Knowledge

Inverse limit

Source 📝

4238: 4485: 1239: 4505: 4495: 868: 2854: 2344:, every inverse system has an inverse limit, which can be constructed in an elementary manner as a subset of the product of the sets forming the inverse system. The inverse limit of any inverse system of non-empty finite sets is non-empty. This is a generalization of 680: 2998:
The name "Mittag-Leffler" for this condition was given by Bourbaki in their chapter on uniform structures for a similar result about inverse limits of complete Hausdorff uniform spaces. Mittag-Leffler used a similar argument in the proof of
3551:
a commutative ring; it is not necessarily true in an arbitrary abelian category (see Roos' "Derived functors of inverse limits revisited" for examples of abelian categories in which lim, on diagrams indexed by a countable set, is nonzero
2586: 2711: 389: 3215: 2726: 3412: 635: 485: 3321: 1913: 1711: 2462: 1804: 1594: 2989: 1532: 2196: 1466: 215: 3698: 3482: 1856: 1654: 2254: 2132: 1302: 3063: 2066: 863:{\displaystyle A=\varprojlim _{i\in I}{A_{i}}=\left\{\left.{\vec {a}}\in \prod _{i\in I}A_{i}\;\right|\;a_{i}=f_{ij}(a_{j}){\text{ for all }}i\leq j{\text{ in }}I\right\}.} 2521: 3517: 1354: 1095: 2026: 125: 1942: 1740: 241: 2306: 1180: 535: 274: 998: 671: 301: 1359:
In some categories, the inverse limit of certain inverse systems does not exist. If it does, however, it is unique in a strong sense: given any two inverse limits
1968: 1988: 964: 944: 891: 505: 2533: 1806:
with the index set being the natural numbers with the usual order, and the morphisms being "take remainder". That is, one considers sequences of real numbers
2651: 308: 3733: 3459: 3576:
of category theory. The terminology is somewhat confusing: inverse limits are a class of limits, while direct limits are a class of colimits.
3146: 2849:{\displaystyle 0\rightarrow \varprojlim A_{i}\rightarrow \varprojlim B_{i}\rightarrow \varprojlim C_{i}\rightarrow \varprojlim {}^{1}A_{i}} 3882: 3680: 4167: 3352: 547: 397: 3835: 3658: 3629: 3601: 3267: 2378:
is the inverse limit of the set of finite strings, and is thus endowed with the limit topology. As the original spaces are
1861: 1659: 3022:
a system of finite-dimensional vector spaces or finite abelian groups or modules of finite length or Artinian modules.
4529: 3689: 2421: 1767: 1557: 2916: 1758: 2360: 43:
although their existence depends on the category that is considered. They are a special case of the concept of
3875: 3335: 1604:
with the usual order, and the morphisms being "take remainder". That is, one considers sequences of integers
3475:≠ 0. Roos has since shown (in "Derived functors of inverse limits revisited") that his result is correct if 1495: 4079: 4034: 2353: 2137: 1432: 164: 1809: 1607: 4508: 4448: 3794: 3736:(2002), "A counterexample to a 1961 "theorem" in homological algebra (with appendix by Pierre Deligne)", 3000: 2201: 2079: 1261: 4157: 3466:
constructed an example of such a system in a category satisfying (AB4) (in addition to (AB4*)) with lim
3029: 4498: 4284: 4148: 4056: 4534: 4457: 4101: 4039: 3962: 3246: 2375: 4488: 4444: 4049: 3868: 3738: 2034: 2499: 4044: 4026: 3703: 3573: 3495: 44: 1993: 1310: 1051: 4251: 4017: 3997: 3920: 3565: 2349: 1469: 1041: 98: 40: 4133: 3972: 1918: 1716: 1419: 220: 2281: 1155: 510: 249: 3945: 3940: 3845: 3815: 3782: 3759: 3726: 2717: 2487:
of abelian groups, the Mittag-Leffler condition is a condition on the transition morphisms
2383: 1021: 1017: 976: 649: 279: 1858:
such that each element of the sequence "projects" down to the previous ones, namely, that
1656:
such that each element of the sequence "projects" down to the previous ones, namely, that
8: 4289: 4237: 4163: 3967: 2581:{\displaystyle \varprojlim {}^{1}:\operatorname {Ab} ^{I}\rightarrow \operatorname {Ab} } 2069: 1947: 1244: 88: 32: 3006:
The following situations are examples where the Mittag-Leffler condition is satisfied:
2345: 4143: 4138: 4120: 4002: 3977: 3830:. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. 1973: 1597: 1045: 1013: 967: 949: 929: 876: 490: 92: 4452: 4389: 4377: 4279: 4204: 4199: 4153: 3935: 3930: 3849: 3831: 3717: 3685: 3675: 3664: 3654: 3635: 3625: 3597: 2379: 1009: 1001: 4413: 4299: 4274: 4209: 4194: 4189: 4128: 3957: 3925: 3803: 3747: 3712: 3646: 3617: 2524: 2409: 2364: 2341: 2309: 2259: 1747: 4325: 3891: 3841: 3811: 3778: 3755: 3722: 3596:
John Rhodes & Benjamin Steinberg. The q-theory of Finite Semigroups. p. 133.
3254: 3230: 2706:{\displaystyle 0\rightarrow A_{i}\rightarrow B_{i}\rightarrow C_{i}\rightarrow 0} 1029: 4362: 4357: 4341: 4304: 4294: 4214: 3823: 3463: 3455: 1601: 1408: 1397: 642: 158: 3807: 2363:, every inverse system has an inverse limit. It is constructed by placing the 384:{\displaystyle f_{ik}=f_{ij}\circ f_{jk}\quad {\text{for all }}i\leq j\leq k.} 4523: 4352: 4184: 3987: 3789: 3766: 3339: 2468: 2134:, indexed by the natural numbers as usually ordered, with the morphisms from 1548: 1535: 51: 3853: 3668: 3639: 2352:, viewing the finite sets as compact discrete spaces, and then applying the 4106: 4007: 3569: 3524: 3331: 1751: 1480:
can be considered a trivial inverse system, where all objects are equal to
1025: 128: 55: 3751: 4367: 4347: 4219: 4089: 3490: 3454:
the set of non-negative integers (such inverse systems are often called "
1371: 20: 4399: 4337: 3950: 3485:
has shown (in "The cohomological dimension of a directed set") that if
2871:
If the ranges of the morphisms of an inverse system of abelian groups (
2394: 31:) is a construction that allows one to "glue together" several related 3479:
has a set of generators (in addition to satisfying (AB3) and (AB4*)).
4393: 4084: 3210:{\displaystyle \varprojlim {}^{1}A_{i}=\mathbf {Z} _{p}/\mathbf {Z} } 2476: 2367:
on the underlying set-theoretic inverse limit. This is known as the
1005: 36: 4462: 4094: 3992: 1098: 638: 3860: 1238: 4432: 4422: 4071: 3982: 3070: 1389: 67: 1212:) must be universal in the sense that for any other such pair ( 39:
between the objects. Thus, inverse limits can be defined in any
4427: 2387: 54:, that is by reversing the arrows, an inverse limit becomes a 4309: 3450:) an inverse system with surjective transition morphisms and 131: 3417:
It was thought for almost 40 years that Roos had proved (in
1040:
The inverse limit can be defined abstractly in an arbitrary
737: 3769:(1961), "Sur les foncteurs dérivés de lim. Applications", 3407:{\displaystyle \varprojlim {}^{n}\cong R^{n}\varprojlim .} 2262:
are defined as inverse limits of (discrete) finite groups.
966:. The inverse limit and the natural projections satisfy a 630:{\displaystyle ((A_{i})_{i\in I},(f_{ij})_{i\leq j\in I})} 480:{\displaystyle ((A_{i})_{i\in I},(f_{ij})_{i\leq j\in I})} 487:
is called an inverse system of groups and morphisms over
3792:(2006), "Derived functors of inverse limits revisited", 2403: 161:
of groups and suppose we have a family of homomorphisms
3559: 1032:. The inverse limit will also belong to that category. 3257:
of the inverse limit functor can thus be defined. The
2205: 2141: 2083: 2038: 1889: 1687: 1313: 1054: 3498: 3355: 3316:{\displaystyle R^{n}\varprojlim :C^{I}\rightarrow C.} 3270: 3149: 3032: 2919: 2729: 2654: 2536: 2502: 2424: 2284: 2204: 2140: 2082: 2037: 1996: 1976: 1950: 1921: 1864: 1812: 1770: 1719: 1662: 1610: 1560: 1498: 1435: 1264: 1158: 979: 952: 932: 879: 683: 652: 550: 513: 493: 400: 311: 282: 252: 223: 167: 101: 3572:(or inductive limit). More general concepts are the 2076:
can be thought of as the inverse limit of the rings
1908:{\displaystyle x_{i}\equiv x_{j}{\mbox{ mod }}p^{i}} 1706:{\displaystyle n_{i}\equiv n_{j}{\mbox{ mod }}p^{i}} 3592: 3590: 3588: 2645:) are three inverse systems of abelian groups, and 1746:-adic integers is the one implied here, namely the 537:are called the transition morphisms of the system. 3511: 3406: 3315: 3209: 3057: 2983: 2848: 2705: 2580: 2515: 2456: 2300: 2248: 2190: 2126: 2060: 2020: 1982: 1962: 1936: 1907: 1850: 1798: 1734: 1705: 1648: 1588: 1526: 1460: 1348: 1296: 1174: 1089: 992: 958: 938: 885: 862: 665: 629: 529: 499: 479: 383: 295: 268: 235: 209: 119: 1534:The inverse limit, if it exists, is defined as a 1384:Inverse systems and inverse limits in a category 973:This same construction may be carried out if the 4521: 3585: 243:(note the order) with the following properties: 35:, the precise gluing process being specified by 3420:Sur les foncteurs dérivés de lim. Applications. 2457:{\displaystyle \varprojlim :C^{I}\rightarrow C} 1764:is the inverse limit of the topological groups 2475:is ordered (not simply partially ordered) and 1799:{\displaystyle \mathbb {R} /p^{n}\mathbb {Z} } 1589:{\displaystyle \mathbb {Z} /p^{n}\mathbb {Z} } 3876: 1388:admit an alternative description in terms of 3418: 926:th component of the direct product for each 2984:{\displaystyle f_{kj}(A_{j})=f_{ki}(A_{i})} 2866: 4504: 4494: 4250: 3883: 3869: 3245:is an arbitrary abelian category that has 787: 781: 3716: 1792: 1772: 1582: 1562: 3697: 3681:Categories for the Working Mathematician 3674: 3645: 3616: 1488:. This defines a "trivial functor" from 1468:be the category of these functors (with 2991:one says that the system satisfies the 2348:in graph theory and may be proved with 4522: 3828:An introduction to homological algebra 3822: 3732: 3701:(1972), "Rings with several objects", 1527:{\displaystyle C^{I^{\mathrm {op} }}.} 1400:where the morphisms consist of arrows 4249: 3902: 3864: 3543:-indexed diagrams in the category of 2591:(pronounced "lim one") such that if ( 2404:Derived functors of the inverse limit 2191:{\displaystyle \textstyle R/t^{n+j}R} 1461:{\displaystyle C^{I^{\mathrm {op} }}} 1367:of an inverse system, there exists a 1255:. The inverse limit is often denoted 1035: 210:{\displaystyle f_{ij}:A_{j}\to A_{i}} 3788: 3765: 3560:Related concepts and generalizations 3346:to series of functors lim such that 3261:th right derived functor is denoted 1851:{\displaystyle (x_{1},x_{2},\dots )} 1649:{\displaystyle (n_{1},n_{2},\dots )} 1381:commuting with the projection maps. 1097:be an inverse system of objects and 78: 73: 3890: 2386:. This is one way of realizing the 2249:{\displaystyle \textstyle R/t^{n}R} 2127:{\displaystyle \textstyle R/t^{n}R} 1418:. An inverse system is then just a 1297:{\displaystyle X=\varprojlim X_{i}} 1028:are morphisms in the corresponding 1024:(over a fixed ring), etc., and the 83:We start with the definition of an 13: 3500: 3236: 3065:is non-zero is obtained by taking 3058:{\displaystyle \varprojlim {}^{1}} 1554:is the inverse limit of the rings 1513: 1510: 1484:and all arrow are the identity of 1450: 1447: 14: 4546: 1944:Its elements are exactly of form 1222:) there exists a unique morphism 4503: 4493: 4484: 4483: 4236: 3903: 3203: 3187: 3010:a system in which the morphisms 2356:characterization of compactness. 2256:given by the natural projection. 1237: 1105:(same definition as above). The 3458:sequences"). However, in 2002, 3342:generalized the functor lim on 1600:) with the index set being the 970:described in the next section. 357: 16:Construction in category theory 3651:General topology: Chapters 1-4 3304: 2978: 2965: 2946: 2933: 2811: 2785: 2759: 2733: 2697: 2684: 2671: 2658: 2572: 2496:that ensures the exactness of 2448: 2361:category of topological spaces 2315:. Then the natural projection 2242: 2236: 2215: 2209: 2184: 2178: 2151: 2145: 2120: 2114: 2093: 2087: 2054: 2051: 2045: 2042: 2015: 2003: 1845: 1813: 1643: 1611: 1343: 1314: 1084: 1055: 827: 814: 746: 624: 603: 586: 568: 554: 551: 474: 453: 436: 418: 404: 401: 194: 114: 102: 1: 3610: 2061:{\displaystyle \textstyle R]} 3718:10.1016/0001-8708(72)90002-3 2516:{\displaystyle \varprojlim } 2415:, the inverse limit functor 2354:finite intersection property 1742:The natural topology on the 1392:. Any partially ordered set 1109:of this system is an object 7: 4178:Constructions on categories 3512:{\displaystyle \aleph _{d}} 1541: 1349:{\textstyle (X_{i},f_{ij})} 1090:{\textstyle (X_{i},f_{ij})} 10: 4551: 4285:Higher-dimensional algebra 3684:(2nd ed.), Springer, 2021:{\displaystyle r\in [0,1)} 87:(or projective system) of 4479: 4412: 4376: 4324: 4317: 4268: 4258: 4245: 4234: 4177: 4119: 4070: 4025: 4016: 3913: 3909: 3898: 3808:10.1112/S0024610705022416 3568:of an inverse limit is a 3539:+ 2. This applies to the 2720:of inverse systems, then 1990:is a p-adic integer, and 1538:of this trivial functor. 1472:as morphisms). An object 134:(not all authors require 120:{\displaystyle (I,\leq )} 4530:Limits (category theory) 3739:Inventiones Mathematicae 3579: 3001:Mittag-Leffler's theorem 2993:Mittag-Leffler condition 2867:Mittag-Leffler condition 2859:is an exact sequence in 2072:over a commutative ring 1307:with the inverse system 1117:together with morphisms 4095:Cokernels and quotients 4018:Universal constructions 3704:Advances in Mathematics 3069:to be the non-negative 1937:{\displaystyle i<j.} 1735:{\displaystyle i<j.} 1470:natural transformations 1396:can be considered as a 236:{\displaystyle i\leq j} 4252:Higher category theory 3998:Natural transformation 3771:C. R. Acad. Sci. Paris 3513: 3419: 3408: 3317: 3211: 3059: 2985: 2850: 2707: 2582: 2527:constructed a functor 2517: 2458: 2397:(as infinite strings). 2302: 2301:{\displaystyle f_{ij}} 2269:of an inverse system ( 2250: 2192: 2128: 2062: 2022: 1984: 1964: 1938: 1909: 1852: 1800: 1736: 1707: 1650: 1590: 1528: 1462: 1350: 1298: 1234:such that the diagram 1176: 1175:{\displaystyle f_{ij}} 1091: 994: 960: 940: 887: 864: 667: 631: 544:of the inverse system 531: 530:{\displaystyle f_{ij}} 501: 481: 385: 297: 270: 269:{\displaystyle f_{ii}} 237: 211: 138:to be directed). Let ( 121: 3752:10.1007/s002220100197 3514: 3409: 3318: 3212: 3060: 2986: 2893:, that is, for every 2851: 2708: 2583: 2518: 2459: 2382:, the limit space is 2303: 2251: 2193: 2129: 2063: 2023: 1985: 1965: 1939: 1910: 1853: 1801: 1737: 1708: 1651: 1591: 1529: 1463: 1420:contravariant functor 1351: 1299: 1177: 1092: 1020:(over a fixed ring), 995: 993:{\displaystyle A_{i}} 961: 941: 888: 865: 668: 666:{\displaystyle A_{i}} 632: 532: 502: 482: 386: 298: 296:{\displaystyle A_{i}} 271: 238: 212: 122: 47:in category theory. 4121:Algebraic categories 3795:J. London Math. Soc. 3556: > 1). 3531:lim is zero for all 3496: 3353: 3268: 3147: 3030: 2917: 2727: 2718:short exact sequence 2652: 2534: 2500: 2422: 2384:totally disconnected 2374:The set of infinite 2282: 2202: 2138: 2080: 2035: 1994: 1974: 1948: 1919: 1862: 1810: 1768: 1717: 1660: 1608: 1558: 1496: 1433: 1311: 1262: 1156: 1052: 977: 950: 930: 893:comes equipped with 877: 681: 650: 548: 511: 507:, and the morphisms 491: 398: 309: 280: 250: 221: 165: 99: 4290:Homotopy hypothesis 3968:Commutative diagram 3574:limits and colimits 3241:More generally, if 2350:Tychonoff's theorem 2070:formal power series 2028:is the "remainder". 1963:{\displaystyle n+r} 920:which pick out the 895:natural projections 832: for all  276:is the identity on 4003:Universal property 3824:Weibel, Charles A. 3678:(September 1998), 3676:Mac Lane, Saunders 3509: 3404: 3399: 3364: 3326:In the case where 3313: 3289: 3207: 3158: 3055: 3041: 2981: 2905:such that for all 2846: 2822: 2796: 2770: 2744: 2703: 2578: 2545: 2513: 2511: 2454: 2433: 2337:is an isomorphism. 2298: 2265:Let the index set 2246: 2245: 2188: 2187: 2124: 2123: 2058: 2057: 2018: 1980: 1960: 1934: 1905: 1893: 1848: 1796: 1732: 1703: 1691: 1646: 1598:modular arithmetic 1586: 1524: 1458: 1356:being understood. 1346: 1294: 1279: 1172: 1087: 1046:universal property 1036:General definition 1010:topological spaces 990: 968:universal property 956: 936: 883: 873:The inverse limit 860: 770: 712: 699: 663: 627: 527: 497: 477: 381: 293: 266: 233: 207: 117: 50:By working in the 4517: 4516: 4475: 4474: 4471: 4470: 4453:monoidal category 4408: 4407: 4280:Enriched category 4232: 4231: 4228: 4227: 4205:Quotient category 4200:Opposite category 4115: 4114: 3837:978-0-521-55987-4 3660:978-3-540-64241-1 3647:Bourbaki, Nicolas 3631:978-3-540-64243-5 3618:Bourbaki, Nicolas 3602:978-0-387-09780-0 3525:infinite cardinal 3392: 3357: 3282: 3247:enough injectives 3151: 3034: 3026:An example where 2815: 2789: 2763: 2737: 2538: 2504: 2426: 2260:Pro-finite groups 1983:{\displaystyle n} 1892: 1754:as the open sets. 1690: 1272: 959:{\displaystyle I} 939:{\displaystyle i} 886:{\displaystyle A} 847: 833: 755: 749: 692: 690: 500:{\displaystyle I} 361: 79:Algebraic objects 74:Formal definition 27:(also called the 4542: 4535:Abstract algebra 4507: 4506: 4497: 4496: 4487: 4486: 4322: 4321: 4300:Simplex category 4275:Categorification 4266: 4265: 4247: 4246: 4240: 4210:Product category 4195:Kleisli category 4190:Functor category 4035:Terminal objects 4023: 4022: 3958:Adjoint functors 3911: 3910: 3900: 3899: 3885: 3878: 3871: 3862: 3861: 3857: 3818: 3785: 3762: 3729: 3720: 3694: 3671: 3642: 3605: 3594: 3566:categorical dual 3518: 3516: 3515: 3510: 3508: 3507: 3422: 3413: 3411: 3410: 3405: 3400: 3390: 3389: 3377: 3376: 3371: 3365: 3322: 3320: 3319: 3314: 3303: 3302: 3290: 3280: 3279: 3255:derived functors 3253:, and the right 3216: 3214: 3213: 3208: 3206: 3201: 3196: 3195: 3190: 3181: 3180: 3171: 3170: 3165: 3159: 3064: 3062: 3061: 3056: 3054: 3053: 3048: 3042: 2990: 2988: 2987: 2982: 2977: 2976: 2964: 2963: 2945: 2944: 2932: 2931: 2855: 2853: 2852: 2847: 2845: 2844: 2835: 2834: 2829: 2823: 2810: 2809: 2797: 2784: 2783: 2771: 2758: 2757: 2745: 2712: 2710: 2709: 2704: 2696: 2695: 2683: 2682: 2670: 2669: 2587: 2585: 2584: 2579: 2571: 2570: 2558: 2557: 2552: 2546: 2523:. Specifically, 2522: 2520: 2519: 2514: 2512: 2483:is the category 2463: 2461: 2460: 2455: 2447: 2446: 2434: 2410:abelian category 2365:initial topology 2342:category of sets 2318: 2310:greatest element 2307: 2305: 2304: 2299: 2297: 2296: 2255: 2253: 2252: 2247: 2232: 2231: 2222: 2197: 2195: 2194: 2189: 2174: 2173: 2158: 2133: 2131: 2130: 2125: 2110: 2109: 2100: 2067: 2065: 2064: 2059: 2027: 2025: 2024: 2019: 1989: 1987: 1986: 1981: 1969: 1967: 1966: 1961: 1943: 1941: 1940: 1935: 1914: 1912: 1911: 1906: 1904: 1903: 1894: 1890: 1887: 1886: 1874: 1873: 1857: 1855: 1854: 1849: 1838: 1837: 1825: 1824: 1805: 1803: 1802: 1797: 1795: 1790: 1789: 1780: 1775: 1748:product topology 1741: 1739: 1738: 1733: 1712: 1710: 1709: 1704: 1702: 1701: 1692: 1688: 1685: 1684: 1672: 1671: 1655: 1653: 1652: 1647: 1636: 1635: 1623: 1622: 1595: 1593: 1592: 1587: 1585: 1580: 1579: 1570: 1565: 1533: 1531: 1530: 1525: 1520: 1519: 1518: 1517: 1516: 1467: 1465: 1464: 1459: 1457: 1456: 1455: 1454: 1453: 1355: 1353: 1352: 1347: 1342: 1341: 1326: 1325: 1303: 1301: 1300: 1295: 1293: 1292: 1280: 1241: 1206: 1185: 1181: 1179: 1178: 1173: 1171: 1170: 1146: 1120: 1096: 1094: 1093: 1088: 1083: 1082: 1067: 1066: 999: 997: 996: 991: 989: 988: 965: 963: 962: 957: 945: 943: 942: 937: 925: 919: 900: 892: 890: 889: 884: 869: 867: 866: 861: 856: 852: 848: 845: 834: 831: 826: 825: 813: 812: 797: 796: 786: 782: 780: 779: 769: 751: 750: 742: 727: 726: 725: 711: 700: 672: 670: 669: 664: 662: 661: 637:as a particular 636: 634: 633: 628: 623: 622: 601: 600: 582: 581: 566: 565: 536: 534: 533: 528: 526: 525: 506: 504: 503: 498: 486: 484: 483: 478: 473: 472: 451: 450: 432: 431: 416: 415: 390: 388: 387: 382: 362: 359: 356: 355: 340: 339: 324: 323: 302: 300: 299: 294: 292: 291: 275: 273: 272: 267: 265: 264: 242: 240: 239: 234: 216: 214: 213: 208: 206: 205: 193: 192: 180: 179: 126: 124: 123: 118: 29:projective limit 4550: 4549: 4545: 4544: 4543: 4541: 4540: 4539: 4520: 4519: 4518: 4513: 4467: 4437: 4404: 4381: 4372: 4329: 4313: 4264: 4254: 4241: 4224: 4173: 4111: 4080:Initial objects 4066: 4012: 3905: 3894: 3892:Category theory 3889: 3838: 3821:Section 3.5 of 3699:Mitchell, Barry 3692: 3661: 3632: 3613: 3608: 3595: 3586: 3582: 3562: 3547:-modules, with 3503: 3499: 3497: 3494: 3493: 3474: 3449: 3440: 3431: 3391: 3385: 3381: 3372: 3370: 3369: 3356: 3354: 3351: 3350: 3298: 3294: 3281: 3275: 3271: 3269: 3266: 3265: 3249:, then so does 3239: 3237:Further results 3231:p-adic integers 3228: 3202: 3197: 3191: 3186: 3185: 3176: 3172: 3166: 3164: 3163: 3150: 3148: 3145: 3144: 3128: 3119: 3110: 3097: 3081: 3049: 3047: 3046: 3033: 3031: 3028: 3027: 3018: 2972: 2968: 2956: 2952: 2940: 2936: 2924: 2920: 2918: 2915: 2914: 2888: 2879: 2869: 2840: 2836: 2830: 2828: 2827: 2814: 2805: 2801: 2788: 2779: 2775: 2762: 2753: 2749: 2736: 2728: 2725: 2724: 2691: 2687: 2678: 2674: 2665: 2661: 2653: 2650: 2649: 2644: 2635: 2626: 2617: 2608: 2599: 2566: 2562: 2553: 2551: 2550: 2537: 2535: 2532: 2531: 2503: 2501: 2498: 2497: 2495: 2442: 2438: 2425: 2423: 2420: 2419: 2406: 2336: 2323: 2316: 2289: 2285: 2283: 2280: 2279: 2277: 2227: 2223: 2218: 2203: 2200: 2199: 2163: 2159: 2154: 2139: 2136: 2135: 2105: 2101: 2096: 2081: 2078: 2077: 2036: 2033: 2032: 1995: 1992: 1991: 1975: 1972: 1971: 1949: 1946: 1945: 1920: 1917: 1916: 1899: 1895: 1891: mod  1888: 1882: 1878: 1869: 1865: 1863: 1860: 1859: 1833: 1829: 1820: 1816: 1811: 1808: 1807: 1791: 1785: 1781: 1776: 1771: 1769: 1766: 1765: 1718: 1715: 1714: 1697: 1693: 1689: mod  1686: 1680: 1676: 1667: 1663: 1661: 1658: 1657: 1631: 1627: 1618: 1614: 1609: 1606: 1605: 1602:natural numbers 1581: 1575: 1571: 1566: 1561: 1559: 1556: 1555: 1544: 1509: 1508: 1504: 1503: 1499: 1497: 1494: 1493: 1446: 1445: 1441: 1440: 1436: 1434: 1431: 1430: 1334: 1330: 1321: 1317: 1312: 1309: 1308: 1288: 1284: 1271: 1263: 1260: 1259: 1242: 1221: 1211: 1204: 1190: 1183: 1163: 1159: 1157: 1154: 1153: 1151: 1144: 1138: 1125: 1118: 1075: 1071: 1062: 1058: 1053: 1050: 1049: 1038: 984: 980: 978: 975: 974: 951: 948: 947: 931: 928: 927: 921: 918: 905: 898: 897: 878: 875: 874: 844: 830: 821: 817: 805: 801: 792: 788: 775: 771: 759: 741: 740: 739: 736: 735: 731: 721: 717: 716: 701: 691: 682: 679: 678: 657: 653: 651: 648: 647: 606: 602: 593: 589: 571: 567: 561: 557: 549: 546: 545: 518: 514: 512: 509: 508: 492: 489: 488: 456: 452: 443: 439: 421: 417: 411: 407: 399: 396: 395: 358: 348: 344: 332: 328: 316: 312: 310: 307: 306: 287: 283: 281: 278: 277: 257: 253: 251: 248: 247: 222: 219: 218: 201: 197: 188: 184: 172: 168: 166: 163: 162: 156: 146: 100: 97: 96: 81: 76: 60:inductive limit 17: 12: 11: 5: 4548: 4538: 4537: 4532: 4515: 4514: 4512: 4511: 4501: 4491: 4480: 4477: 4476: 4473: 4472: 4469: 4468: 4466: 4465: 4460: 4455: 4441: 4435: 4430: 4425: 4419: 4417: 4410: 4409: 4406: 4405: 4403: 4402: 4397: 4386: 4384: 4379: 4374: 4373: 4371: 4370: 4365: 4360: 4355: 4350: 4345: 4334: 4332: 4327: 4319: 4315: 4314: 4312: 4307: 4305:String diagram 4302: 4297: 4295:Model category 4292: 4287: 4282: 4277: 4272: 4270: 4263: 4262: 4259: 4256: 4255: 4243: 4242: 4235: 4233: 4230: 4229: 4226: 4225: 4223: 4222: 4217: 4215:Comma category 4212: 4207: 4202: 4197: 4192: 4187: 4181: 4179: 4175: 4174: 4172: 4171: 4161: 4151: 4149:Abelian groups 4146: 4141: 4136: 4131: 4125: 4123: 4117: 4116: 4113: 4112: 4110: 4109: 4104: 4099: 4098: 4097: 4087: 4082: 4076: 4074: 4068: 4067: 4065: 4064: 4059: 4054: 4053: 4052: 4042: 4037: 4031: 4029: 4020: 4014: 4013: 4011: 4010: 4005: 4000: 3995: 3990: 3985: 3980: 3975: 3970: 3965: 3960: 3955: 3954: 3953: 3948: 3943: 3938: 3933: 3928: 3917: 3915: 3907: 3906: 3896: 3895: 3888: 3887: 3880: 3873: 3865: 3859: 3858: 3836: 3819: 3790:Roos, Jan-Erik 3786: 3767:Roos, Jan-Erik 3763: 3746:(2): 397–420, 3730: 3695: 3690: 3672: 3659: 3643: 3630: 3612: 3609: 3607: 3606: 3583: 3581: 3578: 3561: 3558: 3506: 3502: 3483:Barry Mitchell 3470: 3464:Pierre Deligne 3456:Mittag-Leffler 3445: 3436: 3427: 3415: 3414: 3403: 3398: 3395: 3388: 3384: 3380: 3375: 3368: 3363: 3360: 3324: 3323: 3312: 3309: 3306: 3301: 3297: 3293: 3288: 3285: 3278: 3274: 3238: 3235: 3224: 3218: 3217: 3205: 3200: 3194: 3189: 3184: 3179: 3175: 3169: 3162: 3157: 3154: 3124: 3115: 3106: 3093: 3077: 3052: 3045: 3040: 3037: 3024: 3023: 3020: 3019:are surjective 3014: 2980: 2975: 2971: 2967: 2962: 2959: 2955: 2951: 2948: 2943: 2939: 2935: 2930: 2927: 2923: 2884: 2875: 2868: 2865: 2857: 2856: 2843: 2839: 2833: 2826: 2821: 2818: 2813: 2808: 2804: 2800: 2795: 2792: 2787: 2782: 2778: 2774: 2769: 2766: 2761: 2756: 2752: 2748: 2743: 2740: 2735: 2732: 2714: 2713: 2702: 2699: 2694: 2690: 2686: 2681: 2677: 2673: 2668: 2664: 2660: 2657: 2640: 2631: 2622: 2613: 2604: 2595: 2589: 2588: 2577: 2574: 2569: 2565: 2561: 2556: 2549: 2544: 2541: 2510: 2507: 2491: 2465: 2464: 2453: 2450: 2445: 2441: 2437: 2432: 2429: 2405: 2402: 2401: 2400: 2399: 2398: 2369:limit topology 2357: 2338: 2332: 2319: 2295: 2292: 2288: 2273: 2263: 2257: 2244: 2241: 2238: 2235: 2230: 2226: 2221: 2217: 2214: 2211: 2208: 2186: 2183: 2180: 2177: 2172: 2169: 2166: 2162: 2157: 2153: 2150: 2147: 2144: 2122: 2119: 2116: 2113: 2108: 2104: 2099: 2095: 2092: 2089: 2086: 2056: 2053: 2050: 2047: 2044: 2041: 2029: 2017: 2014: 2011: 2008: 2005: 2002: 1999: 1979: 1959: 1956: 1953: 1933: 1930: 1927: 1924: 1902: 1898: 1885: 1881: 1877: 1872: 1868: 1847: 1844: 1841: 1836: 1832: 1828: 1823: 1819: 1815: 1794: 1788: 1784: 1779: 1774: 1762:-adic solenoid 1755: 1731: 1728: 1725: 1722: 1700: 1696: 1683: 1679: 1675: 1670: 1666: 1645: 1642: 1639: 1634: 1630: 1626: 1621: 1617: 1613: 1584: 1578: 1574: 1569: 1564: 1552:-adic integers 1543: 1540: 1523: 1515: 1512: 1507: 1502: 1452: 1449: 1444: 1439: 1409:if and only if 1398:small category 1345: 1340: 1337: 1333: 1329: 1324: 1320: 1316: 1305: 1304: 1291: 1287: 1283: 1278: 1275: 1270: 1267: 1236: 1217: 1207: 1186: 1169: 1166: 1162: 1147: 1134: 1121: 1101:in a category 1086: 1081: 1078: 1074: 1070: 1065: 1061: 1057: 1044:by means of a 1037: 1034: 987: 983: 955: 935: 914: 901: 882: 871: 870: 859: 855: 851: 846: in  843: 840: 837: 829: 824: 820: 816: 811: 808: 804: 800: 795: 791: 785: 778: 774: 768: 765: 762: 758: 754: 748: 745: 738: 734: 730: 724: 720: 715: 710: 707: 704: 698: 695: 689: 686: 660: 656: 643:direct product 626: 621: 618: 615: 612: 609: 605: 599: 596: 592: 588: 585: 580: 577: 574: 570: 564: 560: 556: 553: 540:We define the 524: 521: 517: 496: 476: 471: 468: 465: 462: 459: 455: 449: 446: 442: 438: 435: 430: 427: 424: 420: 414: 410: 406: 403: 394:Then the pair 392: 391: 380: 377: 374: 371: 368: 365: 354: 351: 347: 343: 338: 335: 331: 327: 322: 319: 315: 304: 290: 286: 263: 260: 256: 232: 229: 226: 204: 200: 196: 191: 187: 183: 178: 175: 171: 148: 142: 116: 113: 110: 107: 104: 85:inverse system 80: 77: 75: 72: 15: 9: 6: 4: 3: 2: 4547: 4536: 4533: 4531: 4528: 4527: 4525: 4510: 4502: 4500: 4492: 4490: 4482: 4481: 4478: 4464: 4461: 4459: 4456: 4454: 4450: 4446: 4442: 4440: 4438: 4431: 4429: 4426: 4424: 4421: 4420: 4418: 4415: 4411: 4401: 4398: 4395: 4391: 4388: 4387: 4385: 4383: 4375: 4369: 4366: 4364: 4361: 4359: 4356: 4354: 4353:Tetracategory 4351: 4349: 4346: 4343: 4342:pseudofunctor 4339: 4336: 4335: 4333: 4331: 4323: 4320: 4316: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4286: 4283: 4281: 4278: 4276: 4273: 4271: 4267: 4261: 4260: 4257: 4253: 4248: 4244: 4239: 4221: 4218: 4216: 4213: 4211: 4208: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4188: 4186: 4185:Free category 4183: 4182: 4180: 4176: 4169: 4168:Vector spaces 4165: 4162: 4159: 4155: 4152: 4150: 4147: 4145: 4142: 4140: 4137: 4135: 4132: 4130: 4127: 4126: 4124: 4122: 4118: 4108: 4105: 4103: 4100: 4096: 4093: 4092: 4091: 4088: 4086: 4083: 4081: 4078: 4077: 4075: 4073: 4069: 4063: 4062:Inverse limit 4060: 4058: 4055: 4051: 4048: 4047: 4046: 4043: 4041: 4038: 4036: 4033: 4032: 4030: 4028: 4024: 4021: 4019: 4015: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3988:Kan extension 3986: 3984: 3981: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3959: 3956: 3952: 3949: 3947: 3944: 3942: 3939: 3937: 3934: 3932: 3929: 3927: 3924: 3923: 3922: 3919: 3918: 3916: 3912: 3908: 3901: 3897: 3893: 3886: 3881: 3879: 3874: 3872: 3867: 3866: 3863: 3855: 3851: 3847: 3843: 3839: 3833: 3829: 3825: 3820: 3817: 3813: 3809: 3805: 3801: 3797: 3796: 3791: 3787: 3784: 3780: 3777:: 3702–3704, 3776: 3772: 3768: 3764: 3761: 3757: 3753: 3749: 3745: 3741: 3740: 3735: 3734:Neeman, Amnon 3731: 3728: 3724: 3719: 3714: 3710: 3706: 3705: 3700: 3696: 3693: 3691:0-387-98403-8 3687: 3683: 3682: 3677: 3673: 3670: 3666: 3662: 3656: 3652: 3648: 3644: 3641: 3637: 3633: 3627: 3623: 3619: 3615: 3614: 3603: 3599: 3593: 3591: 3589: 3584: 3577: 3575: 3571: 3567: 3557: 3555: 3550: 3546: 3542: 3538: 3534: 3530: 3526: 3522: 3504: 3492: 3488: 3484: 3480: 3478: 3473: 3469: 3465: 3461: 3457: 3453: 3448: 3444: 3439: 3435: 3430: 3426: 3421: 3401: 3396: 3393: 3386: 3382: 3378: 3373: 3366: 3361: 3358: 3349: 3348: 3347: 3345: 3341: 3340:Jan-Erik Roos 3337: 3333: 3329: 3310: 3307: 3299: 3295: 3291: 3286: 3283: 3276: 3272: 3264: 3263: 3262: 3260: 3256: 3252: 3248: 3244: 3234: 3232: 3227: 3223: 3198: 3192: 3182: 3177: 3173: 3167: 3160: 3155: 3152: 3143: 3142: 3141: 3139: 3136: 3132: 3127: 3123: 3118: 3114: 3109: 3105: 3101: 3096: 3092: 3088: 3085: 3080: 3076: 3072: 3068: 3050: 3043: 3038: 3035: 3021: 3017: 3013: 3009: 3008: 3007: 3004: 3002: 2996: 2994: 2973: 2969: 2960: 2957: 2953: 2949: 2941: 2937: 2928: 2925: 2921: 2912: 2908: 2904: 2900: 2897:there exists 2896: 2892: 2887: 2883: 2878: 2874: 2864: 2862: 2841: 2837: 2831: 2824: 2819: 2816: 2806: 2802: 2798: 2793: 2790: 2780: 2776: 2772: 2767: 2764: 2754: 2750: 2746: 2741: 2738: 2730: 2723: 2722: 2721: 2719: 2700: 2692: 2688: 2679: 2675: 2666: 2662: 2655: 2648: 2647: 2646: 2643: 2639: 2634: 2630: 2625: 2621: 2616: 2612: 2607: 2603: 2598: 2594: 2575: 2567: 2563: 2559: 2554: 2547: 2542: 2539: 2530: 2529: 2528: 2526: 2508: 2505: 2494: 2490: 2486: 2482: 2478: 2474: 2470: 2451: 2443: 2439: 2435: 2430: 2427: 2418: 2417: 2416: 2414: 2411: 2396: 2392: 2391:-adic numbers 2390: 2385: 2381: 2377: 2373: 2372: 2370: 2366: 2362: 2358: 2355: 2351: 2347: 2346:Kőnig's lemma 2343: 2339: 2335: 2331: 2327: 2322: 2314: 2311: 2293: 2290: 2286: 2276: 2272: 2268: 2264: 2261: 2258: 2239: 2233: 2228: 2224: 2219: 2212: 2206: 2181: 2175: 2170: 2167: 2164: 2160: 2155: 2148: 2142: 2117: 2111: 2106: 2102: 2097: 2090: 2084: 2075: 2071: 2048: 2039: 2030: 2012: 2009: 2006: 2000: 1997: 1977: 1957: 1954: 1951: 1931: 1928: 1925: 1922: 1900: 1896: 1883: 1879: 1875: 1870: 1866: 1842: 1839: 1834: 1830: 1826: 1821: 1817: 1786: 1782: 1777: 1763: 1761: 1756: 1753: 1752:cylinder sets 1749: 1745: 1729: 1726: 1723: 1720: 1698: 1694: 1681: 1677: 1673: 1668: 1664: 1640: 1637: 1632: 1628: 1624: 1619: 1615: 1603: 1599: 1576: 1572: 1567: 1553: 1551: 1546: 1545: 1539: 1537: 1536:right adjoint 1521: 1505: 1500: 1491: 1487: 1483: 1479: 1475: 1471: 1442: 1437: 1428: 1424: 1421: 1417: 1413: 1410: 1407: 1403: 1399: 1395: 1391: 1387: 1382: 1380: 1376: 1373: 1370: 1366: 1362: 1357: 1338: 1335: 1331: 1327: 1322: 1318: 1289: 1285: 1281: 1276: 1273: 1268: 1265: 1258: 1257: 1256: 1254: 1250: 1246: 1240: 1235: 1233: 1229: 1225: 1220: 1215: 1210: 1202: 1198: 1194: 1189: 1167: 1164: 1160: 1150: 1143:) satisfying 1142: 1137: 1133: 1129: 1124: 1116: 1112: 1108: 1107:inverse limit 1104: 1100: 1079: 1076: 1072: 1068: 1063: 1059: 1047: 1043: 1033: 1031: 1027: 1026:homomorphisms 1023: 1019: 1015: 1011: 1007: 1003: 985: 981: 971: 969: 953: 933: 924: 917: 913: 909: 904: 896: 880: 857: 853: 849: 841: 838: 835: 822: 818: 809: 806: 802: 798: 793: 789: 783: 776: 772: 766: 763: 760: 756: 752: 743: 732: 728: 722: 718: 713: 708: 705: 702: 696: 693: 687: 684: 677: 676: 675: 673: 658: 654: 644: 640: 619: 616: 613: 610: 607: 597: 594: 590: 583: 578: 575: 572: 562: 558: 543: 542:inverse limit 538: 522: 519: 515: 494: 469: 466: 463: 460: 457: 447: 444: 440: 433: 428: 425: 422: 412: 408: 378: 375: 372: 369: 366: 363: 360:for all  352: 349: 345: 341: 336: 333: 329: 325: 320: 317: 313: 305: 288: 284: 261: 258: 254: 246: 245: 244: 230: 227: 224: 202: 198: 189: 185: 181: 176: 173: 169: 160: 155: 151: 145: 141: 137: 133: 130: 111: 108: 105: 94: 93:homomorphisms 90: 86: 71: 69: 65: 61: 57: 53: 52:dual category 48: 46: 42: 38: 34: 30: 26: 25:inverse limit 22: 4433: 4414:Categorified 4318:n-categories 4269:Key concepts 4107:Direct limit 4090:Coequalizers 4061: 4008:Yoneda lemma 3914:Key concepts 3904:Key concepts 3827: 3802:(1): 65–83, 3799: 3798:, Series 2, 3793: 3774: 3770: 3743: 3737: 3708: 3702: 3679: 3653:, Springer, 3650: 3624:, Springer, 3621: 3570:direct limit 3563: 3553: 3548: 3544: 3540: 3536: 3532: 3528: 3520: 3486: 3481: 3476: 3471: 3467: 3460:Amnon Neeman 3451: 3446: 3442: 3437: 3433: 3428: 3424: 3416: 3343: 3332:Grothendieck 3327: 3325: 3258: 3250: 3242: 3240: 3229:denotes the 3225: 3221: 3219: 3137: 3134: 3130: 3125: 3121: 3116: 3112: 3107: 3103: 3099: 3094: 3090: 3086: 3083: 3078: 3074: 3066: 3025: 3015: 3011: 3005: 2997: 2992: 2910: 2906: 2902: 2898: 2894: 2890: 2885: 2881: 2876: 2872: 2870: 2860: 2858: 2715: 2641: 2637: 2632: 2628: 2623: 2619: 2614: 2610: 2605: 2601: 2596: 2592: 2590: 2492: 2488: 2484: 2480: 2472: 2466: 2412: 2407: 2388: 2368: 2333: 2329: 2325: 2320: 2312: 2274: 2270: 2266: 2073: 1759: 1743: 1549: 1547:The ring of 1489: 1485: 1481: 1477: 1473: 1426: 1422: 1415: 1411: 1405: 1401: 1393: 1385: 1383: 1378: 1374: 1368: 1364: 1360: 1358: 1306: 1252: 1248: 1243: 1231: 1227: 1223: 1218: 1213: 1208: 1200: 1199:. The pair ( 1196: 1192: 1187: 1148: 1140: 1135: 1131: 1127: 1122: 1114: 1110: 1106: 1102: 1039: 972: 922: 915: 911: 907: 902: 894: 872: 646: 541: 539: 393: 153: 149: 143: 139: 135: 84: 82: 63: 59: 56:direct limit 49: 28: 24: 18: 4382:-categories 4358:Kan complex 4348:Tricategory 4330:-categories 4220:Subcategory 3978:Exponential 3946:Preadditive 3941:Pre-abelian 3491:cardinality 3423:) that lim 1372:isomorphism 1141:projections 21:mathematics 4524:Categories 4400:3-category 4390:2-category 4363:∞-groupoid 4338:Bicategory 4085:Coproducts 4045:Equalizers 3951:Bicategory 3611:References 3330:satisfies 3073:, letting 2891:stationary 2469:left exact 2395:Cantor set 1377:′ → 1006:semigroups 66:becomes a 4449:Symmetric 4394:2-functor 4134:Relations 4057:Pullbacks 3711:: 1–161, 3622:Algebra I 3552:for  3501:ℵ 3432:= 0 for ( 3397:← 3379:≅ 3367:⁡ 3362:← 3334:'s axiom 3305:→ 3287:← 3161:⁡ 3156:← 3044:⁡ 3039:← 2825:⁡ 2820:← 2812:→ 2799:⁡ 2794:← 2786:→ 2773:⁡ 2768:← 2760:→ 2747:⁡ 2742:← 2734:→ 2698:→ 2685:→ 2672:→ 2659:→ 2573:→ 2548:⁡ 2543:← 2525:Eilenberg 2509:← 2477:countable 2449:→ 2431:← 2308:) have a 2031:The ring 2001:∈ 1915:whenever 1876:≡ 1843:… 1713:whenever 1674:≡ 1641:… 1282:⁡ 1277:← 1099:morphisms 839:≤ 764:∈ 757:∏ 753:∈ 747:→ 714:⁡ 706:∈ 697:← 617:∈ 611:≤ 576:∈ 467:∈ 461:≤ 426:∈ 373:≤ 367:≤ 342:∘ 228:≤ 195:→ 112:≤ 37:morphisms 4509:Glossary 4489:Category 4463:n-monoid 4416:concepts 4072:Colimits 4040:Products 3993:Morphism 3936:Concrete 3931:Additive 3921:Category 3854:36131259 3826:(1994). 3669:40551485 3649:(1989), 3640:40551484 3620:(1989), 3527:), then 3071:integers 2627:), and ( 2393:and the 2380:discrete 1970:, where 1542:Examples 1390:functors 1247:for all 1245:commutes 1191:for all 1139:(called 1042:category 1030:category 1022:algebras 639:subgroup 217:for all 129:directed 62:, and a 41:category 4499:Outline 4458:n-group 4423:2-group 4378:Strict 4368:∞-topos 4164:Modules 4102:Pushout 4050:Kernels 3983:Functor 3926:Abelian 3846:1269324 3816:2197371 3783:0132091 3760:1906154 3727:0294454 3140:. Then 2913: : 2408:For an 2376:strings 2359:In the 2340:In the 1018:modules 1000:'s are 645:of the 641:of the 68:colimit 33:objects 4445:Traced 4428:2-ring 4158:Fields 4144:Groups 4139:Magmas 4027:Limits 3852:  3844:  3834:  3814:  3781:  3758:  3725:  3688:  3667:  3657:  3638:  3628:  3600:  3336:(AB4*) 3220:where 3102:, and 2889:) are 2479:, and 1429:. Let 1369:unique 1048:. Let 159:family 95:. Let 89:groups 23:, the 4439:-ring 4326:Weak 4310:Topos 4154:Rings 3580:Notes 3519:(the 2716:is a 2471:. If 1750:with 1596:(see 1014:rings 157:be a 132:poset 127:be a 64:limit 45:limit 4129:Sets 3850:OCLC 3832:ISBN 3686:ISBN 3665:OCLC 3655:ISBN 3636:OCLC 3626:ISBN 3598:ISBN 3564:The 3489:has 3462:and 2609:), ( 1926:< 1757:The 1724:< 1363:and 1002:sets 674:'s: 91:and 3973:End 3963:CCC 3804:doi 3775:252 3748:doi 3744:148 3713:doi 3523:th 3394:lim 3359:lim 3284:lim 3153:lim 3036:lim 2817:lim 2791:lim 2765:lim 2739:lim 2540:lim 2506:lim 2467:is 2428:lim 2198:to 2068:of 1492:to 1476:of 1274:lim 1216:, ψ 1113:in 946:in 694:lim 58:or 19:In 4526:: 4451:) 4447:)( 3848:. 3842:MR 3840:. 3812:MR 3810:, 3800:73 3779:MR 3773:, 3756:MR 3754:, 3742:, 3723:MR 3721:, 3707:, 3663:, 3634:, 3587:^ 3535:≥ 3447:ij 3441:, 3344:Ab 3338:, 3233:. 3129:= 3120:/ 3111:= 3098:= 3089:, 3082:= 3016:ij 3003:. 2995:. 2909:≥ 2901:≥ 2886:ij 2880:, 2863:. 2861:Ab 2642:ij 2636:, 2624:ij 2618:, 2606:ij 2600:, 2576:Ab 2564:Ab 2493:ij 2485:Ab 2371:. 2328:→ 2324:: 2278:, 1425:→ 1414:≤ 1404:→ 1365:X' 1251:≤ 1230:→ 1226:: 1203:, 1195:≤ 1182:∘ 1152:= 1130:→ 1126:: 1016:, 1012:, 1008:, 1004:, 910:→ 906:: 70:. 4443:( 4436:n 4434:E 4396:) 4392:( 4380:n 4344:) 4340:( 4328:n 4170:) 4166:( 4160:) 4156:( 3884:e 3877:t 3870:v 3856:. 3806:: 3750:: 3715:: 3709:8 3604:. 3554:n 3549:R 3545:R 3541:I 3537:d 3533:n 3529:R 3521:d 3505:d 3487:I 3477:C 3472:i 3468:A 3452:I 3443:f 3438:i 3434:A 3429:i 3425:A 3402:. 3387:n 3383:R 3374:n 3328:C 3311:. 3308:C 3300:I 3296:C 3292:: 3277:n 3273:R 3259:n 3251:C 3243:C 3226:p 3222:Z 3204:Z 3199:/ 3193:p 3188:Z 3183:= 3178:i 3174:A 3168:1 3138:Z 3135:p 3133:/ 3131:Z 3126:i 3122:A 3117:i 3113:B 3108:i 3104:C 3100:Z 3095:i 3091:B 3087:Z 3084:p 3079:i 3075:A 3067:I 3051:1 3012:f 2979:) 2974:i 2970:A 2966:( 2961:i 2958:k 2954:f 2950:= 2947:) 2942:j 2938:A 2934:( 2929:j 2926:k 2922:f 2911:j 2907:i 2903:k 2899:j 2895:k 2882:f 2877:i 2873:A 2842:i 2838:A 2832:1 2807:i 2803:C 2781:i 2777:B 2755:i 2751:A 2731:0 2701:0 2693:i 2689:C 2680:i 2676:B 2667:i 2663:A 2656:0 2638:h 2633:i 2629:C 2620:g 2615:i 2611:B 2602:f 2597:i 2593:A 2568:I 2560:: 2555:1 2489:f 2481:C 2473:I 2452:C 2444:I 2440:C 2436:: 2413:C 2389:p 2334:m 2330:X 2326:X 2321:m 2317:π 2313:m 2294:j 2291:i 2287:f 2275:i 2271:X 2267:I 2243:] 2240:t 2237:[ 2234:R 2229:n 2225:t 2220:/ 2216:] 2213:t 2210:[ 2207:R 2185:] 2182:t 2179:[ 2176:R 2171:j 2168:+ 2165:n 2161:t 2156:/ 2152:] 2149:t 2146:[ 2143:R 2121:] 2118:t 2115:[ 2112:R 2107:n 2103:t 2098:/ 2094:] 2091:t 2088:[ 2085:R 2074:R 2055:] 2052:] 2049:t 2046:[ 2043:[ 2040:R 2016:) 2013:1 2010:, 2007:0 2004:[ 1998:r 1978:n 1958:r 1955:+ 1952:n 1932:. 1929:j 1923:i 1901:i 1897:p 1884:j 1880:x 1871:i 1867:x 1846:) 1840:, 1835:2 1831:x 1827:, 1822:1 1818:x 1814:( 1793:Z 1787:n 1783:p 1778:/ 1773:R 1760:p 1744:p 1730:. 1727:j 1721:i 1699:i 1695:p 1682:j 1678:n 1669:i 1665:n 1644:) 1638:, 1633:2 1629:n 1625:, 1620:1 1616:n 1612:( 1583:Z 1577:n 1573:p 1568:/ 1563:Z 1550:p 1522:. 1514:p 1511:o 1506:I 1501:C 1490:C 1486:X 1482:X 1478:C 1474:X 1451:p 1448:o 1443:I 1438:C 1427:C 1423:I 1416:j 1412:i 1406:j 1402:i 1394:I 1386:C 1379:X 1375:X 1361:X 1344:) 1339:j 1336:i 1332:f 1328:, 1323:i 1319:X 1315:( 1290:i 1286:X 1269:= 1266:X 1253:j 1249:i 1232:X 1228:Y 1224:u 1219:i 1214:Y 1209:i 1205:π 1201:X 1197:j 1193:i 1188:j 1184:π 1168:j 1165:i 1161:f 1149:i 1145:π 1136:i 1132:X 1128:X 1123:i 1119:π 1115:C 1111:X 1103:C 1085:) 1080:j 1077:i 1073:f 1069:, 1064:i 1060:X 1056:( 986:i 982:A 954:I 934:i 923:i 916:i 912:A 908:A 903:i 899:π 881:A 858:. 854:} 850:I 842:j 836:i 828:) 823:j 819:a 815:( 810:j 807:i 803:f 799:= 794:i 790:a 784:| 777:i 773:A 767:I 761:i 744:a 733:{ 729:= 723:i 719:A 709:I 703:i 688:= 685:A 659:i 655:A 625:) 620:I 614:j 608:i 604:) 598:j 595:i 591:f 587:( 584:, 579:I 573:i 569:) 563:i 559:A 555:( 552:( 523:j 520:i 516:f 495:I 475:) 470:I 464:j 458:i 454:) 448:j 445:i 441:f 437:( 434:, 429:I 423:i 419:) 413:i 409:A 405:( 402:( 379:. 376:k 370:j 364:i 353:k 350:j 346:f 337:j 334:i 330:f 326:= 321:k 318:i 314:f 303:, 289:i 285:A 262:i 259:i 255:f 231:j 225:i 203:i 199:A 190:j 186:A 182:: 177:j 174:i 170:f 154:I 152:∈ 150:i 147:) 144:i 140:A 136:I 115:) 109:, 106:I 103:(

Index

mathematics
objects
morphisms
category
limit
dual category
direct limit
colimit
groups
homomorphisms
directed
poset
family
subgroup
direct product
universal property
sets
semigroups
topological spaces
rings
modules
algebras
homomorphisms
category
category
universal property
morphisms

commutes
isomorphism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.