Knowledge

Intrinsically disordered proteins

Source πŸ“

571: 285:
individual proteins and regulated protein turnover. Often, post-translational modifications such as phosphorylation tune the affinity (not rarely by several orders of magnitude) of individual linear motifs for specific interactions. Relatively rapid evolution and a relatively small number of structural restraints for establishing novel (low-affinity) interfaces make it particularly challenging to detect linear motifs but their widespread biological roles and the fact that many viruses mimick/hijack linear motifs to efficiently recode infected cells underlines the timely urgency of research on this very challenging and exciting topic.
623:
characterized as disorder-promoting amino acids, while order-promoting amino acids W, C, F, I, Y, V, L, and N are hydrophobic and uncharged. The remaining amino acids H, M, T and D are ambiguous, found in both ordered and unstructured regions. A more recent analysis ranked amino acids by their propensity to form disordered regions as follows (order promoting to disorder promoting): W, F, Y, I, M, L, V, N, C, T, A, G, R, D, H, Q, K, S, E, P. As it can be seen from the list, small, charged, hydrophilic residues often promote disorder, while large and hydrophobic residues promote order.
306:). The coupled folding and binding may be local, involving only a few interacting residues, or it might involve an entire protein domain. It was recently shown that the coupled folding and binding allows the burial of a large surface area that would be possible only for fully structured proteins if they were much larger. Moreover, certain disordered regions might serve as "molecular switches" in regulating certain biological function by switching to ordered conformation upon molecular recognition like small molecule-binding, DNA/RNA binding, ion interactions etc. 378:). Many disordered proteins reveal regions without any regular secondary structure. These regions can be termed as flexible, compared to structured loops. While the latter are rigid and contain only one set of Ramachandran angles, IDPs involve multiple sets of angles. The term flexibility is also used for well-structured proteins, but describes a different phenomenon in the context of disordered proteins. Flexibility in structured proteins is bound to an equilibrium state, while it is not so in IDPs. Many disordered proteins also reveal 717:
for accurate representation of these ensembles by computer simulations. All-atom molecular dynamic simulations can be used for this purpose but their use is limited by the accuracy of current force-fields in representing disordered proteins. Nevertheless, some force-fields have been explicitly developed for studying disordered proteins by optimising force-field parameters using available NMR data for disordered proteins. (examples are CHARMM 22*, CHARMM 32, Amber ff03* etc.)
20: 135: 705: 642:
the expense of IDP determination. In order to overcome this obstacle, computer-based methods are created for predicting protein structure and function. It is one of the main goals of bioinformatics to derive knowledge by prediction. Predictors for IDP function are also being developed, but mainly use structural information such as
244:, thus it has been proposed that the flexibility of disordered proteins facilitates the different conformational requirements for binding the modifying enzymes as well as their receptors. Intrinsic disorder is particularly enriched in proteins implicated in cell signaling and transcription, as well as 690:
is thought to be responsible. The structural flexibility of this protein together with its susceptibility to modification in the cell leads to misfolding and aggregation. Genetics, oxidative and nitrative stress as well as mitochondrial impairment impact the structural flexibility of the unstructured
653:
Many computational methods exploit sequence information to predict whether a protein is disordered. Notable examples of such software include IUPRED and Disopred. Different methods may use different definitions of disorder. Meta-predictors show a new concept, combining different primary predictors to
167:
suggested that the systematic conformational search of a long polypeptide is unlikely to yield a single folded protein structure on biologically relevant timescales (i.e. microseconds to minutes). Curiously, for many (small) proteins or protein domains, relatively rapid and efficient refolding can be
716:
Owing to high structural heterogeneity, NMR/SAXS experimental parameters obtained will be an average over a large number of highly diverse and disordered states (an ensemble of disordered states). Hence, to understand the structural implications of these experimental parameters, there is a necessity
641:
Determining disordered regions from biochemical methods is very costly and time-consuming. Due to the variable nature of IDPs, only certain aspects of their structure can be detected, so that a full characterization requires a large number of different methods and experiments. This further increases
365:
Therefore, their structures are strongly function-related. However, only few proteins are fully disordered in their native state. Disorder is mostly found in intrinsically disordered regions (IDRs) within an otherwise well-structured protein. The term intrinsically disordered protein (IDP) therefore
626:
This information is the basis of most sequence-based predictors. Regions with little to no secondary structure, also known as NORS (NO Regular Secondary structure) regions, and low-complexity regions can easily be detected. However, not all disordered proteins contain such low complexity sequences.
293:
Unlike globular proteins, IDPs do not have spatially-disposed active pockets. Fascinatingly, 80% of target-unbound IDPs (~4 dozens) subjected to detailed structural characterization by NMR possess linear motifs termed PresMos (pre-structured motifs) that are transient secondary structural elements
622:
Separating disordered from ordered proteins is essential for disorder prediction. One of the first steps to find a factor that distinguishes IDPs from non-IDPs is to specify biases within the amino acid composition. The following hydrophilic, charged amino acids A, R, G, Q, S, P, E and K have been
353:
of the complex is modulated via post-translational modifications or protein interactions. Specificity of DNA binding proteins often depends on the length of fuzzy regions, which is varied by alternative splicing. Some fuzzy complexes may exhibit high binding affinity, although other studies showed
685:
and toxicity as those proteins start binding to each other randomly and can lead to cancer or cardiovascular diseases. Thereby, misfolding can happen spontaneously because millions of copies of proteins are made during the lifetime of an organism. The aggregation of the intrinsically unstructured
162:
in that the amino acid sequence of a protein determines its structure which, in turn, determines its function. In 1950, Karush wrote about 'Configurational Adaptability' contradicting this assumption. He was convinced that proteins have more than one configuration at the same energy level and can
538:
for visualising molecular interactions and conformational transitions, x-ray crystallography to highlight more mobile regions in otherwise rigid protein crystals, cryo-EM to reveal less fixed parts of proteins, light scattering to monitor size distributions of IDPs or their aggregation kinetics,
522:
have been introduced, which allow to determine the fraction folded/disordered without the need for purification. Even subtle differences in the stability of missense mutations, protein partner binding and (self)polymerisation-induced folding of (e.g.) coiled-coils can be detected using FASTpp as
695:
have large intrinsically unstructured regions, for example p53 and BRCA1. These regions of the proteins are responsible for mediating many of their interactions. Taking the cell's native defense mechanisms as a model drugs can be developed, trying to block the place of noxious substrates and
373:
amino acids and a high proportion of polar and charged amino acids, usually referred to as low hydrophobicity. This property leads to good interactions with water. Furthermore, high net charges promote disorder because of electrostatic repulsion resulting from equally charged residues. Thus
284:
Linear motifs are short disordered segments of proteins that mediate functional interactions with other proteins or other biomolecules (RNA, DNA, sugars etc.). Many roles of linear motifs are associated with cell regulation, for instance in control of cell shape, subcellular localisation of
204:
It is now generally accepted that proteins exist as an ensemble of similar structures with some regions more constrained than others. IDPs occupy the extreme end of this spectrum of flexibility and include proteins of considerable local structure tendency or flexible multidomain assemblies.
172:
from 1973, the fixed 3D structure of these proteins is uniquely encoded in its primary structure (the amino acid sequence), is kinetically accessible and stable under a range of (near) physiological conditions, and can therefore be considered as the native state of such "ordered" proteins.
720:
MD simulations restrained by experimental parameters (restrained-MD) have also been used to characterise disordered proteins. In principle, one can sample the whole conformational space given an MD simulation (with accurate Force-field) is run long enough. Because of very high structural
596:
can predict Intrinsic Disorder (ID) propensity with high accuracy (approaching around 80%) based on primary sequence composition, similarity to unassigned segments in protein x-ray datasets, flexible regions in NMR studies and physico-chemical properties of amino acids.
1272:
Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001-01-01). "Intrinsically disordered protein".
374:
disordered sequences cannot sufficiently bury a hydrophobic core to fold into stable globular proteins. In some cases, hydrophobic clusters in disordered sequences provide the clues for identifying the regions that undergo coupled folding and binding (refer to
848:
Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001). "Intrinsically disordered protein".
523:
recently demonstrated using the tropomyosin-troponin protein interaction. Fully unstructured protein regions can be experimentally validated by their hypersusceptibility to proteolysis using short digestion times and low protease concentrations.
187:
In 2001, Dunker questioned whether the newly found information was ignored for 50 years with more quantitative analyses becoming available in the 2000s. In the 2010s it became clear that IDPs are common among disease-related proteins, such as
294:
primed for target recognition. In several cases it has been demonstrated that these transient structures become full and stable secondary structures, e.g., helices, upon target binding. Hence, PresMos are the putative active sites in IDPs.
557:
for high-resolution insights into the ensembles of IDPs and their oligomers or aggregates, nanopores to reveal global shape distributions of IDPs, magnetic tweezers to study structural transitions for long times at low forces, high-speed
31:). The central part shows relatively ordered structure. Conversely, the N- and C-terminal regions (left and right, respectively) show β€˜intrinsic disorder’, although a short helical region persists in the N-terminal tail. Ten alternative 386:. While low complexity sequences are a strong indication of disorder, the reverse is not necessarily true, that is, not all disordered proteins have low complexity sequences. Disordered proteins have a low content of predicted 742:
Moreover, various protocols and methods of analyzing IDPs, such as studies based on quantitative analysis of GC content in genes and their respective chromosomal bands, have been used to understand functional IDP segments.
3707:
Iida S, Kawabata T, Kasahara K, Nakamura H, Higo J (April 2019). "Multimodal Structural Distribution of the p53 C-Terminal Domain upon Binding to S100B via a Generalized Ensemble Method: From Disorder to Extradisorder".
122:. Many IDPs can also adopt a fixed three-dimensional structure after binding to other macromolecules. Overall, IDPs are different from structured proteins in many ways and tend to have distinctive function, structure, 3614:
Zerze GH, Miller CM, Granata D, Mittal J (June 2015). "Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics".
397:
has been applied to track the dynamics of disordered protein domains. By employing a topological approach, one can categorize motifs according to their topological buildup and the timescale of their formation.
613:
is a database combining experimentally curated disorder annotations (e.g. from DisProt) with data derived from missing residues in X-ray crystallographic structures and flexible regions in NMR structures.
2856:
Japrung D, Dogan J, Freedman KJ, Nadzeyka A, Bauerdick S, Albrecht T, Kim MJ, Jemth P, Edel JB (February 2013). "Single-molecule studies of intrinsically disordered proteins using solid-state nanopores".
721:
heterogeneity, the time scales that needs to be run for this purpose are very large and are limited by computational power. However, other computational techniques such as accelerated-MD simulations,
224:. Based on DISOPRED2 prediction, long (>30 residue) disordered segments occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins, including certain disease-related proteins. 406:
IDPs can be validated in several contexts. Most approaches for experimental validation of IDPs are restricted to extracted or purified proteins while some new experimental strategies aim to explore
2949:
Miyagi A, Tsunaka Y, Uchihashi T, Mayanagi K, Hirose S, Morikawa K, Ando T (September 2008). "Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy".
345:
Intrinsically disordered proteins can retain their conformational freedom even when they bind specifically to other proteins. The structural disorder in bound state can be static or dynamic. In
712:. The globular thioredoxin fold is depicted in blue, while the disordered N-tail in green. According to the MD results, the disordered tail can be modulating the dynamics of the binding pocket. 4045: 106:
IDPs are a very large and functionally important class of proteins and their discovery has disproved the idea that three-dimensional structures of proteins must be fixed to accomplish their
451:
Intrinsically unfolded proteins, once purified, can be identified by various experimental methods. The primary method to obtain information on disordered regions of a protein is
3246:
Balatti GE, Barletta GP, Parisi G, Tosatto SC, Bellanda M, Fernandez-Alberti S (December 2021). "Intrinsically Disordered Region Modulates Ligand Binding in Glutaredoxin 1 from
176:
During the subsequent decades, however, many large protein regions could not be assigned in x-ray datasets, indicating that they occupy multiple positions, which average out in
3837:
Garaizar A, Espinosa JR (September 2021). "Salt dependent phase behavior of intrinsically disordered proteins from a coarse-grained model with explicit water and ions".
3561:
Apicella A, Marascio M, Colangelo V, Soncini M, Gautieri A, Plummer CJ (June 2017). "Molecular dynamics simulations of the intrinsically disordered protein amelogenin".
1321:
Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (March 2004). "Prediction and functional analysis of native disorder in proteins from the three kingdoms of life".
260:
Disordered regions are often found as flexible linkers or loops connecting domains. Linker sequences vary greatly in length but are typically rich in polar uncharged
2230:
Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Nettels D, Kragelund BB, Best RB, Schuler B (March 2018).
309:
The ability of disordered proteins to bind, and thus to exert a function, shows that stability is not a required condition. Many short functional sites, for example
2668:
Robaszkiewicz K, Ostrowska Z, Cyranka-Czaja A, Moraczewska J (May 2015). "Impaired tropomyosin-troponin interactions reduce activation of the actin thin filament".
1906:
Lee SH, Kim DH, Han JJ, Cha EJ, Lim JE, Cho YJ, Lee C, Han KH (February 2012). "Understanding pre-structured motifs (PresMos) in intrinsically unfolded proteins".
393:
Due to the disordered nature of these proteins, topological approaches have been developed to search for conformational patterns in their dynamics. For instance,
3751:
Kurcinski M, Kolinski A, Kmiecik S (June 2014). "Mechanism of Folding and Binding of an Intrinsically Disordered Protein As Revealed by ab Initio Simulations".
3295:"Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone Ο†, ψ and side-chain Ο‡(1) and Ο‡(2) dihedral angles" 362:
Intrinsically disordered proteins adapt many different structures in vivo according to the cell's conditions, creating a structural or conformational ensemble.
2420:
Scalvini B. et al., Circuit Topology Approach for the Comparative Analysis of Intrinsically Disordered Proteins. J. Chem. Inf. Model. 63, 8, 2586–2602 (2023)
181: 32: 1941:
Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN (October 2006). "Analysis of molecular recognition features (MoRFs)".
433:
persistence of intrinsic disorder has been achieved by in-cell NMR upon electroporation of a purified IDP and recovery of cells to an intact state.
2103:
Atkinson SC, Audsley MD, Lieu KG, Marsh GA, Thomas DR, Heaton SM, Paxman JJ, Wagstaff KM, Buckle AM, Moseley GW, Jans DA, Borg NA (January 2018).
1610:
Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (October 2002). "Intrinsic disorder in cell-signaling and cancer-associated proteins".
1560:"Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder" 3033:
Schlessinger A, Schaefer C, Vicedo E, Schmidberger M, Punta M, Rost B (June 2011). "Protein disorder--a breakthrough invention of evolution?".
369:
The existence and kind of protein disorder is encoded in its amino acid sequence. In general, IDPs are characterized by a low content of bulky
2625:
Park C, Marqusee S (March 2005). "Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding".
333:. This enables such viruses to overcome their informationally limited genomes by facilitating binding, and manipulation of, a large number of 1976:
Gunasekaran K, Tsai CJ, Kumar S, Zanuy D, Nussinov R (February 2003). "Extended disordered proteins: targeting function with less scaffold".
553:
Single-molecule methods to study IDPs include spFRET to study conformational flexibility of IDPs and the kinetics of structural transitions,
3148:"Structures of the E46K mutant-type Ξ±-synuclein protein and impact of E46K mutation on the structures of the wild-type Ξ±-synuclein protein" 2289:"Binding Affinity and Function of the Extremely Disordered Protein Complex Containing Human Linker Histone H1.0 and Its Chaperone ProTΞ±" 657:
Due to the different approaches of predicting disordered proteins, estimating their relative accuracy is fairly difficult. For example,
2431:
Theillet FX, Binolfi A, Bekei B, Martorana A, Rose HM, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, Selenko P (2016).
739:
representation with implicit and explicit solvents have been used to sample broader conformational space in smaller time scales.
1027:
Mir M, Stadler MR, Ortiz SA, Hannon CE, Harrison MM, Darzacq X, Eisen MB (December 2018). Singer RH, Struhl K, Crocker J (eds.).
4031: 609:
database contains a collection of manually curated protein segments which have been experimentally determined to be disordered.
584:​, human growth hormone bound to receptor). Compilation of screenshots from PDB database and molecule representation via 1371:
Uversky VN, Oldfield CJ, Dunker AK (2008). "Intrinsically disordered proteins in human diseases: introducing the D2 concept".
410:
conformations and structural variations of IDPs inside intact living cells and systematic comparisons between their dynamics
636: 593: 349:
structural multiplicity is required for function and the manipulation of the bound disordered region changes activity. The
313:
are over-represented in disordered proteins. Disordered proteins and short linear motifs are particularly abundant in many
2705:"Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations" 180:
maps. The lack of fixed, unique positions relative to the crystal lattice suggested that these regions were "disordered".
943:
Dunker AK, Silman I, Uversky VN, Sussman JL (December 2008). "Function and structure of inherently disordered proteins".
518:. (Folded proteins typically show dispersions as large as 5 ppm for the amide protons.) Recently, new methods including 479: 265: 665:
experiment that is designed to test methods according accuracy in finding regions with missing 3D structure (marked in
519: 379: 159: 3788:"Modeling of Disordered Protein Structures Using Monte Carlo Simulations and Knowledge-Based Statistical Force Fields" 3103:
Ferron F, Longhi S, Canard B, Karlin D (October 2006). "A practical overview of protein disorder prediction methods".
1428: 825: 276:. The flexible linker of FBP25 which connects two domains of FKBP25 is important for the binding of FKBP25 with DNA. 3342:
Best RB (February 2017). "Computational and theoretical advances in studies of intrinsically disordered proteins".
2894:"Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism" 2385:
Oldfield CJ, Dunker AK (2014). "Intrinsically disordered proteins and intrinsically disordered protein regions".
666: 592:
Intrinsic disorder can be either annotated from experimental information or predicted with specialized software.
264:. Flexible linkers allow the connecting domains to freely twist and rotate to recruit their binding partners via 241: 4087: 570: 475: 330: 2517:"Biotin proximity tagging favours unfolded proteins and enables the study of intrinsically disordered regions" 1182:"Micelle-induced folding of spinach thylakoid soluble phosphoprotein of 9 kDa and its functional implications" 252:
tend to have higher disorder. In animals, genes with high disorder are lost at higher rates during evolution.
2762:
Brucale M, Schuler B, Samorì B (March 2014). "Single-molecule studies of intrinsically disordered proteins".
471: 142:
of NMR structures of the Thylakoid soluble phosphoprotein TSP9, which shows a largely flexible protein chain.
1859:"Structural basis of nucleic acid recognition by FK506-binding protein 25 (FKBP25), a nuclear immunophilin" 232:
Highly dynamic disordered regions of proteins have been linked to functionally important phenomena such as
158:
might be generally required to mediate biological functions of proteins. These publications solidified the
3652:"The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments" 2195:
Fuxreiter M, Simon I, Bondos S (August 2011). "Dynamic protein-DNA recognition: beyond what can be seen".
302:
Many unstructured proteins undergo transitions to more ordered states upon binding to their targets (e.g.
208:
Intrinsic disorder is particularly elevated among proteins that regulate chromatin and transcription, and
184:
also demonstrated the presence of large flexible linkers and termini in many solved structural ensembles.
155: 507: 462:
Folded proteins have a high density (partial specific volume of 0.72-0.74 mL/g) and commensurately small
2424: 1655:
Sandhu KS (2009). "Intrinsic disorder explains diverse nuclear roles of chromatin remodeling proteins".
1411:
Bu Z, Callaway DJ (2011). "Proteins MOVE! Protein dynamics and long-range allostery in cell signaling".
4092: 3650:
Granata D, Baftizadeh F, Habchi J, Galvagnion C, De Simone A, Camilloni C, et al. (October 2015).
3377:
Chong SH, Chatterjee P, Ham S (May 2017). "Computer Simulations of Intrinsically Disordered Proteins".
605:
Databases have been established to annotate protein sequences with intrinsic disorder information. The
466:. Hence, unfolded proteins can be detected by methods that are sensitive to molecular size, density or 221: 64: 2105:"Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V" 2799:"Diverse metastable structures formed by small oligomers of Ξ±-synuclein probed by force spectroscopy" 802: 658: 647: 585: 123: 3998: 1335: 1624: 1457:"At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?" 1287: 1131:
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, et al. (July 2014).
863: 350: 139: 4068: 736: 732: 677:
Intrinsically unstructured proteins have been implicated in a number of diseases. Aggregation of
559: 151: 661:
are often trained on different datasets. The disorder prediction category is a part of biannual
1619: 1330: 1282: 858: 164: 2479: 28: 1384: 588:. Blue and red arrows point to missing residues on receptor and growth hormone, respectively. 456: 269: 233: 3950: 3846: 3663: 3468: 3398: 3386: 3204: 2905: 2810: 2716: 2579: 2444: 2243: 2116: 2011:
Sandhu KS, Dash D (July 2007). "Dynamic alpha-helices: conformations that do not conform".
1715: 1238: 3457:"Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain" 2568:"Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp" 2398: 8: 574:
REMARK465 - missing electron densities in X-ray structure representing protein disorder (
487: 387: 383: 169: 107: 84: 3954: 3850: 3667: 3472: 3390: 3208: 2909: 2814: 2720: 2583: 2448: 2247: 2120: 1834: 1809: 1719: 1535: 1510: 1415:. Advances in Protein Chemistry and Structural Biology. Vol. 83. pp. 163–221. 1242: 3973: 3938: 3914: 3890:"Digested disorder: Quarterly intrinsic disorder digest (January/February/March, 2013)" 3889: 3870: 3814: 3787: 3733: 3684: 3651: 3596: 3538: 3513: 3489: 3456: 3319: 3294: 3275: 3228: 3172: 3147: 3128: 3010: 2985: 2926: 2893: 2833: 2798: 2739: 2704: 2650: 2602: 2567: 2543: 2516: 2468: 2313: 2288: 2264: 2231: 2137: 2104: 2080: 2055: 2036: 1883: 1858: 1785: 1760: 1736: 1699: 1680: 1592: 1481: 1456: 1420: 1206: 1181: 1157: 1132: 1108: 1083: 1059: 1028: 1004: 979: 922: 547: 491: 483: 463: 310: 249: 240:. Many disordered proteins have the binding affinity with their receptors regulated by 3939:"Genealogy of an ancient protein family: the Sirtuins, a family of disordered members" 2432: 1989: 1633: 1296: 872: 4008: 3978: 3919: 3874: 3862: 3819: 3786:
Ciemny MP, Badaczewska-Dawid AE, Pikuzinska M, Kolinski A, Kmiecik S (January 2019).
3768: 3725: 3689: 3632: 3600: 3588: 3543: 3494: 3437: 3433: 3402: 3359: 3324: 3279: 3267: 3220: 3177: 3120: 3085: 3050: 3015: 2966: 2931: 2874: 2838: 2779: 2744: 2685: 2642: 2607: 2548: 2460: 2402: 2360: 2318: 2269: 2212: 2177: 2142: 2085: 2028: 1993: 1958: 1923: 1888: 1839: 1810:"Differential Retention of Pfam Domains Contributes to Long-term Evolutionary Trends" 1790: 1741: 1672: 1637: 1584: 1559: 1540: 1486: 1434: 1424: 1388: 1348: 1300: 1254: 1211: 1162: 1113: 1064: 1029:"Dynamic multifactor hubs interact transiently with sites of active transcription in 1009: 960: 914: 897:, Wright PE (March 2005). "Intrinsically unstructured proteins and their functions". 876: 821: 692: 650:
or matrix calculations, based on different structural and/or biophysical properties.
576: 467: 322: 147: 48: 3737: 3132: 2654: 2419: 2040: 1684: 1596: 926: 3968: 3958: 3937:
Costantini S, Sharma A, Raucci R, Costantini M, Autiero I, Colonna G (March 2013).
3909: 3901: 3854: 3809: 3799: 3760: 3717: 3679: 3671: 3624: 3578: 3570: 3533: 3525: 3484: 3476: 3429: 3394: 3351: 3314: 3306: 3293:
Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD (September 2012).
3259: 3232: 3212: 3167: 3159: 3112: 3077: 3042: 3005: 2997: 2986:"TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder" 2958: 2921: 2913: 2866: 2828: 2818: 2771: 2734: 2724: 2677: 2634: 2597: 2587: 2538: 2528: 2495: 2472: 2452: 2394: 2352: 2308: 2300: 2259: 2251: 2204: 2169: 2132: 2124: 2075: 2067: 2020: 1985: 1950: 1915: 1878: 1870: 1829: 1821: 1780: 1772: 1731: 1723: 1700:"Young Genes are Highly Disordered as Predicted by the Preadaptation Hypothesis of 1664: 1629: 1574: 1530: 1522: 1476: 1468: 1416: 1380: 1340: 1292: 1246: 1201: 1193: 1152: 1144: 1103: 1095: 1054: 1044: 999: 991: 952: 906: 868: 813: 722: 554: 394: 354:
different affinity values for the same system in a different concentration regime.
237: 177: 100: 92: 91:
proteins. They are sometimes considered as a separate class of proteins along with
3574: 4072: 4035: 2823: 2729: 2681: 2592: 2356: 2160:
Fuxreiter M (January 2012). "Fuzziness: linking regulation to protein dynamics".
1250: 1229:
Anfinsen CB (July 1973). "Principles that govern the folding of protein chains".
687: 326: 189: 115: 114:
interactions that are highly cooperative and dynamic, lending them importance in
96: 4050: 2304: 1776: 4055: 3001: 2703:
Minde DP, Radli M, Forneris F, Maurice MM, RΓΌdiger SG (2013). Buckle AM (ed.).
2208: 2128: 1919: 1579: 1526: 767: 543: 511: 334: 119: 88: 80: 68: 3529: 3480: 3355: 3081: 3046: 2667: 2533: 1954: 1344: 956: 817: 4081: 3721: 3628: 3263: 1825: 782: 678: 346: 209: 3963: 1761:"Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes" 1727: 646:
sites. There are different approaches for predicting IDP structure, such as
3982: 3923: 3866: 3823: 3772: 3729: 3693: 3636: 3592: 3547: 3498: 3441: 3406: 3363: 3328: 3271: 3224: 3181: 3124: 3089: 3054: 3019: 2970: 2962: 2935: 2878: 2842: 2783: 2748: 2689: 2646: 2611: 2552: 2464: 2406: 2364: 2322: 2273: 2216: 2181: 2146: 2089: 2032: 1997: 1962: 1927: 1892: 1843: 1794: 1745: 1676: 1641: 1588: 1544: 1490: 1438: 1392: 1352: 1304: 1215: 1166: 1117: 1068: 1013: 964: 918: 880: 728: 535: 24: 4004:
MobiDB: a comprehensive database of intrinsic protein disorder annotations
3146:
Wise-Scira O, Dunn A, Aloglu AK, Sakallioglu IT, Coskuner O (March 2013).
2433:"Structural disorder of monomeric Ξ±-synuclein persists in mammalian cells" 1258: 995: 366:
includes proteins that contain IDRs as well as fully disordered proteins.
3804: 3785: 3583: 2071: 2056:"Drawing on disorder: How viruses use histone mimicry to their advantage" 1874: 1084:"Intrinsically disordered proteins in cellular signalling and regulation" 777: 515: 452: 370: 318: 261: 193: 111: 76: 75:. IDPs range from fully unstructured to partially structured and include 36: 3216: 2456: 2255: 1049: 3420:
Fox SJ, Kannan S (September 2017). "Probing the dynamics of disorder".
3116: 2984:
Campen A, Williams RM, Brown CJ, Meng J, Uversky VN, Dunker AK (2008).
2917: 2173: 2024: 1472: 978:
Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG (January 2014).
894: 440:
validation of IDR predictions is now possible using biotin 'painting'.
40: 3905: 3858: 3764: 3675: 3310: 3163: 3032: 2870: 2775: 1197: 1148: 580: 19: 2638: 801:
Majorek K, Kozlowski L, Jakalski M, Bujnicki JM (December 18, 2008).
682: 314: 273: 245: 1668: 1099: 910: 2500: 2487: 2340: 1558:
Collins MO, Yu L, Campuzano I, Grant SG, Choudhary JS (July 2008).
1511:"Interaction modules that impart specificity to disordered protein" 752: 503: 495: 217: 1180:
Song J, Lee MS, Carlberg I, Vener AV, Markley JL (December 2006).
3649: 1808:
James, Jennifer E; Nelson, Paul G; Masel, Joanna (4 April 2023).
1133:"Classification of intrinsically disordered regions and proteins" 757: 606: 499: 60: 3936: 3560: 2488:"Biotinylation by proximity labelling favours unfolded proteins" 800: 691:Ξ±-synuclein protein and associated disease mechanisms. Many key 340: 268:. They also allow their binding partners to induce larger scale 110:. For example, IDPs have been identified to participate in weak 3145: 1130: 762: 669:
as REMARK465, missing electron densities in X-ray structures).
610: 562:
to visualise the spatio-temporal flexibility of IDPs directly.
502:
groups exposed to solvent, so that they are readily cleaved by
213: 134: 3514:"Constructing ensembles for intrinsically disordered proteins" 2948: 1609: 4003: 3195:
Dobson CM (December 2003). "Protein folding and misfolding".
2797:
Neupane K, Solanki A, Sosova I, Belov M, Woodside MT (2014).
2670:
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
2430: 980:"SCOP2 prototype: a new approach to protein structure mining" 977: 810:
Prediction of Protein Structures, Functions, and Interactions
772: 510:
and exhibit a small dispersion (<1 ppm) in their 1H amide
303: 3706: 3245: 2855: 2345:
The International Journal of Biochemistry & Cell Biology
486:. Unfolded proteins are also characterized by their lack of 3068:
Tompa P (June 2011). "Unstructural biology coming of age".
2566:
Minde DP, Maurice MM, RΓΌdiger SG (2012). Uversky VN (ed.).
2232:"Extreme disorder in an ultrahigh-affinity protein complex" 1940: 662: 527: 498:
spectroscopy. Unfolded proteins also have exposed backbone
163:
choose one when binding to other substrates. In the 1960s,
4060: 942: 2796: 2702: 2229: 1975: 1271: 847: 704: 540: 531: 526:
Bulk methods to study IDP structure and dynamics include
248:
remodeling functions. Genes that have recently been born
72: 3750: 3613: 3102: 2892:
Min D, Kim K, Hyeon C, Cho YH, Shin YK, Yoon TY (2013).
2102: 2983: 1557: 1320: 4065: 4046:
Gallery of images of intrinsically disordered proteins
2514: 2485: 4051:
First IDP journal covering all topics of IDP research
1370: 1026: 696:
inhibiting them, and thus counteracting the disease.
2761: 2696: 2194: 1856: 1179: 4040: 2565: 382:, i.e. sequences with over-representation of a few 182:
Nuclear magnetic resonance spectroscopy of proteins
3376: 2053: 1857:Prakash A, Shin J, Rajan S, Yoon HS (April 2016). 1697: 2661: 1504: 1502: 1500: 4079: 3836: 3563:Journal of Biomolecular Structure & Dynamics 3292: 3139: 1807: 1698:Wilson BA, Foy SG, Neme R, Masel J (June 2017). 154:. These early structures suggested that a fixed 71:interaction partners, such as other proteins or 3999:Intrinsically disordered protein at Proteopedia 2341:"Intrinsically disordered proteins from A to Z" 1508: 1454: 1450: 1448: 1406: 1404: 1402: 1366: 1364: 1362: 494:(esp. a pronounced minimum at ~200 nm) or 3454: 2891: 2384: 1497: 843: 841: 839: 837: 812:. John Wiley & Sons, Ltd. pp. 39–62. 617: 297: 4041:DP Database of Disordered Protein Predictions 2380: 2378: 2376: 2374: 1275:Journal of Molecular Graphics & Modelling 851:Journal of Molecular Graphics & Modelling 803:"First Steps of Protein Structure Prediction" 654:create a more competent and exact predictor. 341:Disorder in the bound state (fuzzy complexes) 3511: 3422:Progress in Biophysics and Molecular Biology 2624: 2334: 2332: 1905: 1445: 1399: 1359: 1316: 1314: 212:predictions indicate that is more common in 35:were morphed. Secondary structure elements: 3792:International Journal of Molecular Sciences 3643: 2790: 2515:Minde DP, Ramakrishna M, Lilley KS (2020). 2486:Minde DP, Ramakrishna M, Lilley KS (2018). 2286: 1758: 1173: 1081: 893: 834: 3753:Journal of Chemical Theory and Computation 3710:Journal of Chemical Theory and Computation 3617:Journal of Chemical Theory and Computation 3505: 3299:Journal of Chemical Theory and Computation 2508: 2371: 2010: 1410: 938: 936: 490:, as assessed by far-UV (170-250 nm) 401: 126:, interactions, evolution and regulation. 4061:Database of experimentally validated IDPs 3972: 3962: 3913: 3813: 3803: 3683: 3607: 3582: 3537: 3488: 3419: 3318: 3171: 3009: 2925: 2832: 2822: 2738: 2728: 2601: 2591: 2542: 2532: 2499: 2329: 2312: 2263: 2159: 2136: 2079: 1882: 1833: 1784: 1735: 1623: 1578: 1534: 1480: 1334: 1311: 1286: 1205: 1156: 1107: 1058: 1048: 1003: 862: 708:MD simulation of the Glutaredoxin 1 from 2287:Feng H, Zhou BR, Bai Y (November 2018). 1385:10.1146/annurev.biophys.37.032807.125924 1228: 703: 569: 550:to monitor secondary structure of IDPs. 459:studies may also be a sign of disorder. 288: 133: 18: 3887: 3455:Terakawa T, Takada S (September 2011). 2618: 2338: 2054:Tarakhovsky A, Prinjha RK (July 2018). 1934: 933: 699: 672: 4080: 3399:10.1146/annurev-physchem-052516-050843 3194: 2559: 1654: 1088:Nature Reviews. Molecular Cell Biology 565: 443: 304:Molecular Recognition Features (MoRFs) 3518:Current Opinion in Structural Biology 3344:Current Opinion in Structural Biology 3070:Current Opinion in Structural Biology 3067: 3035:Current Opinion in Structural Biology 2399:10.1146/annurev-biochem-072711-164947 1908:Current Protein & Peptide Science 945:Current Opinion in Structural Biology 899:Nature Reviews Molecular Cell Biology 630: 600: 421: 375: 357: 87:, or flexible linkers in large multi- 3341: 2060:The Journal of Experimental Medicine 1759:Willis S, Masel J (September 2018). 1082:Wright PE, Dyson HJ (January 2015). 637:List of disorder prediction software 16:Protein without a fixed 3D structure 3379:Annual Review of Physical Chemistry 3252:The Journal of Physical Chemistry B 1567:Molecular & Cellular Proteomics 1509:Cermakova K, Hodges HC (May 2023). 1455:Kamerlin SC, Warshel A (May 2010). 534:for atomistic ensemble refinement, 480:small angle X-ray scattering (SAXS) 255: 227: 13: 3512:Fisher CK, Stultz CM (June 2011). 1421:10.1016/B978-0-12-381262-9.00005-7 643: 520:Fast parallel proteolysis (FASTpp) 455:. The lack of electron density in 160:central dogma of molecular biology 67:, typically in the absence of its 14: 4104: 3992: 3894:Intrinsically Disordered Proteins 735:MD simulations, or methods using 3434:10.1016/j.pbiomolbio.2017.05.008 1657:Journal of Molecular Recognition 530:for ensemble shape information, 279: 220:than in known structures in the 168:observed in vitro. As stated in 53:intrinsically disordered protein 3930: 3881: 3839:The Journal of Chemical Physics 3830: 3779: 3744: 3700: 3554: 3448: 3413: 3370: 3335: 3286: 3239: 3188: 3096: 3061: 3026: 2977: 2942: 2885: 2849: 2755: 2413: 2280: 2223: 2188: 2153: 2096: 2047: 2004: 1969: 1899: 1850: 1814:Molecular Biology and Evolution 1801: 1752: 1691: 1648: 1603: 1551: 1265: 1222: 242:post-translational modification 2197:Trends in Biochemical Sciences 1978:Trends in Biochemical Sciences 1708:Nature Ecology & Evolution 1515:Trends in Biochemical Sciences 1413:Protein Structure and Diseases 1124: 1075: 1020: 971: 887: 794: 594:Disorder prediction algorithms 476:analytical ultracentrifugation 429:The first direct evidence for 146:In the 1930s-1950s, the first 63:that lacks a fixed or ordered 23:Conformational flexibility in 1: 3575:10.1080/07391102.2016.1196151 2387:Annual Review of Biochemistry 1990:10.1016/S0968-0004(03)00003-3 1634:10.1016/S0022-2836(02)00969-5 1297:10.1016/s1093-3263(00)00138-8 873:10.1016/s1093-3263(00)00138-8 788: 472:size exclusion chromatography 2824:10.1371/journal.pone.0086495 2730:10.1371/journal.pone.0077257 2682:10.1016/j.bbapap.2015.01.004 2593:10.1371/journal.pone.0046147 2357:10.1016/j.biocel.2011.04.001 1943:Journal of Molecular Biology 1612:Journal of Molecular Biology 1323:Journal of Molecular Biology 1251:10.1126/science.181.4096.223 199: 7: 2990:Protein and Peptide Letters 2305:10.1021/acs.biochem.8b01075 1777:10.1534/genetics.118.301249 1373:Annual Review of Biophysics 746: 618:Predicting IDPs by sequence 508:hydrogen-deuterium exchange 298:Coupled folding and binding 156:three-dimensional structure 65:three-dimensional structure 10: 4109: 3002:10.2174/092986608785849164 2339:Uversky VN (August 2011). 2209:10.1016/j.tibs.2011.04.006 2129:10.1038/s41598-017-18742-8 1920:10.2174/138920312799277974 1580:10.1074/mcp.M700564-MCP200 1527:10.1016/j.tibs.2023.01.004 990:(Database issue): D310–4. 634: 482:, and measurements of the 129: 3530:10.1016/j.sbi.2011.04.001 3481:10.1016/j.bpj.2011.08.003 3356:10.1016/j.sbi.2017.01.006 3152:ACS Chemical Neuroscience 3082:10.1016/j.sbi.2011.03.012 3047:10.1016/j.sbi.2011.03.014 2534:10.1038/s42003-020-0758-y 1955:10.1016/j.jmb.2006.07.087 1345:10.1016/j.jmb.2004.02.002 957:10.1016/j.sbi.2008.10.002 818:10.1002/9780470741894.ch2 4017:isordered proteins with 3943:BMC Evolutionary Biology 3722:10.1021/acs.jctc.8b01042 3629:10.1021/acs.jctc.5b00047 3264:10.1021/acs.jpcb.1c07035 380:low complexity sequences 3964:10.1186/1471-2148-13-60 1728:10.1038/s41559-017-0146 808:. In Bujnicki J (ed.). 402:Experimental validation 351:conformational ensemble 266:protein domain dynamics 152:protein crystallography 2963:10.1002/cphc.200800210 2521:Communications Biology 1863:Nucleic Acids Research 1826:10.1093/molbev/msad073 984:Nucleic Acids Research 713: 589: 457:X-ray crystallographic 331:human papillomaviruses 270:conformational changes 143: 44: 4088:Proteins by structure 4066:IDP ensemble database 2898:Nature Communications 707: 681:is the cause of many 573: 289:Pre-structured motifs 234:allosteric regulation 137: 22: 3805:10.3390/ijms20030606 2859:Analytical Chemistry 2162:Molecular BioSystems 2072:10.1084/jem.20180099 700:Computer simulations 673:Disorder and disease 108:biological functions 3955:2013BMCEE..13...60C 3888:Uversky VN (2013). 3851:2021JChPh.155l5103G 3668:2015NatSR...515449G 3473:2011BpJ...101.1450T 3461:Biophysical Journal 3391:2017ARPC...68..117C 3258:(49): 13366–13375. 3217:10.1038/nature02261 3209:2003Natur.426..884D 2910:2013NatCo...4.1705M 2815:2014PLoSO...986495N 2721:2013PLoSO...877257M 2584:2012PLoSO...746147M 2457:10.1038/nature16531 2449:2016Natur.530...45T 2256:10.1038/nature25762 2248:2018Natur.555...61B 2121:2018NatSR...8..358A 1720:2017NatEE...1..146W 1243:1973Sci...181..223A 1050:10.7554/eLife.40497 996:10.1093/nar/gkt1242 566:Disorder annotation 488:secondary structure 388:secondary structure 311:Short Linear Motifs 165:Levinthal's paradox 4071:2018-03-10 at the 4034:2020-05-02 at the 3656:Scientific Reports 3248:Trypanosoma Brucei 3117:10.1002/prot.21075 2918:10.1038/ncomms2692 2174:10.1039/c1mb05234a 2109:Scientific Reports 2025:10.1002/prot.21328 1875:10.1093/nar/gkw001 1473:10.1002/prot.22654 714: 710:Trypanosoma brucei 693:tumour suppressors 679:misfolded proteins 631:Prediction methods 601:Disorder databases 590: 548:Circular Dichroism 492:circular dichroism 484:diffusion constant 464:radius of gyration 358:Structural aspects 148:protein structures 144: 45: 4093:Protein structure 3906:10.4161/idp.25496 3859:10.1063/5.0062687 3765:10.1021/ct500287c 3676:10.1038/srep15449 3311:10.1021/ct300400x 3164:10.1021/cn3002027 2871:10.1021/ac3035025 2776:10.1021/cr400297g 2299:(48): 6645–6648. 1237:(4096): 223–230. 1198:10.1021/bi062148m 1149:10.1021/cr400525m 1143:(13): 6589–6631. 683:synucleinopathies 468:hydrodynamic drag 101:membrane proteins 49:molecular biology 4100: 3987: 3986: 3976: 3966: 3934: 3928: 3927: 3917: 3885: 3879: 3878: 3834: 3828: 3827: 3817: 3807: 3783: 3777: 3776: 3759:(6): 2224–2231. 3748: 3742: 3741: 3716:(4): 2597–2607. 3704: 3698: 3697: 3687: 3647: 3641: 3640: 3623:(6): 2776–2782. 3611: 3605: 3604: 3586: 3569:(8): 1813–1823. 3558: 3552: 3551: 3541: 3509: 3503: 3502: 3492: 3467:(6): 1450–1458. 3452: 3446: 3445: 3417: 3411: 3410: 3374: 3368: 3367: 3339: 3333: 3332: 3322: 3305:(9): 3257–3273. 3290: 3284: 3283: 3243: 3237: 3236: 3203:(6968): 884–90. 3192: 3186: 3185: 3175: 3143: 3137: 3136: 3100: 3094: 3093: 3065: 3059: 3058: 3030: 3024: 3023: 3013: 2981: 2975: 2974: 2946: 2940: 2939: 2929: 2889: 2883: 2882: 2853: 2847: 2846: 2836: 2826: 2794: 2788: 2787: 2764:Chemical Reviews 2759: 2753: 2752: 2742: 2732: 2700: 2694: 2693: 2665: 2659: 2658: 2639:10.1038/nmeth740 2622: 2616: 2615: 2605: 2595: 2563: 2557: 2556: 2546: 2536: 2512: 2506: 2505: 2503: 2483: 2477: 2476: 2428: 2422: 2417: 2411: 2410: 2382: 2369: 2368: 2351:(8): 1090–1103. 2336: 2327: 2326: 2316: 2284: 2278: 2277: 2267: 2227: 2221: 2220: 2192: 2186: 2185: 2157: 2151: 2150: 2140: 2100: 2094: 2093: 2083: 2066:(7): 1777–1787. 2051: 2045: 2044: 2008: 2002: 2001: 1973: 1967: 1966: 1938: 1932: 1931: 1903: 1897: 1896: 1886: 1869:(6): 2909–2925. 1854: 1848: 1847: 1837: 1805: 1799: 1798: 1788: 1756: 1750: 1749: 1739: 1695: 1689: 1688: 1652: 1646: 1645: 1627: 1607: 1601: 1600: 1582: 1564: 1555: 1549: 1548: 1538: 1506: 1495: 1494: 1484: 1452: 1443: 1442: 1408: 1397: 1396: 1368: 1357: 1356: 1338: 1318: 1309: 1308: 1290: 1269: 1263: 1262: 1226: 1220: 1219: 1209: 1192:(51): 15633–43. 1177: 1171: 1170: 1160: 1137:Chemical Reviews 1128: 1122: 1121: 1111: 1079: 1073: 1072: 1062: 1052: 1024: 1018: 1017: 1007: 975: 969: 968: 940: 931: 930: 891: 885: 884: 866: 845: 832: 831: 807: 798: 758:DisProt database 723:replica exchange 583: 555:optical tweezers 506:, undergo rapid 453:NMR spectroscopy 395:circuit topology 376:biological roles 256:Flexible linkers 238:enzyme catalysis 228:Biological roles 222:protein database 178:electron density 170:Anfinsen's Dogma 4108: 4107: 4103: 4102: 4101: 4099: 4098: 4097: 4078: 4077: 4073:Wayback Machine 4036:Wayback Machine 4025:nnotations and 3995: 3990: 3935: 3931: 3886: 3882: 3835: 3831: 3784: 3780: 3749: 3745: 3705: 3701: 3648: 3644: 3612: 3608: 3559: 3555: 3510: 3506: 3453: 3449: 3418: 3414: 3375: 3371: 3340: 3336: 3291: 3287: 3244: 3240: 3193: 3189: 3144: 3140: 3101: 3097: 3066: 3062: 3031: 3027: 2982: 2978: 2957:(13): 1859–66. 2947: 2943: 2890: 2886: 2854: 2850: 2795: 2791: 2770:(6): 3281–317. 2760: 2756: 2701: 2697: 2666: 2662: 2623: 2619: 2564: 2560: 2513: 2509: 2484: 2480: 2443:(7588): 45–50. 2429: 2425: 2418: 2414: 2383: 2372: 2337: 2330: 2285: 2281: 2242:(7694): 61–66. 2228: 2224: 2193: 2189: 2158: 2154: 2101: 2097: 2052: 2048: 2009: 2005: 1974: 1970: 1939: 1935: 1904: 1900: 1855: 1851: 1806: 1802: 1757: 1753: 1714:(6): 0146–146. 1696: 1692: 1669:10.1002/jmr.915 1653: 1649: 1608: 1604: 1562: 1556: 1552: 1507: 1498: 1453: 1446: 1431: 1409: 1400: 1369: 1360: 1336:10.1.1.120.5605 1319: 1312: 1270: 1266: 1227: 1223: 1178: 1174: 1129: 1125: 1100:10.1038/nrm3920 1080: 1076: 1025: 1021: 976: 972: 941: 934: 911:10.1038/nrm1589 892: 888: 846: 835: 828: 805: 799: 795: 791: 763:MobiDB database 749: 702: 675: 659:neural networks 648:neural networks 639: 633: 620: 603: 575: 568: 514:as measured by 512:chemical shifts 449: 427: 404: 360: 347:fuzzy complexes 343: 300: 291: 282: 258: 230: 202: 190:alpha-synuclein 150:were solved by 132: 43:(blue arrows). 17: 12: 11: 5: 4106: 4096: 4095: 4090: 4076: 4075: 4063: 4058: 4053: 4048: 4043: 4038: 4006: 4001: 3994: 3993:External links 3991: 3989: 3988: 3929: 3880: 3845:(12): 125103. 3829: 3778: 3743: 3699: 3642: 3606: 3553: 3524:(3): 426–431. 3504: 3447: 3412: 3369: 3334: 3285: 3238: 3187: 3158:(3): 498–508. 3138: 3095: 3076:(3): 419–425. 3060: 3025: 2996:(9): 956–963. 2976: 2941: 2884: 2865:(4): 2449–56. 2848: 2789: 2754: 2715:(10): e77257. 2695: 2660: 2627:Nature Methods 2617: 2578:(10): e46147. 2558: 2507: 2501:10.1101/274761 2478: 2423: 2412: 2370: 2328: 2279: 2222: 2187: 2152: 2095: 2046: 2003: 1968: 1949:(5): 1043–59. 1933: 1898: 1849: 1800: 1771:(1): 303–313. 1751: 1690: 1647: 1625:10.1.1.132.682 1602: 1573:(7): 1331–48. 1550: 1521:(5): 477–490. 1496: 1467:(6): 1339–75. 1444: 1429: 1398: 1358: 1310: 1288:10.1.1.113.556 1264: 1221: 1172: 1123: 1074: 1019: 970: 932: 905:(3): 197–208. 886: 864:10.1.1.113.556 833: 826: 792: 790: 787: 786: 785: 780: 775: 770: 768:Molten globule 765: 760: 755: 748: 745: 737:coarse-grained 733:multicanonical 701: 698: 674: 671: 635:Main article: 632: 629: 619: 616: 602: 599: 567: 564: 544:chemical shift 448: 442: 426: 420: 403: 400: 359: 356: 342: 339: 299: 296: 290: 287: 281: 278: 272:by long-range 257: 254: 229: 226: 201: 198: 131: 128: 120:cell signaling 116:DNA regulation 81:molten globule 69:macromolecular 15: 9: 6: 4: 3: 2: 4105: 4094: 4091: 4089: 4086: 4085: 4083: 4074: 4070: 4067: 4064: 4062: 4059: 4057: 4054: 4052: 4049: 4047: 4044: 4042: 4039: 4037: 4033: 4030: 4028: 4024: 4020: 4016: 4013:ntrinsically 4012: 4007: 4005: 4002: 4000: 3997: 3996: 3984: 3980: 3975: 3970: 3965: 3960: 3956: 3952: 3948: 3944: 3940: 3933: 3925: 3921: 3916: 3911: 3907: 3903: 3900:(1): e25496. 3899: 3895: 3891: 3884: 3876: 3872: 3868: 3864: 3860: 3856: 3852: 3848: 3844: 3840: 3833: 3825: 3821: 3816: 3811: 3806: 3801: 3797: 3793: 3789: 3782: 3774: 3770: 3766: 3762: 3758: 3754: 3747: 3739: 3735: 3731: 3727: 3723: 3719: 3715: 3711: 3703: 3695: 3691: 3686: 3681: 3677: 3673: 3669: 3665: 3661: 3657: 3653: 3646: 3638: 3634: 3630: 3626: 3622: 3618: 3610: 3602: 3598: 3594: 3590: 3585: 3584:11311/1004711 3580: 3576: 3572: 3568: 3564: 3557: 3549: 3545: 3540: 3535: 3531: 3527: 3523: 3519: 3515: 3508: 3500: 3496: 3491: 3486: 3482: 3478: 3474: 3470: 3466: 3462: 3458: 3451: 3443: 3439: 3435: 3431: 3427: 3423: 3416: 3408: 3404: 3400: 3396: 3392: 3388: 3384: 3380: 3373: 3365: 3361: 3357: 3353: 3349: 3345: 3338: 3330: 3326: 3321: 3316: 3312: 3308: 3304: 3300: 3296: 3289: 3281: 3277: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3242: 3234: 3230: 3226: 3222: 3218: 3214: 3210: 3206: 3202: 3198: 3191: 3183: 3179: 3174: 3169: 3165: 3161: 3157: 3153: 3149: 3142: 3134: 3130: 3126: 3122: 3118: 3114: 3110: 3106: 3099: 3091: 3087: 3083: 3079: 3075: 3071: 3064: 3056: 3052: 3048: 3044: 3040: 3036: 3029: 3021: 3017: 3012: 3007: 3003: 2999: 2995: 2991: 2987: 2980: 2972: 2968: 2964: 2960: 2956: 2952: 2945: 2937: 2933: 2928: 2923: 2919: 2915: 2911: 2907: 2903: 2899: 2895: 2888: 2880: 2876: 2872: 2868: 2864: 2860: 2852: 2844: 2840: 2835: 2830: 2825: 2820: 2816: 2812: 2809:(1): e86495. 2808: 2804: 2800: 2793: 2785: 2781: 2777: 2773: 2769: 2765: 2758: 2750: 2746: 2741: 2736: 2731: 2726: 2722: 2718: 2714: 2710: 2706: 2699: 2691: 2687: 2683: 2679: 2676:(5): 381–90. 2675: 2671: 2664: 2656: 2652: 2648: 2644: 2640: 2636: 2633:(3): 207–12. 2632: 2628: 2621: 2613: 2609: 2604: 2599: 2594: 2589: 2585: 2581: 2577: 2573: 2569: 2562: 2554: 2550: 2545: 2540: 2535: 2530: 2526: 2522: 2518: 2511: 2502: 2497: 2493: 2489: 2482: 2474: 2470: 2466: 2462: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2427: 2421: 2416: 2408: 2404: 2400: 2396: 2392: 2388: 2381: 2379: 2377: 2375: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2335: 2333: 2324: 2320: 2315: 2310: 2306: 2302: 2298: 2294: 2290: 2283: 2275: 2271: 2266: 2261: 2257: 2253: 2249: 2245: 2241: 2237: 2233: 2226: 2218: 2214: 2210: 2206: 2203:(8): 415–23. 2202: 2198: 2191: 2183: 2179: 2175: 2171: 2168:(1): 168–77. 2167: 2163: 2156: 2148: 2144: 2139: 2134: 2130: 2126: 2122: 2118: 2114: 2110: 2106: 2099: 2091: 2087: 2082: 2077: 2073: 2069: 2065: 2061: 2057: 2050: 2042: 2038: 2034: 2030: 2026: 2022: 2019:(1): 109–22. 2018: 2014: 2007: 1999: 1995: 1991: 1987: 1983: 1979: 1972: 1964: 1960: 1956: 1952: 1948: 1944: 1937: 1929: 1925: 1921: 1917: 1913: 1909: 1902: 1894: 1890: 1885: 1880: 1876: 1872: 1868: 1864: 1860: 1853: 1845: 1841: 1836: 1831: 1827: 1823: 1819: 1815: 1811: 1804: 1796: 1792: 1787: 1782: 1778: 1774: 1770: 1766: 1762: 1755: 1747: 1743: 1738: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1705: 1703: 1694: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1651: 1643: 1639: 1635: 1631: 1626: 1621: 1618:(3): 573–84. 1617: 1613: 1606: 1598: 1594: 1590: 1586: 1581: 1576: 1572: 1568: 1561: 1554: 1546: 1542: 1537: 1532: 1528: 1524: 1520: 1516: 1512: 1505: 1503: 1501: 1492: 1488: 1483: 1478: 1474: 1470: 1466: 1462: 1458: 1451: 1449: 1440: 1436: 1432: 1430:9780123812629 1426: 1422: 1418: 1414: 1407: 1405: 1403: 1394: 1390: 1386: 1382: 1378: 1374: 1367: 1365: 1363: 1354: 1350: 1346: 1342: 1337: 1332: 1329:(3): 635–45. 1328: 1324: 1317: 1315: 1306: 1302: 1298: 1294: 1289: 1284: 1280: 1276: 1268: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1225: 1217: 1213: 1208: 1203: 1199: 1195: 1191: 1187: 1183: 1176: 1168: 1164: 1159: 1154: 1150: 1146: 1142: 1138: 1134: 1127: 1119: 1115: 1110: 1105: 1101: 1097: 1093: 1089: 1085: 1078: 1070: 1066: 1061: 1056: 1051: 1046: 1042: 1038: 1034: 1032: 1023: 1015: 1011: 1006: 1001: 997: 993: 989: 985: 981: 974: 966: 962: 958: 954: 951:(6): 756–64. 950: 946: 939: 937: 928: 924: 920: 916: 912: 908: 904: 900: 896: 890: 882: 878: 874: 870: 865: 860: 856: 852: 844: 842: 840: 838: 829: 827:9780470517673 823: 819: 815: 811: 804: 797: 793: 784: 783:Dark proteome 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 750: 744: 740: 738: 734: 730: 726: 725:simulations, 724: 718: 711: 706: 697: 694: 689: 684: 680: 670: 668: 664: 660: 655: 651: 649: 645: 638: 628: 624: 615: 612: 608: 598: 595: 587: 582: 578: 572: 563: 561: 556: 551: 549: 545: 542: 537: 533: 529: 524: 521: 517: 513: 509: 505: 501: 497: 493: 489: 485: 481: 477: 473: 469: 465: 460: 458: 454: 446: 441: 439: 436:Larger-scale 434: 432: 424: 419: 417: 413: 409: 399: 396: 391: 389: 385: 381: 377: 372: 367: 363: 355: 352: 348: 338: 336: 332: 328: 324: 320: 316: 312: 307: 305: 295: 286: 280:Linear motifs 277: 275: 271: 267: 263: 253: 251: 247: 243: 239: 235: 225: 223: 219: 215: 211: 210:bioinformatic 206: 197: 195: 191: 185: 183: 179: 174: 171: 166: 161: 157: 153: 149: 141: 136: 127: 125: 121: 117: 113: 109: 104: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 42: 38: 34: 30: 27:protein (PDB: 26: 21: 4026: 4022: 4018: 4014: 4010: 3946: 3942: 3932: 3897: 3893: 3883: 3842: 3838: 3832: 3795: 3791: 3781: 3756: 3752: 3746: 3713: 3709: 3702: 3659: 3655: 3645: 3620: 3616: 3609: 3566: 3562: 3556: 3521: 3517: 3507: 3464: 3460: 3450: 3425: 3421: 3415: 3382: 3378: 3372: 3347: 3343: 3337: 3302: 3298: 3288: 3255: 3251: 3247: 3241: 3200: 3196: 3190: 3155: 3151: 3141: 3108: 3104: 3098: 3073: 3069: 3063: 3041:(3): 412–8. 3038: 3034: 3028: 2993: 2989: 2979: 2954: 2951:ChemPhysChem 2950: 2944: 2901: 2897: 2887: 2862: 2858: 2851: 2806: 2802: 2792: 2767: 2763: 2757: 2712: 2708: 2698: 2673: 2669: 2663: 2630: 2626: 2620: 2575: 2571: 2561: 2524: 2520: 2510: 2491: 2481: 2440: 2436: 2426: 2415: 2390: 2386: 2348: 2344: 2296: 2293:Biochemistry 2292: 2282: 2239: 2235: 2225: 2200: 2196: 2190: 2165: 2161: 2155: 2112: 2108: 2098: 2063: 2059: 2049: 2016: 2012: 2006: 1981: 1977: 1971: 1946: 1942: 1936: 1914:(1): 34–54. 1911: 1907: 1901: 1866: 1862: 1852: 1817: 1813: 1803: 1768: 1764: 1754: 1711: 1707: 1701: 1693: 1660: 1656: 1650: 1615: 1611: 1605: 1570: 1566: 1553: 1518: 1514: 1464: 1460: 1412: 1376: 1372: 1326: 1322: 1281:(1): 26–59. 1278: 1274: 1267: 1234: 1230: 1224: 1189: 1186:Biochemistry 1185: 1175: 1140: 1136: 1126: 1094:(1): 18–29. 1091: 1087: 1077: 1040: 1036: 1030: 1022: 987: 983: 973: 948: 944: 902: 898: 889: 857:(1): 26–59. 854: 850: 809: 796: 741: 729:metadynamics 727: 719: 715: 709: 676: 656: 652: 644:linear motif 640: 625: 621: 604: 591: 552: 536:Fluorescence 525: 461: 450: 444: 437: 435: 430: 428: 422: 415: 411: 407: 405: 392: 368: 364: 361: 344: 319:Hendra virus 308: 301: 292: 283: 259: 231: 207: 203: 186: 175: 145: 105: 56: 52: 46: 4056:IDP Journal 3385:: 117–134. 3350:: 147–154. 3111:(1): 1–14. 2904:(4): 1705. 2393:: 553–584. 1984:(2): 81–5. 1704:Gene Birth" 778:Random coil 688:Ξ±-synuclein 371:hydrophobic 315:RNA viruses 262:amino acids 112:multivalent 77:random coil 4082:Categories 3798:(3): 606. 2115:(1): 358. 1663:(1): 1–8. 1379:: 215–46. 1043:: e40497. 1031:Drosophila 789:References 470:, such as 447:approaches 425:approaches 337:proteins. 85:aggregates 33:NMR models 4029:iterature 4021:xtensive 3949:(1): 60. 3875:238249229 3662:: 15449. 3601:205576649 3428:: 57–62. 3280:244942842 2527:(1): 38. 1620:CiteSeerX 1331:CiteSeerX 1283:CiteSeerX 859:CiteSeerX 667:PDB files 504:proteases 335:host cell 274:allostery 246:chromatin 218:proteomes 200:Abundance 41:Ξ²-strands 37:Ξ±-helices 4069:Archived 4032:Archived 4009:IDEAL - 3983:23497088 3924:28516015 3867:34598583 3824:30708941 3773:26580746 3738:75138292 3730:30855964 3694:26498066 3637:26575570 3593:27366858 3548:21530234 3499:21943426 3442:28554553 3407:28226222 3364:28259050 3329:23341755 3272:34870419 3225:14685248 3182:23374074 3133:30231497 3125:16856179 3105:Proteins 3090:21514142 3055:21514145 3020:18991772 2971:18698566 2936:23591872 2879:23327569 2843:24475132 2803:PLOS ONE 2784:24432838 2749:24130866 2709:PLOS ONE 2690:25603119 2655:21364478 2647:15782190 2612:23056252 2572:PLOS ONE 2553:31969649 2465:26808899 2407:24606139 2365:21501695 2323:30430826 2274:29466338 2217:21620710 2182:21927770 2147:29321677 2090:29934321 2041:96719019 2033:17407165 2013:Proteins 1998:12575995 1963:16935303 1928:22044148 1893:26762975 1844:36947137 1835:10089649 1795:30026186 1765:Genetics 1746:28642936 1685:33010897 1677:18802931 1642:12381310 1597:22193414 1589:18388127 1545:36754681 1536:10106370 1491:20099310 1461:Proteins 1439:21570668 1393:18573080 1353:15019783 1305:11381529 1216:17176085 1167:24773235 1118:25531225 1069:30589412 1033:embryos" 1014:24293656 965:18952168 927:18068406 919:15738986 895:Dyson HJ 881:11381529 753:IDPbyNMR 747:See also 686:protein 496:infrared 445:In vitro 416:in vitro 384:residues 317:such as 140:ensemble 124:sequence 93:globular 3974:3599600 3951:Bibcode 3915:5424799 3847:Bibcode 3815:6386871 3685:4620491 3664:Bibcode 3539:3112268 3490:3177054 3469:Bibcode 3387:Bibcode 3320:3549273 3233:1036192 3205:Bibcode 3173:3605821 3011:2676888 2927:3644077 2906:Bibcode 2834:3901707 2811:Bibcode 2740:3793970 2717:Bibcode 2603:3463568 2580:Bibcode 2544:6976632 2492:bioRxiv 2473:4461465 2445:Bibcode 2314:7984725 2265:6264893 2244:Bibcode 2138:5762688 2117:Bibcode 2081:6028506 1884:4824100 1786:6116962 1737:5476217 1716:Bibcode 1702:De Novo 1482:2841229 1259:4124164 1239:Bibcode 1231:Science 1207:2533273 1158:4095912 1109:4405151 1060:6307861 1005:3964979 607:DisProt 500:peptide 438:in vivo 431:in vivo 423:In vivo 412:in vivo 408:in vivo 250:de novo 214:genomes 130:History 118:and in 97:fibrous 61:protein 59:) is a 39:(red), 3981:  3971:  3922:  3912:  3873:  3865:  3822:  3812:  3771:  3736:  3728:  3692:  3682:  3635:  3599:  3591:  3546:  3536:  3497:  3487:  3440:  3405:  3362:  3327:  3317:  3278:  3270:  3231:  3223:  3197:Nature 3180:  3170:  3131:  3123:  3088:  3053:  3018:  3008:  2969:  2934:  2924:  2877:  2841:  2831:  2782:  2747:  2737:  2688:  2653:  2645:  2610:  2600:  2551:  2541:  2471:  2463:  2437:Nature 2405:  2363:  2321:  2311:  2272:  2262:  2236:Nature 2215:  2180:  2145:  2135:  2088:  2078:  2039:  2031:  1996:  1961:  1926:  1891:  1881:  1842:  1832:  1793:  1783:  1744:  1734:  1683:  1675:  1640:  1622:  1595:  1587:  1543:  1533:  1489:  1479:  1437:  1427:  1391:  1351:  1333:  1303:  1285:  1257:  1214:  1204:  1165:  1155:  1116:  1106:  1067:  1057:  1012:  1002:  963:  925:  917:  879:  861:  824:  611:MobiDB 89:domain 83:-like 25:SUMO-1 3871:S2CID 3734:S2CID 3597:S2CID 3276:S2CID 3229:S2CID 3129:S2CID 2651:S2CID 2469:S2CID 2037:S2CID 1820:(4). 1681:S2CID 1593:S2CID 1563:(PDF) 1037:eLife 923:S2CID 806:(PDF) 773:Prion 327:HIV-1 51:, an 3979:PMID 3920:PMID 3863:PMID 3820:PMID 3769:PMID 3726:PMID 3690:PMID 3633:PMID 3589:PMID 3544:PMID 3495:PMID 3438:PMID 3403:PMID 3360:PMID 3325:PMID 3268:PMID 3221:PMID 3178:PMID 3121:PMID 3086:PMID 3051:PMID 3016:PMID 2967:PMID 2932:PMID 2875:PMID 2839:PMID 2780:PMID 2745:PMID 2686:PMID 2674:1854 2643:PMID 2608:PMID 2549:PMID 2461:PMID 2403:PMID 2361:PMID 2319:PMID 2270:PMID 2213:PMID 2178:PMID 2143:PMID 2086:PMID 2029:PMID 1994:PMID 1959:PMID 1924:PMID 1889:PMID 1840:PMID 1791:PMID 1742:PMID 1673:PMID 1638:PMID 1585:PMID 1541:PMID 1487:PMID 1435:PMID 1425:ISBN 1389:PMID 1349:PMID 1301:PMID 1255:PMID 1212:PMID 1163:PMID 1114:PMID 1065:PMID 1010:PMID 961:PMID 915:PMID 877:PMID 822:ISBN 663:CASP 581:1a22 546:and 528:SAXS 414:and 329:and 236:and 216:and 192:and 99:and 29:1a5r 3969:PMC 3959:doi 3910:PMC 3902:doi 3855:doi 3843:155 3810:PMC 3800:doi 3761:doi 3718:doi 3680:PMC 3672:doi 3625:doi 3579:hdl 3571:doi 3534:PMC 3526:doi 3485:PMC 3477:doi 3465:101 3430:doi 3426:128 3395:doi 3352:doi 3315:PMC 3307:doi 3260:doi 3256:125 3250:". 3213:doi 3201:426 3168:PMC 3160:doi 3113:doi 3078:doi 3043:doi 3006:PMC 2998:doi 2959:doi 2922:PMC 2914:doi 2867:doi 2829:PMC 2819:doi 2772:doi 2768:114 2735:PMC 2725:doi 2678:doi 2635:doi 2598:PMC 2588:doi 2539:PMC 2529:doi 2496:doi 2453:doi 2441:530 2395:doi 2353:doi 2309:PMC 2301:doi 2260:PMC 2252:doi 2240:555 2205:doi 2170:doi 2133:PMC 2125:doi 2076:PMC 2068:doi 2064:215 2021:doi 1986:doi 1951:doi 1947:362 1916:doi 1879:PMC 1871:doi 1830:PMC 1822:doi 1781:PMC 1773:doi 1769:210 1732:PMC 1724:doi 1665:doi 1630:doi 1616:323 1575:doi 1531:PMC 1523:doi 1477:PMC 1469:doi 1417:doi 1381:doi 1341:doi 1327:337 1293:doi 1247:doi 1235:181 1202:PMC 1194:doi 1153:PMC 1145:doi 1141:114 1104:PMC 1096:doi 1055:PMC 1045:doi 1000:PMC 992:doi 953:doi 907:doi 869:doi 814:doi 586:VMD 577:PDB 560:AFM 541:NMR 532:NMR 516:NMR 323:HCV 194:tau 138:An 73:RNA 57:IDP 47:In 4084:: 3977:. 3967:. 3957:. 3947:13 3945:. 3941:. 3918:. 3908:. 3896:. 3892:. 3869:. 3861:. 3853:. 3841:. 3818:. 3808:. 3796:20 3794:. 3790:. 3767:. 3757:10 3755:. 3732:. 3724:. 3714:15 3712:. 3688:. 3678:. 3670:. 3658:. 3654:. 3631:. 3621:11 3619:. 3595:. 3587:. 3577:. 3567:35 3565:. 3542:. 3532:. 3522:21 3520:. 3516:. 3493:. 3483:. 3475:. 3463:. 3459:. 3436:. 3424:. 3401:. 3393:. 3383:68 3381:. 3358:. 3348:42 3346:. 3323:. 3313:. 3301:. 3297:. 3274:. 3266:. 3254:. 3227:. 3219:. 3211:. 3199:. 3176:. 3166:. 3154:. 3150:. 3127:. 3119:. 3109:65 3107:. 3084:. 3074:21 3072:. 3049:. 3039:21 3037:. 3014:. 3004:. 2994:15 2992:. 2988:. 2965:. 2953:. 2930:. 2920:. 2912:. 2900:. 2896:. 2873:. 2863:85 2861:. 2837:. 2827:. 2817:. 2805:. 2801:. 2778:. 2766:. 2743:. 2733:. 2723:. 2711:. 2707:. 2684:. 2672:. 2649:. 2641:. 2629:. 2606:. 2596:. 2586:. 2574:. 2570:. 2547:. 2537:. 2523:. 2519:. 2494:. 2490:. 2467:. 2459:. 2451:. 2439:. 2435:. 2401:. 2391:83 2389:. 2373:^ 2359:. 2349:43 2347:. 2343:. 2331:^ 2317:. 2307:. 2297:57 2295:. 2291:. 2268:. 2258:. 2250:. 2238:. 2234:. 2211:. 2201:36 2199:. 2176:. 2164:. 2141:. 2131:. 2123:. 2111:. 2107:. 2084:. 2074:. 2062:. 2058:. 2035:. 2027:. 2017:68 2015:. 1992:. 1982:28 1980:. 1957:. 1945:. 1922:. 1912:13 1910:. 1887:. 1877:. 1867:44 1865:. 1861:. 1838:. 1828:. 1818:40 1816:. 1812:. 1789:. 1779:. 1767:. 1763:. 1740:. 1730:. 1722:. 1710:. 1706:. 1679:. 1671:. 1661:22 1659:. 1636:. 1628:. 1614:. 1591:. 1583:. 1569:. 1565:. 1539:. 1529:. 1519:48 1517:. 1513:. 1499:^ 1485:. 1475:. 1465:78 1463:. 1459:. 1447:^ 1433:. 1423:. 1401:^ 1387:. 1377:37 1375:. 1361:^ 1347:. 1339:. 1325:. 1313:^ 1299:. 1291:. 1279:19 1277:. 1253:. 1245:. 1233:. 1210:. 1200:. 1190:45 1188:. 1184:. 1161:. 1151:. 1139:. 1135:. 1112:. 1102:. 1092:16 1090:. 1086:. 1063:. 1053:. 1039:. 1035:. 1008:. 998:. 988:42 986:. 982:. 959:. 949:18 947:. 935:^ 921:. 913:. 901:. 875:. 867:. 855:19 853:. 836:^ 820:. 731:, 579:: 478:, 474:, 418:. 390:. 325:, 321:, 196:. 103:. 95:, 79:, 4027:L 4023:A 4019:E 4015:D 4011:I 3985:. 3961:: 3953:: 3926:. 3904:: 3898:1 3877:. 3857:: 3849:: 3826:. 3802:: 3775:. 3763:: 3740:. 3720:: 3696:. 3674:: 3666:: 3660:5 3639:. 3627:: 3603:. 3581:: 3573:: 3550:. 3528:: 3501:. 3479:: 3471:: 3444:. 3432:: 3409:. 3397:: 3389:: 3366:. 3354:: 3331:. 3309:: 3303:8 3282:. 3262:: 3235:. 3215:: 3207:: 3184:. 3162:: 3156:4 3135:. 3115:: 3092:. 3080:: 3057:. 3045:: 3022:. 3000:: 2973:. 2961:: 2955:9 2938:. 2916:: 2908:: 2902:4 2881:. 2869:: 2845:. 2821:: 2813:: 2807:9 2786:. 2774:: 2751:. 2727:: 2719:: 2713:8 2692:. 2680:: 2657:. 2637:: 2631:2 2614:. 2590:: 2582:: 2576:7 2555:. 2531:: 2525:3 2504:. 2498:: 2475:. 2455:: 2447:: 2409:. 2397:: 2367:. 2355:: 2325:. 2303:: 2276:. 2254:: 2246:: 2219:. 2207:: 2184:. 2172:: 2166:8 2149:. 2127:: 2119:: 2113:8 2092:. 2070:: 2043:. 2023:: 2000:. 1988:: 1965:. 1953:: 1930:. 1918:: 1895:. 1873:: 1846:. 1824:: 1797:. 1775:: 1748:. 1726:: 1718:: 1712:1 1687:. 1667:: 1644:. 1632:: 1599:. 1577:: 1571:7 1547:. 1525:: 1493:. 1471:: 1441:. 1419:: 1395:. 1383:: 1355:. 1343:: 1307:. 1295:: 1261:. 1249:: 1241:: 1218:. 1196:: 1169:. 1147:: 1120:. 1098:: 1071:. 1047:: 1041:7 1016:. 994:: 967:. 955:: 929:. 909:: 903:6 883:. 871:: 830:. 816:: 55:(

Index


SUMO-1
1a5r
NMR models
Ξ±-helices
Ξ²-strands
molecular biology
protein
three-dimensional structure
macromolecular
RNA
random coil
molten globule
aggregates
domain
globular
fibrous
membrane proteins
biological functions
multivalent
DNA regulation
cell signaling
sequence

ensemble
protein structures
protein crystallography
three-dimensional structure
central dogma of molecular biology
Levinthal's paradox

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑