Knowledge

Hypercube graph

Source 📝

1751: 1147: 425: 29: 946: 752: 1137:
with only two colors. The two colors of this coloring may be found from the subset construction of hypercube graphs, by giving one color to the subsets that have an even number of elements and the other color to the subsets with an odd number of elements.
1570: 1478: 223: 472:
elements, by making a vertex for each possible subset and joining two vertices by an edge whenever the corresponding subsets differ in a single element. Equivalently, it may be constructed using
626: 1227:
A lesser known fact is that every perfect matching in the hypercube extends to a Hamiltonian cycle. The question whether every matching extends to a Hamiltonian cycle remains an open problem.
941:{\displaystyle A_{n}={\begin{cases}1_{2}\otimes _{K}A_{n-1}+A_{1}\otimes _{K}1_{2^{n-1}}&{\text{if }}n>1\\{\begin{bmatrix}0&1\\1&0\end{bmatrix}}&{\text{if }}n=1\end{cases}}} 743: 1611: 1697: 1111: 655: 681: 488:
of their labels is one. These two constructions are closely related: a binary number may be interpreted as a set (the set of positions where it has a
1802:
connecting each hypercube vertex to another vertex with which it should be connected, there is always a way to connect these pairs of vertices by
1493: 1389: 1196:
on the dimension of the hypercube, and the construction of the hypercube graph by joining two smaller hypercubes with a matching.
2182: 492:
digit), and two such sets differ in a single element whenever the corresponding two binary numbers have Hamming distance one.
139: 1879: 268: 576: 357:-element set, with two vertices adjacent when their subsets differ in a single element, or by creating a vertex for each 1966: 2019: 688: 2070: 1845: 1262: 963: 746:. The sum of these two terms gives a recursive function function for the adjacency matrix of a hypercube: 370: 1582: 1373: 1791: 1663: 1283:
perfect matchings. (this is another consequence that follows easily from the inductive construction.)
774: 1340: 365:, with two vertices adjacent when their binary representations differ in a single digit. It is the 1835: 1739: 2187: 1320:
in the Euclidean plane by using the construction of the hypercube graph from subsets of a set of
400:, which are graphs that have exactly three edges touching each vertex. The only hypercube graph 74: 1077: 534:
to the corresponding vertex in the other copy, as shown in the figure. The joining edges form a
1193: 1090: 236: 1820: 1347: 321: 132: 47: 2119:
Szymanski, Ted H. (1989), "On the Permutation Capability of a Circuit-Switched Hypercube",
2056: 1999: 1287: 1025: 633: 86: 8: 1803: 1317: 240: 59: 1916: 1150:
A Hamiltonian cycle on a tesseract with vertices labelled with a 4-bit cyclic Gray code
666: 105: 2078: 2155: 2038: 1875: 1840: 1830: 1576: 1081: 1053: 557: 465: 244: 2159: 2151: 2099: 2074: 2042: 2034: 1943: 1908: 1795: 1785: 1781: 1617: 1177: 1173: 542: 535: 485: 390: 120: 2052: 1995: 1934:
Fink, J. (2007), "Perfect matchings extend to Hamiltonian cycles in hypercubes",
1815: 1487: 1306: 1291: 1130: 1057: 979:. More generally the Cartesian product of copies of a complete graph is called a 659: 248: 232: 2142:; Hayes, J. P.; Wu, H.-J. (1988), "A survey of the theory of hypercube graphs", 310:
is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube.
2123:, vol. 1, Silver Spring, MD: IEEE Computer Society Press, pp. 103–110 1979: 1948: 1825: 1703: 1295: 1134: 1010: 507: 374: 1750: 2176: 1480: 1358: 1313: 1258: 980: 481: 362: 332: 299: 1192:-coloring of the graph. Both facts are easy to prove using the principle of 2139: 2104: 2015: 1963: 1850: 1777: 1354: 1273: 1269: 277: 1211:-bit cyclic Gray codes and the set of Hamiltonian cycles in the hypercube 2164: 2047: 1799: 1325: 397: 541:
The above construction gives a recursive algorithm for constructing the
424: 1920: 1200: 1113: 1073: 1045: 2069:
Optimal Numberings and Isoperimetric Problems on Graphs, L.H. Harper,
1328:
for each set element, and placing the vertex corresponding to the set
1146: 1204: 295: 1912: 1199:
Hamiltonicity of the hypercube is tightly related to the theory of
1565:{\displaystyle \sum _{i=0}^{n-1}{\binom {i}{\lfloor i/2\rfloor }}} 684:
dimensions. Meanwhile the joining edges have an adjacency matrix
461: 1798:
for communications. It states that, no matter how one chooses a
1176:, a cycle that visits each vertex exactly once. Additionally, a 28: 2090:
Roichman, Y. (2000), "On the Achromatic Number of Hypercubes",
437:
by connecting pairs of corresponding vertices in two copies of
350: 1613:, but the constant of proportionality is not known precisely. 1085: 1473:{\displaystyle 2^{2^{n}-n-1}\prod _{k=2}^{n}k^{n \choose k}} 1294:. The symmetries of hypercube graphs can be represented as 1648:
and as the eigenvalues of its Laplacian matrix the numbers
1049: 934: 1872:
Across the Board: The Mathematics of Chessboard Problems
218:{\displaystyle \{(n-2k)^{\binom {n}{k}};k=0,\ldots ,n\}} 983:; the hypercube graphs are examples of Hamming graphs. 884: 349:
may also be constructed by creating a vertex for each
290:
is the graph formed from the vertices and edges of an
1666: 1585: 1496: 1392: 1093: 755: 691: 669: 636: 579: 142: 1967:
Matchings extend to Hamiltonian cycles in hypercubes
522:, by adding an edge from each vertex in one copy of 484:
and connecting two vertices by an edge whenever the
1276:, and can be formed as a retraction of a hypercube. 621:{\displaystyle \mathrm {1} _{2}\otimes _{K}A_{n-1}} 1895:Mills, W. H. (1963), "Some complete cycles on the 1768:) in the snakes-in-the-box problem for dimensions 1691: 1605: 1564: 1472: 1105: 940: 737: 675: 649: 620: 217: 1683: 1670: 1556: 1527: 16:Graphs formed by a hypercube's edges and vertices 2174: 1901:Proceedings of the American Mathematical Society 1982:(1955), "Über drei kombinatorische Probleme am 1188:if and only if they have different colors in a 2144:Computers & Mathematics with Applications 2138: 2027:Computers & Mathematics with Applications 2014: 1907:(4), American Mathematical Society: 640–643, 1794:concerns the suitability of a hypercube as a 1463: 1450: 396:Hypercube graphs should not be confused with 181: 168: 2121:Proc. Internat. Conf. on Parallel Processing 2020:"A survey of the theory of hypercube graphs" 1550: 1536: 738:{\displaystyle A_{1}\otimes _{K}1_{2^{n-1}}} 212: 143: 1986:-dimensionalen Wiirfel und Wiirfelgitter", 1784:of a given hypercube graph is known as the 407:that is a cubic graph is the cubical graph 377:, and may be decomposed into two copies of 1874:, Princeton University Press, p. 68, 1220:. An analogous property holds for acyclic 2163: 2118: 2103: 2092:Journal of Combinatorial Theory, Series B 2046: 1947: 1936:Journal of Combinatorial Theory, Series B 2089: 2018:; Hayes, John P.; Wu, Horng-Jyh (1988), 1749: 1145: 423: 1869: 1224:-bit Gray codes and Hamiltonian paths. 2175: 1978: 460:may be constructed from the family of 2010: 2008: 1972: 1894: 1806:that do not share any directed edge. 1933: 1230: 1000:consists of a single vertex, while 13: 2005: 1674: 1531: 1454: 1361:with no crossings) if and only if 1301:contains all the cycles of length 1207:correspondence between the set of 172: 14: 2199: 1274:isometric subgraph of a hypercube 1052:and is a planar graph with eight 1606:{\displaystyle {\sqrt {n2^{n}}}} 1141: 1124: 27: 2071:Journal of Combinatorial Theory 1846:Hypercube internetwork topology 1692:{\displaystyle {\binom {n}{k}}} 1660:th eigenvalue has multiplicity 419: 2112: 2083: 2063: 1956: 1927: 1888: 1863: 1616:has as the eigenvalues of its 1324:elements, choosing a distinct 269:Table of graphs and parameters 162: 146: 1: 2183:Parametric families of graphs 2132: 2079:10.1016/S0021-9800(66)80059-5 1988:Abh. Math. Sem. Univ. Hamburg 1969:on Open Problem Garden. 2007. 1332:at the sum of the vectors in 1119: 389:connected to each other by a 2156:10.1016/0898-1221(88)90213-1 2039:10.1016/0898-1221(88)90213-1 1203:. More precisely there is a 1180:exists between two vertices 560:, so that the two copies of 506:may be constructed from the 339:edges touching each vertex. 7: 1809: 1776:The problem of finding the 1754:Maximum lengths of snakes ( 1745: 1272:. Every median graph is an 986: 970:two-vertex complete graphs 10: 2204: 1949:10.1016/j.jctb.2007.02.007 556:. Copying is done via the 1870:Watkins, John J. (2004), 1129:Every hypercube graph is 1106:{\displaystyle 4\times 4} 572:have an adjacency matrix 267: 254: 228: 131: 119: 104: 85: 73: 58: 46: 26: 21: 1856: 951:Another construction of 1368:. For larger values of 1344:-vertex-connected graph 2105:10.1006/jctb.2000.1955 1792:Szymanski's conjecture 1773: 1693: 1607: 1566: 1523: 1474: 1442: 1151: 1107: 949: 942: 739: 677: 651: 622: 476:vertices labeled with 446: 219: 1821:Cube-connected cycles 1753: 1740:Lévy family of graphs 1694: 1608: 1567: 1497: 1475: 1422: 1149: 1108: 943: 748: 740: 678: 652: 650:{\displaystyle 1_{d}} 623: 427: 220: 2073:, 1, 385–393, 1780:or cycle that is an 1704:isoperimetric number 1664: 1583: 1494: 1390: 1372:, the hypercube has 1235:The hypercube graph 1091: 1078:Möbius configuration 753: 689: 667: 634: 577: 449:The hypercube graph 342:The hypercube graph 298:. For instance, the 140: 33:The hypercube graph 1318:unit distance graph 1296:signed permutations 1774: 1689: 1603: 1562: 1470: 1348:Balinski's theorem 1152: 1103: 938: 933: 909: 735: 673: 647: 618: 510:of two hypercubes 447: 373:of the two-vertex 215: 1881:978-0-691-15498-5 1841:Halved cube graph 1836:Frankl–Rödl graph 1831:Folded cube graph 1681: 1601: 1577:achromatic number 1554: 1461: 1307:bipancyclic graph 1174:Hamiltonian cycle 1170: > 1 1080:. It is also the 1013:on two vertices. 964:Cartesian product 920: 864: 676:{\displaystyle d} 558:Kronecker product 371:Cartesian product 274: 273: 179: 2195: 2168: 2167: 2126: 2124: 2116: 2110: 2108: 2107: 2087: 2081: 2067: 2061: 2059: 2050: 2024: 2012: 2003: 2002: 1985: 1976: 1970: 1960: 1954: 1952: 1951: 1942:(6): 1074–1076, 1931: 1925: 1923: 1898: 1892: 1886: 1884: 1867: 1796:network topology 1786:snake-in-the-box 1782:induced subgraph 1737: 1730: 1715: 1698: 1696: 1695: 1690: 1688: 1687: 1686: 1673: 1659: 1655: 1647: 1618:adjacency matrix 1612: 1610: 1609: 1604: 1602: 1600: 1599: 1587: 1579:proportional to 1571: 1569: 1568: 1563: 1561: 1560: 1559: 1553: 1546: 1530: 1522: 1511: 1479: 1477: 1476: 1471: 1469: 1468: 1467: 1466: 1453: 1441: 1436: 1421: 1420: 1407: 1406: 1382: 1371: 1367: 1343: 1335: 1331: 1323: 1304: 1282: 1252: 1245: 1231:Other properties 1219: 1210: 1191: 1187: 1183: 1178:Hamiltonian path 1171: 1164: 1154:Every hypercube 1112: 1110: 1109: 1104: 1071: 1043: 1031: 1023: 1008: 999: 978: 969: 961: 947: 945: 944: 939: 937: 936: 921: 918: 914: 913: 865: 862: 858: 857: 856: 855: 835: 834: 825: 824: 812: 811: 796: 795: 786: 785: 765: 764: 745: 744: 742: 741: 736: 734: 733: 732: 731: 711: 710: 701: 700: 683: 682: 680: 679: 674: 657: 656: 654: 653: 648: 646: 645: 628: 627: 625: 624: 619: 617: 616: 601: 600: 591: 590: 585: 571: 555: 545:of a hypercube, 543:adjacency matrix 536:perfect matching 533: 521: 505: 491: 486:Hamming distance 479: 475: 471: 459: 445: 436: 428:Construction of 415: 406: 391:perfect matching 388: 368: 360: 356: 348: 338: 331:edges, and is a 330: 320: 316: 309: 293: 289: 263: 237:Distance regular 224: 222: 221: 216: 187: 186: 185: 184: 171: 127: 121:Chromatic number 115: 100: 93: 81: 69: 54: 41: 31: 19: 18: 2203: 2202: 2198: 2197: 2196: 2194: 2193: 2192: 2173: 2172: 2135: 2130: 2129: 2117: 2113: 2088: 2084: 2068: 2064: 2022: 2013: 2006: 1983: 1977: 1973: 1962:Ruskey, F. and 1961: 1957: 1932: 1928: 1913:10.2307/2034292 1896: 1893: 1889: 1882: 1868: 1864: 1859: 1816:de Bruijn graph 1812: 1767: 1760: 1748: 1732: 1729: 1721: 1706: 1682: 1669: 1668: 1667: 1665: 1662: 1661: 1657: 1649: 1621: 1595: 1591: 1586: 1584: 1581: 1580: 1555: 1542: 1535: 1526: 1525: 1524: 1512: 1501: 1495: 1492: 1491: 1462: 1449: 1448: 1447: 1443: 1437: 1426: 1402: 1398: 1397: 1393: 1391: 1388: 1387: 1381:− 4)2 + 1 1376: 1369: 1362: 1341: 1333: 1329: 1321: 1302: 1280: 1263:Boolean algebra 1247: 1244: 1236: 1233: 1218: 1212: 1208: 1189: 1185: 1181: 1166: 1163: 1155: 1144: 1127: 1122: 1092: 1089: 1088: 1070: 1064: 1042: 1036: 1029: 1028:of length  1022: 1016: 1007: 1001: 998: 992: 989: 977: 971: 967: 960: 952: 932: 931: 917: 915: 908: 907: 902: 896: 895: 890: 880: 879: 876: 875: 861: 859: 845: 841: 840: 836: 830: 826: 820: 816: 801: 797: 791: 787: 781: 777: 770: 769: 760: 756: 754: 751: 750: 721: 717: 716: 712: 706: 702: 696: 692: 690: 687: 686: 685: 668: 665: 664: 663: 660:identity matrix 641: 637: 635: 632: 631: 630: 606: 602: 596: 592: 586: 581: 580: 578: 575: 574: 573: 570: 561: 554: 546: 532: 523: 520: 511: 504: 496: 495:Alternatively, 489: 477: 473: 469: 458: 450: 444: 438: 435: 429: 422: 414: 408: 405: 401: 387: 378: 366: 358: 354: 347: 343: 336: 325: 318: 315: 311: 308: 302: 291: 288: 284: 282:hypercube graph 262: 258: 247: 243: 239: 235: 180: 167: 166: 165: 161: 141: 138: 137: 125: 110: 95: 91: 79: 64: 52: 42: 40: 34: 22:Hypercube graph 17: 12: 11: 5: 2201: 2191: 2190: 2188:Regular graphs 2185: 2171: 2170: 2150:(4): 277–289, 2134: 2131: 2128: 2127: 2111: 2098:(2): 177–182, 2082: 2062: 2033:(4): 277–289, 2004: 1971: 1955: 1926: 1887: 1880: 1861: 1860: 1858: 1855: 1854: 1853: 1848: 1843: 1838: 1833: 1828: 1826:Fibonacci cube 1823: 1818: 1811: 1808: 1765: 1758: 1747: 1744: 1725: 1718: 1717: 1700: 1699:in both cases. 1685: 1680: 1677: 1672: 1614: 1598: 1594: 1590: 1573: 1558: 1552: 1549: 1545: 1541: 1538: 1534: 1529: 1521: 1518: 1515: 1510: 1507: 1504: 1500: 1484: 1481:spanning trees 1465: 1460: 1457: 1452: 1446: 1440: 1435: 1432: 1429: 1425: 1419: 1416: 1413: 1410: 1405: 1401: 1396: 1384: 1351: 1337: 1310: 1305:and is thus a 1299: 1288:arc transitive 1284: 1279:has more than 1277: 1266: 1240: 1232: 1229: 1216: 1159: 1143: 1140: 1126: 1123: 1121: 1118: 1102: 1099: 1096: 1082:knight's graph 1068: 1040: 1020: 1011:complete graph 1005: 996: 988: 985: 975: 956: 935: 930: 927: 924: 916: 912: 906: 903: 901: 898: 897: 894: 891: 889: 886: 885: 883: 878: 877: 874: 871: 868: 860: 854: 851: 848: 844: 839: 833: 829: 823: 819: 815: 810: 807: 804: 800: 794: 790: 784: 780: 776: 775: 773: 768: 763: 759: 730: 727: 724: 720: 715: 709: 705: 699: 695: 672: 644: 640: 615: 612: 609: 605: 599: 595: 589: 584: 565: 550: 527: 515: 508:disjoint union 500: 482:binary numbers 454: 442: 433: 421: 418: 412: 403: 382: 375:complete graph 345: 313: 306: 286: 272: 271: 265: 264: 260: 256: 252: 251: 230: 226: 225: 214: 211: 208: 205: 202: 199: 196: 193: 190: 183: 178: 175: 170: 164: 160: 157: 154: 151: 148: 145: 135: 129: 128: 123: 117: 116: 108: 102: 101: 89: 83: 82: 77: 71: 70: 62: 56: 55: 50: 44: 43: 38: 32: 24: 23: 15: 9: 6: 4: 3: 2: 2200: 2189: 2186: 2184: 2181: 2180: 2178: 2166: 2165:2027.42/27522 2161: 2157: 2153: 2149: 2145: 2141: 2137: 2136: 2122: 2115: 2106: 2101: 2097: 2093: 2086: 2080: 2076: 2072: 2066: 2058: 2054: 2049: 2048:2027.42/27522 2044: 2040: 2036: 2032: 2028: 2021: 2017: 2016:Harary, Frank 2011: 2009: 2001: 1997: 1993: 1989: 1981: 1975: 1968: 1965: 1959: 1950: 1945: 1941: 1937: 1930: 1922: 1918: 1914: 1910: 1906: 1902: 1891: 1883: 1877: 1873: 1866: 1862: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1813: 1807: 1805: 1801: 1797: 1793: 1789: 1787: 1783: 1779: 1771: 1764: 1761:) and coils ( 1757: 1752: 1743: 1741: 1735: 1728: 1724: 1713: 1709: 1705: 1701: 1678: 1675: 1653: 1650:(0, 2, ..., 2 1645: 1641: 1637: 1633: 1629: 1625: 1619: 1615: 1596: 1592: 1588: 1578: 1574: 1547: 1543: 1539: 1532: 1519: 1516: 1513: 1508: 1505: 1502: 1498: 1489: 1485: 1482: 1458: 1455: 1444: 1438: 1433: 1430: 1427: 1423: 1417: 1414: 1411: 1408: 1403: 1399: 1394: 1385: 1380: 1375: 1365: 1360: 1356: 1352: 1349: 1345: 1338: 1327: 1319: 1315: 1311: 1308: 1300: 1297: 1293: 1289: 1285: 1278: 1275: 1271: 1267: 1264: 1260: 1259:Hasse diagram 1256: 1255: 1254: 1250: 1243: 1239: 1228: 1225: 1223: 1215: 1206: 1202: 1197: 1195: 1179: 1175: 1169: 1162: 1158: 1148: 1142:Hamiltonicity 1139: 1136: 1132: 1125:Bipartiteness 1117: 1115: 1100: 1097: 1094: 1087: 1083: 1079: 1075: 1067: 1061: 1059: 1055: 1051: 1047: 1039: 1033: 1027: 1019: 1014: 1012: 1004: 995: 984: 982: 981:Hamming graph 974: 965: 959: 955: 948: 928: 925: 922: 910: 904: 899: 892: 887: 881: 872: 869: 866: 852: 849: 846: 842: 837: 831: 827: 821: 817: 813: 808: 805: 802: 798: 792: 788: 782: 778: 771: 766: 761: 757: 747: 728: 725: 722: 718: 713: 707: 703: 697: 693: 670: 661: 642: 638: 613: 610: 607: 603: 597: 593: 587: 582: 568: 564: 559: 553: 549: 544: 539: 537: 530: 526: 518: 514: 509: 503: 499: 493: 487: 483: 467: 463: 457: 453: 441: 432: 426: 417: 411: 399: 394: 392: 385: 381: 376: 372: 364: 363:binary number 352: 340: 334: 333:regular graph 329: 323: 305: 301: 297: 294:-dimensional 283: 279: 270: 266: 257: 253: 250: 246: 242: 241:Unit distance 238: 234: 231: 227: 209: 206: 203: 200: 197: 194: 191: 188: 176: 173: 158: 155: 152: 149: 136: 134: 130: 124: 122: 118: 113: 109: 107: 106:Automorphisms 103: 98: 90: 88: 84: 78: 76: 72: 68: 63: 61: 57: 51: 49: 45: 37: 30: 25: 20: 2147: 2143: 2120: 2114: 2095: 2091: 2085: 2065: 2030: 2026: 1991: 1987: 1974: 1958: 1939: 1935: 1929: 1904: 1900: 1890: 1871: 1865: 1851:Partial cube 1790: 1778:longest path 1775: 1769: 1762: 1755: 1733: 1726: 1722: 1719: 1711: 1707: 1651: 1643: 1639: 1635: 1631: 1630:+ 2, − 1627: 1623: 1620:the numbers 1386:has exactly 1378: 1363: 1303:4, 6, ..., 2 1270:median graph 1261:of a finite 1248: 1241: 1237: 1234: 1226: 1221: 1213: 1198: 1167: 1160: 1156: 1153: 1133:: it can be 1128: 1065: 1062: 1037: 1034: 1017: 1015: 1002: 993: 990: 972: 957: 953: 950: 749: 566: 562: 551: 547: 540: 528: 524: 516: 512: 501: 497: 494: 455: 451: 448: 439: 430: 420:Construction 409: 398:cubic graphs 395: 383: 379: 341: 327: 303: 281: 278:graph theory 275: 111: 96: 66: 35: 1800:permutation 1772:from 1 to 4 1720:The family 1642:− 2, 1638:− 4, 1634:+ 4, ... , 1326:unit vector 1056:and twelve 245:Hamiltonian 2177:Categories 2140:Harary, F. 2133:References 1980:Ringel, G. 1964:Savage, C. 1201:Gray codes 1120:Properties 1114:chessboard 1074:Levi graph 1063:The graph 1046:1-skeleton 1035:The graph 991:The graph 300:cube graph 229:Properties 1994:: 10–19, 1788:problem. 1626:, − 1551:⌋ 1537:⌊ 1517:− 1499:∑ 1488:bandwidth 1424:∏ 1415:− 1409:− 1292:symmetric 1253:) : 1205:bijective 1194:induction 1131:bipartite 1098:× 850:− 828:⊗ 806:− 789:⊗ 726:− 704:⊗ 611:− 594:⊗ 569:− 1 531:− 1 519:− 1 296:hypercube 249:Bipartite 233:Symmetric 204:… 153:− 1899:-cube", 1810:See also 1746:Problems 1731:for all 1622:(− 1490:exactly 1357:(can be 1086:toroidal 1054:vertices 987:Examples 919:if  863:if  322:vertices 255:Notation 133:Spectrum 75:Diameter 48:Vertices 2057:0949280 2000:0949280 1921:2034292 1312:can be 1257:is the 1135:colored 1076:of the 1072:is the 1044:is the 1009:is the 962:is the 658:is the 629:,where 462:subsets 361:-digit 280:, the 2055:  1998:  1919:  1878:  1736:> 1 1656:. The 1355:planar 1251:> 1 1172:has a 1084:for a 369:-fold 353:of an 351:subset 2023:(PDF) 1917:JSTOR 1857:Notes 1804:paths 1738:is a 1714:) = 1 1374:genus 1359:drawn 1346:, by 1339:is a 1316:as a 1314:drawn 1268:is a 1246:(for 1165:with 1058:edges 1048:of a 1026:cycle 1024:is a 480:-bit 468:with 464:of a 335:with 87:Girth 60:Edges 1876:ISBN 1702:has 1575:has 1486:has 1290:and 1184:and 1050:cube 870:> 317:has 2160:hdl 2152:doi 2100:doi 2075:doi 2043:hdl 2035:doi 1944:doi 1909:doi 1366:≤ 3 1353:is 1286:is 966:of 662:in 466:set 386:– 1 276:In 114:! 2 99:≥ 2 94:if 2179:: 2158:, 2148:15 2146:, 2096:79 2094:, 2053:MR 2051:, 2041:, 2031:15 2029:, 2025:, 2007:^ 1996:MR 1992:20 1990:, 1940:97 1938:, 1915:, 1905:14 1903:, 1742:. 1116:. 1060:. 1032:. 538:. 416:. 393:. 324:, 2169:. 2162:: 2154:: 2125:. 2109:. 2102:: 2077:: 2060:. 2045:: 2037:: 1984:n 1953:. 1946:: 1924:. 1911:: 1897:n 1885:. 1770:n 1766:c 1763:L 1759:s 1756:L 1734:n 1727:n 1723:Q 1716:. 1712:G 1710:( 1708:h 1684:) 1679:k 1676:n 1671:( 1658:k 1654:) 1652:n 1646:) 1644:n 1640:n 1636:n 1632:n 1628:n 1624:n 1597:n 1593:2 1589:n 1572:. 1557:) 1548:2 1544:/ 1540:i 1533:i 1528:( 1520:1 1514:n 1509:0 1506:= 1503:i 1483:. 1464:) 1459:k 1456:n 1451:( 1445:k 1439:n 1434:2 1431:= 1428:k 1418:1 1412:n 1404:n 1400:2 1395:2 1383:. 1379:n 1377:( 1370:n 1364:n 1350:. 1342:n 1336:. 1334:S 1330:S 1322:n 1309:. 1298:. 1281:2 1265:. 1249:n 1242:n 1238:Q 1222:n 1217:n 1214:Q 1209:n 1190:2 1186:v 1182:u 1168:n 1161:n 1157:Q 1101:4 1095:4 1069:4 1066:Q 1041:3 1038:Q 1030:4 1021:2 1018:Q 1006:1 1003:Q 997:0 994:Q 976:2 973:K 968:n 958:n 954:Q 929:1 926:= 923:n 911:] 905:0 900:1 893:1 888:0 882:[ 873:1 867:n 853:1 847:n 843:2 838:1 832:K 822:1 818:A 814:+ 809:1 803:n 799:A 793:K 783:2 779:1 772:{ 767:= 762:n 758:A 729:1 723:n 719:2 714:1 708:K 698:1 694:A 671:d 643:d 639:1 614:1 608:n 604:A 598:K 588:2 583:1 567:n 563:Q 552:n 548:A 529:n 525:Q 517:n 513:Q 502:n 498:Q 490:1 478:n 474:2 470:n 456:n 452:Q 443:2 440:Q 434:3 431:Q 413:3 410:Q 404:n 402:Q 384:n 380:Q 367:n 359:n 355:n 346:n 344:Q 337:n 328:n 326:2 319:2 314:n 312:Q 307:3 304:Q 292:n 287:n 285:Q 261:n 259:Q 213:} 210:n 207:, 201:, 198:0 195:= 192:k 189:; 182:) 177:k 174:n 169:( 163:) 159:k 156:2 150:n 147:( 144:{ 126:2 112:n 97:n 92:4 80:n 67:n 65:2 53:2 39:4 36:Q

Index


Vertices
Edges
Diameter
Girth
Automorphisms
Chromatic number
Spectrum
Symmetric
Distance regular
Unit distance
Hamiltonian
Bipartite
Table of graphs and parameters
graph theory
hypercube
cube graph
vertices
regular graph
subset
binary number
Cartesian product
complete graph
perfect matching
cubic graphs

subsets
set
binary numbers
Hamming distance

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.