Knowledge

London dispersion force

Source đź“ť

1823: 1073: 31: 1087: 1817: 1829: 200:, in condensed matter (liquids and solids), the effect is cumulative over the volume of materials, or within and between organic molecules, such that London dispersion forces can be quite strong in bulk solid and liquids and decay much more slowly with distance. For example, the total force per unit area between two bulk solids decreases by 891:). The "explanation" of the dispersion force as the interaction between two such dipoles was invented after London arrived at the proper quantum mechanical theory. The authoritative work contains a criticism of the instantaneous dipole model and a modern and thorough exposition of the theory of intermolecular forces. 439:
because the terms in this series can be regarded as energies of two interacting multipoles, one on each monomer. Substitution of the multipole-expanded form of V into the second-order energy yields an expression that resembles an expression describing the interaction between instantaneous multipoles
143:, the interaction is essentially instantaneous and is described in terms of a "non-retarded" Hamaker constant. For entities that are farther apart, the finite time required for the fluctuation at one atom to be felt at a second atom ("retardation") requires use of a "retarded" Hamaker constant. 906:
Dispersion forces are usually dominant over the three van der Waals forces (orientation, induction, dispersion) between atoms and molecules, with the exception of molecules that are small and highly polar, such as water. The following contribution of the dispersion to the total intermolecular
96:
The electron distribution around an atom or molecule undergoes fluctuations in time. These fluctuations create instantaneous electric fields which are felt by other nearby atoms and molecules, which in turn adjust the spatial distribution of their own electrons. The net effect is that the
882: 365:
between the electrons and nuclei of the two moieties (atoms or molecules). The second-order perturbation expression of the interaction energy contains a sum over states. The states appearing in this sum are simple products of the stimulated electronic states of the
286:
from the gas phase into the liquid or solid phase. Sublimation heats of e.g. hydrocarbon crystals reflect the dispersion interaction. Liquification of oxygen and nitrogen gases into liquid phases is also dominated by attractive London dispersion forces.
97:
fluctuations in electron positions in one atom induce a corresponding redistribution of electrons in other atoms, such that the electron motions become correlated. While the detailed theory requires a quantum-mechanical explanation
898:, which is why London coined the phrase "dispersion effect". In physics, the term "dispersion" describes the variation of a quantity with frequency, which is the fluctuation of the electrons in the case of the London dispersion. 730: 309:. The polarizability is a measure of how easily electrons can be redistributed; a large polarizability implies that the electrons are more easily redistributed. This trend is exemplified by the 548: 329:). The same increase of dispersive attraction occurs within and between organic molecules in the order RF, RCl, RBr, RI (from smallest to largest) or with other more polarizable 232: 198: 648: 618: 17: 406: 471: 702: 675: 722: 588: 568: 495: 426: 252: 164: 137: 1916: 80:
that are normally electrically symmetric; that is, the electrons are symmetrically distributed with respect to the nucleus. They are part of the
254:
is the separation between them. The effects of London dispersion forces are most obvious in systems that are very non-polar (e.g., that lack
298:
molecules. That is, the instantaneous fluctuations in one atom or molecule are felt both by the solvent (water) and by other molecules.
345:
at room temperature, bromine is a liquid, and iodine is a solid. The London forces are thought to arise from the motion of electrons.
301:
Larger and heavier atoms and molecules exhibit stronger dispersion forces than smaller and lighter ones. This is due to the increased
115:) attract each other. The magnitude of the London dispersion force is frequently described in terms of a single parameter called the 2034: 1961: 1642: 358: 294:, the effects of dispersion forces between atoms or molecules are frequently less pronounced due to competition with polarizable 1406:
R. Eisenschitz & F. London (1930), "Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften",
1345: 1242: 1210: 877:{\displaystyle E_{AB}^{\rm {disp}}\approx -{3 \over 2}{I_{A}I_{B} \over I_{A}+I_{B}}{\alpha '_{A}\alpha '_{B} \over {R^{6}}}} 146:
While the London dispersion force between individual atoms and molecules is quite weak and decreases quickly with separation
1956: 1492: 1278: 1169: 1144: 1881: 290:
When atoms/molecules are separated by a third medium (rather than vacuum), the situation becomes more complex. In
1705: 1299:
Wagner, J.P.; Schreiner, P.R. (2015), "London dispersion in molecular chemistry — reconsidering steric effects",
1896: 1390:
Schneider,Hans-Jörg Dispersive Interactions in Solution Complexes Dispersive Interactions in Solution Complexes
2060: 1732: 1693: 1683: 1688: 1635: 507: 203: 169: 140: 2065: 1951: 1941: 1931: 1906: 1876: 1115: 371: 384: 1722: 623: 593: 1983: 1886: 1628: 888: 1225:
Gelardi, G.; Flatt, R.J. (2016), "Working mechanisms of water reducers and superplasticizers",
1110: 1100: 451: 2027: 1988: 2022: 1395: 1946: 1837: 1700: 1659: 1525: 1457: 1415: 1370: 680: 653: 498: 370:. Thus, no intermolecular antisymmetrization of the electronic states is included, and the 69: 8: 1848: 1712: 1678: 1606: 1105: 895: 436: 362: 81: 2012: 1529: 1461: 1419: 1258: 1767: 1473: 1431: 1270: 1234: 1202: 1193:
Israelachvili, Jacob N. (2011), "Interactions of Biological Membranes and Structures",
707: 573: 553: 504:
In this manner, the following approximation is obtained for the dispersion interaction
480: 444:, must be introduced in order to obtain a description of London dispersion in terms of 411: 237: 149: 122: 441: 1998: 1787: 1747: 1737: 1498: 1488: 1477: 1435: 1316: 1274: 1238: 1206: 1175: 1165: 1140: 952: 474: 440:(see the qualitative description above). Additionally, an approximation, named after 38: 2039: 1779: 1752: 1559: 1533: 1465: 1423: 1334: 1308: 1266: 1230: 1198: 1078: 963: 291: 116: 1159: 2017: 1891: 1762: 1506: 974: 887:
Note that this final London equation does not contain instantaneous dipoles (see
306: 107: 1926: 1727: 1092: 445: 429: 302: 911:
Contribution of the dispersion to the total intermolecular interaction energy
2054: 1975: 1935: 1868: 1822: 1797: 1670: 1651: 1502: 1162:
Fundamentals of materials science and engineering : an interactive etext
985: 378: 353:
The first explanation of the attraction between noble gas atoms was given by
1179: 62:
instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds
1921: 1510: 1320: 1312: 354: 283: 85: 1137:
Fundamentals of Materials Science and Engineering: An Interactive e . Text
894:
The London theory has much similarity to the quantum mechanical theory of
2007: 1757: 1575: 1563: 259: 255: 1516:
Parr, Robert G. (2001), "Quantum Chemistry: Classic Scientific Papers",
30: 1469: 1427: 650:
are the polarizability volumes of the respective atoms. The quantities
330: 1537: 1742: 1717: 1448:
London, F. (1930), "Zur Theorie und Systematik der Molekularkräfte",
1816: 1086: 338: 334: 77: 1620: 1004: 935: 367: 310: 295: 263: 271: 112: 1160:
Callister, William D. Jr.; Callister, William D. Jr. (2001).
1021: 35: 1550:
F. London (1937), "The general theory of molecular forces",
41:. The long-range section is due to London dispersion forces. 1576:
J. O. Hirschfelder; C. F. Curtiss & R. B. Bird (1954),
924: 73: 1828: 1259:"The theory of molecular attractive forces between solids" 342: 279: 105:, the effect is frequently described as the formation of 1405: 139:. For atoms that are located closer together than the 357:
in 1930. He used a quantum-mechanical theory based on
733: 710: 683: 656: 626: 596: 576: 556: 510: 483: 454: 414: 387: 240: 206: 172: 152: 125: 1068: 704:
are the first ionization energies of the atoms, and
1605: 1333:Karlström, Gunnar; Jönsson, Bo (6 February 2013). 876: 716: 696: 669: 642: 612: 582: 562: 542: 489: 465: 420: 400: 278:a solid at room temperature). In hydrocarbons and 246: 226: 192: 158: 131: 1256: 2052: 1332: 282:, the dispersion forces are sufficient to cause 1298: 101:quantum mechanical theory of dispersion forces 100: 84:. The LDF is named after the German physicist 18:Instantaneous-dipole induced-dipole attraction 1636: 1227:Science and Technology of Concrete Admixtures 1192: 88:. They are the weakest intermolecular force. 1485:Quantum Chemistry, Classic Scientific Papers 1224: 348: 1590: 1643: 1629: 1482: 1139:. John Wiley & Sons, Inc. p. 25. 1549: 1134: 305:of molecules with larger, more dispersed 2035:Polyhedral skeletal electron pair theory 29: 1342:Theoretical chemistry – Lund University 1301:Angewandte Chemie International Edition 1135:Callister, William (December 5, 2000). 14: 2053: 1447: 1351:from the original on 18 September 2020 1257:LIFSHITZ, E.M.; Hamermesh, M. (1992), 1624: 1578:Molecular Theory of Gases and Liquids 919:% of the total energy of interaction 901: 361:. The perturbation is because of the 1515: 262:and highly symmetric molecules like 1593:The Theory of Intermolecular Forces 1552:Transactions of the Faraday Society 1263:Perspectives in Theoretical Physics 907:interaction energy has been given: 543:{\displaystyle E_{AB}^{\rm {disp}}} 24: 1650: 1271:10.1016/b978-0-08-036364-6.50031-4 1235:10.1016/b978-0-08-100693-1.00011-4 1203:10.1016/b978-0-12-375182-9.10021-1 757: 754: 751: 748: 534: 531: 528: 525: 227:{\displaystyle {\frac {1}{R^{3}}}} 193:{\displaystyle {\frac {1}{R^{6}}}} 25: 2077: 1611:Intermolecular and Surface Forces 1195:Intermolecular and Surface Forces 381:expansion of the perturbation in 270:a liquid at room temperature) or 1827: 1821: 1815: 1085: 1071: 724:is the intermolecular distance. 359:second-order perturbation theory 1599: 1584: 1569: 1543: 1487:, Singapore: World Scientific, 1441: 1399: 435:This expansion is known as the 91: 1613:(2nd ed.), Academic Press 1384: 1363: 1326: 1292: 1265:, Elsevier, pp. 329–349, 1250: 1229:, Elsevier, pp. 257–278, 1218: 1197:, Elsevier, pp. 577–616, 1186: 1153: 1128: 401:{\displaystyle {\frac {1}{R}}} 27:Cohesive force between species 13: 1: 1335:"Intermolecular interactions" 1121: 374:is only partially satisfied. 643:{\displaystyle \alpha '_{B}} 613:{\displaystyle \alpha '_{A}} 428:is the distance between the 313:(from smallest to largest: F 7: 1064: 10: 2082: 1733:Metal–ligand multiple bond 1481:. English translations in 1371:"London Dispersion Forces" 1307:(42), Wiley: 12274–12296, 1997: 1974: 1905: 1867: 1847: 1836: 1813: 1796: 1778: 1669: 1658: 1595:, Oxford: Clarendon Press 1116:Non-covalent interactions 372:Pauli exclusion principle 349:Quantum mechanical theory 34:Interaction energy of an 1483:H. Hettema, ed. (2000), 466:{\displaystyle \alpha '} 111:that (when separated by 46:London dispersion forces 430:nuclear centers of mass 119:, typically symbolized 1450:Zeitschrift fĂĽr Physik 1408:Zeitschrift fĂĽr Physik 1313:10.1002/anie.201503476 1111:van der Waals molecule 1101:Dispersion (chemistry) 878: 718: 698: 671: 644: 614: 584: 564: 544: 491: 467: 446:polarizability volumes 422: 402: 248: 228: 194: 160: 133: 42: 2061:Intermolecular forces 1514:which is reviewed in 1394:2015, 48 , 1815–1822. 879: 719: 699: 697:{\displaystyle I_{B}} 672: 670:{\displaystyle I_{A}} 645: 615: 585: 565: 545: 499:ionization potentials 492: 468: 423: 403: 249: 229: 195: 161: 134: 108:instantaneous dipoles 33: 1723:Coordinate (dipolar) 1591:A. J. Stone (1996), 1564:10.1039/tf937330008b 731: 708: 681: 654: 624: 594: 574: 554: 508: 481: 452: 412: 385: 238: 204: 170: 150: 123: 82:van der Waals forces 70:intermolecular force 66:van der Waals forces 1897:C–H···O interaction 1679:Electron deficiency 1607:Jacob Israelachvili 1530:2001PhT....54f..63H 1462:1930ZPhy...63..245L 1420:1930ZPhy...60..491E 1164:. New York: Wiley. 1106:van der Waals force 912: 858: 845: 762: 639: 609: 539: 475:ionization energies 437:multipole expansion 363:Coulomb interaction 141:wavelength of light 1882:Resonance-assisted 1470:10.1007/BF01421741 1428:10.1007/BF01341258 910: 902:Relative magnitude 874: 846: 833: 734: 714: 694: 667: 640: 627: 610: 597: 580: 560: 550:between two atoms 540: 511: 497:, (ancient term: 487: 463: 418: 398: 244: 224: 190: 156: 129: 43: 2048: 2047: 1999:Electron counting 1970: 1969: 1859:London dispersion 1811: 1810: 1788:Metal aromaticity 1580:, New York: Wiley 1538:10.1063/1.1387598 1244:978-0-08-100693-1 1212:978-0-12-375182-9 1062: 1061: 889:molecular dipoles 872: 828: 777: 717:{\displaystyle R} 583:{\displaystyle B} 563:{\displaystyle A} 490:{\displaystyle I} 432:of the moieties. 421:{\displaystyle R} 396: 292:aqueous solutions 247:{\displaystyle R} 222: 188: 159:{\displaystyle R} 132:{\displaystyle A} 54:dispersion forces 16:(Redirected from 2073: 2066:Chemical bonding 2040:Jemmis mno rules 1892:Dihydrogen bonds 1845: 1844: 1831: 1825: 1819: 1753:Hyperconjugation 1667: 1666: 1645: 1638: 1631: 1622: 1621: 1615: 1614: 1603: 1597: 1596: 1588: 1582: 1581: 1573: 1567: 1566: 1547: 1541: 1540: 1513: 1480: 1445: 1439: 1438: 1414:(7–8): 491–527, 1403: 1397: 1388: 1382: 1381: 1379: 1377: 1367: 1361: 1360: 1358: 1356: 1350: 1339: 1330: 1324: 1323: 1296: 1290: 1289: 1288: 1287: 1254: 1248: 1247: 1222: 1216: 1215: 1190: 1184: 1183: 1157: 1151: 1150: 1132: 1095: 1090: 1089: 1081: 1079:Chemistry portal 1076: 1075: 1074: 913: 909: 896:light dispersion 883: 881: 880: 875: 873: 871: 870: 869: 859: 854: 841: 831: 829: 827: 826: 825: 813: 812: 802: 801: 800: 791: 790: 780: 778: 770: 761: 760: 745: 723: 721: 720: 715: 703: 701: 700: 695: 693: 692: 676: 674: 673: 668: 666: 665: 649: 647: 646: 641: 635: 619: 617: 616: 611: 605: 589: 587: 586: 581: 569: 567: 566: 561: 549: 547: 546: 541: 538: 537: 522: 496: 494: 493: 488: 472: 470: 469: 464: 462: 427: 425: 424: 419: 407: 405: 404: 399: 397: 389: 253: 251: 250: 245: 233: 231: 230: 225: 223: 221: 220: 208: 199: 197: 196: 191: 189: 187: 186: 174: 165: 163: 162: 157: 138: 136: 135: 130: 117:Hamaker constant 68:) are a type of 52:, also known as 21: 2081: 2080: 2076: 2075: 2074: 2072: 2071: 2070: 2051: 2050: 2049: 2044: 1993: 1966: 1909: 1901: 1863: 1850: 1840: 1832: 1826: 1820: 1807: 1792: 1774: 1662: 1654: 1649: 1619: 1618: 1604: 1600: 1589: 1585: 1574: 1570: 1548: 1544: 1495: 1446: 1442: 1404: 1400: 1389: 1385: 1375: 1373: 1369: 1368: 1364: 1354: 1352: 1348: 1337: 1331: 1327: 1297: 1293: 1285: 1283: 1281: 1255: 1251: 1245: 1223: 1219: 1213: 1191: 1187: 1172: 1158: 1154: 1147: 1133: 1129: 1124: 1091: 1084: 1077: 1072: 1070: 1067: 1055: 1051: 1031: 1025: 1013: 1008: 995: 989: 944: 939: 904: 865: 861: 860: 850: 837: 832: 830: 821: 817: 808: 804: 803: 796: 792: 786: 782: 781: 779: 769: 747: 746: 738: 732: 729: 728: 709: 706: 705: 688: 684: 682: 679: 678: 661: 657: 655: 652: 651: 631: 625: 622: 621: 601: 595: 592: 591: 575: 572: 571: 555: 552: 551: 524: 523: 515: 509: 506: 505: 482: 479: 478: 455: 453: 450: 449: 442:Albrecht Unsöld 413: 410: 409: 388: 386: 383: 382: 377:London wrote a 351: 328: 324: 320: 316: 307:electron clouds 277: 269: 239: 236: 235: 216: 212: 207: 205: 202: 201: 182: 178: 173: 171: 168: 167: 151: 148: 147: 124: 121: 120: 94: 72:acting between 28: 23: 22: 15: 12: 11: 5: 2079: 2069: 2068: 2063: 2046: 2045: 2043: 2042: 2037: 2032: 2031: 2030: 2025: 2020: 2015: 2004: 2002: 1995: 1994: 1992: 1991: 1986: 1980: 1978: 1972: 1971: 1968: 1967: 1965: 1964: 1959: 1954: 1949: 1944: 1939: 1929: 1924: 1919: 1913: 1911: 1903: 1902: 1900: 1899: 1894: 1889: 1884: 1879: 1873: 1871: 1865: 1864: 1862: 1861: 1855: 1853: 1842: 1838:Intermolecular 1834: 1833: 1814: 1812: 1809: 1808: 1806: 1805: 1802: 1800: 1794: 1793: 1791: 1790: 1784: 1782: 1776: 1775: 1773: 1772: 1771: 1770: 1765: 1755: 1750: 1745: 1740: 1735: 1730: 1725: 1720: 1715: 1710: 1709: 1708: 1698: 1697: 1696: 1691: 1686: 1675: 1673: 1664: 1660:Intramolecular 1656: 1655: 1652:Chemical bonds 1648: 1647: 1640: 1633: 1625: 1617: 1616: 1598: 1583: 1568: 1542: 1493: 1440: 1398: 1392:Acc. Chem. Res 1383: 1362: 1344:. p. 45. 1325: 1291: 1279: 1249: 1243: 1217: 1211: 1185: 1170: 1152: 1145: 1126: 1125: 1123: 1120: 1119: 1118: 1113: 1108: 1103: 1097: 1096: 1093:Biology portal 1082: 1066: 1063: 1060: 1059: 1056: 1053: 1049: 1045: 1044: 1041: 1037: 1036: 1033: 1029: 1023: 1018: 1017: 1014: 1011: 1006: 1001: 1000: 997: 993: 987: 982: 981: 978: 971: 970: 967: 960: 959: 956: 949: 948: 945: 942: 937: 932: 931: 928: 921: 920: 917: 903: 900: 885: 884: 868: 864: 857: 853: 849: 844: 840: 836: 824: 820: 816: 811: 807: 799: 795: 789: 785: 776: 773: 768: 765: 759: 756: 753: 750: 744: 741: 737: 713: 691: 687: 664: 660: 638: 634: 630: 608: 604: 600: 579: 559: 536: 533: 530: 527: 521: 518: 514: 486: 461: 458: 417: 395: 392: 350: 347: 326: 322: 318: 314: 303:polarizability 275: 267: 243: 219: 215: 211: 185: 181: 177: 155: 128: 93: 90: 64:or loosely as 26: 9: 6: 4: 3: 2: 2078: 2067: 2064: 2062: 2059: 2058: 2056: 2041: 2038: 2036: 2033: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2013:HĂĽckel's rule 2011: 2010: 2009: 2006: 2005: 2003: 2000: 1996: 1990: 1987: 1985: 1982: 1981: 1979: 1977: 1976:Bond cleavage 1973: 1963: 1960: 1958: 1955: 1953: 1950: 1948: 1945: 1943: 1942:Intercalation 1940: 1937: 1933: 1932:Metallophilic 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1914: 1912: 1908: 1904: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1874: 1872: 1870: 1866: 1860: 1857: 1856: 1854: 1852: 1849:Van der Waals 1846: 1843: 1839: 1835: 1830: 1824: 1818: 1804: 1803: 1801: 1799: 1795: 1789: 1786: 1785: 1783: 1781: 1777: 1769: 1766: 1764: 1761: 1760: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1707: 1704: 1703: 1702: 1699: 1695: 1692: 1690: 1687: 1685: 1682: 1681: 1680: 1677: 1676: 1674: 1672: 1668: 1665: 1661: 1657: 1653: 1646: 1641: 1639: 1634: 1632: 1627: 1626: 1623: 1612: 1608: 1602: 1594: 1587: 1579: 1572: 1565: 1561: 1557: 1553: 1546: 1539: 1535: 1531: 1527: 1523: 1519: 1518:Physics Today 1512: 1508: 1504: 1500: 1496: 1494:981-02-2771-X 1490: 1486: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1444: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1402: 1396: 1393: 1387: 1372: 1366: 1347: 1343: 1336: 1329: 1322: 1318: 1314: 1310: 1306: 1302: 1295: 1282: 1280:9780080363646 1276: 1272: 1268: 1264: 1260: 1253: 1246: 1240: 1236: 1232: 1228: 1221: 1214: 1208: 1204: 1200: 1196: 1189: 1181: 1177: 1173: 1171:0-471-39551-X 1167: 1163: 1156: 1148: 1146:0-471-39551-X 1142: 1138: 1131: 1127: 1117: 1114: 1112: 1109: 1107: 1104: 1102: 1099: 1098: 1094: 1088: 1083: 1080: 1069: 1057: 1047: 1046: 1042: 1039: 1038: 1034: 1027: 1020: 1019: 1015: 1009: 1003: 1002: 998: 991: 984: 983: 979: 976: 973: 972: 968: 965: 962: 961: 957: 954: 951: 950: 946: 940: 934: 933: 929: 926: 923: 922: 918: 916:Molecule pair 915: 914: 908: 899: 897: 892: 890: 866: 862: 855: 851: 847: 842: 838: 834: 822: 818: 814: 809: 805: 797: 793: 787: 783: 774: 771: 766: 763: 742: 739: 735: 727: 726: 725: 711: 689: 685: 662: 658: 636: 632: 628: 606: 602: 598: 577: 557: 519: 516: 512: 502: 500: 484: 476: 459: 456: 447: 443: 438: 433: 431: 415: 393: 390: 380: 379:Taylor series 375: 373: 369: 364: 360: 356: 346: 344: 340: 336: 332: 312: 308: 304: 299: 297: 293: 288: 285: 281: 273: 265: 261: 257: 241: 217: 213: 209: 183: 179: 175: 153: 144: 142: 126: 118: 114: 110: 109: 104: 102: 89: 87: 83: 79: 75: 71: 67: 63: 59: 58:London forces 55: 51: 47: 40: 37: 32: 19: 2018:Baird's rule 1858: 1738:Charge-shift 1701:Hypervalence 1610: 1601: 1592: 1586: 1577: 1571: 1555: 1551: 1545: 1524:(6): 63–64, 1521: 1517: 1484: 1456:(3–4): 245, 1453: 1449: 1443: 1411: 1407: 1401: 1391: 1386: 1374:. Retrieved 1365: 1355:18 September 1353:. Retrieved 1341: 1328: 1304: 1300: 1294: 1284:, retrieved 1262: 1252: 1226: 1220: 1194: 1188: 1161: 1155: 1136: 1130: 905: 893: 886: 503: 434: 376: 355:Fritz London 352: 300: 289: 284:condensation 260:hydrocarbons 145: 106: 98: 95: 92:Introduction 86:Fritz London 65: 61: 57: 53: 49: 45: 44: 2008:Aromaticity 1984:Heterolysis 1962:Salt bridge 1907:Noncovalent 1877:Low-barrier 1758:Aromaticity 1748:Conjugation 1728:Pi backbond 331:heteroatoms 258:), such as 256:ionic bonds 2055:Categories 1936:aurophilic 1917:Mechanical 1286:2022-08-29 1122:References 2028:spherical 1989:Homolysis 1952:Cation–pi 1927:Chalcogen 1887:Symmetric 1743:Hapticity 1503:898989103 1478:123122363 1436:125644826 848:α 835:α 767:− 764:≈ 629:α 599:α 457:α 78:molecules 1957:Anion–pi 1947:Stacking 1869:Hydrogen 1780:Metallic 1671:Covalent 1663:(strong) 1609:(1992), 1558:: 8–26, 1511:9194584M 1346:Archived 1321:26262562 1180:45162154 1065:See also 856:′ 843:′ 637:′ 607:′ 590:. Here 460:′ 408:, where 368:monomers 339:chlorine 335:Fluorine 311:halogens 1922:Halogen 1768:bicyclo 1713:Agostic 1526:Bibcode 1458:Bibcode 1416:Bibcode 1376:May 24, 296:solvent 264:bromine 2023:Möbius 1851:forces 1841:(weak) 1509:  1501:  1491:  1476:  1434:  1319:  1277:  1241:  1209:  1178:  1168:  1143:  1040:HCl-HI 473:, and 272:iodine 234:where 113:vacuum 2001:rules 1910:other 1798:Ionic 1706:3c–4e 1694:8c–2e 1689:4c–2e 1684:3c–2e 1474:S2CID 1432:S2CID 1349:(PDF) 1338:(PDF) 343:gases 280:waxes 166:like 99:(see 74:atoms 39:dimer 36:argon 1763:homo 1718:Bent 1499:OCLC 1489:ISBN 1378:2019 1357:2020 1317:PMID 1275:ISBN 1239:ISBN 1207:ISBN 1176:OCLC 1166:ISBN 1141:ISBN 1052:O-CH 966:-HBr 955:-HCl 947:100 930:100 677:and 620:and 570:and 341:are 337:and 321:, Br 317:, Cl 76:and 1560:doi 1534:doi 1466:doi 1424:doi 1309:doi 1267:doi 1231:doi 1199:doi 1058:87 1043:96 1035:24 1016:57 1010:-NH 999:68 992:-CH 980:99 977:-HI 969:96 964:HBr 958:86 953:HCl 941:-CH 927:-Ne 501:). 325:, I 268:2, 266:(Br 50:LDF 2057:: 1556:33 1554:, 1532:, 1522:54 1520:, 1507:OL 1505:, 1497:, 1472:, 1464:, 1454:63 1452:, 1430:, 1422:, 1412:60 1410:, 1340:. 1315:, 1305:54 1303:, 1273:, 1261:, 1237:, 1205:, 1174:. 1028:-H 1005:NH 996:Cl 990:Cl 986:CH 975:HI 936:CH 925:Ne 477:, 448:, 333:. 276:2, 274:(I 60:, 56:, 1938:) 1934:( 1644:e 1637:t 1630:v 1562:: 1536:: 1528:: 1468:: 1460:: 1426:: 1418:: 1380:. 1359:. 1311:: 1269:: 1233:: 1201:: 1182:. 1149:. 1054:4 1050:2 1048:H 1032:O 1030:2 1026:O 1024:2 1022:H 1012:3 1007:3 994:3 988:3 943:4 938:4 867:6 863:R 852:B 839:A 823:B 819:I 815:+ 810:A 806:I 798:B 794:I 788:A 784:I 775:2 772:3 758:p 755:s 752:i 749:d 743:B 740:A 736:E 712:R 690:B 686:I 663:A 659:I 633:B 603:A 578:B 558:A 535:p 532:s 529:i 526:d 520:B 517:A 513:E 485:I 416:R 394:R 391:1 327:2 323:2 319:2 315:2 242:R 218:3 214:R 210:1 184:6 180:R 176:1 154:R 127:A 103:) 48:( 20:)

Index

Instantaneous-dipole induced-dipole attraction

argon
dimer
intermolecular force
atoms
molecules
van der Waals forces
Fritz London
quantum mechanical theory of dispersion forces
instantaneous dipoles
vacuum
Hamaker constant
wavelength of light
ionic bonds
hydrocarbons
bromine
iodine
waxes
condensation
aqueous solutions
solvent
polarizability
electron clouds
halogens
heteroatoms
Fluorine
chlorine
gases
Fritz London

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑