the way to the novel field of natural or native hydrogen, supporting
6819: 1527:, as the latter only uses algae and with the latter, the algae itself generates the hydrogen instantly, where with biocatalysed electrolysis, this happens after running through the microbial fuel cell and a variety of aquatic plants can be used. These include 7040:
Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J.; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco (December 2016).
790:
by electrolysis generates a sizable amount of Hydrogen as a byproduct. In the port of Antwerp a 1MW demonstration fuel cell power plant is powered by such byproduct. This unit has been operational since late 2011. The excess hydrogen is often managed with a
823:, resulting in a hydrogen- and carbon monoxide-rich syngas. More hydrogen and carbon dioxide are then obtained from carbon monoxide (and water) via the water-gas shift reaction. Carbon dioxide can be co-fed to lower the hydrogen to carbon monoxide ratio. 731:
In addition to reduce the voltage required for electrolysis via the increasing of the temperature of the electrolysis cell it is also possible to electrochemically consume the oxygen produced in an electrolyser by introducing a fuel (such as carbon/coal,
1888:
technology at universities and the photovoltaic industry. If this process is assisted by photocatalysts suspended directly in water instead of using photovoltaic and an electrolytic system, the reaction is in just one step, which can improve efficiency.
1416:
present hydrogen is produced mainly from fossil fuels, in particular, natural gas which are non-renewable sources. Hydrogen is not only the cleanest fuel but also widely used in a number of industries, especially fertilizer, petrochemical and food ones.
5658: 6393: 7440:
Larin, Nikolay; Zgonnik, Viacheslav; Rodina, Svetlana; Deville, Eric; Prinzhofer, Alain; Larin, Vladimir N. (September 2015). "Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia".
1844:
is eliminated, the average energy consumption for internal compression is around 3%. European largest (1 400 000 kg/a, High-pressure Electrolysis of water, alkaline technology) hydrogen production plant is operating at Kokkola, Finland.
1762:, to the production of hydrogen. Biological hydrogen can also be produced using feedstocks other than algae, the most common feedstock being waste streams. The process involves bacteria feeding on hydrocarbons and excreting hydrogen and CO 1132:
can be divided into different types based on the pyrolysis temperature, namely low-temperature slow pyrolysis, medium-temperature rapid pyrolysis, and high-temperature flash pyrolysis. The source energy is mainly solar energy, with help of
2057:, and in petroleum refining. Although initially hydrogen gas was thought not to occur naturally in convenient reservoirs, it is now demonstrated that this is not the case; a hydrogen system is currently being exploited near Bourakebougou, 5773:
Ropero-Vega, J.L.; Pedraza-Avella, J.A.; Niño-Gómez, M.E. (September 2015). "Hydrogen production by photoelectrolysis of aqueous solutions of phenol using mixed oxide semiconductor films of Bi–Nb–M–O (M=Al, Fe, Ga, In) as photoanodes".
1313:, and water. The generator is small enough to fit a truck and requires only a small amount of electric power, the materials are stable and not combustible, and they do not generate hydrogen until mixed. The method has been in use since 7685:
Antonini, Cristina; Treyer, Karin; Streb, Anne; van der Spek, Mijndert; Bauer, Christian; Mazzotti, Marco (2020). "Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis".
386:), and water. It is the cheapest source of industrial hydrogen, being the source of nearly 50% of the world's hydrogen. The process consists of heating the gas to 700–1,100 °C (1,300–2,000 °F) in the presence of steam over a 5932:
Asadi, Nooshin; Karimi Alavijeh, Masih; Zilouei, Hamid (January 2017). "Development of a mathematical methodology to investigate biohydrogen production from regional and national agricultural crop residues: A case study of Iran".
1987:, are under research and in testing phase to produce hydrogen and oxygen from water and heat without using electricity. These processes can be more efficient than high-temperature electrolysis, typical in the range from 35% – 49% 1059:
Injecting appropriate microbes into depleted oil wells allows them to extract hydrogen from the remaining, unrecoverable oil. Since the only inputs are the microbes, production costs are low. The method also produces concentrated
1257:
is used because aside from water, hydrogen and oxygen, the chemical compounds used in these processes are continuously recycled. If electricity is partially used as an input, the resulting thermochemical cycle is defined as a
2829: 6815: 744:, glycerol, etc.) into the oxygen side of the reactor. This reduces the required electrical energy and has the potential to reduce the cost of hydrogen to less than 40~60% with the remaining energy provided in this manner. 616:(AECs). Traditionally, alkaline electrolysers are cheaper in terms of investment (they generally use nickel catalysts), but less-efficient; PEM electrolysers, conversely, are more expensive (they generally use expensive 7608: 1925:
Very high temperatures are required to dissociate water into hydrogen and oxygen. A catalyst is required to make the process operate at feasible temperatures. Heating the water can be achieved through the use of water
627:
SOECs operate at high temperatures, typically around 800 °C (1,500 °F). At these high temperatures, a significant amount of the energy required can be provided as thermal energy (heat), and as such is termed
4744:
Lamy, Claude; Devadas, Abirami; Simoes, Mario; Coutanceau, Christophe (2012). "Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC)".
7110:
Navarro Yerga, Rufino M.; Álvarez Galván, M. Consuelo; del Valle, F.; Villoria de la Mano, José A.; Fierro, José L. G. (22 June 2009). "Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation".
706:
of 143 MJ/kg or about 40 kWh/kg) requires 50–55 kWh of electricity. At an electricity cost of $ 0.06/kWh, as set out in the Department of Energy hydrogen production targets for 2015, the hydrogen cost is $ 3/kg.
7819: 5104: 1157:
thermo-chemical cycle for splitting water and high-temperature steam electrolysis (HTSE) were selected as the main processes for nuclear hydrogen production. The S-I cycle follows three chemical reactions:
5692:
Navarro Yerga, Rufino M.; Álvarez Galván, M. Consuelo; Del Valle, F.; Villoria De La Mano, José A.; Fierro, José L. G. (2009). "Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation".
4958: 5505:
Chukwu, C., Naterer, G. F., Rosen, M. A., "Process Simulation of Nuclear-Produced Hydrogen with a Cu-Cl Cycle", 29th Conference of the Canadian Nuclear Society, Toronto, Ontario, Canada, June 1–4, 2008.
4234: 6385: 1774:
Besides regular electrolysis, electrolysis using microbes is another possibility. With biocatalysed electrolysis, hydrogen is generated after running through the microbial fuel cell and a variety of
1321:
is filled with sodium hydroxide and ferrosilicon, closed, and a controlled amount of water is added; the dissolving of the hydroxide heats the mixture to about 93 °C and starts the reaction;
5675: 1334: 4471: 570:
A small part (2% in 2019) is produced by electrolysis using electricity and water, consuming approximately 50 to 55 kilowatt-hours of electricity per kilogram of hydrogen produced.
4714:
Ju, Hyungkuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S; Mulder, Roger J (2016). "Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation".
6668:
Patlolla, Shashank Reddy; Katsu, Kyle; Sharafian, Amir; Wei, Kevin; Herrera, Omar E.; Mérida, Walter (July 2023). "A review of methane pyrolysis technologies for hydrogen production".
5149:
Gemayel, Jimmy El; MacChi, Arturo; Hughes, Robin; Anthony, Edward John (2014). "Simulation of the integration of a bitumen upgrading facility and an IGCC process with carbon capture".
2821: 6785: 1645:(1065 °C). Producing 1 kg of hydrogen requires about 18 kWh of electricity for process heat. The pyrolysis of methane can be expressed by the following reaction equation. 643:
PEM electrolysis cells typically operate below 100 °C (212 °F). These cells have the advantage of being comparatively simple and can be designed to accept widely varying
6505:
Palmer, Clarke; Upham, D. Chester; Smart, Simon; Gordon, Michael J.; Metiu, Horia; McFarland, Eric W. (January 2020). "Dry reforming of methane catalysed by molten metal alloys".
3714: 2180:
94 million tonnes of grey hydrogen are produced globally using fossil fuels as of 2022, primarily natural gas, and are therefore a significant source of greenhouse gas emissions.
1559:
powder reacts with water to produce hydrogen gas upon contact with water. It reportedly generates hydrogen at 100 percent of the theoretical yield. The process is not economical.
593:
between 70 and 85%. The electrical efficiency of electrolysis is expected to reach 82–86% before 2030, while also maintaining durability as progress in this area continues apace.
1991:
efficiency. Thermochemical production of hydrogen using chemical energy from coal or natural gas is generally not considered, because the direct chemical path is more efficient.
6123:
Strik, David P. B. T. B.; Hamelers (Bert), H. V. M.; Snel, Jan F. H.; Buisman, Cees J. N. (2008). "Green electricity production with living plants and bacteria in a fuel cell".
1984: 125:. It is unclear how much molecular hydrogen is available in natural reservoirs, but at least one company specializes in drilling wells to extract hydrogen. Most hydrogen in the 7789: 7722: 6549: 1137:
to decompose water or biomass to produce hydrogen. However, this process has relatively low hydrogen yields and high operating cost. It is not a feasible method for industry.
5208: 1858:(thermal) per kilogram of hydrogen produced, but not at a commercial scale. In addition, this is lower-quality "commercial" grade Hydrogen, unsuitable for use in fuel cells. 505:. This oxidation also provides energy to maintain the reaction. Additional heat required to drive the process is generally supplied by burning some portion of the methane. 4656:
Uhm, Sunghyun; Jeon, Hongrae; Kim, Tae Jin; Lee, Jaeyoung (2012). "Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process".
7625: 4169:
Clarke, R.E.; Giddey, S.; Ciacchi, F.T.; Badwal, S.P.S.; Paul, B.; Andrews, J. (2009). "Direct coupling of an electrolyser to a solar PV system for generating hydrogen".
2693: 2506: 1016:
gas made from pyrolysis (oxygen free heating) of coal has about 60% hydrogen, the rest being methane, carbon monoxide, carbon dioxide, ammonia, molecular nitrogen, and
527:
O) into its components oxygen and hydrogen. When the source of energy for water splitting is renewable or low-carbon, the hydrogen produced is sometimes referred to as
6045:
Asadi, Nooshin; Zilouei, Hamid (March 2017). "Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes".
113:. The global hydrogen generation market was fairly valued at US$ 155 billion in 2022, and expected to grow at a compound annual growth rate of 9.3% from 2023 to 2030. 7397:
Prinzhofer, Alain; Tahara Cissé, Cheick Sidy; Diallo, Aliou Boubacar (October 2018). "Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)".
6362: 141:
Illustrating inputs and outputs of steam reforming of natural gas, a process to produce hydrogen. As of 2020, the carbon sequestrastion step is not in commercial use.
7811: 175:. If most of the carbon dioxide emission is captured, it is referred to as blue hydrogen. Hydrogen produced from coal may be referred to as brown or black hydrogen. 6920: 5061: 4401: 3891: 3829: 581:
Water electrolysis is using electricity to split water into hydrogen and oxygen. As of 2020, less than 0.1% of hydrogen production comes from water electrolysis.
3752: 4877:
Ju, Hyungkuk; Badwal, Sukhvinder; Giddey, Sarbjit (2018). "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production".
4343: 7365: 4955: 3260: 68:. Producing green hydrogen is currently more expensive than producing gray hydrogen, and the efficiency of energy conversion is inherently low. Other methods of 4532: 3644: 2529: 1994:
None of the thermochemical hydrogen production processes have been demonstrated at production levels, although several have been demonstrated in laboratories.
1884:
materials for the direct water splitting in addition to amorphous silicon and silicon germanium alloys. Research continues towards developing high-efficiency
5345:
Ping, Zhang; Laijun, Wang; Songzhe, Chen; Jingming, Xu (January 2018). "Progress of nuclear hydrogen production through the iodine–sulfur process in China".
1872:
Using electricity produced by photovoltaic systems offers the cleanest way to produce hydrogen. Water is broken into hydrogen and oxygen by electrolysis – a
7157:
Navarro, R.M.; Del Valle, F.; Villoria de la Mano, J.A.; Álvarez-Galván, M.C.; Fierro, J.L.G. (2009). "Photocatalytic Water Splitting Under Visible Light".
3680: 4197: 4139: 1220:
The hydrogen production rate of HTGR with IS cycle is approximately 0.68 kg/s, and the capital cost to build a unit of power plant is $ 100 million.
6955: 6162: 3361: 3130: 1778: 531:. The conversion can be accomplished in several ways, but all methods are currently considered more expensive than fossil-fuel based production methods. 6448:
Upham, D. Chester; Agarwal, Vishal; Khechfe, Alexander; Snodgrass, Zachary R.; Gordon, Michael J.; Metiu, Horia; McFarland, Eric W. (17 November 2017).
2951: 5508: 2990: 2084:
at scale for a renewable hydrogen economy. Water could be pumped down to hot iron-rich rock to produce hydrogen and the hydrogen could be extracted.
640:. This has the potential to reduce the overall cost of the hydrogen produced by reducing the amount of electrical energy required for electrolysis. 5437: 4584: 2620: 1679:
Methane pyrolysis technologies are in the early development stages as of 2023. They have numerous obstacles to overcome before commercialization.
22:
gas is produced by several industrial methods. Nearly all of the world's current supply of hydrogen is created from fossil fuels. Most hydrogen is
6004: 2972: 1720:
reactions do not require light energy, so they are capable of constantly producing hydrogen from organic compounds throughout the day and night.
90:
As of 2023, less than 1% of dedicated hydrogen production is low-carbon, i.e. blue hydrogen, green hydrogen, and hydrogen produced from biomass.
6313: 4834:
Ju, H; Badwal, S.P.S; Giddey, S (2018). "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production".
4463: 6580: 2116:
that is 20% greater than burning gas or coal for heat and 60% greater when compared to burning diesel for heat, assuming US up- and mid-stream
819:
Hydrogen production from natural gas and heavier hydrocarbons is achieved by partial oxidation. A fuel-air or fuel-oxygen mixture is partially
5626: 686:
PEM efficiency is expected to increase to approximately 86% before 2030. Theoretical efficiency for PEM electrolysers is predicted up to 94%.
7232: 3226: 7005: 1609:, also called white hydrogen or gold hydrogen, can be extracted from wells in a similar manner as fossil fuels such as oil and natural gas. 7295: 6984: 6088:
Percival Zhang, Y-H; Sun, Jibin; Zhong, Jian-Jiang (2010). "Biofuel production by in vitro synthetic enzymatic pathway biotransformation".
3775: 1931: 7337: 7043:"Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution" 6793: 5008: 5968:
Tao, Y; Chen, Y; Wu, Y; He, Y; Zhou, Z (2007). "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose".
4979: 4289: 4062: 5221: 4431: 4089:
Hauch, Anne; Ebbesen, Sune Dalgaard; Jensen, Søren Højgaard; Mogensen, Mogens (2008). "Highly efficient high temperature electrolysis".
3706: 3014: 1388:
The conversion of solar energy to hydrogen by means of water splitting process is one of the most interesting ways to achieve clean and
134:
process no greenhouse gas carbon dioxide is produced. These processes typically require no further energy input beyond the fossil fuel.
7760: 7267: 4609: 2530:"Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options" 34:, the main component of natural gas. Producing one tonne of hydrogen through this process emits 6.6–9.3 tonnes of carbon dioxide. When 6616:"Mathematical modelling and simulation of the thermo-catalytic decomposition of methane for economically improved hydrogen production" 3598: 6167: 1278: 609: 2177:
As of 2020, estimated costs of production are $ 1–1.80/kg for grey hydrogen and blue hydrogen, and $ 2.50–6.80 for green hydrogen.
2154:
to produce hydrogen in a steam reformer. Hydrogen fuel, when produced by renewable sources of energy like wind or solar power, is a
6541: 6125: 2502: 1964: 3530:
Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014).
5122:
Lee, Woon-Jae; Lee, Yong-Kuk (2001). "Internal Gas Pressure Characteristics Generated during Coal Carbonization in a Coke Oven".
3419:
Dincer, Ibrahim; Acar, Canan (September 2015). "Review and evaluation of hydrogen production methods for better sustainability".
830:
fuel-air mixture or fuel-oxygen is partially combusted in a reformer or partial oxidation reactor. A distinction is made between
4121: 1095:, researchers found bacteria in a naturally occurring high radiation zone. The bacterial community which was dominated by a new 6707: 5294: 4557: 2683: 2494: 1917:
of water to produce hydrogen gas. The company plans to achieve commercial application "as early as possible", not before 2020.
1840:). By pressurising the hydrogen in the electrolyser, through a process known as chemical compression, the need for an external 1688: 1539: 1524: 1346: 7569: 6339: 4956:
http://www.nedstack.com/images/stories/news/documents/20120202_Press%20release%20Solvay%20PEM%20Power%20Plant%20start%20up.pdf
2214:, the primary industrial method for the production of synthetic nitrogen fertilizer for growing 47 percent of food worldwide. 1121:
occurs at temperatures too high for usual process piping and equipment resulting in a rather low commercialization potential.
8024: 7174: 6853: 6199: 5913: 5801:
Low, Jingxiang; Yu, Jiaguo; Jaroniec, Mietek; Wageh, Swelm; Al-Ghamdi, Ahmed A. (May 2017). "Heterojunction Photocatalysts".
5757: 3986:
Badwal, Sukhvinder P.S.; Giddey, Sarbjit; Munnings, Christopher (2013). "Hydrogen production via solid electrolytic routes".
3468: 3403: 5475: 1374:(the conversion of sunlight into hydrogen) barrier. with a hydrogen production rate of 10–12 ml per liter culture per hour. 7746: 6354: 5318:
Guoxin, Hu; Hao, Huang (May 2009). "Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent".
5086: 183:
Hydrogen is often referred to by various colors to indicate its origin (perhaps because gray symbolizes "dirty hydrogen").
5239:; Eoin L. Brodie; Terry C. Hazen; Gary L. Andersen; Todd Z. DeSantis; Duane P. Moser; Dave Kershaw; T. C. Onstott (2006). 1370:, to the production of hydrogen. It seems that the production is now economically feasible by surpassing the 7–10 percent 6927: 5065: 4239: 1146: 5448:
Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant. 2009
3748: 164:. When derived from natural gas by zero greenhouse emission methane pyrolysis, it is referred to as turquoise hydrogen. 7012: 4621:
Giddey, S; Kulkarni, A; Badwal, S.P.S (2015). "Low emission hydrogen generation through carbon assisted electrolysis".
4351: 3285: 1551: 7361: 5033: 3251: 2882: 148:
water, the latter carrier, requires electrical or heat input, generated from some primary energy source (fossil fuel,
5557: 4536: 4508: 4319: 3648: 3620: 668: 1051:
S from the sulfur in the coke feed. Gasification is an option for producing hydrogen from almost any carbon source.
689: 5538: 5410: 5393: 2363: 1693: 1442: 1433: 7190:
Nann, Thomas; Ibrahim, Saad K.; Woi, Pei-Meng; Xu, Shu; Ziegler, Jan; Pickett, Christopher J. (22 February 2010).
3948: 6355:"Researchers develop potentially low-cost, low-emissions technology that can convert methane without forming CO2" 6241: 4775:
Badwal, Sukhvinder P. S; Giddey, Sarbjit S; Munnings, Christopher; Bhatt, Anand I; Hollenkamp, Anthony F (2014).
3920: 3669: 3066: 2843: 1581:
are submerged and heated to about 80 °C (176 °F), causing a chemical reaction which produces hydrogen.
6215: 4476:
green hydrogen .. current pricing of around $ 3 to $ 8 a kilogram .. gray hydrogen, which costs as little as $ 1
4208: 4147: 1412:, steam reforming, or biological conversion like biocatalysed electrolysis or fermentative hydrogen production. 3516: 2171: 1383: 7883:
Castelvecchi, Davide (2022-11-16). "How the hydrogen revolution can help save the planet — and how it can't".
6951: 6172: 3365: 3121: 1935: 1775: 4448: 3338: 2772: 2347: 1274: 629: 605: 546: 7962: 7934: 7583: 4520:
Efficiency factors for PEM electrolysers up to 94% are predicted, but this is only theoretical at this time.
3632:
Efficiency factors for PEM electrolysers up to 94% are predicted, but this is only theoretical at this time.
2943: 1523:, wastewater or plants can be used to generate power. Biocatalysed electrolysis should not be confused with 970:). Of the available energy of the feed, approximately 48% is contained in the hydrogen, 40% is contained in 8043: 5515: 5458: 2986: 2425: 2368: 2037:. Of the available energy of the feed, approximately 48% is contained in the hydrogen, 40% is contained in 405: 7385: 5050: 2715: 2142:. Two ways of producing hydrogen from renewable energy sources are claimed to be practical. One is to use 1281:
in Japan. There are other hybrid cycles that use both high temperatures and some electricity, such as the
577:
Illustrating inputs and outputs of electrolysis of water, for production of hydrogen and no greenhouse gas
8000: 7862: 5896:
Häussinger, Peter; Lohmüller, Reiner; Watson, Allan M. (2011). "Hydrogen, 1. Properties and Occurrence".
2528:
Griffiths, Steve; Sovacool, Benjamin K.; Kim, Jinsoo; Bazilian, Morgan; Uratani, Joao M. (October 2021).
2287: 1697: 1371: 5666:. Steering Committee Meeting and Workshop of APEC Research Network for Advanced Biohydrogen Technology. 5434: 4373: 3801: 2822:"A net-zero world 'would require 306 million tonnes of green hydrogen per year by 2050': IEA | Recharge" 2612: 2174:
made an agreement in January 2022 to supply commercial pink hydrogen in the order of kilograms per day.
6024: 2109: 1867: 1797: 1293:
reaction in one of the reaction steps, it operates at 530 °C and has an efficiency of 43 percent.
632:. The heat energy can be provided from a number of different sources, including waste industrial heat, 613: 556: 550: 437: 260: 35: 5736:
Navarro, R.M.; Del Valle, F.; Villoria De La Mano, J.A.; Álvarez-Galván, M.C.; Fierro, J.L.G. (2009).
5509:"Process Simulation of Nuclear-Based Thermochemical Hydrogen Production with a Copper-Chlorine Cycle" 4143: 3976:
Hordeski, M. F. Alternative fuels: the future of hydrogen. 171–199 (The Fairmont Press, inc., 2007).
2353: 2252: 1927: 1877: 1873: 1282: 1270: 1025: 986: 962:
company of the same name, for the production of hydrogen and carbon black from liquid hydrocarbons (C
6572: 7833: 6885:
Carmo, M; Fritz D; Mergel J; Stolten D (2013). "A comprehensive review on PEM water electrolysis".
6386:"BASF researchers working on fundamentally new, low-carbon production processes, Methane Pyrolysis" 3459:
Press, Roman J.; Santhanam, K. S. V.; Miri, Massoud J.; Bailey, Alla V.; Takacs, Gerald A. (2008).
3038: 2889: 2113: 2097: 2081: 1613: 1593: 765: 168: 7263: 7242: 5633: 3217: 7016: 6976: 6601: 5236: 4490:"Chapter 3: Production of Hydrogen. Part 4: Production from electricity by means of electrolysis" 3591:"Chapter 3: Production of Hydrogen. Part 4: Production from electricity by means of electrolysis" 3253:
National hydrogen roadmap: pathways to an economically sustainable hydrogen industry in Australia
3250:
Bruce, S; Temminghoff, M; Hayward, J; Schmidt, E; Munnings, C; Palfreyman, D; Hartley, P (2018).
1820:) by means of an electric current being passed through the water. The difference with a standard 1462: 1154: 1153:-free nuclear technique to produce hydrogen by splitting water in a large scale. In this method, 1029: 637: 122: 27: 7626:"Air Products to Build Europe’s Largest Blue Hydrogen Plant and Strengthens Long-term Agreement" 7288: 2795: 2049:
As of 2019, hydrogen is mainly used as an industrial feedstock, primarily for the production of
806:
with 60% hydrogen by volume. The hydrogen can be extracted from the coke oven gas economically.
7330: 6450:"Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon" 5235:
Li-Hung Lin; Pei-Ling Wang; Douglas Rumble; Johanna Lippmann-Pipke; Erik Boice; Lisa M. Pratt;
5001: 4687:
in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis".
2358: 2277: 2272: 1833: 145: 7790:"World first for nuclear-powered pink hydrogen as commercial deal signed in Sweden | Recharge" 7570:"The Potential for Geologic Hydrogen for Next-Generation Energy | U.S. Geological Survey" 7484: 6340:"The Potential for Geologic Hydrogen for Next-Generation Energy | U.S. Geological Survey" 6266: 5737: 5549: 2861: 156:). Hydrogen produced by electrolysis of water using renewable energy sources such as wind and 93:
In 2020, roughly 87 million tons of hydrogen was produced worldwide for various uses, such as
7812:"A wake-up call on green hydrogen: the amount of wind and solar needed is immense | Recharge" 7264:"DLR Portal – DLR scientists achieve solar hydrogen production in a 100-kilowatt pilot plant" 3091: 2327: 2282: 2147: 2128: 1976: 1968: 1821: 1047:
via coal gasification. The produced syngas consists mainly of hydrogen, carbon monoxide and H
989:
technology for the production of hydrogen, heat and carbon from methane and natural gas in a
582: 540: 5234: 7892: 7541: 7500: 7450: 7406: 7120: 7054: 6894: 6741: 6677: 6627: 6461: 6284: 6134: 6054: 5977: 5942: 5865: 5810: 5702: 5671: 5582: 5354: 5252: 5240: 5158: 4886: 4843: 4788: 4630: 4489: 3995: 3590: 3543: 3428: 3172: 3159:
Van de Graaf, Thijs; Overland, Indra; Scholten, Daniel; Westphal, Kirsten (December 2020).
2654: 2580: 2541: 2456: 2203: 1286: 1234: 1229: 312: 1676:
The industrial quality solid carbon may be sold as manufacturing feedstock or landfilled.
8: 6730:"Analytical approaches to photobiological hydrogen production in unicellular green algae" 5571:"Analytical approaches to photobiological hydrogen production in unicellular green algae" 4125: 3216:
Sansom, Robert; Baxter, Jenifer; Brown, Andy; Hawksworth, Stuart; McCluskey, Ian (2020).
2267: 2229: 1988: 1980: 1972: 1885: 1841: 1825: 1737: 1733: 1713: 1520: 1516: 1510: 1506: 1266: 990: 652: 633: 475: 394: 7896: 7545: 7504: 7454: 7410: 7124: 7058: 6898: 6745: 6681: 6631: 6465: 6288: 6138: 6058: 5981: 5946: 5869: 5814: 5706: 5586: 5358: 5256: 5185: 5162: 4890: 4847: 4792: 4683:
Ju, Hyungkuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S (2017). "The role of nanosized SnO
4634: 3999: 3547: 3432: 3176: 2658: 2584: 2545: 2493:
Bonheure, Mike; Vandewalle, Laurien A.; Marin, Guy B.; Van Geem, Kevin M. (March 2021).
2460: 7916: 7466: 7422: 7109: 7075: 7042: 6762: 6729: 6643: 6522: 6487: 6275: 6150: 5834: 5738:"Photocatalytic Water Splitting Under Visible Light: Concept and Catalysts Development" 5691: 5603: 5570: 5276: 4902: 4859: 4811: 4776: 4264: 4116: 4011: 3566: 3531: 3395: 3193: 3160: 2474: 2247: 2194:
Hydrogen is used for the conversion of heavy petroleum fractions into lighter ones via
1302: 1007: 590: 573: 7857: 7166: 5749: 4975: 4437:. The Bellona Foundation. p. 20. Archived from the original on 16 September 2013. 2003: 944: 8020: 7993: 7920: 7908: 7735: 7659: 7470: 7426: 7213: 7170: 7136: 7080: 6867: 6859: 6849: 6767: 6647: 6526: 6491: 6479: 6195: 6105: 6070: 5909: 5826: 5753: 5718: 5608: 5553: 5268: 4906: 4863: 4816: 4442: 4315: 4015: 3571: 3497:
CISAP4 4th International Conference on Safety and Environment in the Process Industry
3464: 3399: 3343: 3198: 2966: 2777: 2478: 2292: 2262: 2063: 1725: 1721: 1717: 1573:
CC-HOD (Catalytic Carbon – Hydrogen On Demand) is a low-temperature process in which
1454: 1450: 1437: 1002: 975: 601: 245: 131: 80: 6703: 6154: 5838: 5280: 4758: 4727: 4700: 4268: 4075: 3485: 1273:
systems (CSP) and is regarded as being well suited to the production of hydrogen by
624:, and can therefore be possibly cheaper if the hydrogen production is large enough. 382:
Steam methane reforming (SMR) produces hydrogen from natural gas, mostly methane (CH
7900: 7761:"WSJ News Exclusive: Green Hydrogen Gets a Boost in the U.S. With $ 4 Billion Plant 7703: 7695: 7667: 7651: 7643: 7549: 7508: 7458: 7418: 7414: 7203: 7162: 7128: 7070: 7062: 6906: 6902: 6757: 6749: 6685: 6639: 6635: 6514: 6469: 6428: 6292: 6142: 6097: 6066: 6062: 5989: 5985: 5954: 5950: 5901: 5873: 5818: 5783: 5745: 5710: 5598: 5590: 5362: 5331: 5327: 5260: 5166: 5131: 4936: 4898: 4894: 4855: 4851: 4806: 4796: 4754: 4723: 4696: 4669: 4665: 4642: 4638: 4256: 4248: 4182: 4178: 4098: 4071: 4039: 4003: 3871: 3561: 3551: 3440: 3436: 3391: 3333: 3323: 3188: 3180: 2922: 2767: 2757: 2662: 2588: 2549: 2464: 2404: 2312: 2307: 2234: 2189: 2135: 2058: 2038: 1960: 1637:
Illustrating inputs and outputs of methane pyrolysis, a process to produce Hydrogen
1617: 1606: 1600: 1389: 1338: 1306: 1101: 1017: 971: 952: 680: 519:
Methods to produce hydrogen without the use of fossil fuels involve the process of
474:
In a second stage, additional hydrogen is generated through the lower-temperature,
222: 153: 84: 65: 53: 30:. In this process, hydrogen is produced from a chemical reaction between steam and 7554: 7529: 6840:
Janssen, H.; Emonts, B.; Groehn, H. G.; Mai, H.; Reichel, R.; Stolten, D. (2001).
6615: 5905: 7768: 6101: 5787: 5735: 5441: 5397: 4962: 4585:"Xcel Attracts 'Unprecedented' Low Prices for Solar and Wind Paired With Storage" 4309: 4294: 4235:"Process intensification: water electrolysis in a centrifugal acceleration field" 4115:
In the laboratory, water electrolysis can be done with a simple apparatus like a
2667: 2642: 2593: 2568: 2342: 2322: 2302: 2297: 2121: 2117: 1956: 1910: 1902: 1786: 1782: 1528: 1322: 1318: 1290: 703: 621: 586: 560: 520: 514: 376: 370: 110: 7318: 6415:
Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas (October 2020).
5482: 4043: 2909:
Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas (October 2020).
2469: 2444: 1489:
Diverse enzymatic pathways have been designed to generate hydrogen from sugars.
647:
inputs, which makes them ideal for use with renewable sources of energy such as
7958: 7904: 7708: 7331:"Development of Solar-powered Thermochemical Production of Hydrogen from Water" 6689: 5366: 5170: 4941: 4924: 4060:
Ogden, J.M. (1999). "Prospects for building a hydrogen energy infrastructure".
3776:"Green hydrogen is gaining traction, but still has massive hurdles to overcome" 3225:. London, United Kingdom: The Institution of Engineering and Technology (IET). 3184: 2553: 2409: 2395: 2390: 2337: 2332: 2163: 2155: 2077: 2069: 1906: 1759: 1589: 1556: 1367: 1134: 1040: 792: 617: 528: 206: 161: 48: 38:
is used to remove a large fraction of these emissions, the product is known as
7513: 7488: 7462: 7192:"Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production" 6753: 6518: 6297: 6276:
Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology
6270: 5594: 5552:, István Hargittai, Magdolna Hargittai, p. 261, Imperial College Press (2000) 4311:
Hydrogen Science and Engineering: Materials, Processes, Systems and Technology
4252: 2044: 1497: 8037: 7663: 7237: 6980: 6863: 6189: 4801: 3749:"How Much Electricity/Water Is Needed to Produce 1 kg of H2 by Electrolysis?" 3556: 2317: 2211: 2199: 2195: 2159: 1914: 1194: 827: 341: 172: 149: 102: 40: 7671: 6474: 6449: 5390: 5264: 3310:
Hassanpouryouzband, Aliakbar; Wilkinson, Mark; Haszeldine, R Stuart (2024).
3219:
Transitioning to hydrogen: assessing the engineering risks and uncertainties
3129:. Berlin, Germany: Federal Ministry for Economic Affairs and Energy (BMWi). 2744:
Hassanpouryouzband, Aliakbar; Wilkinson, Mark; Haszeldine, R Stuart (2024).
1620:. Water could be pumped down to hot iron-rich rock to extract the hydrogen. 1473:, an anaerobic photosynthetic bacteria, coupled to a hydrogenase donor like 1333: 7912: 7764: 7629: 7217: 7208: 7191: 7140: 7132: 7084: 6771: 6483: 6433: 6416: 6109: 6074: 5830: 5822: 5722: 5714: 5612: 5272: 4820: 3575: 3347: 3202: 2927: 2910: 2781: 2688: 2151: 2143: 2093: 2018: 2007: 1409: 1310: 1092: 948: 787: 425: 316: 214: 94: 76: 57: 6220:
U.S. Army Combat Capabilities Development Command Army Research Laboratory
4512: 4140:"Nuclear power plants can produce hydrogen to fuel the 'hydrogen economy'" 3876: 3859: 3624: 2221:
for local electricity generation or potentially as a transportation fuel.
1943:
by multiplying the available reactor units and by connecting the plant to
501:(O) atom is stripped from the additional water (steam) to oxidize CO to CO 478:, water-gas shift reaction, performed at about 360 °C (680 °F): 432:, etc.), one ton of hydrogen produced will also produce 9 to 12 tons of CO 408:, the carbon monoxide reacts with steam to obtain further quantities of H 5660:
Renewable Energy Technology And Prospect On Biohydrogen Study In Thailand
5391:
IEA Energy Technology Essentials – Hydrogen Production & Distribution
3860:"Hydrogen Production Technologies: Current State and Future Developments" 2684:"In-depth Q&A: Does the world need hydrogen to solve climate change?" 2445:"Is heating homes with hydrogen all but a pipe dream? An evidence review" 2257: 2010:
and hydrogen process (CB&H) is a method, developed in the 1980s by a
1701: 1405: 1314: 1238: 1118: 878: 799: 741: 567:
conditions which could lead to a competitive advantage for electrolysis.
157: 126: 7233:"Panasonic moves closer to home energy self-sufficiency with fuel cells" 7066: 5414: 5241:"Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome" 1358:. In the late 1990s it was discovered that if the algae are deprived of 1259: 838:
partial oxidation (CPOX). The chemical reaction takes the general form:
7699: 7386:
https://www.hfpeurope.org/infotools/energyinfos__e/hydrogen/main03.html
7105: 7103: 6871: 4925:"Carbon Neutral Fuels and Chemicals from Standalone Biomass Refineries" 4290:«Coca-Cola-oppskrift» kan gjøre hydrogen til nytt norsk industrieventyr 3328: 3311: 3161:"The new oil? The geopolitics and international governance of hydrogen" 2762: 2745: 2426:"Hydrogen Is One Answer to Climate Change. Getting It Is the Hard Part" 2225: 2218: 1837: 1829: 1750:. In the late 1990s it was discovered that if the algae is deprived of 1747: 1355: 1106: 1081: 820: 651:. AECs optimally operate at high concentrations of electrolyte (KOH or 648: 413: 6786:"NanoLogix generates energy on-site with bioreactor-produced hydrogen" 6728:
Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas (December 2009).
6417:"State of the Art of Hydrogen Production via Pyrolysis of Natural Gas" 6191:
Electricity generation by living plants in a plant microbial fuel cell
5878: 5853: 5459:"Status report 101 – Gas Turbine High Temperature Reactor (GTHTR300C)" 5295:"Dream or Reality? Electrification of the Chemical Process Industries" 5135: 2911:"State of the Art of Hydrogen Production via Pyrolysis of Natural Gas" 2641:
Squadrito, Gaetano; Maggio, Gaetano; Nicita, Agatino (November 2023).
2567:
Squadrito, Gaetano; Maggio, Gaetano; Nicita, Agatino (November 2023).
2495:"Dream or Reality? Electrification of the Chemical Process Industries" 2014: 1633: 1534: 771: 7655: 5539:
Report No 40: The ferrosilicon process for the generation of hydrogen
5435:
https://smr.inl.gov/Document.ashx?path=DOCS%2FGCR-Int%2FNHDDELDER.pdf
4918: 4916: 4777:"Emerging electrochemical energy conversion and storage technologies" 4260: 4102: 3532:"Emerging electrochemical energy conversion and storage technologies" 3309: 2743: 2391:"Recent development of hydrogen and fuel cell technologies: A review" 1944: 1898:
small electric current, produced hydrogen with an efficiency of 60%.
1855: 1641: 1578: 1301:
Ferrosilicon is used by the military to quickly produce hydrogen for
1129: 1096: 1088: 1013: 955: 683:
are around 80%, or 82% using the most modern alkaline electrolysers.
390: 7489:"New Perspectives in the Industrial Exploration for Native Hydrogen" 7152: 7150: 7100: 7097:
William Ayers, US Patent 4,466,869 Photolytic Production of Hydrogen
6271:"New Perspectives in the Industrial Exploration for Native Hydrogen" 6146: 4007: 3158: 2716:"Natural Hydrogen: A Potential Clean Energy Source Beneath Our Feet" 1955:
There are more than 352 thermochemical cycles which can be used for
752:
produced can be easily sequestered without the need for separation.
563:
of 143 MJ/kg or about 40 kWh/kg) requires 50–55 kWh of electricity.
7609:"First element in periodic table: Why all the fuss about hydrogen?" 5852:
Djurišić, Aleksandra B.; He, Yanling; Ng, Alan M. C. (March 2020).
5772: 5744:. Advances in Chemical Engineering. Vol. 36. pp. 111–43. 5667: 5186:"Oil-eating microbes excrete the world's cheapest "clean" hydrogen" 4506: 4429: 3618: 2054: 1705: 1446: 783: 733: 106: 19: 5476:"JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION: GTHTR300C" 4913: 3386:
Velazquez Abad, A.; Dodds, P.E. (2017). "Production of Hydrogen".
655:) and at high temperatures, often near 200 °C (392 °F). 620:
metal catalysts) but are more efficient and can operate at higher
221:
include hydrogen produced from other low-emission sources such as
64:
include hydrogen produced from other low-emission sources such as
7641: 7147: 4558:"DOE Technical Targets for Hydrogen Production from Electrolysis" 4344:"Hydrogen from water electrolysis – solutions for sustainability" 4028: 3707:"Commentary: Producing industrial hydrogen from renewable energy" 3277: 2207: 2050: 2030: 1401: 1117:
Water spontaneously dissociates at around 2500 °C, but this
1085: 764:
by gasification and syngas is further converted into hydrogen by
737: 644: 429: 240: 98: 73: 31: 2941: 1465:
SH2C can be employed to convert some fatty acids into hydrogen.
534: 7834:"How does the energy crisis affect the transition to net zero?" 7684: 6977:"Steam heat: researchers gear up for full-scale hydrogen plant" 6122: 2492: 2034: 2011: 1809: 1755: 1751: 1709: 1574: 1568: 1363: 1359: 1250: 1044: 959: 803: 761: 498: 452: 387: 7159:
Advances in Chemical Engineering - Photocatalytic Technologies
7039: 6842:
High-pressure electrolysis, the key technology for efficient H
4402:"Cost reduction and performance increase of PEM electrolysers" 3892:"Cost reduction and performance increase of PEM electrolysers" 3830:"Cost reduction and performance increase of PEM electrolysers" 3249: 3060: 3058: 697:
production cost ($ -gge untaxed) at varying natural gas prices
137: 7319:
UNLV Thermochemical cycle automated scoring database (public)
6884: 6570: 5569:
Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas (2009).
4487: 3588: 2942:
Sampson2019-02-11T10:48:00+00:00, Joanna (11 February 2019).
2100:. Hydrogen produced by this technology has been described as 1939: 1801: 1744: 1729: 1458: 1445:
converts organic substrates to hydrogen. A diverse group of
1352: 777: 417: 348:
Hydrogen that occurs naturally deep within the Earth's crust
7584:"Executive summary – Global Hydrogen Review 2023 – Analysis" 7396: 6542:"The reaction that would give us clean fossil fuels forever" 6447: 6216:"Aluminum Based Nanogalvanic Alloys for Hydrogen Generation" 4430:
Bjørnar Kruse; Sondre Grinna; Cato Buch (13 February 2002).
3283: 2527: 1947:
fields (fields of sun-tracking mirrors) of a suitable size.
1519:(electrolysis using microbes) is another possibility. Using 1024:
S). Hydrogen can be separated from other impurities by the
711:
about 53 to 70 kWh per kg could go down to about 45 kWh/kg
679:
required by the catalyst), average working efficiencies for
178: 5931: 5062:"Kværner-process with plasma arc waste disposal technology" 4743: 3780: 3215: 3055: 2146:, in which electric power is used to produce hydrogen from 2045:
Extraction of naturally-occurring hydrogen – White Hydrogen
292: 277:
Fossil hydrocarbons, mainly steam reforming of natural gas
5148: 4374:"ITM – Hydrogen Refuelling Infrastructure – February 2017" 4088: 3802:"ITM – Hydrogen Refuelling Infrastructure – February 2017" 3015:"Can a viable industry emerge from the hydrogen shakeout?" 7439: 6667: 5895: 5344: 4774: 4198:"Development of water electrolysis in the European Union" 4168: 3529: 3154: 3152: 3150: 319:
of water, or contributing steam to natural gas reforming
5854:"Visible-light photocatalysts: Prospects and challenges" 4232: 3458: 1032:
have carried out production of hydrogen by this method.
985:
A variation of this process was presented in 2009 using
663:
Efficiency of modern hydrogen generators is measured by
7723:"Facts on low-carbon hydrogen – A European perspective" 6414: 4770: 4768: 3988:
Wiley Interdisciplinary Reviews: Energy and Environment
3858:
Kalamaras, Christos M.; Efstathiou, Angelos M. (2013).
3670:"Wide Spread Adaption of Competitive Hydrogen Solution" 2908: 2857: 1861: 7632:
press release, November 6, 2023. Retrieved 2023-11-14.
6839: 6727: 6504: 6087: 5568: 4507:
Bjørnar Kruse; Sondre Grinna; Cato Buch (2002-02-13).
3619:
Bjørnar Kruse; Sondre Grinna; Cato Buch (2002-02-13).
3147: 2987:"Brown coal the hydrogen economy stepping stone | ECT" 6408: 4533:"high-rate and high efficiency 3D water electrolysis" 3645:"high-rate and high efficiency 3D water electrolysis" 2902: 2844:"Global Hydrogen Generation Market Size Report, 2030" 2640: 2566: 1605:
Hydrogen is also present naturally underground. This
1545: 1538:
Nano-galvanic aluminum-based powder developed by the
1404:
and waste streams can in principle be converted into
585:
is 70–80% efficient (a 20–30% conversion loss) while
412:. The WGSR also requires a catalyst, typically over 6848:. HYPOTHESIS IV. Kluwer Academic. pp. 172–177. 4765: 4713: 4620: 3985: 2198:. It is also used in other processes including the 2162:
via electrolysis is sometimes viewed as a subset of
3857: 3385: 2104:when emissions are released to the atmosphere, and 1892: 1427: 1006:conversion is low-temperature and high-temperature 772:
Hydrogen as a byproduct of other chemical processes
726: 658: 7992: 5800: 5550:Candid science: conversations with famous chemists 4739: 4737: 3517:"HFCIT Hydrogen Production: Natural Gas Reforming" 3284:Department of Earth Sciences (12 September 2022). 2682:Evans, Simon; Gabbatiss, Josh (30 November 2020). 2112:(CCS). Blue hydrogen has been estimated to have a 1623: 1328: 7963:"How many people does synthetic fertilizer feed?" 7646:(12 August 2021). "How green is blue hydrogen?". 5927: 5925: 5657:Jenvanitpanjakul, Peesamai (February 3–4, 2010). 5002:"Production of Liquefied Hydrogen Sourced by COG" 4976:"Different Gases from Steel Production Processes" 4464:"Hydrogen Is a Trillion Dollar Bet on the Future" 4196:Luca Bertuccioli; et al. (7 February 2014). 4122:"Electrolysis of water and the concept of charge" 3339:20.500.11820/b23e204c-744e-44f6-8cf5-b6761775260d 2773:20.500.11820/b23e204c-744e-44f6-8cf5-b6761775260d 2389:Fan, Lixin; Tu, Zhengkai; Chan, Siew Hwa (2021). 1800:is the electrolysis of water by decomposition of 1612:White hydrogen could be found or produced in the 1377: 364: 331:Sometimes understood to mean solar photovoltaics 8035: 8014: 7530:"Natural hydrogen the fuel of the 21 st century" 7189: 5656: 5411:"HTTR High Temperature engineering Test Reactor" 5210:An Introduction to Radiation Chemistry Chapter 7 4494:HyWeb: Knowledge – Hydrogen in the Energy Sector 4205:Client Fuel Cells and Hydrogen Joint Undertaking 4195: 3595:HyWeb: Knowledge – Hydrogen in the Energy Sector 3486:"Hydrogen Production via Steam Reforming with CO 3312:"Hydrogen energy futures – foraging or farming?" 3209: 2746:"Hydrogen energy futures – foraging or farming?" 1848: 1789:, cordgrass, rice, tomatoes, lupines, and algae 1628: 1531:, cordgrass, rice, tomatoes, lupines and algae. 1484: 1080:Nuclear radiation can break water bonds through 755: 7527: 7033: 6704:"Hydrogen production from organic solid matter" 6002: 4734: 3921:"Report and Financial Statements 30 April 2016" 3851: 3362:"Actual Worldwide Hydrogen Production from ..." 3290:Department of Earth Sciences, Oxford University 3243: 2124:(SMR) retrofitted with carbon dioxide capture. 1913:that can absorb 57% of sunlight to support the 1249:reactions to split water into its hydrogen and 1140: 665:energy consumed per standard volume of hydrogen 397:forms carbon monoxide and molecular hydrogen (H 297:Via coal gasification or in a suitable reactor 213:In most definitions, renewable electricity via 7805: 7803: 5922: 5898:Ullmann's Encyclopedia of Industrial Chemistry 5223:Nuclear Hydrogen Production Handbook Chapter 8 4876: 4833: 4682: 4649: 4488:Werner Zittel; Reinhold Wurster (1996-07-08). 3589:Werner Zittel; Reinhold Wurster (1996-07-08). 2681: 1920: 1769: 351:Obtained by mining; also referred to as white 291:Fossil hydrocarbons: brown (lignite) or black 7528:Truche, Laurent; Bazarkina, Elena F. (2019). 6816:"Power from plants using microbial fuel cell" 6573:"Hydrogen from methane without CO2 emissions" 6441: 5380:Producing hydrogen: The Thermochemical cycles 4707: 4676: 4655: 4055: 4053: 1959:, around a dozen of these cycles such as the 1792: 826:The partial oxidation reaction occurs when a 535:Electrolysis of water – green, pink or yellow 359: 8015:Francesco Calise; et al., eds. (2019). 7882: 6242:"Army discovery may offer new energy source" 6044: 6013:using milk plasma as fermentative substrate" 5851: 3949:"Hydrogen Production: Natural Gas Reforming" 3115: 3113: 3111: 1950: 1728:because it only proceeds in the presence of 1492: 1457:because it only proceeds in the presence of 809: 7800: 6878: 6038: 5967: 5891: 5889: 4411:. Fuel Cells and Hydrogen Joint Undertaking 4063:Annual Review of Energy and the Environment 3972: 3970: 3839:. Fuel Cells and Hydrogen Joint Undertaking 3364:Arno A Evers. December 2008. Archived from 2971:: CS1 maint: numeric names: authors list ( 2739: 2737: 2735: 2436: 2424:Reed, Stanley; Ewing, Jack (13 July 2021). 443:For this process, high temperature steam (H 16:Industrial production of molecular hydrogen 7775:, December 8, 2022. Retrieved 2023-11-14. 7763:: The planned factory, a joint venture by 4923:Sasidhar, Nallapaneni (30 November 2023). 4050: 3901:. Fuel Cell and Hydrogen Joint Undertaking 3418: 1743:Biological hydrogen can be produced in an 1351:Biological hydrogen can be produced in an 1147:high-temperature gas-cooled reactor (HTGR) 1001:For the production of hydrogen from coal, 217:of water. Less frequently, definitions of 187:Colors that refer to method of production 60:of water. Less frequently, definitions of 52:is usually understood to be produced from 7707: 7553: 7512: 7207: 7074: 6761: 6473: 6432: 6296: 6168:Wageningen University and Research Centre 6003:Rajanandam, Brijesh; Kiran, Siva (2011). 5877: 5602: 5317: 5111:. U.S. Energy Information Administration. 4940: 4929:Indian Journal of Environment Engineering 4810: 4800: 3875: 3565: 3555: 3454: 3452: 3450: 3337: 3327: 3192: 3108: 3064: 2926: 2813: 2771: 2761: 2666: 2592: 2468: 2423: 2408: 2388: 1740:to produce hydrogen from organic matter. 1712:systems involving three steps similar to 1279:High-temperature engineering test reactor 179:Classification based on production method 121:Molecular hydrogen was discovered in the 7399:International Journal of Hydrogen Energy 7230: 6670:Renewable and Sustainable Energy Reviews 6620:International Journal of Hydrogen Energy 6126:International Journal of Energy Research 6005:"Optimization of hydrogen production by 5970:International Journal of Hydrogen Energy 5935:International Journal of Hydrogen Energy 5886: 5347:Renewable and Sustainable Energy Reviews 4922: 4623:International Journal of Hydrogen Energy 4511:. The Bellona Foundation. Archived from 4461: 4455: 4348:thyssenkrupp-uhde-chlorine-engineers.com 4341: 4189: 4171:International Journal of Hydrogen Energy 3967: 3623:. The Bellona Foundation. Archived from 3519:. U.S. Department of Energy. 2008-12-15. 3421:International Journal of Hydrogen Energy 3388:Encyclopedia of Sustainable Technologies 2732: 2503:American Institute of Chemical Engineers 2068: 1965:cerium(IV) oxide-cerium(III) oxide cycle 1682: 1632: 1588: 1533: 1496: 1332: 688: 572: 136: 7816:Recharge | Latest renewable energy news 7809: 7794:Recharge | Latest renewable energy news 7787: 7606: 7483: 7196:Angewandte Chemie International Edition 6952:"Finland exporting TEN-T fuel stations" 6613: 6265: 6239: 6187: 4307: 3773: 3483: 2826:Recharge | Latest renewable energy news 2819: 2442: 2087: 1461:. For example, photo-fermentation with 1277:, and as such, is being studied in the 1223: 1124: 1043:can also be converted to hydrogen-rich 375:Hydrogen is industrially produced from 8036: 7991: 7224: 6539: 5121: 5087:"Emissions Advantages of Gasification" 4474:from the original on 2 December 2020. 4314:. John Wiley & Sons. p. 898. 3735: 3463:. John Wiley & Sons. p. 249. 3447: 3092:"What potential for natural hydrogen?" 2017:, for the production of hydrogen from 1754:it will switch from the production of 1689:Biological hydrogen production (Algae) 1362:it will switch from the production of 1347:Biological hydrogen production (Algae) 1296: 451:) in an endothermic reaction to yield 7858:"Hydrogen – Fuels & Technologies" 7725:, ZEP Oct 2021. Confirmed 2023-12-12. 7354: 7231:Yamamura, Tetsushi (August 2, 2015). 6377: 6352: 6194:(PhD Thesis). Wageningen University. 5183: 5091:National Energy Technology Laboratory 4233:L. Lao; C. Ramshaw; H. Yeung (2011). 4059: 3704: 3621:"Hydrogen – Status and Possibilities" 3009: 3007: 2613:"So, What Exactly Is Green Hydrogen?" 2610: 1934:is a 100-kilowatt pilot plant at the 1396: 1072:that could in principle be captured. 1054: 951:and hydrogen process (CB&H) is a 236: 7747:National Renewable Energy Laboratory 6969: 6792:. September 20, 2007. Archived from 6583:from the original on 21 October 2020 6552:from the original on 26 October 2020 6396:from the original on 19 October 2020 6365:from the original on 19 October 2020 5014:from the original on 8 February 2021 3597:. Ludwig-Bölkow-Systemtechnik GmbH. 3165:Energy Research & Social Science 3119: 2696:from the original on 1 December 2020 2606: 2604: 2534:Energy Research & Social Science 2108:when emissions are captured through 1862:Photoelectrochemical water splitting 958:method, developed in the 1980s by a 814: 523:, or splitting the water molecule (H 7957: 7156: 6571:Karlsruhe Institute of Technology. 5026: 4509:"Hydrogen—Status and Possibilities" 4496:. Ludwig-Bölkow-Systemtechnik GmbH. 4462:Fickling, David (2 December 2020). 4432:"Hydrogen—Status and Possibilities" 4288:Stensvold, Tore (26 January 2016). 4240:Journal of Applied Electrochemistry 3461:Introduction to hydrogen Technology 2788: 2273:Hydrogen economy § Color codes 1700:conversion of organic substrate to 1584: 1325:, hydrogen and steam are produced. 938: 13: 8008: 7788:Collins, Leigh (25 January 2022). 7161:. Vol. 36. pp. 111–143. 4982:from the original on 27 March 2016 3717:from the original on 22 April 2018 3396:10.1016/B978-0-12-409548-9.10117-4 3004: 2944:"Blue hydrogen for a green future" 2675: 2634: 2521: 2443:Rosenow, Jan (27 September 2022). 2080:could be found or produced in the 1997: 1876:(PEC) process which is also named 1552:Aluminum based nanogalvanic alloys 1546:Nanogalvanic aluminum alloy powder 802:in steel production is similar to 610:polymer electrolyte membrane cells 424:. Depending on the quality of the 345: 328: 306: 288: 274: 256: 14: 8055: 7822:from the original on 4 June 2021. 7607:Hessler, Uwe (December 6, 2020). 6361:. American Institute of Physics. 6017:Journal of Biochemical Technology 5413:. Httr.jaea.go.jp. Archived from 4582: 3774:Petrova, Magdalena (2020-12-04). 3755:from the original on 17 June 2020 2601: 2560: 2509:from the original on 17 July 2021 2486: 2166:, but can also be referred to as 1704:manifested by a diverse group of 1275:high-temperature nuclear reactors 1035: 881:and coal, assuming compositions C 669:standard temperature and pressure 7951: 7927: 7876: 7850: 7826: 7810:Collins, Leigh (19 March 2020). 7781: 7753: 7728: 7716: 7678: 7648:Energy Science & Engineering 7635: 7619: 7600: 7576: 7562: 7521: 7477: 7433: 7390: 7379: 7323: 7312: 7281: 7256: 7183: 7091: 6998: 6944: 6913: 6833: 6808: 6778: 6721: 6696: 6661: 6607: 6595: 6564: 6533: 6498: 6383: 6346: 6332: 6311: 6305: 6259: 6240:McNally, David (July 25, 2017). 6233: 6208: 6181: 6116: 6090:Current Opinion in Biotechnology 6081: 5996: 5961: 5845: 5794: 5766: 5729: 5685: 5650: 5619: 5562: 5543: 5532: 5499: 5468: 5451: 5428: 5403: 5384: 5373: 4535:. Grid-shift.com. Archived from 4146:. March 25, 2012. Archived from 3647:. Grid-shift.com. Archived from 2832:from the original on 2021-05-21. 2802:. 10 July 2023. "Energy" section 2350:(partly for hydrogen production) 2183: 2138:sources is often referred to as 1893:Photoelectrocatalytic production 1694:Fermentative hydrogen production 1477:, are reported in literature. 1443:Fermentative hydrogen production 1434:fermentative hydrogen production 1428:Fermentative hydrogen production 982:is not produced in the process. 727:Chemically assisted electrolysis 659:Industrial output and efficiency 7368:from the original on 2016-06-03 7343:from the original on 2007-04-17 7301:from the original on 2009-02-05 7270:from the original on 2013-06-22 7006:"Nuclear Hydrogen R&D Plan" 6987:from the original on 2008-09-21 6958:from the original on 2016-08-28 6822:from the original on 2021-02-08 6710:from the original on 2011-07-20 6171:(Press release). Archived from 5338: 5311: 5287: 5228: 5215: 5202: 5177: 5142: 5115: 5097: 5079: 5054: 5044: 4994: 4968: 4949: 4870: 4827: 4759:10.1016/j.electacta.2011.11.006 4728:10.1016/j.electacta.2016.07.062 4701:10.1016/j.electacta.2017.01.106 4614: 4603: 4576: 4550: 4525: 4500: 4481: 4423: 4394: 4366: 4335: 4308:Stolten, Detlef (Jan 4, 2016). 4301: 4282: 4226: 4162: 4132: 4109: 4082: 4076:10.1146/annurev.energy.24.1.227 4022: 3979: 3941: 3913: 3884: 3822: 3794: 3767: 3741: 3729: 3713:. International Energy Agency. 3698: 3686:from the original on 2018-04-22 3662: 3637: 3612: 3601:from the original on 2007-02-07 3582: 3523: 3509: 3477: 3412: 3379: 3354: 3303: 3266:from the original on 2020-12-08 3232:from the original on 2020-05-08 3136:from the original on 2020-12-13 3084: 3031: 2993:from the original on 2019-04-08 2979: 2954:from the original on 2019-05-09 2935: 2875: 2864:from the original on 2020-10-25 2850: 2836: 2708: 2643:"The green hydrogen revolution" 2623:from the original on 2022-03-23 2569:"The green hydrogen revolution" 2092:Most hydrogen is produced from 1624:Experimental production methods 1329:Photobiological water splitting 1285:, it is classified as a hybrid 1149:is one of the most promising CO 436:, a greenhouse gas that may be 7688:Sustainable Energy & Fuels 7419:10.1016/j.ijhydene.2018.08.193 6907:10.1016/j.ijhydene.2013.01.151 6640:10.1016/j.ijhydene.2021.11.057 6163:"Living plants produce energy" 6067:10.1016/j.biortech.2016.12.073 5990:10.1016/j.ijhydene.2006.06.034 5955:10.1016/j.ijhydene.2016.10.021 5332:10.1016/j.biombioe.2009.02.006 4899:10.1016/j.apenergy.2018.09.125 4856:10.1016/j.apenergy.2018.09.125 4670:10.1016/j.jpowsour.2011.09.083 4643:10.1016/j.ijhydene.2014.11.033 4183:10.1016/j.ijhydene.2009.01.053 4091:Journal of Materials Chemistry 3441:10.1016/j.ijhydene.2014.12.035 3123:The national hydrogen strategy 3067:"The hydrogen colour spectrum" 2883:"Definition of Green Hydrogen" 2417: 2382: 2172:Oskarshamn Nuclear Power Plant 2041:and 10% in superheated steam. 1901:In 2015, it was reported that 1525:biological hydrogen production 1481:is another hydrogen producer. 1384:Photocatalytic water splitting 1378:Photocatalytic water splitting 1112: 897:respectively, are as follows: 606:solid oxide electrolyser cells 600:There are three main types of 365:Steam reforming – gray or blue 313:Thermochemical water splitting 171:, is generally referred to as 167:When fossil fuel derived with 1: 7167:10.1016/S0065-2377(09)00404-9 5906:10.1002/14356007.a13_297.pub2 5750:10.1016/S0065-2377(09)00404-9 5105:"Emissions from burning coal" 3484:Collodi, Guido (2010-03-11). 2858:"Natural Hydrogen Energy LLC" 2820:Collins, Leigh (2021-05-18). 2375: 2348:Next Generation Nuclear Plant 1985:aluminum aluminum-oxide cycle 1849:High-temperature electrolysis 1629:Methane pyrolysis – turquoise 1540:U.S. Army Research Laboratory 1501:A microbial electrolysis cell 1485:Enzymatic hydrogen generation 1449:promote this transformation. 1305:. The chemical reaction uses 1135:photosynthetic microorganisms 1075: 834:partial oxidation (TPOX) and 782:The industrial production of 756:Hydrogen from biomass – green 630:high-temperature electrolysis 547:High-temperature electrolysis 508: 7015:. March 2004. Archived from 6390:United States Sustainability 6102:10.1016/j.copbio.2010.05.005 5788:10.1016/j.cattod.2014.11.007 5093:. U.S. Department of Energy. 4032:Materials Today: Proceedings 2668:10.1016/j.renene.2023.119041 2594:10.1016/j.renene.2023.119041 2369:Underground hydrogen storage 1141:Nuclear-assisted thermolysis 7: 8001:International Energy Agency 7736:"New Horizons for Hydrogen" 7555:10.1051/e3sconf/20199803006 7289:"353 Thermochemical cycles" 5742:Photocatalytic Technologies 5627:"DOE 2008 Report 25 %" 4044:10.1016/j.matpr.2022.04.264 3864:Conference Papers in Energy 2611:Deign, Jason (2020-06-29). 2470:10.1016/j.joule.2022.08.015 2288:Hydrogen pipeline transport 2240: 2082:Mid-continental Rift System 2073:Mid-continental Rift System 1936:Plataforma Solar de Almería 1921:Concentrating solar thermal 1785:can be used. These include 1614:Mid-continental Rift System 1594:Mid-continental Rift System 1515:Besides dark fermentation, 1105:, was feeding on primarily 614:alkaline electrolysis cells 116: 105:, and in the production of 10: 8060: 7985: 7905:10.1038/d41586-022-03699-0 7443:Natural Resources Research 6887:Journal of Hydrogen Energy 6690:10.1016/j.rser.2023.113323 6023:(2): 242–4. Archived from 5446:Progress in Nuclear Energy 5367:10.1016/j.rser.2017.05.275 5171:10.1016/j.fuel.2013.06.045 4942:10.54105/ijee.B1845.113223 3185:10.1016/j.erss.2020.101667 3039:"Hydrogen Color Explained" 2554:10.1016/j.erss.2021.102208 2410:10.1016/j.egyr.2021.08.003 2224:Hydrogen is produced as a 2187: 2150:, and the other is to use 2110:carbon capture and storage 1868:Photoelectrolysis of water 1865: 1798:High pressure electrolysis 1793:High-pressure electrolysis 1686: 1598: 1566: 1549: 1504: 1431: 1381: 1344: 1227: 775: 760:Biomass is converted into 557:high pressure electrolysis 551:High-pressure electrolysis 544: 538: 512: 447:O) reacts with methane (CH 368: 360:Current production methods 261:carbon capture and storage 36:carbon capture and storage 8017:Solar Hydrogen Production 7514:10.2138/gselements.16.1.8 7463:10.1007/s11053-014-9257-5 7364:. Interstatetraveler.us. 6754:10.1007/s11120-009-9415-5 6519:10.1038/s41929-019-0416-2 6298:10.2138/gselements.16.1.8 5595:10.1007/s11120-009-9415-5 5184:Blain, Loz (2022-10-04). 5038:www.interstatetraveler.us 4564:. US Department of Energy 4447:: CS1 maint: unfit URL ( 4372: 4253:10.1007/s10800-011-0275-2 4144:American Chemical Society 3955:. US Department of Energy 3919: 3890: 3800: 2253:Artificial photosynthesis 2158:. Hydrogen produced from 2120:rates and production via 1951:Thermochemical production 1928:concentrating solar power 1878:artificial photosynthesis 1874:photoelectrochemical cell 1770:Biocatalysed electrolysis 1616:at scale for a renewable 1562: 1493:Biocatalysed electrolysis 1271:Concentrating solar power 1026:pressure swing adsorption 987:plasma arc waste disposal 810:Other fossil fuel methods 649:photovoltaic solar panels 555:Hydrogen can be made via 205: 197: 194: 191: 7969:. Global Change Data Lab 7838:European Investment Bank 7362:"Bellona-HydrogenReport" 6007:Halobacterium salinarium 4802:10.3389/fchem.2014.00079 4658:Journal of Power Sources 4400: 3828: 3557:10.3389/fchem.2014.00079 3316:Chemical Society Reviews 3292:. Oxford, United Kingdom 3073:. London, United Kingdom 2890:Clean Energy Partnership 2750:Chemical Society Reviews 2364:Linde–Frank–Caro process 2217:Hydrogen may be used in 2114:greenhouse gas footprint 2098:carbon dioxide emissions 2015:company of the same name 1341:for hydrogen production. 1030:Japanese steel companies 766:water-gas shift reaction 406:water-gas shift reaction 210: 169:greenhouse gas emissions 7777:(subscription required) 6734:Photosynthesis Research 6614:Lumbers, Brock (2022). 6475:10.1126/science.aao5023 5575:Photosynthesis Research 5265:10.1126/science.1127376 5237:Barbara Sherwood Lollar 5034:"Hydrogen technologies" 2233:the establishment of a 2134:Hydrogen produced from 2122:steam methane reformers 1463:Rhodobacter sphaeroides 1184:HI decomposition: 2HI→H 996: 877:Idealized examples for 123:Kola Superdeep Borehole 97:, in the production of 28:steam methane reforming 7995:The Future of Hydrogen 7534:E3S Web of Conferences 7266:. Dlr.de. 2008-11-25. 7209:10.1002/anie.200906262 7133:10.1002/cssc.200900018 6790:Solid State Technology 6434:10.1002/cben.202000014 6188:Timmers, Ruud (2012). 6047:Bioresource Technology 5823:10.1002/adma.201601694 5715:10.1002/cssc.200900018 4781:Frontiers in Chemistry 4610:accessed June 22, 2021 3536:Frontiers in Chemistry 2928:10.1002/cben.202000014 2359:Lane hydrogen producer 2278:Hydrogen embrittlement 2206:and the production of 2074: 1828:output around 120–200 1638: 1596: 1542: 1502: 1479:Enterobacter aerogenes 1342: 698: 634:nuclear power stations 578: 265:CCS networks required 142: 7047:Nature Communications 6548:. New Scientist Ltd. 5320:Biomass and Bioenergy 2328:Hydrogen technologies 2283:Hydrogen leak testing 2148:electrolysis of water 2129:autothermal reformers 2072: 1977:copper-chlorine cycle 1969:zinc zinc-oxide cycle 1816:) and hydrogen gas (H 1683:Biological production 1672:(g) ΔH° = 74.8 kJ/mol 1636: 1592: 1537: 1500: 1336: 1283:Copper–chlorine cycle 1253:components. The term 1235:Thermochemical cycles 692: 589:of natural gas has a 583:Electrolysis of water 576: 541:Electrolysis of water 420:. The byproduct is CO 239:Thermal splitting of 140: 109:through reduction of 7013:U.S. Dept. of Energy 6921:"2003-PHOEBUS-Pag.9" 5672:Feng Chia University 4150:on December 10, 2019 3390:. pp. 293–304. 3259:. Australia: CSIRO. 2204:hydrodesulfurization 2088:Environmental impact 1738:microbial fuel cells 1714:anaerobic conversion 1521:microbial fuel cells 1287:thermochemical cycle 1230:thermochemical cycle 1224:Thermochemical cycle 1125:Pyrolysis on biomass 638:solar thermal plants 395:endothermic reaction 85:underground hydrogen 83:, and extraction of 8044:Hydrogen production 7939:energy.ec.europa.eu 7897:2022Natur.611..440C 7773:Wall Street Journal 7709:20.500.11850/422246 7642:Robert W. Howarth; 7546:2019E3SWC..9803006T 7505:2020Eleme..16....8G 7487:(1 February 2020). 7455:2015NRR....24..369L 7411:2018IJHE...4319315P 7405:(42): 19315–19326. 7125:2009ChSCh...2..471N 7067:10.1038/ncomms13549 7059:2016NatCo...713549V 6899:2013IJHE...38.4901C 6746:2009PhoRe.102..523H 6682:2023RSERv.18113323P 6632:2022IJHE...47.4265L 6466:2017Sci...358..917U 6289:2020Eleme..16....8G 6139:2008IJER...32..870S 6059:2017BiTec.227..335A 5982:2007IJHE...32..200T 5947:2017IJHE...42.1989A 5870:2020APLM....8c0903D 5815:2017AdM....2901694L 5707:2009ChSCh...2..471N 5587:2009PhoRe.102..523H 5359:2018RSERv..81.1802P 5257:2006Sci...314..479L 5163:2014Fuel..117.1288G 4891:2018ApEn..231..502J 4848:2018ApEn..231..502J 4793:2014FrCh....2...79B 4747:Electrochimica Acta 4716:Electrochimica Acta 4689:Electrochimica Acta 4635:2015IJHE...40...70G 4000:2013WIREE...2..473B 3877:10.1155/2013/690627 3705:Philibert, Cédric. 3548:2014FrCh....2...79B 3433:2015IJHE...4011094D 3427:(34): 11094–11111. 3177:2020ERSS...7001667V 3071:National Grid Group 2659:2023REne..21619041S 2585:2023REne..21619041S 2546:2021ERSS...8002208G 2461:2022Joule...6.2225R 2268:Hydrogen compressor 2230:chlorine production 1981:hybrid sulfur cycle 1973:sulfur-iodine cycle 1886:multi-junction cell 1842:hydrogen compressor 1826:compressed hydrogen 1734:Electrohydrogenesis 1517:electrohydrogenesis 1511:microbial fuel cell 1507:electrohydrogenesis 1297:Ferrosilicon method 1289:because it uses an 1267:sulfur-iodine cycle 1109:produced hydrogen. 798:Gas generated from 653:potassium carbonate 304:Red, pink or purple 188: 70:hydrogen production 8019:. Academic Press. 7749:: 2–9. April 2004. 7700:10.1039/D0SE00222D 6706:. Biohydrogen.nl. 6421:ChemBioEng Reviews 6353:Fernandez, Sonia. 5803:Advanced Materials 5440:2016-12-21 at the 5396:2011-11-03 at the 5124:Energy & Fuels 4961:2014-12-08 at the 4589:greentechmedia.com 4117:Hofmann voltameter 3329:10.1039/D3CS00723E 3120:BMWi (June 2020). 2915:ChemBioEng Reviews 2763:10.1039/D3CS00723E 2430:The New York Times 2248:Ammonia production 2075: 2033:, natural gas and 1781:2010-05-17 at the 1639: 1597: 1543: 1503: 1397:Biohydrogen routes 1343: 1161:Bunsen reaction: I 1155:iodine-sulfur (IS) 1055:Depleted oil wells 1008:coal carbonization 699: 602:electrolytic cells 591:thermal efficiency 579: 467:O → CO + 3 H 259:Hydrocarbons with 195:Production source 186: 143: 8026:978-0-12-814853-2 7967:Our World in Data 7891:(7936): 440–443. 7615:. Deutsche Welle. 7245:on August 7, 2015 7176:978-0-12-374763-1 6979:(Press release). 6954:. December 2015. 6893:(12): 4901–4934. 6855:978-3-9807963-0-9 6540:Cartwright, Jon. 6460:(6365): 917–921. 6314:"Hidden hydrogen" 6269:(February 2020). 6201:978-94-6191-282-4 5915:978-3-527-30673-2 5879:10.1063/1.5140497 5759:978-0-12-374763-1 5299:www.aiche-cep.com 5136:10.1021/ef990178a 4381:level-network.com 4142:(Press release). 3809:level-network.com 3470:978-0-471-77985-8 3405:978-0-12-804792-7 2483:Article in press. 2455:(10): 2225–2228. 2293:Hydrogen purifier 2263:Hydrogen analyzer 2064:energy transition 1726:dark fermentation 1722:Photofermentation 1718:Dark fermentation 1455:dark fermentation 1451:Photofermentation 1438:dark fermentation 1372:energy efficiency 1317:. A heavy steel 1003:coal gasification 976:superheated steam 828:substoichiometric 815:Partial oxidation 751: 667:(MJ/m), assuming 622:current densities 497:Essentially, the 357: 356: 246:Methane pyrolysis 160:, referred to as 132:methane pyrolysis 81:methane pyrolysis 8051: 8030: 8004: 7998: 7979: 7978: 7976: 7974: 7955: 7949: 7948: 7946: 7945: 7931: 7925: 7924: 7880: 7874: 7873: 7871: 7870: 7854: 7848: 7847: 7845: 7844: 7830: 7824: 7823: 7807: 7798: 7797: 7785: 7779: 7778: 7757: 7751: 7750: 7740: 7732: 7726: 7720: 7714: 7713: 7711: 7694:(6): 2967–2986. 7682: 7676: 7675: 7656:10.1002/ESE3.956 7644:Mark Z. Jacobson 7639: 7633: 7623: 7617: 7616: 7604: 7598: 7597: 7595: 7594: 7580: 7574: 7573: 7566: 7560: 7559: 7557: 7525: 7519: 7518: 7516: 7485:Gaucher, Eric C. 7481: 7475: 7474: 7437: 7431: 7430: 7394: 7388: 7383: 7377: 7376: 7374: 7373: 7358: 7352: 7351: 7349: 7348: 7342: 7335: 7327: 7321: 7316: 7310: 7309: 7307: 7306: 7300: 7293: 7285: 7279: 7278: 7276: 7275: 7260: 7254: 7253: 7251: 7250: 7241:. Archived from 7228: 7222: 7221: 7211: 7202:(9): 1574–1577. 7187: 7181: 7180: 7154: 7145: 7144: 7107: 7098: 7095: 7089: 7088: 7078: 7037: 7031: 7030: 7028: 7027: 7021: 7010: 7002: 6996: 6995: 6993: 6992: 6973: 6967: 6966: 6964: 6963: 6948: 6942: 6941: 6939: 6938: 6932: 6926:. Archived from 6925: 6917: 6911: 6910: 6882: 6876: 6875: 6837: 6831: 6830: 6828: 6827: 6812: 6806: 6805: 6803: 6801: 6782: 6776: 6775: 6765: 6740:(2–3): 523–540. 6725: 6719: 6718: 6716: 6715: 6700: 6694: 6693: 6665: 6659: 6658: 6656: 6654: 6626:(7): 4265–4283. 6611: 6605: 6599: 6593: 6592: 6590: 6588: 6568: 6562: 6561: 6559: 6557: 6537: 6531: 6530: 6507:Nature Catalysis 6502: 6496: 6495: 6477: 6445: 6439: 6438: 6436: 6412: 6406: 6405: 6403: 6401: 6381: 6375: 6374: 6372: 6370: 6350: 6344: 6343: 6336: 6330: 6329: 6327: 6325: 6309: 6303: 6302: 6300: 6267:Gaucher, Éric C. 6263: 6257: 6256: 6254: 6252: 6237: 6231: 6230: 6228: 6226: 6212: 6206: 6205: 6185: 6179: 6176: 6158: 6120: 6114: 6113: 6085: 6079: 6078: 6042: 6036: 6035: 6033: 6032: 6000: 5994: 5993: 5965: 5959: 5958: 5941:(4): 1989–2007. 5929: 5920: 5919: 5893: 5884: 5883: 5881: 5849: 5843: 5842: 5798: 5792: 5791: 5770: 5764: 5763: 5733: 5727: 5726: 5689: 5683: 5682: 5681:on July 4, 2013. 5680: 5674:. Archived from 5665: 5654: 5648: 5647: 5645: 5644: 5638: 5632:. Archived from 5631: 5623: 5617: 5616: 5606: 5566: 5560: 5547: 5541: 5536: 5530: 5529: 5527: 5526: 5520: 5514:. Archived from 5513: 5503: 5497: 5496: 5494: 5493: 5487: 5481:. Archived from 5480: 5472: 5466: 5465: 5463: 5455: 5449: 5432: 5426: 5425: 5423: 5422: 5407: 5401: 5388: 5382: 5377: 5371: 5370: 5342: 5336: 5335: 5315: 5309: 5308: 5306: 5305: 5291: 5285: 5284: 5251:(5798): 479–82. 5232: 5226: 5219: 5213: 5206: 5200: 5199: 5197: 5196: 5181: 5175: 5174: 5146: 5140: 5139: 5119: 5113: 5112: 5101: 5095: 5094: 5083: 5077: 5076: 5074: 5073: 5064:. Archived from 5058: 5052: 5048: 5042: 5041: 5030: 5024: 5023: 5021: 5019: 5013: 5006: 4998: 4992: 4991: 4989: 4987: 4972: 4966: 4953: 4947: 4946: 4944: 4920: 4911: 4910: 4874: 4868: 4867: 4831: 4825: 4824: 4814: 4804: 4772: 4763: 4762: 4741: 4732: 4731: 4711: 4705: 4704: 4680: 4674: 4673: 4653: 4647: 4646: 4618: 4612: 4607: 4601: 4600: 4598: 4596: 4591:. Wood MacKenzie 4580: 4574: 4573: 4571: 4569: 4554: 4548: 4547: 4545: 4544: 4529: 4523: 4522: 4517: 4504: 4498: 4497: 4485: 4479: 4478: 4459: 4453: 4452: 4446: 4438: 4436: 4427: 4421: 4420: 4418: 4416: 4406: 4398: 4392: 4391: 4389: 4387: 4378: 4370: 4364: 4363: 4361: 4359: 4350:. Archived from 4339: 4333: 4332: 4330: 4328: 4305: 4299: 4286: 4280: 4279: 4277: 4275: 4230: 4224: 4223: 4221: 4219: 4214:on 31 March 2015 4213: 4207:. Archived from 4202: 4193: 4187: 4186: 4166: 4160: 4159: 4157: 4155: 4136: 4130: 4129: 4124:. Archived from 4113: 4107: 4106: 4103:10.1039/b718822f 4086: 4080: 4079: 4057: 4048: 4047: 4026: 4020: 4019: 3983: 3977: 3974: 3965: 3964: 3962: 3960: 3945: 3939: 3938: 3936: 3934: 3925: 3917: 3911: 3910: 3908: 3906: 3896: 3888: 3882: 3881: 3879: 3855: 3849: 3848: 3846: 3844: 3834: 3826: 3820: 3819: 3817: 3815: 3806: 3798: 3792: 3791: 3789: 3788: 3771: 3765: 3764: 3762: 3760: 3745: 3739: 3733: 3727: 3726: 3724: 3722: 3702: 3696: 3695: 3693: 3691: 3685: 3674: 3666: 3660: 3659: 3657: 3656: 3641: 3635: 3634: 3629: 3616: 3610: 3609: 3607: 3606: 3586: 3580: 3579: 3569: 3559: 3527: 3521: 3520: 3513: 3507: 3506: 3504: 3503: 3494: 3481: 3475: 3474: 3456: 3445: 3444: 3416: 3410: 3409: 3383: 3377: 3376: 3374: 3373: 3358: 3352: 3351: 3341: 3331: 3322:(5): 2258–2263. 3307: 3301: 3300: 3298: 3297: 3281: 3275: 3274: 3272: 3271: 3265: 3258: 3247: 3241: 3240: 3238: 3237: 3231: 3224: 3213: 3207: 3206: 3196: 3156: 3145: 3144: 3142: 3141: 3135: 3128: 3117: 3106: 3105: 3103: 3102: 3088: 3082: 3081: 3079: 3078: 3062: 3053: 3052: 3050: 3049: 3035: 3029: 3028: 3026: 3025: 3011: 3002: 3001: 2999: 2998: 2983: 2977: 2976: 2970: 2962: 2960: 2959: 2939: 2933: 2932: 2930: 2906: 2900: 2899: 2897: 2896: 2887: 2879: 2873: 2872: 2870: 2869: 2854: 2848: 2847: 2840: 2834: 2833: 2817: 2811: 2810: 2808: 2807: 2792: 2786: 2785: 2775: 2765: 2756:(5): 2258–2263. 2741: 2730: 2729: 2727: 2726: 2712: 2706: 2705: 2703: 2701: 2679: 2673: 2672: 2670: 2647:Renewable Energy 2638: 2632: 2631: 2629: 2628: 2608: 2599: 2598: 2596: 2573:Renewable Energy 2564: 2558: 2557: 2525: 2519: 2518: 2516: 2514: 2490: 2484: 2482: 2472: 2440: 2434: 2433: 2421: 2415: 2414: 2412: 2386: 2313:Hydrogen station 2308:Hydrogen storage 2235:hydrogen economy 2190:Hydrogen economy 2136:renewable energy 2059:Koulikoro Region 2039:activated carbon 1961:iron oxide cycle 1905:has developed a 1671: 1670: 1669: 1659: 1658: 1657: 1618:hydrogen economy 1607:natural hydrogen 1601:Natural hydrogen 1585:Natural hydrogen 1390:renewable energy 1339:algae bioreactor 1307:sodium hydroxide 1197:decomposition: H 1102:Desulfotomaculum 1071: 1070: 1069: 1018:hydrogen sulfide 991:plasma converter 972:activated carbon 939:Plasma pyrolysis 749: 722: 721: 720: 681:PEM electrolysis 636:or concentrated 393:. The resulting 189: 185: 154:renewable energy 56:electricity via 8059: 8058: 8054: 8053: 8052: 8050: 8049: 8048: 8034: 8033: 8027: 8011: 8009:Further reading 7988: 7983: 7982: 7972: 7970: 7959:Ritchie, Hannah 7956: 7952: 7943: 7941: 7933: 7932: 7928: 7881: 7877: 7868: 7866: 7856: 7855: 7851: 7842: 7840: 7832: 7831: 7827: 7808: 7801: 7786: 7782: 7776: 7759:Dvorak, Phred, 7758: 7754: 7743:Research Review 7738: 7734: 7733: 7729: 7721: 7717: 7683: 7679: 7640: 7636: 7624: 7620: 7605: 7601: 7592: 7590: 7582: 7581: 7577: 7568: 7567: 7563: 7526: 7522: 7482: 7478: 7438: 7434: 7395: 7391: 7384: 7380: 7371: 7369: 7360: 7359: 7355: 7346: 7344: 7340: 7333: 7329: 7328: 7324: 7317: 7313: 7304: 7302: 7298: 7291: 7287: 7286: 7282: 7273: 7271: 7262: 7261: 7257: 7248: 7246: 7229: 7225: 7188: 7184: 7177: 7155: 7148: 7108: 7101: 7096: 7092: 7038: 7034: 7025: 7023: 7019: 7008: 7004: 7003: 6999: 6990: 6988: 6975: 6974: 6970: 6961: 6959: 6950: 6949: 6945: 6936: 6934: 6930: 6923: 6919: 6918: 6914: 6883: 6879: 6856: 6845: 6838: 6834: 6825: 6823: 6814: 6813: 6809: 6799: 6797: 6784: 6783: 6779: 6726: 6722: 6713: 6711: 6702: 6701: 6697: 6666: 6662: 6652: 6650: 6612: 6608: 6600: 6596: 6586: 6584: 6569: 6565: 6555: 6553: 6538: 6534: 6503: 6499: 6446: 6442: 6413: 6409: 6399: 6397: 6382: 6378: 6368: 6366: 6351: 6347: 6338: 6337: 6333: 6323: 6321: 6310: 6306: 6264: 6260: 6250: 6248: 6238: 6234: 6224: 6222: 6214: 6213: 6209: 6202: 6186: 6182: 6161: 6147:10.1002/er.1397 6121: 6117: 6086: 6082: 6043: 6039: 6030: 6028: 6001: 5997: 5966: 5962: 5930: 5923: 5916: 5894: 5887: 5850: 5846: 5799: 5795: 5776:Catalysis Today 5771: 5767: 5760: 5734: 5730: 5690: 5686: 5678: 5663: 5655: 5651: 5642: 5640: 5636: 5629: 5625: 5624: 5620: 5581:(2–3): 523–40. 5567: 5563: 5548: 5544: 5537: 5533: 5524: 5522: 5518: 5511: 5507: 5504: 5500: 5491: 5489: 5485: 5478: 5474: 5473: 5469: 5461: 5457: 5456: 5452: 5442:Wayback Machine 5433: 5429: 5420: 5418: 5409: 5408: 5404: 5398:Wayback Machine 5389: 5385: 5378: 5374: 5343: 5339: 5316: 5312: 5303: 5301: 5293: 5292: 5288: 5233: 5229: 5220: 5216: 5207: 5203: 5194: 5192: 5182: 5178: 5147: 5143: 5120: 5116: 5103: 5102: 5098: 5085: 5084: 5080: 5071: 5069: 5060: 5059: 5055: 5049: 5045: 5032: 5031: 5027: 5017: 5015: 5011: 5004: 5000: 4999: 4995: 4985: 4983: 4974: 4973: 4969: 4963:Wayback Machine 4954: 4950: 4921: 4914: 4875: 4871: 4832: 4828: 4773: 4766: 4742: 4735: 4712: 4708: 4686: 4681: 4677: 4654: 4650: 4619: 4615: 4608: 4604: 4594: 4592: 4581: 4577: 4567: 4565: 4556: 4555: 4551: 4542: 4540: 4531: 4530: 4526: 4518:on 2011-07-02. 4515: 4505: 4501: 4486: 4482: 4460: 4456: 4440: 4439: 4434: 4428: 4424: 4414: 4412: 4404: 4399: 4395: 4385: 4383: 4376: 4371: 4367: 4357: 4355: 4354:on 19 July 2018 4340: 4336: 4326: 4324: 4322: 4306: 4302: 4295:Teknisk Ukeblad 4287: 4283: 4273: 4271: 4231: 4227: 4217: 4215: 4211: 4200: 4194: 4190: 4167: 4163: 4153: 4151: 4138: 4137: 4133: 4120: 4114: 4110: 4097:(20): 2331–40. 4087: 4083: 4058: 4051: 4027: 4023: 4008:10.1002/wene.50 3984: 3980: 3975: 3968: 3958: 3956: 3947: 3946: 3942: 3932: 3930: 3923: 3918: 3914: 3904: 3902: 3894: 3889: 3885: 3856: 3852: 3842: 3840: 3832: 3827: 3823: 3813: 3811: 3804: 3799: 3795: 3786: 3784: 3772: 3768: 3758: 3756: 3747: 3746: 3742: 3734: 3730: 3720: 3718: 3703: 3699: 3689: 3687: 3683: 3677:nelhydrogen.com 3672: 3668: 3667: 3663: 3654: 3652: 3643: 3642: 3638: 3630:on 2011-07-02. 3627: 3617: 3613: 3604: 3602: 3587: 3583: 3528: 3524: 3515: 3514: 3510: 3501: 3499: 3492: 3489: 3482: 3478: 3471: 3457: 3448: 3417: 3413: 3406: 3384: 3380: 3371: 3369: 3360: 3359: 3355: 3308: 3304: 3295: 3293: 3286:"Gold hydrogen" 3282: 3278: 3269: 3267: 3263: 3256: 3248: 3244: 3235: 3233: 3229: 3222: 3214: 3210: 3157: 3148: 3139: 3137: 3133: 3126: 3118: 3109: 3100: 3098: 3096:Energy Observer 3090: 3089: 3085: 3076: 3074: 3065:national grid. 3063: 3056: 3047: 3045: 3037: 3036: 3032: 3023: 3021: 3013: 3012: 3005: 2996: 2994: 2985: 2984: 2980: 2964: 2963: 2957: 2955: 2940: 2936: 2907: 2903: 2894: 2892: 2885: 2881: 2880: 2876: 2867: 2865: 2856: 2855: 2851: 2842: 2841: 2837: 2818: 2814: 2805: 2803: 2794: 2793: 2789: 2742: 2733: 2724: 2722: 2714: 2713: 2709: 2699: 2697: 2680: 2676: 2639: 2635: 2626: 2624: 2609: 2602: 2565: 2561: 2526: 2522: 2512: 2510: 2491: 2487: 2441: 2437: 2422: 2418: 2387: 2383: 2378: 2373: 2343:Liquid hydrogen 2323:Hydrogen tanker 2303:Hydrogen sensor 2298:Hydrogen safety 2243: 2192: 2186: 2118:methane leakage 2096:, resulting in 2090: 2047: 2028: 2024: 2004:Kværner process 2000: 1998:Kværner process 1957:water splitting 1953: 1923: 1911:niobium nitride 1903:Panasonic Corp. 1895: 1870: 1864: 1851: 1819: 1815: 1807: 1795: 1787:reed sweetgrass 1783:Wayback Machine 1772: 1765: 1691: 1685: 1668: 1665: 1664: 1663: 1661: 1660:(g) → C(s) + 2 1656: 1653: 1652: 1651: 1649: 1631: 1626: 1603: 1587: 1571: 1565: 1554: 1548: 1529:reed sweetgrass 1513: 1505:Main articles: 1495: 1487: 1440: 1432:Main articles: 1430: 1423: 1399: 1386: 1380: 1349: 1331: 1323:sodium silicate 1319:pressure vessel 1299: 1291:electrochemical 1237:combine solely 1232: 1226: 1216: 1212: 1208: 1204: 1200: 1191: 1187: 1180: 1176: 1172: 1168: 1164: 1152: 1143: 1127: 1115: 1078: 1068: 1065: 1064: 1063: 1061: 1057: 1050: 1038: 1023: 999: 981: 969: 965: 945:Kværner process 941: 934: 930: 926: 922: 916: 912: 908: 904: 896: 892: 888: 884: 873: 861: 853: 847: 817: 812: 780: 774: 758: 729: 719: 716: 715: 714: 712: 704:specific energy 696: 674: 661: 587:steam reforming 561:specific energy 553: 543: 537: 526: 521:water splitting 517: 515:Water splitting 511: 504: 493: 489: 485: 470: 466: 462: 450: 446: 435: 423: 411: 400: 385: 377:steam reforming 373: 371:Steam reforming 367: 362: 181: 119: 111:carbon monoxide 17: 12: 11: 5: 8057: 8047: 8046: 8032: 8031: 8025: 8010: 8007: 8006: 8005: 7987: 7984: 7981: 7980: 7950: 7926: 7875: 7849: 7825: 7799: 7780: 7752: 7727: 7715: 7677: 7634: 7618: 7599: 7575: 7561: 7520: 7476: 7449:(3): 369–383. 7432: 7389: 7378: 7353: 7322: 7311: 7280: 7255: 7223: 7182: 7175: 7146: 7119:(6): 471–485. 7099: 7090: 7032: 6997: 6983:. 2008-09-18. 6968: 6943: 6912: 6877: 6854: 6843: 6832: 6807: 6777: 6720: 6695: 6660: 6606: 6594: 6563: 6532: 6497: 6440: 6427:(5): 150–158. 6407: 6376: 6345: 6331: 6304: 6258: 6232: 6207: 6200: 6180: 6178: 6177: 6175:on 2010-05-17. 6115: 6080: 6037: 5995: 5960: 5921: 5914: 5885: 5844: 5793: 5765: 5758: 5728: 5684: 5649: 5618: 5561: 5542: 5531: 5498: 5467: 5450: 5427: 5402: 5383: 5372: 5337: 5326:(5): 899–906. 5310: 5286: 5227: 5214: 5201: 5176: 5141: 5114: 5096: 5078: 5053: 5043: 5025: 4993: 4967: 4948: 4912: 4879:Applied Energy 4869: 4836:Applied Energy 4826: 4764: 4733: 4706: 4684: 4675: 4648: 4613: 4602: 4583:Deign, Jason. 4575: 4549: 4524: 4499: 4480: 4454: 4422: 4393: 4365: 4342:thyssenkrupp. 4334: 4320: 4300: 4281: 4247:(6): 645–656. 4225: 4188: 4177:(6): 2531–42. 4161: 4131: 4128:on 2010-06-13. 4108: 4081: 4049: 4021: 3994:(5): 473–487. 3978: 3966: 3940: 3912: 3883: 3850: 3821: 3793: 3766: 3740: 3728: 3697: 3661: 3636: 3611: 3581: 3522: 3508: 3487: 3476: 3469: 3446: 3411: 3404: 3378: 3353: 3302: 3276: 3242: 3208: 3146: 3107: 3083: 3054: 3030: 3003: 2978: 2934: 2921:(5): 150–158. 2901: 2874: 2849: 2835: 2812: 2787: 2731: 2707: 2674: 2633: 2617:Greentechmedia 2600: 2559: 2520: 2485: 2435: 2416: 2396:Energy Reports 2380: 2379: 2377: 2374: 2372: 2371: 2366: 2361: 2356: 2351: 2345: 2340: 2338:Industrial gas 2335: 2333:Hydrogen valve 2330: 2325: 2320: 2315: 2310: 2305: 2300: 2295: 2290: 2285: 2280: 2275: 2270: 2265: 2260: 2255: 2250: 2244: 2242: 2239: 2228:of industrial 2185: 2182: 2164:green hydrogen 2160:nuclear energy 2156:renewable fuel 2140:green hydrogen 2089: 2086: 2078:White hydrogen 2046: 2043: 2026: 2022: 1999: 1996: 1952: 1949: 1922: 1919: 1894: 1891: 1866:Main article: 1863: 1860: 1850: 1847: 1817: 1813: 1805: 1794: 1791: 1776:aquatic plants 1771: 1768: 1763: 1760:photosynthesis 1758:, i.e. normal 1687:Main article: 1684: 1681: 1674: 1673: 1666: 1654: 1630: 1627: 1625: 1622: 1599:Main article: 1586: 1583: 1567:Main article: 1564: 1561: 1557:Aluminum alloy 1550:Main article: 1547: 1544: 1494: 1491: 1486: 1483: 1429: 1426: 1421: 1398: 1395: 1382:Main article: 1379: 1376: 1368:photosynthesis 1366:, i.e. normal 1345:Main article: 1330: 1327: 1298: 1295: 1228:Main article: 1225: 1222: 1214: 1210: 1206: 1202: 1198: 1189: 1185: 1178: 1174: 1170: 1166: 1162: 1150: 1142: 1139: 1126: 1123: 1114: 1111: 1107:radiolytically 1077: 1074: 1066: 1056: 1053: 1048: 1041:Petroleum coke 1037: 1036:Petroleum coke 1034: 1021: 998: 995: 979: 967: 963: 940: 937: 936: 935: 932: 928: 924: 920: 917: 914: 913:→ 12 CO + 12 H 910: 906: 902: 894: 890: 886: 882: 875: 874: 871: 859: 849: 843: 816: 813: 811: 808: 793:hydrogen pinch 776:Main article: 773: 770: 757: 754: 728: 725: 717: 694: 672: 660: 657: 618:platinum group 539:Main article: 536: 533: 529:green hydrogen 524: 513:Main article: 510: 507: 502: 495: 494: 491: 487: 483: 472: 471: 468: 464: 460: 448: 444: 433: 428:(natural gas, 421: 409: 398: 383: 369:Main article: 366: 363: 361: 358: 355: 354: 352: 349: 346: 344: 338: 337: 335: 332: 329: 327: 323: 322: 320: 310: 309:Nuclear power 307: 305: 301: 300: 298: 295: 289: 287: 286:Brown or black 283: 282: 280: 278: 275: 273: 269: 268: 266: 263: 257: 255: 251: 250: 248: 243: 237: 235: 231: 230: 228: 226: 219:green hydrogen 211: 209: 203: 202: 199: 196: 193: 180: 177: 162:green hydrogen 118: 115: 62:green hydrogen 49:Green hydrogen 15: 9: 6: 4: 3: 2: 8056: 8045: 8042: 8041: 8039: 8028: 8022: 8018: 8013: 8012: 8002: 7997: 7996: 7990: 7989: 7968: 7964: 7960: 7954: 7940: 7936: 7930: 7922: 7918: 7914: 7910: 7906: 7902: 7898: 7894: 7890: 7886: 7879: 7865: 7864: 7859: 7853: 7839: 7835: 7829: 7821: 7817: 7813: 7806: 7804: 7795: 7791: 7784: 7774: 7770: 7766: 7762: 7756: 7748: 7744: 7737: 7731: 7724: 7719: 7710: 7705: 7701: 7697: 7693: 7689: 7681: 7673: 7669: 7665: 7661: 7657: 7653: 7649: 7645: 7638: 7631: 7627: 7622: 7614: 7610: 7603: 7589: 7585: 7579: 7571: 7565: 7556: 7551: 7547: 7543: 7539: 7535: 7531: 7524: 7515: 7510: 7506: 7502: 7498: 7494: 7490: 7486: 7480: 7472: 7468: 7464: 7460: 7456: 7452: 7448: 7444: 7436: 7428: 7424: 7420: 7416: 7412: 7408: 7404: 7400: 7393: 7387: 7382: 7367: 7363: 7357: 7339: 7332: 7326: 7320: 7315: 7297: 7290: 7284: 7269: 7265: 7259: 7244: 7240: 7239: 7238:Asahi Shimbun 7234: 7227: 7219: 7215: 7210: 7205: 7201: 7197: 7193: 7186: 7178: 7172: 7168: 7164: 7160: 7153: 7151: 7142: 7138: 7134: 7130: 7126: 7122: 7118: 7114: 7106: 7104: 7094: 7086: 7082: 7077: 7072: 7068: 7064: 7060: 7056: 7052: 7048: 7044: 7036: 7022:on 2008-05-18 7018: 7014: 7007: 7001: 6986: 6982: 6981:Science Daily 6978: 6972: 6957: 6953: 6947: 6933:on 2009-03-27 6929: 6922: 6916: 6908: 6904: 6900: 6896: 6892: 6888: 6881: 6873: 6869: 6865: 6861: 6857: 6851: 6847: 6836: 6821: 6817: 6811: 6796:on 2018-05-15 6795: 6791: 6787: 6781: 6773: 6769: 6764: 6759: 6755: 6751: 6747: 6743: 6739: 6735: 6731: 6724: 6709: 6705: 6699: 6691: 6687: 6683: 6679: 6675: 6671: 6664: 6649: 6645: 6641: 6637: 6633: 6629: 6625: 6621: 6617: 6610: 6603: 6598: 6582: 6578: 6574: 6567: 6551: 6547: 6543: 6536: 6528: 6524: 6520: 6516: 6512: 6508: 6501: 6493: 6489: 6485: 6481: 6476: 6471: 6467: 6463: 6459: 6455: 6451: 6444: 6435: 6430: 6426: 6422: 6418: 6411: 6395: 6391: 6387: 6380: 6364: 6360: 6356: 6349: 6341: 6335: 6319: 6315: 6308: 6299: 6294: 6290: 6286: 6282: 6278: 6277: 6272: 6268: 6262: 6247: 6243: 6236: 6221: 6217: 6211: 6203: 6197: 6193: 6192: 6184: 6174: 6170: 6169: 6164: 6160: 6159: 6156: 6152: 6148: 6144: 6140: 6136: 6132: 6128: 6127: 6119: 6111: 6107: 6103: 6099: 6095: 6091: 6084: 6076: 6072: 6068: 6064: 6060: 6056: 6052: 6048: 6041: 6027:on 2013-07-31 6026: 6022: 6018: 6014: 6012: 6009:coupled with 6008: 5999: 5991: 5987: 5983: 5979: 5975: 5971: 5964: 5956: 5952: 5948: 5944: 5940: 5936: 5928: 5926: 5917: 5911: 5907: 5903: 5899: 5892: 5890: 5880: 5875: 5871: 5867: 5864:(3): 030903. 5863: 5859: 5858:APL Materials 5855: 5848: 5840: 5836: 5832: 5828: 5824: 5820: 5816: 5812: 5808: 5804: 5797: 5789: 5785: 5781: 5777: 5769: 5761: 5755: 5751: 5747: 5743: 5739: 5732: 5724: 5720: 5716: 5712: 5708: 5704: 5701:(6): 471–85. 5700: 5696: 5688: 5677: 5673: 5669: 5662: 5661: 5653: 5639:on 2017-06-17 5635: 5628: 5622: 5614: 5610: 5605: 5600: 5596: 5592: 5588: 5584: 5580: 5576: 5572: 5565: 5559: 5558:1-86094-228-8 5555: 5551: 5546: 5540: 5535: 5521:on 2012-02-20 5517: 5510: 5502: 5488:on 2017-08-10 5484: 5477: 5471: 5460: 5454: 5447: 5443: 5439: 5436: 5431: 5417:on 2014-02-03 5416: 5412: 5406: 5399: 5395: 5392: 5387: 5381: 5376: 5368: 5364: 5360: 5356: 5353:: 1802–1812. 5352: 5348: 5341: 5333: 5329: 5325: 5321: 5314: 5300: 5296: 5290: 5282: 5278: 5274: 5270: 5266: 5262: 5258: 5254: 5250: 5246: 5242: 5238: 5231: 5225: 5224: 5218: 5212: 5211: 5205: 5191: 5187: 5180: 5172: 5168: 5164: 5160: 5156: 5152: 5145: 5137: 5133: 5130:(3): 618–23. 5129: 5125: 5118: 5110: 5106: 5100: 5092: 5088: 5082: 5068:on 2014-03-13 5067: 5063: 5057: 5051: 5047: 5039: 5035: 5029: 5010: 5003: 4997: 4981: 4977: 4971: 4964: 4960: 4957: 4952: 4943: 4938: 4934: 4930: 4926: 4919: 4917: 4908: 4904: 4900: 4896: 4892: 4888: 4884: 4880: 4873: 4865: 4861: 4857: 4853: 4849: 4845: 4841: 4837: 4830: 4822: 4818: 4813: 4808: 4803: 4798: 4794: 4790: 4786: 4782: 4778: 4771: 4769: 4760: 4756: 4752: 4748: 4740: 4738: 4729: 4725: 4721: 4717: 4710: 4702: 4698: 4694: 4690: 4679: 4671: 4667: 4663: 4659: 4652: 4644: 4640: 4636: 4632: 4628: 4624: 4617: 4611: 4606: 4590: 4586: 4579: 4563: 4559: 4553: 4539:on 2012-03-22 4538: 4534: 4528: 4521: 4514: 4510: 4503: 4495: 4491: 4484: 4477: 4473: 4469: 4468:Bloomberg.com 4465: 4458: 4450: 4444: 4433: 4426: 4410: 4409:fch.europa.eu 4403: 4397: 4382: 4375: 4369: 4353: 4349: 4345: 4338: 4323: 4321:9783527674299 4317: 4313: 4312: 4304: 4297: 4296: 4291: 4285: 4270: 4266: 4262: 4258: 4254: 4250: 4246: 4242: 4241: 4236: 4229: 4210: 4206: 4199: 4192: 4184: 4180: 4176: 4172: 4165: 4149: 4145: 4141: 4135: 4127: 4123: 4118: 4112: 4104: 4100: 4096: 4092: 4085: 4077: 4073: 4069: 4065: 4064: 4056: 4054: 4045: 4041: 4037: 4033: 4025: 4017: 4013: 4009: 4005: 4001: 3997: 3993: 3989: 3982: 3973: 3971: 3954: 3950: 3944: 3929: 3928:itm-power.com 3922: 3916: 3900: 3899:fch.europa.eu 3893: 3887: 3878: 3873: 3869: 3865: 3861: 3854: 3838: 3837:fch.europa.eu 3831: 3825: 3810: 3803: 3797: 3783: 3782: 3777: 3770: 3754: 3750: 3744: 3737: 3732: 3716: 3712: 3708: 3701: 3682: 3678: 3671: 3665: 3651:on 2012-03-22 3650: 3646: 3640: 3633: 3626: 3622: 3615: 3600: 3596: 3592: 3585: 3577: 3573: 3568: 3563: 3558: 3553: 3549: 3545: 3541: 3537: 3533: 3526: 3518: 3512: 3498: 3491: 3480: 3472: 3466: 3462: 3455: 3453: 3451: 3442: 3438: 3434: 3430: 3426: 3422: 3415: 3407: 3401: 3397: 3393: 3389: 3382: 3368:on 2015-02-02 3367: 3363: 3357: 3349: 3345: 3340: 3335: 3330: 3325: 3321: 3317: 3313: 3306: 3291: 3287: 3280: 3262: 3255: 3254: 3246: 3228: 3221: 3220: 3212: 3204: 3200: 3195: 3190: 3186: 3182: 3178: 3174: 3170: 3166: 3162: 3155: 3153: 3151: 3132: 3125: 3124: 3116: 3114: 3112: 3097: 3093: 3087: 3072: 3068: 3061: 3059: 3044: 3040: 3034: 3020: 3019:The Economist 3016: 3010: 3008: 2992: 2988: 2982: 2974: 2968: 2953: 2949: 2945: 2938: 2929: 2924: 2920: 2916: 2912: 2905: 2891: 2884: 2878: 2863: 2859: 2853: 2845: 2839: 2831: 2827: 2823: 2816: 2801: 2797: 2791: 2783: 2779: 2774: 2769: 2764: 2759: 2755: 2751: 2747: 2740: 2738: 2736: 2721: 2717: 2711: 2695: 2691: 2690: 2685: 2678: 2669: 2664: 2660: 2656: 2652: 2648: 2644: 2637: 2622: 2618: 2614: 2607: 2605: 2595: 2590: 2586: 2582: 2578: 2574: 2570: 2563: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2524: 2508: 2504: 2500: 2496: 2489: 2480: 2476: 2471: 2466: 2462: 2458: 2454: 2450: 2446: 2439: 2431: 2427: 2420: 2411: 2406: 2403:: 8421–8446. 2402: 2398: 2397: 2392: 2385: 2381: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2318:Hydrogen tank 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2294: 2291: 2289: 2286: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2245: 2238: 2236: 2231: 2227: 2222: 2220: 2215: 2213: 2212:Haber process 2209: 2205: 2201: 2200:aromatization 2197: 2196:hydrocracking 2191: 2184:Hydrogen uses 2181: 2178: 2175: 2173: 2169: 2168:pink hydrogen 2165: 2161: 2157: 2153: 2149: 2145: 2141: 2137: 2132: 2130: 2125: 2123: 2119: 2115: 2111: 2107: 2106:blue hydrogen 2103: 2102:grey hydrogen 2099: 2095: 2085: 2083: 2079: 2071: 2067: 2065: 2060: 2056: 2052: 2042: 2040: 2036: 2032: 2020: 2016: 2013: 2009: 2005: 1995: 1992: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1948: 1946: 1941: 1937: 1933: 1929: 1918: 1916: 1915:decomposition 1912: 1908: 1907:photocatalyst 1904: 1899: 1890: 1887: 1881: 1879: 1875: 1869: 1859: 1857: 1846: 1843: 1839: 1835: 1831: 1827: 1823: 1811: 1803: 1799: 1790: 1788: 1784: 1780: 1777: 1767: 1761: 1757: 1753: 1749: 1746: 1741: 1739: 1735: 1731: 1727: 1724:differs from 1723: 1719: 1715: 1711: 1707: 1703: 1699: 1695: 1690: 1680: 1677: 1648: 1647: 1646: 1643: 1635: 1621: 1619: 1615: 1610: 1608: 1602: 1595: 1591: 1582: 1580: 1576: 1570: 1560: 1558: 1553: 1541: 1536: 1532: 1530: 1526: 1522: 1518: 1512: 1508: 1499: 1490: 1482: 1480: 1476: 1472: 1471:H. salinarium 1466: 1464: 1460: 1456: 1453:differs from 1452: 1448: 1444: 1439: 1435: 1425: 1417: 1413: 1411: 1408:with biomass 1407: 1403: 1394: 1391: 1385: 1375: 1373: 1369: 1365: 1361: 1357: 1354: 1348: 1340: 1335: 1326: 1324: 1320: 1316: 1312: 1308: 1304: 1294: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1263: 1261: 1256: 1252: 1248: 1244: 1240: 1236: 1231: 1221: 1218: 1196: 1195:Sulfuric acid 1192: 1182: 1159: 1156: 1148: 1138: 1136: 1131: 1122: 1120: 1110: 1108: 1104: 1103: 1098: 1094: 1090: 1087: 1083: 1073: 1052: 1046: 1042: 1033: 1031: 1027: 1019: 1015: 1011: 1009: 1004: 994: 992: 988: 983: 977: 973: 961: 957: 954: 950: 946: 931:→ 24 CO + 6 H 918: 900: 899: 898: 880: 869: 865: 857: 852: 846: 841: 840: 839: 837: 833: 829: 824: 822: 807: 805: 801: 796: 794: 789: 785: 779: 769: 767: 763: 753: 745: 743: 739: 735: 724: 708: 705: 702:(which has a 691: 687: 684: 682: 676: 670: 666: 656: 654: 650: 646: 641: 639: 635: 631: 625: 623: 619: 615: 611: 607: 603: 598: 594: 592: 588: 584: 575: 571: 568: 564: 562: 558: 552: 548: 542: 532: 530: 522: 516: 506: 500: 481: 480: 479: 477: 458: 457: 456: 454: 441: 439: 431: 427: 419: 415: 407: 402: 396: 392: 389: 380: 378: 372: 353: 350: 347: 343: 342:Gold or white 340: 339: 336: 334:Photovoltaic 333: 330: 325: 324: 321: 318: 314: 311: 308: 303: 302: 299: 296: 294: 290: 285: 284: 281: 279: 276: 271: 270: 267: 264: 262: 258: 253: 252: 249: 247: 244: 242: 238: 233: 232: 229: 227: 224: 220: 216: 212: 208: 204: 200: 190: 184: 176: 174: 173:grey hydrogen 170: 165: 163: 159: 155: 151: 150:nuclear power 147: 139: 135: 133: 128: 124: 114: 112: 108: 104: 103:Haber process 100: 96: 91: 88: 86: 82: 78: 75: 71: 67: 63: 59: 55: 51: 50: 45: 43: 42: 41:blue hydrogen 37: 33: 29: 26:made through 25: 24:gray hydrogen 21: 8016: 7994: 7973:16 September 7971:. Retrieved 7966: 7953: 7942:. Retrieved 7938: 7929: 7888: 7884: 7878: 7867:. Retrieved 7861: 7852: 7841:. Retrieved 7837: 7828: 7815: 7793: 7783: 7772: 7765:Air Products 7755: 7742: 7730: 7718: 7691: 7687: 7680: 7647: 7637: 7630:Air Products 7621: 7612: 7602: 7591:. Retrieved 7587: 7578: 7564: 7537: 7533: 7523: 7496: 7492: 7479: 7446: 7442: 7435: 7402: 7398: 7392: 7381: 7370:. Retrieved 7356: 7345:. Retrieved 7325: 7314: 7303:. Retrieved 7283: 7272:. Retrieved 7258: 7247:. Retrieved 7243:the original 7236: 7226: 7199: 7195: 7185: 7158: 7116: 7112: 7093: 7053:(1): 13549. 7050: 7046: 7035: 7024:. Retrieved 7017:the original 7000: 6989:. Retrieved 6971: 6960:. Retrieved 6946: 6935:. Retrieved 6928:the original 6915: 6890: 6886: 6880: 6841: 6835: 6824:. Retrieved 6818:(in Dutch). 6810: 6798:. Retrieved 6794:the original 6789: 6780: 6737: 6733: 6723: 6712:. Retrieved 6698: 6673: 6669: 6663: 6651:. Retrieved 6623: 6619: 6609: 6597: 6585:. Retrieved 6576: 6566: 6554:. Retrieved 6546:NewScientist 6545: 6535: 6513:(1): 83–89. 6510: 6506: 6500: 6457: 6453: 6443: 6424: 6420: 6410: 6398:. Retrieved 6389: 6379: 6367:. Retrieved 6358: 6348: 6334: 6322:. Retrieved 6317: 6312:Hand, Eric. 6307: 6280: 6274: 6261: 6249:. Retrieved 6245: 6235: 6223:. Retrieved 6219: 6210: 6190: 6183: 6173:the original 6166: 6133:(9): 870–6. 6130: 6124: 6118: 6096:(5): 663–9. 6093: 6089: 6083: 6050: 6046: 6040: 6029:. Retrieved 6025:the original 6020: 6016: 6010: 6006: 5998: 5976:(2): 200–6. 5973: 5969: 5963: 5938: 5934: 5897: 5861: 5857: 5847: 5806: 5802: 5796: 5779: 5775: 5768: 5741: 5731: 5698: 5694: 5687: 5676:the original 5659: 5652: 5641:. Retrieved 5634:the original 5621: 5578: 5574: 5564: 5545: 5534: 5523:. Retrieved 5516:the original 5501: 5490:. Retrieved 5483:the original 5470: 5453: 5445: 5430: 5419:. Retrieved 5415:the original 5405: 5400:, April 2007 5386: 5375: 5350: 5346: 5340: 5323: 5319: 5313: 5302:. Retrieved 5298: 5289: 5248: 5244: 5230: 5222: 5217: 5209: 5204: 5193:. Retrieved 5189: 5179: 5154: 5150: 5144: 5127: 5123: 5117: 5108: 5099: 5090: 5081: 5070:. Retrieved 5066:the original 5056: 5046: 5037: 5028: 5016:. Retrieved 4996: 4984:. Retrieved 4970: 4951: 4932: 4928: 4882: 4878: 4872: 4839: 4835: 4829: 4784: 4780: 4750: 4746: 4719: 4715: 4709: 4692: 4688: 4678: 4661: 4657: 4651: 4626: 4622: 4616: 4605: 4593:. Retrieved 4588: 4578: 4566:. Retrieved 4561: 4552: 4541:. Retrieved 4537:the original 4527: 4519: 4513:the original 4502: 4493: 4483: 4475: 4467: 4457: 4425: 4413:. Retrieved 4408: 4396: 4384:. Retrieved 4380: 4368: 4356:. Retrieved 4352:the original 4347: 4337: 4325:. Retrieved 4310: 4303: 4293: 4284: 4272:. Retrieved 4244: 4238: 4228: 4216:. Retrieved 4209:the original 4204: 4191: 4174: 4170: 4164: 4152:. Retrieved 4148:the original 4134: 4126:the original 4111: 4094: 4090: 4084: 4067: 4061: 4035: 4031: 4024: 3991: 3987: 3981: 3957:. Retrieved 3952: 3943: 3931:. Retrieved 3927: 3915: 3903:. Retrieved 3898: 3886: 3867: 3863: 3853: 3841:. Retrieved 3836: 3824: 3812:. Retrieved 3808: 3796: 3785:. Retrieved 3779: 3769: 3757:. Retrieved 3743: 3738:, p. 37 3731: 3719:. Retrieved 3710: 3700: 3688:. Retrieved 3676: 3664: 3653:. Retrieved 3649:the original 3639: 3631: 3625:the original 3614: 3603:. Retrieved 3594: 3584: 3539: 3535: 3525: 3511: 3500:. Retrieved 3496: 3479: 3460: 3424: 3420: 3414: 3387: 3381: 3370:. Retrieved 3366:the original 3356: 3319: 3315: 3305: 3294:. Retrieved 3289: 3279: 3268:. Retrieved 3252: 3245: 3234:. Retrieved 3218: 3211: 3168: 3164: 3138:. Retrieved 3122: 3099:. Retrieved 3095: 3086: 3075:. Retrieved 3070: 3046:. Retrieved 3042: 3033: 3022:. Retrieved 3018: 2995:. Retrieved 2981: 2956:. Retrieved 2947: 2937: 2918: 2914: 2904: 2893:. Retrieved 2877: 2866:. Retrieved 2852: 2838: 2825: 2815: 2804:. Retrieved 2799: 2790: 2753: 2749: 2723:. Retrieved 2719: 2710: 2698:. Retrieved 2689:Carbon Brief 2687: 2677: 2650: 2646: 2636: 2625:. Retrieved 2616: 2576: 2572: 2562: 2537: 2533: 2523: 2511:. Retrieved 2499:CEP Magazine 2498: 2488: 2452: 2448: 2438: 2429: 2419: 2400: 2394: 2384: 2223: 2216: 2193: 2179: 2176: 2167: 2152:landfill gas 2144:power to gas 2139: 2133: 2126: 2105: 2101: 2094:fossil fuels 2091: 2076: 2048: 2019:hydrocarbons 2008:carbon black 2006:or Kvaerner 2001: 1993: 1954: 1924: 1900: 1896: 1882: 1871: 1852: 1822:electrolyzer 1796: 1773: 1742: 1708:using multi 1698:fermentative 1692: 1678: 1675: 1640: 1611: 1604: 1572: 1555: 1514: 1488: 1478: 1474: 1470: 1467: 1441: 1418: 1414: 1410:gasification 1400: 1387: 1350: 1311:ferrosilicon 1300: 1264: 1254: 1246: 1242: 1239:heat sources 1233: 1219: 1193: 1183: 1160: 1144: 1128: 1116: 1100: 1093:South Africa 1079: 1058: 1039: 1012: 1000: 984: 949:carbon black 947:or Kvaerner 942: 876: 867: 863: 855: 850: 844: 835: 831: 825: 818: 797: 788:caustic soda 781: 759: 746: 730: 709: 700: 685: 677: 664: 662: 642: 626: 599: 595: 580: 569: 565: 554: 518: 496: 473: 442: 403: 381: 374: 317:electrolysis 218: 215:electrolysis 182: 166: 144: 120: 101:through the 95:oil refining 92: 89: 77:gasification 69: 61: 58:electrolysis 47: 46: 39: 23: 18: 7113:ChemSusChem 6604:hcei.tsc.ru 6602:Proceedings 6318:science.org 6053:: 335–344. 5782:: 150–156. 5695:ChemSusChem 5157:: 1288–97. 4885:: 502–533. 4842:: 502–533. 4629:(1): 70–4. 4070:: 227–279. 4038:: 140–145. 3736:IEA H2 2019 3679:. Nel ASA. 2258:Biohydrogen 2127:The use of 2029:), such as 1832:(1740–2900 1736:is used in 1702:biohydrogen 1406:biohydrogen 1315:World War I 1119:thermolysis 1113:Thermolysis 974:and 10% in 879:heating oil 742:formic acid 201:References 158:solar power 146:Decomposing 127:lithosphere 7944:2022-12-23 7935:"Hydrogen" 7869:2022-12-23 7843:2022-12-23 7672:Q108067259 7593:2024-05-13 7499:(1): 8–9. 7372:2010-07-05 7347:2010-07-05 7305:2010-07-05 7274:2009-09-19 7249:2015-08-02 7026:2008-05-09 6991:2008-09-19 6962:2016-08-22 6937:2010-07-05 6846:production 6826:2010-07-05 6714:2010-07-05 6676:: 113323. 6587:30 October 6556:30 October 6400:19 October 6369:19 October 6324:9 December 6283:(1): 8–9. 6251:January 6, 6225:January 6, 6031:2013-03-09 5643:2009-03-06 5525:2013-12-04 5492:2013-12-04 5421:2014-01-23 5304:2021-08-22 5195:2022-10-06 5072:2009-10-13 4935:(2): 1–8. 4753:: 112–20. 4722:: 744–57. 4664:: 218–22. 4562:energy.gov 4543:2011-12-13 3953:energy.gov 3787:2021-06-20 3655:2011-12-13 3605:2010-10-01 3502:2015-11-28 3372:2008-05-09 3296:2022-09-29 3270:2020-11-28 3236:2020-03-22 3171:: 101667. 3140:2020-11-27 3101:2023-07-03 3077:2022-09-29 3048:2023-11-22 3024:2023-09-26 2997:2019-06-03 2958:2019-06-03 2895:2014-09-06 2868:2020-09-29 2806:2023-09-21 2796:"Hydrogen" 2725:2024-03-23 2700:1 December 2653:: 119041. 2627:2022-02-11 2579:: 119041. 2540:: 102208. 2376:References 2226:by-product 2219:fuel cells 2188:See also: 1932:Hydrosol-2 1748:bioreactor 1356:bioreactor 1082:radiolysis 1076:Radiolysis 1028:process. 800:coke ovens 795:analysis. 612:(PEM) and 545:See also: 509:From water 476:exothermic 414:iron oxide 7921:253525130 7664:2050-0505 7540:: 03006. 7471:128762620 7427:105839304 6864:496234379 6648:244814932 6527:210862772 6492:206663568 6320:. Science 6246:U.S. Army 5190:New Atlas 4907:117669840 4864:117669840 4695:: 39–47. 4261:1826/6464 4016:135539661 2720:Yale E360 2479:252584593 2202:process, 2066:efforts. 2012:Norwegian 1945:heliostat 1909:based on 1642:Pyrolysis 1579:aluminium 1130:Pyrolysis 1097:phylotype 1089:gold mine 1084:. In the 1014:Coke oven 960:Norwegian 956:pyrolysis 836:catalytic 821:combusted 608:(SOECs), 426:feedstock 416:or other 234:Turquoise 54:renewable 8038:Category 7913:36385542 7820:Archived 7668:Wikidata 7493:Elements 7366:Archived 7338:Archived 7296:Archived 7268:Archived 7218:20140925 7141:19536754 7085:27941752 6985:Archived 6956:Archived 6872:20274275 6820:Archived 6772:19291418 6708:Archived 6653:16 March 6581:Archived 6577:Phys.Org 6550:Archived 6484:29146810 6394:Archived 6392:. BASF. 6363:Archived 6359:Phys-Org 6155:96849691 6110:20566280 6075:28042989 5839:21261127 5831:28220969 5723:19536754 5668:Taichung 5613:19291418 5438:Archived 5394:Archived 5281:22420345 5273:17053150 5109:U.S. EIA 5009:Archived 4980:Archived 4965:Nedstack 4959:Archived 4821:25309898 4595:22 April 4568:22 April 4472:Archived 4443:cite web 4415:17 April 4386:17 April 4327:22 April 4274:June 12, 4269:53760672 4154:March 9, 3959:17 April 3933:17 April 3905:17 April 3843:17 April 3814:17 April 3753:Archived 3721:22 April 3715:Archived 3690:22 April 3681:Archived 3599:Archived 3576:25309898 3490:Capture" 3348:38323342 3261:Archived 3227:Archived 3203:32835007 3131:Archived 3043:Sensonic 2991:Archived 2967:cite web 2952:Archived 2948:gasworld 2862:Archived 2830:Archived 2782:38323342 2694:Archived 2621:Archived 2507:Archived 2241:See also 2210:via the 2055:methanol 1836:, 12–20 1808:O) into 1779:Archived 1706:bacteria 1447:bacteria 1303:balloons 1247:chemical 784:chlorine 768:(WGSR). 734:methanol 671:of the H 438:captured 391:catalyst 117:Overview 107:methanol 72:include 20:Hydrogen 8003:. 2019. 7986:Sources 7893:Bibcode 7771:..."], 7542:Bibcode 7501:Bibcode 7451:Bibcode 7407:Bibcode 7121:Bibcode 7076:5159813 7055:Bibcode 6895:Bibcode 6763:2777220 6742:Bibcode 6678:Bibcode 6628:Bibcode 6462:Bibcode 6454:Science 6285:Bibcode 6135:Bibcode 6055:Bibcode 5978:Bibcode 5943:Bibcode 5866:Bibcode 5811:Bibcode 5703:Bibcode 5604:2777220 5583:Bibcode 5355:Bibcode 5253:Bibcode 5245:Science 5159:Bibcode 4887:Bibcode 4844:Bibcode 4812:4174133 4789:Bibcode 4631:Bibcode 4358:28 July 3996:Bibcode 3870:: 1–9. 3759:17 June 3711:iea.org 3567:4174133 3544:Bibcode 3429:Bibcode 3194:7326412 3173:Bibcode 2655:Bibcode 2581:Bibcode 2542:Bibcode 2457:Bibcode 2354:Hy4Heat 2208:ammonia 2051:ammonia 2031:methane 1824:is the 1696:is the 1475:E. coli 1402:Biomass 1245:) with 1086:Mponeng 832:thermal 738:ethanol 645:voltage 430:naphtha 404:In the 241:methane 223:biomass 99:ammonia 74:biomass 66:biomass 32:methane 8023:  7919:  7911:  7885:Nature 7670:  7662:  7613:dw.com 7469:  7425:  7216:  7173:  7139:  7083:  7073:  6870:  6862:  6852:  6800:14 May 6770:  6760:  6646:  6525:  6490:  6482:  6384:BASF. 6198:  6153:  6108:  6073:  6011:E coli 5912:  5837:  5829:  5809:(20). 5756:  5721:  5611:  5601:  5556:  5279:  5271:  5018:8 July 4986:5 July 4905:  4862:  4819:  4809:  4787:: 79. 4318:  4267:  4014:  3574:  3564:  3542:: 79. 3467:  3402:  3346:  3201:  3191:  2780:  2513:6 July 2477:  2170:. The 2035:biogas 1810:oxygen 1756:oxygen 1752:sulfur 1710:enzyme 1575:carbon 1569:CC-HOD 1563:CC-HOD 1364:oxygen 1360:sulfur 1260:hybrid 1251:oxygen 1243:thermo 1045:syngas 953:plasma 927:+ 12 O 804:Syngas 762:syngas 499:oxygen 486:O → CO 482:CO + H 453:syngas 418:oxides 388:nickel 326:Yellow 198:Notes 192:Color 7917:S2CID 7745:(2). 7739:(PDF) 7467:S2CID 7423:S2CID 7341:(PDF) 7334:(PDF) 7299:(PDF) 7292:(PDF) 7020:(PDF) 7009:(PDF) 6931:(PDF) 6924:(PDF) 6644:S2CID 6523:S2CID 6488:S2CID 6151:S2CID 5835:S2CID 5679:(PDF) 5664:(PDF) 5637:(PDF) 5630:(PDF) 5519:(PDF) 5512:(PDF) 5486:(PDF) 5479:(PDF) 5462:(PDF) 5277:S2CID 5012:(PDF) 5005:(PDF) 4903:S2CID 4860:S2CID 4516:(PDF) 4435:(PDF) 4405:(PDF) 4377:(PDF) 4265:S2CID 4218:2 May 4212:(PDF) 4201:(PDF) 4012:S2CID 3924:(PDF) 3895:(PDF) 3833:(PDF) 3805:(PDF) 3684:(PDF) 3673:(PDF) 3628:(PDF) 3493:(PDF) 3264:(PDF) 3257:(PDF) 3230:(PDF) 3223:(PDF) 3134:(PDF) 3127:(PDF) 2886:(PDF) 2475:S2CID 2449:Joule 1940:Spain 1802:water 1745:algae 1730:light 1459:light 1353:algae 1262:one. 1255:cycle 1209:+1/2O 1181:+2HI 909:+ 6 O 889:and C 866:CO + 778:Mekog 207:Green 152:or a 8021:ISBN 7975:2021 7909:PMID 7767:and 7660:ISSN 7214:PMID 7171:ISBN 7137:PMID 7081:PMID 6868:OSTI 6860:OCLC 6850:ISBN 6802:2018 6768:PMID 6655:2022 6589:2020 6558:2020 6480:PMID 6402:2020 6371:2020 6326:2023 6253:2020 6227:2020 6196:ISBN 6106:PMID 6071:PMID 5910:ISBN 5827:PMID 5754:ISBN 5719:PMID 5609:PMID 5554:ISBN 5269:PMID 5151:Fuel 5020:2020 4988:2020 4817:PMID 4597:2018 4570:2018 4449:link 4417:2018 4388:2018 4360:2018 4329:2018 4316:ISBN 4276:2011 4220:2018 4156:2013 3961:2018 3935:2018 3907:2018 3868:2013 3845:2018 3816:2018 3781:CNBC 3761:2020 3723:2018 3692:2018 3572:PMID 3465:ISBN 3400:ISBN 3344:PMID 3199:PMID 2973:link 2778:PMID 2702:2020 2515:2021 2053:and 2002:The 1979:and 1577:and 1509:and 1436:and 1265:The 1145:The 997:Coal 978:. CO 943:The 786:and 549:and 293:coal 272:Gray 254:Blue 7901:doi 7889:611 7863:IEA 7769:AES 7704:hdl 7696:doi 7652:doi 7588:IEA 7550:doi 7509:doi 7459:doi 7415:doi 7204:doi 7163:doi 7129:doi 7071:PMC 7063:doi 6903:doi 6758:PMC 6750:doi 6738:102 6686:doi 6674:181 6636:doi 6515:doi 6470:doi 6458:358 6429:doi 6293:doi 6143:doi 6098:doi 6063:doi 6051:227 5986:doi 5951:doi 5902:doi 5874:doi 5819:doi 5784:doi 5780:252 5746:doi 5711:doi 5599:PMC 5591:doi 5579:102 5363:doi 5328:doi 5261:doi 5249:314 5167:doi 5155:117 5132:doi 4937:doi 4895:doi 4883:231 4852:doi 4840:231 4807:PMC 4797:doi 4755:doi 4724:doi 4720:212 4697:doi 4693:229 4666:doi 4662:198 4639:doi 4298:, . 4257:hdl 4249:doi 4179:doi 4099:doi 4072:doi 4040:doi 4004:doi 3872:doi 3562:PMC 3552:doi 3437:doi 3392:doi 3334:hdl 3324:doi 3189:PMC 3181:doi 2923:doi 2800:IEA 2768:hdl 2758:doi 2663:doi 2651:216 2589:doi 2577:216 2550:doi 2465:doi 2405:doi 1989:LHV 1938:in 1838:MPa 1834:psi 1830:bar 1766:. 1337:An 1205:→SO 1173:O→H 1169:+2H 1165:+SO 1099:of 862:→ 2 842:2 C 490:+ H 463:+ H 401:). 8040:: 7999:. 7965:. 7961:. 7937:. 7915:. 7907:. 7899:. 7887:. 7860:. 7836:. 7818:. 7814:. 7802:^ 7792:. 7741:. 7702:. 7690:. 7666:. 7658:. 7650:. 7628:, 7611:. 7586:. 7548:. 7538:98 7536:. 7532:. 7507:. 7497:16 7495:. 7491:. 7465:. 7457:. 7447:24 7445:. 7421:. 7413:. 7403:43 7401:. 7336:. 7294:. 7235:. 7212:. 7200:49 7198:. 7194:. 7169:. 7149:^ 7135:. 7127:. 7115:. 7102:^ 7079:. 7069:. 7061:. 7049:. 7045:. 7011:. 6901:. 6891:38 6889:. 6866:. 6858:. 6788:. 6766:. 6756:. 6748:. 6736:. 6732:. 6684:. 6672:. 6642:. 6634:. 6624:47 6622:. 6618:. 6579:. 6575:. 6544:. 6521:. 6509:. 6486:. 6478:. 6468:. 6456:. 6452:. 6423:. 6419:. 6388:. 6357:. 6316:. 6291:. 6281:16 6279:. 6273:. 6244:. 6218:. 6165:. 6149:. 6141:. 6131:32 6129:. 6104:. 6094:21 6092:. 6069:. 6061:. 6049:. 6019:. 6015:. 5984:. 5974:32 5972:. 5949:. 5939:42 5937:. 5924:^ 5908:. 5900:. 5888:^ 5872:. 5860:. 5856:. 5833:. 5825:. 5817:. 5807:29 5805:. 5778:. 5752:. 5740:. 5717:. 5709:. 5697:. 5670:: 5607:. 5597:. 5589:. 5577:. 5573:. 5444:. 5361:. 5351:81 5349:. 5324:33 5322:. 5297:. 5275:. 5267:. 5259:. 5247:. 5243:. 5188:. 5165:. 5153:. 5128:15 5126:. 5107:. 5089:. 5036:. 5007:. 4978:. 4931:. 4927:. 4915:^ 4901:. 4893:. 4881:. 4858:. 4850:. 4838:. 4815:. 4805:. 4795:. 4783:. 4779:. 4767:^ 4751:60 4749:. 4736:^ 4718:. 4691:. 4660:. 4637:. 4627:40 4625:. 4587:. 4560:. 4492:. 4470:. 4466:. 4445:}} 4441:{{ 4407:. 4379:. 4346:. 4292:. 4263:. 4255:. 4245:41 4243:. 4237:. 4203:. 4175:34 4173:. 4095:18 4093:. 4068:24 4066:. 4052:^ 4036:66 4034:. 4010:. 4002:. 3990:. 3969:^ 3951:. 3926:. 3897:. 3866:. 3862:. 3835:. 3807:. 3778:. 3751:. 3709:. 3675:. 3593:. 3570:. 3560:. 3550:. 3538:. 3534:. 3495:. 3449:^ 3435:. 3425:40 3423:. 3398:. 3342:. 3332:. 3320:53 3318:. 3314:. 3288:. 3197:. 3187:. 3179:. 3169:70 3167:. 3163:. 3149:^ 3110:^ 3094:. 3069:. 3057:^ 3041:. 3017:. 3006:^ 2989:. 2969:}} 2965:{{ 2950:. 2946:. 2917:. 2913:. 2888:. 2860:. 2828:. 2824:. 2798:. 2776:. 2766:. 2754:53 2752:. 2748:. 2734:^ 2718:. 2692:. 2686:. 2661:. 2649:. 2645:. 2619:. 2615:. 2603:^ 2587:. 2575:. 2571:. 2548:. 2538:80 2536:. 2532:. 2505:. 2501:. 2497:. 2473:. 2463:. 2451:. 2447:. 2428:. 2399:. 2393:. 2237:. 2021:(C 1983:, 1975:, 1971:, 1967:, 1963:, 1930:. 1856:MJ 1812:(O 1804:(H 1732:. 1716:. 1650:CH 1309:, 1217:O 1213:+H 1201:SO 1188:+I 1177:SO 1091:, 1062:CO 1020:(H 1010:. 993:. 925:12 921:24 907:24 903:12 895:12 891:24 887:24 883:12 854:+ 748:CO 740:, 736:, 604:, 459:CH 455:. 440:. 315:, 225:. 87:. 79:, 44:. 8029:. 7977:. 7947:. 7923:. 7903:: 7895:: 7872:. 7846:. 7796:. 7712:. 7706:: 7698:: 7692:4 7674:. 7654:: 7596:. 7572:. 7558:. 7552:: 7544:: 7517:. 7511:: 7503:: 7473:. 7461:: 7453:: 7429:. 7417:: 7409:: 7375:. 7350:. 7308:. 7277:. 7252:. 7220:. 7206:: 7179:. 7165:: 7143:. 7131:: 7123:: 7117:2 7087:. 7065:: 7057:: 7051:7 7029:. 6994:. 6965:. 6940:. 6909:. 6905:: 6897:: 6874:. 6844:2 6829:. 6804:. 6774:. 6752:: 6744:: 6717:. 6692:. 6688:: 6680:: 6657:. 6638:: 6630:: 6591:. 6560:. 6529:. 6517:: 6511:3 6494:. 6472:: 6464:: 6437:. 6431:: 6425:7 6404:. 6373:. 6342:. 6328:. 6301:. 6295:: 6287:: 6255:. 6229:. 6204:. 6157:. 6145:: 6137:: 6112:. 6100:: 6077:. 6065:: 6057:: 6034:. 6021:3 5992:. 5988:: 5980:: 5957:. 5953:: 5945:: 5918:. 5904:: 5882:. 5876:: 5868:: 5862:8 5841:. 5821:: 5813:: 5790:. 5786:: 5762:. 5748:: 5725:. 5713:: 5705:: 5699:2 5646:. 5615:. 5593:: 5585:: 5528:. 5495:. 5464:. 5424:. 5369:. 5365:: 5357:: 5334:. 5330:: 5307:. 5283:. 5263:: 5255:: 5198:. 5173:. 5169:: 5161:: 5138:. 5134:: 5075:. 5040:. 5022:. 4990:. 4945:. 4939:: 4933:3 4909:. 4897:: 4889:: 4866:. 4854:: 4846:: 4823:. 4799:: 4791:: 4785:2 4761:. 4757:: 4730:. 4726:: 4703:. 4699:: 4685:2 4672:. 4668:: 4645:. 4641:: 4633:: 4599:. 4572:. 4546:. 4451:) 4419:. 4390:. 4362:. 4331:. 4278:. 4259:: 4251:: 4222:. 4185:. 4181:: 4158:. 4119:: 4105:. 4101:: 4078:. 4074:: 4046:. 4042:: 4018:. 4006:: 3998:: 3992:2 3963:. 3937:. 3909:. 3880:. 3874:: 3847:. 3818:. 3790:. 3763:. 3725:. 3694:. 3658:. 3608:. 3578:. 3554:: 3546:: 3540:2 3505:. 3488:2 3473:. 3443:. 3439:: 3431:: 3408:. 3394:: 3375:. 3350:. 3336:: 3326:: 3299:. 3273:. 3239:. 3205:. 3183:: 3175:: 3143:. 3104:. 3080:. 3051:. 3027:. 3000:. 2975:) 2961:. 2931:. 2925:: 2919:7 2898:. 2871:. 2846:. 2809:. 2784:. 2770:: 2760:: 2728:. 2704:. 2671:. 2665:: 2657:: 2630:. 2597:. 2591:: 2583:: 2556:. 2552:: 2544:: 2517:. 2481:. 2467:: 2459:: 2453:6 2432:. 2413:. 2407:: 2401:7 2027:m 2025:H 2023:n 1818:2 1814:2 1806:2 1764:2 1667:2 1662:H 1655:4 1422:2 1420:H 1241:( 1215:2 1211:2 1207:2 1203:4 1199:2 1190:2 1186:2 1179:4 1175:2 1171:2 1167:2 1163:2 1151:2 1067:2 1049:2 1022:2 980:2 968:m 966:H 964:n 933:2 929:2 923:H 919:C 915:2 911:2 905:H 901:C 893:H 885:H 872:2 870:H 868:m 864:n 860:2 858:O 856:n 851:m 848:H 845:n 750:2 718:2 713:H 695:2 693:H 673:2 525:2 503:2 492:2 488:2 484:2 469:2 465:2 461:4 449:4 445:2 434:2 422:2 410:2 399:2 384:4

Index

Hydrogen
steam methane reforming
methane
carbon capture and storage
blue hydrogen
Green hydrogen
renewable
electrolysis
biomass
biomass
gasification
methane pyrolysis
underground hydrogen
oil refining
ammonia
Haber process
methanol
carbon monoxide
Kola Superdeep Borehole
lithosphere
methane pyrolysis

Decomposing
nuclear power
renewable energy
solar power
green hydrogen
greenhouse gas emissions
grey hydrogen
Green

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.