Knowledge

Iron-oxidizing bacteria

Source 📝

460:, Fe(II) and Mn. Large, heavily encrusted mats with a gelatinous texture are created by iron-oxidizing bacteria as a by-product (iron-oxyhydroxide precipitation), and can be present around the vent orifices. The vents present at Kamaʻehuakanaloa seamount can be categorized into two types based on concentration and temperature of flow. Those with a focused and high-temperature flow (above 50 °C) can be expected to show higher flow rates as well. These vents are characterized by flocculent mats aggregated around the vent orifices. Mat depth at focused, high-temperature vents averages in the tens of centimeters, but can vary. In contrast, vents with cooler (10-30 °C) and diffuse flow can create mats up to one meter thick. These mats may cover hundreds of square meters of sea floor. Either type of mat can be colonized by other bacterial communities, which can change the chemical composition and the flow of the local waters. 698:
ferric state and then filtered from the water. Any previously precipitated iron is removed by simple mechanical filtration. Several different filter media may be used in these iron filters, including manganese greensand, Birm, MTM, multi-media, sand, and other synthetic materials. In most cases, the higher oxides of manganese produce the desired oxidizing action. Iron filters do have limitations; since the oxidizing action is relatively mild, it will not work well when organic matter, either combined with the iron or completely separate, is present in the water. As a result, the iron bacteria will not be killed. Extremely high iron concentrations may require inconvenient frequent backwashing and/or regeneration. Finally, iron filter media requires high flow rates for proper backwashing, and such water flows are not always available.
20: 534:
waters because that would increase the availability of ferrous iron Fe(II) for microbial iron oxidation. Still, at the same time, this scenario could also disrupt the cascade effect to the sediment in deep water and cause the death of benthonic animals. Moreover it is very important to consider that iron and phosphate cycles are strictly interconnected and balanced, so that a small change in the first could have substantial consequences on the second.
653: 548: 493:), the suggestion arose that anoxic Fe metabolism may pre-date aerobic Fe oxidation and that the age of the BIF pre-dates oxygenic photosynthesis. This suggests that microbial anoxic phototrophic and anaerobic chemolithotrophic metabolism may have been present on the ancient earth, and together with Fe(III) reducers, they may have been responsible for the BIF in the 682:
Treatment techniques that may successfully remove or reduce iron bacteria include physical removal, pasteurization, and chemical treatment. Treatment of heavily infected wells may be difficult, expensive, and only partially successful. Recent application of ultrasonic devices that destroy and prevent
678:
The dramatic effects of iron bacteria are seen in surface waters as brown slimy masses on stream bottoms and lakeshores or as an oily sheen upon the water. More serious problems occur when bacteria build up in well systems. Iron bacteria in wells do not cause health problems, but they can reduce well
303:
The microbial oxidation of ferrous iron coupled to denitrification (with nitrite or dinitrogen gas being the final product) can be autotrophic using inorganic carbon or organic co-substrates (acetate, butyrate, pyruvate, ethanol) performing heterotrophic growth in the absence of inorganic carbon. It
251:
The dependence of photoferrotrophics on light as a crucial resource can take the bacteria to a cumbersome situation, where due to their requirement for anoxic lighted regions (near the surface) they could be faced with competition by abiotic reactions due to the presence of molecular oxygen. To avoid
255:
Light penetration can limit the Fe(II) oxidation in the water column. However, nitrate dependent microbial Fe(II) oxidation is a light independent metabolism that has been shown to support microbial growth in various freshwater and marine sediments (paddy soil, stream, brackish lagoon, hydrothermal,
505:
In open ocean systems full of dissolved iron, iron-oxidizing bacterial metabolism is ubiquitous and influences the iron cycle. Nowadays, this biochemical cycle is undergoing modifications due to pollution and climate change; nonetheless, the normal distribution of ferrous iron in the ocean could be
533:
All these changes in the marine parameters (temperature, acidity, and oxygenation) impact the iron biogeochemical cycle and could have several and critical implications on ferrous iron oxidizing microbes; hypoxic and acid conditions could improve primary productivity in the superficial and coastal
697:
Iron filters have been used to treat iron bacteria. Iron filters are similar in appearance and size to conventional water softeners but contain beds of media that have mild oxidizing power. As the iron-bearing water is passed through the bed, any soluble ferrous iron is converted to the insoluble
420:
regions where the low oxygen concentration allows the cell to oxidize Fe(II) and produce energy to grow. However, under acidic conditions, where ferrous iron is more soluble and stable even in the presence of oxygen, only biological processes are responsible for the oxidation of iron, thus making
233:
Nevertheless, some bacteria do not use the photoautotrophic Fe(II) oxidation metabolism for growth purposes. Instead, it has been suggested that these groups are sensitive to Fe(II) and therefore oxidize Fe(II) into more insoluble Fe(III) oxide to reduce its toxicity, enabling them to grow in the
701:
Wildfires may release iron-containing compounds from the soil into small wildland streams and cause a rapid but usually temporary proliferation of iron-oxidizing bacteria complete with orange coloration, gelatinous mats, and sulfurous odors. Higher quality personal filters may be used to remove
1453:
Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E. (2016). "Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions".
304:
has been suggested that the heterotrophic nitrate-dependent ferrous iron oxidation using organic carbon might be the most favorable process. This metabolism might be very important for carrying out an important step in the biogeochemical cycle within the OMZ.
120:
but is less common because of the relative abundance of iron (5.4%) in comparison to manganese (0.1%) in average soils. The sulfurous smell of rot or decay sometimes associated with iron-oxidizing bacteria results from the enzymatic conversion of soil
1977:
Hoegh-Guldberg, O.; Mumby, P. J.; Hooten, A. J.; Steneck, R. S.; Greenfield, P.; Gomez, E.; Harvell, C. D.; Sale, P. F.; Edwards, A. J.; Caldeira, K.; Knowlton, N. (2007-12-14). "Coral Reefs Under Rapid Climate Change and Ocean Acidification".
394:
of microbial iron oxidation. These structures can be easily detected in a sample of water, indicating the presence iron-oxidizing bacteria. This biosignature has been a tool to understand the importance of iron metabolism in the Earth's past.
415:
pHs (hydrothermal vents, deep ocean basalts, groundwater iron seeps) the oxidation of iron by microorganisms is highly competitive with the rapid abiotic reaction occurring in <1 min. Therefore, the microbial community has to inhabit
522:) and thus the ocean acidity increases. Furthermore, the temperature of the ocean has increased by almost one degree (0.74 °C) causing the melting of big quantities of glaciers contributing to the sea-level rise. This lowers the O 242:(acetate, succinate) whose use depends on Fe(II) oxidation Nonetheless, many iron-oxidizing bacteria can use other compounds as electron donors in addition to Fe(II), or even perform dissimilatory Fe(III) reduction as the 468:
Unlike most lithotrophic metabolisms, the oxidation of Fe to Fe yields very little energy to the cell (∆G° = 29 kJ/mol and ∆G° = -90 kJ/mol in acidic and neutral environments, respectively) compared to other
513:
emissions into the atmosphere from anthropogenic sources. Currently the concentration of carbon dioxide in the atmosphere is around 420 ppm (120 ppm more than 20 million years ago), and about a quarter of the total
488:
However, with the discovery of Fe(II) oxidation carried out under anoxic conditions in the late 1990s using light as an energy source or chemolithotrophically, using a different terminal electron acceptor (mostly
1293:
Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E. (November 2016).
199:) in a neutrophilic environment (pH 5.5-7.2), producing Fe oxides as a waste product that precipitates as a mineral, according to the following stoichiometry (4 mM of Fe(II) can yield 1 mM of CH 741:
Andrews, Simon; Norton, Ian; Salunkhe, Arvindkumar S.; Goodluck, Helen; Aly, Wafaa S.M.; Mourad-Agha, Hanna; Cornelis, Pierre (2013). "Control of Iron Metabolism in Bacteria". In Banci (ed.).
477:(through the excretion of twisted stalks). The aerobic iron-oxidizing bacterial metabolism is thought to have made a remarkable contribution to the formation of the largest iron deposit ( 2336: 260:. Microbes that perform this metabolism are successful in neutrophilic or alcaline environments, due to the high difference in between the redox potential of the couples Fe/Fe and NO 252:
this problem, they tolerate microaerophilic surface conditions or perform the photoferrotrophic Fe(II) oxidation deeper in the sediment/water column, with low light availability.
690:
Physical removal is typically done as a first step. Small diameter pipes are sometimes cleaned with a wire brush, while larger lines can be scrubbed and flushed clean with a
164:. Iron has a widespread distribution globally and is considered one of the most abundant elements in the Earth's crust, soil, and sediments. Iron is a trace element in 2169:
Hazan, Zadik; Zumeris, Jona; Jacob, Harold; Raskin, Hanan; Kratysh, Gera; Vishnia, Moshe; Dror, Naama; Barliya, Tilda; Mandel, Mathilda; Lavie, Gad (2006-12-01).
1229: 411:
feeding on that dissolved organic material. In aerobic conditions, pH variation plays an important role in driving the oxidation reaction of Fe/Fe. At
506:
affected by global warming under the following conditions: acidification, shifting of ocean currents, and ocean water and groundwater hypoxia trend.
238:
SB1003 (photoheterotrophic), it has been demonstrated that the oxidation of Fe(II) might be the mechanisms whereby the bacteria is enabled to access
64:
reddish-brown gelatinous slime that discolors stream beds and can stain plumbing fixtures, clothing, or utensils washed with the water carrying it.
180:
The anoxygenic phototrophic iron oxidation was the first anaerobic metabolism to be described within the iron anaerobic oxidation metabolism. The
1704:"Structural Iron(II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge" 53:. They are known to grow and proliferate in waters containing iron concentrations as low as 0.1 mg/L. However, at least 0.3 ppm of dissolved 1500:
Emerson, David; Fleming, Emily J.; McBeth, Joyce M. (13 October 2010). "Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective".
675:, which appears as brown gelatinous slime that will stain plumbing fixtures, and clothing or utensils washed with the water carrying it. 2279:"Strategies to prevent, curb and eliminate biofilm formation based on the characteristics of various periods in one biofilm life cycle" 2171:"Strategies to prevent, curb and eliminate biofilm formation based on the characteristics of various periods in one biofilm life cycle" 1863:"Microbial Iron Mats at the Mid-Atlantic Ridge and Evidence that Zetaproteobacteria May Be Restricted to Iron-Oxidizing Marine Systems" 1806:"Neutrophilic Fe-Oxidizing Bacteria Are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition" 937: 456:. Vents can be found ranging from slightly above ambient (10 °C) to high temperature (167 °C). The vent waters are rich in CO 440:
and in coastal and terrestrial habitats, and have been reported in the surface of shallow sediments, beach aquifer, and surface water.
428:, which are major players in marine ecosystems. Being generally microaerophilic they are adapted to live in transition zones where the 620: 592: 569: 1336:
Weber, Karrie A.; Pollock, Jarrod; Cole, Kimberly A.; O'Connor, Susan M.; Achenbach, Laurie A.; Coates, John D. (1 January 2006).
473:
metabolisms. Therefore, the cell must oxidize large amounts of Fe to fulfill its metabolic requirements while contributing to the
1922:"Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation" 1537:"Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation" 1162:
Walter, Xavier A.; Picazo, Antonio; Miracle, Maria R.; Vicente, Eduardo; Camacho, Antonio; Aragno, Michel; Zopfi, Jakob (2014).
268:(+200 mV and +770 mV, respectively) releasing a lot of free energy when compared to other iron oxidation metabolisms. 599: 2382: 920: 778: 758: 711: 407:
environment flows into an aerobic environment. Groundwater containing dissolved organic material may be de-oxygenated by
1753:
Makita, Hiroko (4 July 2018). "Iron-oxidizing bacteria in marine environments: recent progresses and future directions".
1406:"Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria" 606: 1649:
McAllister, Sean M.; Moore, Ryan M.; Gartman, Amy; Luther, George W; Emerson, David; Chan, Clara S (30 January 2019).
885: 868: 851: 834: 814: 639: 436:
mix. The zetaproteobacteria are present in different Fe(II)-rich habitats, found in deep ocean sites associated with
588: 577: 2220:"Recent Nanotechnology Approaches for Prevention and Treatment of Biofilm-Associated Infections on Medical Devices" 1338:"Anaerobic Nitrate-Dependent Iron(II) Bio-Oxidation by a Novel Lithoautotrophic Betaproteobacterium, Strain 2002" 1276: 1698:
Henri, Pauline A; Rommevaux-Jestin, Céline; Lesongeur, Françoise; Mumford, Adam; Emerson, David; Godfroy, Anne;
573: 1861:
Scott, Jarrod J.; Breier, John A.; Luther, George W.; Emerson, David; Duperron, Sebastien (11 March 2015).
687:
in wells has been proven to prevent iron bacteria infection and the associated clogging very successfully.
987:"Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments" 449: 312:
Despite being phylogenetically diverse, the microbial ferrous iron oxidation metabolic strategy (found in
448:
is one of the most common and well-studied species of zetaproteobacteria. It was first isolated from the
375: 192: 452:(formerly Loihi) vent field, near Hawaii at a depth between 1100 and 1325 meters, on the summit of this 256:
deep-sea sediments) and later on demonstrated as a pronounced metabolism within the water column at the
444: 390:
are able to produce a particular extracellular stalk-ribbon structure rich in iron, known as a typical
386: 613: 369: 244: 1096:"Phototrophic Fe(II) Oxidation Promotes Organic Carbon Acquisition by Rhodobacter capsulatus SB1003" 958: 2451: 2446: 2426: 2277:
Ma, Ruixiang; Hu, Xianli; Zhang, Xianzuo; Wang, Wenzhi; Sun, Jiaxuan; Su, Zheng; Zhu, Chen (2022).
1535:
Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J (2010-11-25).
558: 518:
emission enters the oceans (2.2 pg C year). Reacting with seawater it produces bicarbonate ion (HCO
474: 82:
ore have formed where groundwater has historically emerged and been exposed to atmospheric oxygen.
60:
When de-oxygenated water reaches a source of oxygen, iron bacteria convert dissolved iron into an
2436: 562: 239: 153: 793: 785: 880:
Sawyer, Clair N., and McCarty, Perry L. "Chemistry for Sanitary Engineers" McGraw-Hill (1967)
846:
Sawyer, Clair N., and McCarty, Perry L. "Chemistry for Sanitary Engineers" McGraw-Hill (1967)
945: 721: 478: 437: 1467: 1311: 2431: 2060: 1987: 1933: 1874: 1817: 1699: 1463: 1417: 1349: 1307: 1107: 998: 691: 161: 83: 70:
dissolved in water is often the underlying cause of an iron-oxidizing bacteria population.
1651:"The Fe(II)-Oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives" 8: 333: 325: 257: 2361:
Barry, Dana M.; Kanematsu, Hideyuki (2015), Kanematsu, Hideyuki; Barry, Dana M. (eds.),
2064: 1991: 1937: 1878: 1821: 1513: 1421: 1353: 1111: 1002: 2313: 2278: 2254: 2219: 2195: 2170: 2146: 2111: 2092: 2029: 1954: 1921: 1897: 1862: 1786: 1730: 1703: 1675: 1650: 1623: 1596: 1569: 1536: 1378: 1337: 1268: 1198: 1163: 1141: 1128: 1095: 425: 421:
ferrous iron oxidation the major metabolic strategy in iron-rich acidic environments.
403:
Iron-oxidizing bacteria colonize the transition zone where de-oxygenated water from an
337: 329: 94: 1838: 1805: 2378: 2318: 2300: 2259: 2241: 2200: 2151: 2133: 2084: 2076: 2021: 2013: 1959: 1902: 1843: 1778: 1770: 1735: 1680: 1628: 1574: 1556: 1517: 1435: 1430: 1405: 1383: 1365: 1295: 1260: 1252: 1203: 1185: 1133: 1076: 1024: 1016: 1011: 986: 916: 881: 864: 847: 830: 810: 789: 781: 774: 764: 754: 113: 2096: 2033: 1829: 1790: 1272: 1054: 2370: 2308: 2290: 2249: 2231: 2190: 2182: 2141: 2123: 2068: 2003: 1995: 1949: 1941: 1892: 1882: 1833: 1825: 1762: 1725: 1715: 1670: 1662: 1618: 1608: 1564: 1548: 1509: 1471: 1425: 1373: 1357: 1315: 1244: 1193: 1175: 1145: 1123: 1115: 1066: 1006: 985:
Hegler, Florian; Posth, Nicole R.; Jiang, Jie; Kappler, Andreas (1 November 2008).
746: 481:) due to the advent of oxygen in the atmosphere 2.7 billion years ago (produced by 424:
In the marine environment, the most well-known class of iron oxidizing-bacteria is
169: 133: 126: 1361: 1164:"Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake" 50: 2374: 2048: 1887: 911:
Madigan, Michael T.; Martinko, John M.; Stahl, David A.; Clark, David P. (2012).
657: 470: 317: 196: 165: 1296:"Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions" 750: 2441: 2362: 2295: 1475: 1319: 1230:"Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction" 453: 417: 408: 349: 345: 321: 67: 2411: 2406: 1766: 404: 2420: 2304: 2245: 2137: 2128: 2080: 2017: 1774: 1720: 1613: 1560: 1369: 1256: 1189: 1180: 1020: 482: 433: 341: 2072: 1999: 1666: 526:
solubility by inhibiting the oxygen exchange between surface waters, where O
2322: 2263: 2236: 2204: 2155: 2088: 2025: 1963: 1945: 1906: 1847: 1782: 1739: 1684: 1632: 1578: 1552: 1521: 1439: 1387: 1264: 1207: 1137: 1080: 1071: 1028: 768: 672: 665: 391: 361: 149: 19: 2186: 2112:"The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean" 1119: 494: 412: 357: 71: 1920:
Chan, CS; Fakra, SC; Emerson, D; Fleming, EJ; Edwards, KJ (April 2011).
1248: 1228:
Weber, Karrie A.; Achenbach, Laurie A.; Coates, John D. (October 2006).
745:. Metal Ions in Life Sciences. Vol. 12. Springer. pp. 203–39. 1597:"The Irony of Iron–Biogenic Iron Oxides as an Iron Source to the Ocean" 863:
Krauskopf, Konrad B. "Introduction to Geochemistry" McGraw-Hill (1979)
829:
Krauskopf, Konrad B. "Introduction to Geochemistry" McGraw-Hill (1979)
716: 668: 157: 141: 61: 35: 2008: 694:. The pumping equipment in the well must also be removed and cleaned. 1697: 652: 367:
There are very well-studied iron-oxidizing bacterial species such as
353: 117: 98: 46: 547: 137: 106: 102: 90: 87: 79: 38: 684: 313: 234:
presence of Fe(II). On the other hand, based on experiments with
145: 122: 1976: 664:
Iron-oxidizing bacteria can pose an issue for the management of
1404:
Muehe, EM; Gerhardt, S; Schink, B; Kappler, A (December 2009).
54: 42: 105:
are other possible sources of organic materials allowing soil
2369:, Cham: Springer International Publishing, pp. 163–167, 2051:(2011-06-09). "Climate-Forced Variability of Ocean Hypoxia". 1094:
Caiazza, N. C.; Lies, D. P.; Newman, D. K. (10 August 2007).
740: 75: 2047:
Deutsch, Curtis; Brix, Holger; Ito, Taka; Frenzel, Hartmut;
1648: 1335: 1053:
Hedrich, S.; Schlomann, M.; Johnson, D. B. (21 April 2011).
509:
These are all consequences of the substantial increase of CO
187:
as electron donor and the energy from light to assimilate CO
429: 2337:"Information for you about Iron Bacteria & Well Water" 1403: 1161: 915:(13th ed.). Boston: Benjamim Cummings. p. 1155. 809:. Blue Ridge Summit, Pennsylvania: Tab Books. p. 20. 807:
Constructing and Maintaining Your Well & Septic System
1452: 1292: 980: 978: 976: 974: 972: 970: 968: 910: 74:
may be naturally de-oxygenated by decaying vegetation in
1860: 2168: 1919: 1534: 1052: 984: 129:
as an alternative source of oxygen in anaerobic water.
965: 2046: 2407:
Video footage and details of Iron-oxidising bacteria
1499: 1399: 1397: 1331: 1329: 1227: 537: 1913: 1394: 1326: 1093: 1048: 1046: 1044: 1042: 1040: 1038: 2418: 2412:Iron Bacteria in a stream, Montgreenan, Ayrshire 2283:Frontiers in Cellular and Infection Microbiology 1087: 463: 2218:Ramasamy, Mohankandhasamy; Lee, Jintae (2016). 1803: 1755:World Journal of Microbiology and Biotechnology 1495: 1493: 1491: 1489: 1487: 1485: 2360: 1035: 340:classes, and among the Archaea domain in the " 152:reactions. Examples of these proteins include 112:A similar reaction may form black deposits of 2276: 1804:Emerson, David; L. Moyer, Craig (June 2002). 1482: 1286: 938:"Chemolithotrophy & Nitrogen Metabolism" 324:(formerly Proteobacteria), particularly the 16:Bacteria deriving energy from dissolved iron 2217: 576:. Unsourced material may be challenged and 500: 702:bacteria, odor and restore water clarity. 530:is very abundant, and anoxic deep waters. 2312: 2294: 2253: 2235: 2194: 2145: 2127: 2007: 1953: 1896: 1886: 1837: 1729: 1719: 1674: 1622: 1612: 1568: 1429: 1377: 1197: 1179: 1157: 1155: 1127: 1070: 1010: 906: 904: 902: 900: 898: 896: 894: 640:Learn how and when to remove this message 168:. Its role as the electron donor of some 1223: 1221: 1219: 1217: 935: 804: 660:in Scotland with iron-oxidizing bacteria 651: 320:, being highly pronounced in the phylum 23:Iron-oxidizing bacteria in surface water 18: 2109: 1594: 2419: 1810:Applied and Environmental Microbiology 1752: 1342:Applied and Environmental Microbiology 1152: 1100:Applied and Environmental Microbiology 891: 679:yields by clogging screens and pipes. 57:is needed to carry out the oxidation. 2175:Antimicrobial Agents and Chemotherapy 1644: 1642: 1590: 1588: 1214: 712:Dissimilatory metal-reducing bacteria 574:adding citations to reliable sources 541: 1514:10.1146/annurev.micro.112408.134208 1456:Earth and Planetary Science Letters 1300:Earth and Planetary Science Letters 1055:"The iron-oxidizing proteobacteria" 805:Alth, Max; Alth, Charlotte (1984). 144:reactions such as the formation of 13: 2103: 2040: 1970: 1746: 1639: 1585: 14: 2463: 2400: 538:Influence on water infrastructure 1431:10.1111/j.1574-6941.2009.00755.x 1012:10.1111/j.1574-6941.2008.00592.x 671:, as they can produce insoluble 546: 2354: 2329: 2270: 2211: 2162: 1854: 1830:10.1128/AEM.68.6.3085-3093.2002 1797: 1691: 1528: 1446: 913:Brock biology of microorganisms 936:Bruslind, Linda (2019-08-01). 929: 874: 857: 840: 823: 798: 734: 316:and Bacteria) is present in 7 109:to de-oxygenate groundwater. 1: 2367:Biofilm and Materials Science 2363:"Physical Removal of Biofilm" 2224:BioMed Research International 2110:Emerson, David (2016-01-06). 1502:Annual Review of Microbiology 1362:10.1128/AEM.72.1.686-694.2006 727: 464:Impact on early life on Earth 175: 78:. Useful mineral deposits of 2375:10.1007/978-3-319-14565-5_20 1888:10.1371/journal.pone.0119284 7: 1237:Nature Reviews Microbiology 751:10.1007/978-94-007-5561-1_7 705: 479:banded iron formation (BIF) 376:Leptospirillum ferrooxidans 10: 2468: 2296:10.3389/fcimb.2022.1003033 1476:10.1016/j.epsl.2016.09.025 1320:10.1016/j.epsl.2016.09.025 445:Mariprofundus ferrooxydans 398: 387:Mariprofundis ferrooxydans 182:photoferrotrophic bacteria 172:is probably very ancient. 2116:Frontiers in Microbiology 1767:10.1007/s11274-018-2491-y 1708:Frontiers in Microbiology 1655:FEMS Microbiology Ecology 1601:Frontiers in Microbiology 1410:FEMS Microbiology Ecology 1168:Frontiers in Microbiology 991:FEMS Microbiology Ecology 589:"Iron-oxidizing bacteria" 450:Kamaʻehuakanaloa Seamount 370:Thiobacillus ferrooxidans 300:(∆G°=-103.5 kJ/mol) 245:Geobacter metallireducens 191:into biomass through the 132:Iron is a very important 2129:10.3389/fmicb.2015.01502 1721:10.3389/fmicb.2015.01518 1614:10.3389/fmicb.2015.01502 1181:10.3389/fmicb.2014.00713 743:Metallomics and the Cell 501:Impact of climate change 307: 2073:10.1126/science.1202422 2000:10.1126/science.1152509 1595:Emerson, David (2016). 1468:2016E&PSL.454..272S 1312:2016E&PSL.454..272S 28:Iron-oxidizing bacteria 1946:10.1038/ismej.2010.173 1553:10.1038/ismej.2010.173 1072:10.1099/mic.0.045344-0 953:Cite journal requires 661: 475:mineralization process 382:Gallionella ferruginea 240:organic carbon sources 162:coordination complexes 140:to carry out numerous 97:, or leakage of light 24: 1667:10.1093/femsec/fiz015 722:Siderophilic bacteria 655: 438:hydrothermal activity 348:phyla, as well as in 84:Anthropogenic hazards 22: 2237:10.1155/2016/1851242 2187:10.1128/AAC.00418-06 1120:10.1128/AEM.02830-06 570:improve this section 193:Calvin Benson-Bassam 154:iron–sulfur proteins 2344:Information for You 2065:2011Sci...333..336D 1992:2007Sci...318.1737H 1986:(5857): 1737–1742. 1938:2011ISMEJ...5..717C 1879:2015PLoSO..1019284S 1822:2002ApEnM..68.3085E 1702:(21 January 2016). 1422:2009FEMME..70..335M 1354:2006ApEnM..72..686W 1249:10.1038/nrmicro1490 1112:2007ApEnM..73.6150C 1003:2008FEMME..66..250H 258:oxygen minimum zone 166:marine environments 136:required by living 95:septic drain fields 662: 426:zetaproteobacteria 338:Zetaproteobacteria 25: 2384:978-3-319-14565-5 2181:(12): 4144–4152. 2059:(6040): 336–339. 1106:(19): 6150–6158. 922:978-0-321-64963-8 779:978-94-007-5561-1 760:978-94-007-5560-4 683:the formation of 650: 649: 642: 624: 471:chemolithotrophic 186: 114:manganese dioxide 2459: 2394: 2393: 2392: 2391: 2358: 2352: 2351: 2341: 2333: 2327: 2326: 2316: 2298: 2274: 2268: 2267: 2257: 2239: 2215: 2209: 2208: 2198: 2166: 2160: 2159: 2149: 2131: 2107: 2101: 2100: 2049:Thompson, LuAnne 2044: 2038: 2037: 2011: 1974: 1968: 1967: 1957: 1926:The ISME Journal 1917: 1911: 1910: 1900: 1890: 1858: 1852: 1851: 1841: 1816:(6): 3085–3093. 1801: 1795: 1794: 1750: 1744: 1743: 1733: 1723: 1700:Ménez, Bénédicte 1695: 1689: 1688: 1678: 1646: 1637: 1636: 1626: 1616: 1592: 1583: 1582: 1572: 1541:The ISME Journal 1532: 1526: 1525: 1497: 1480: 1479: 1450: 1444: 1443: 1433: 1401: 1392: 1391: 1381: 1333: 1324: 1323: 1290: 1284: 1283: 1281: 1275:. Archived from 1234: 1225: 1212: 1211: 1201: 1183: 1159: 1150: 1149: 1131: 1091: 1085: 1084: 1074: 1065:(6): 1551–1564. 1050: 1033: 1032: 1014: 982: 963: 962: 956: 951: 949: 941: 933: 927: 926: 908: 889: 878: 872: 861: 855: 844: 838: 827: 821: 820: 802: 796: 773:electronic-book 772: 738: 645: 638: 634: 631: 625: 623: 582: 550: 542: 299: 297: 296: 293: 280: 279: 276: 229: 215: 214: 211: 185: 170:chemolithotrophs 134:chemical element 127:hydrogen sulfide 68:Organic material 2467: 2466: 2462: 2461: 2460: 2458: 2457: 2456: 2452:Water pollution 2447:Water chemistry 2427:Aquatic ecology 2417: 2416: 2403: 2398: 2397: 2389: 2387: 2385: 2359: 2355: 2339: 2335: 2334: 2330: 2275: 2271: 2216: 2212: 2167: 2163: 2108: 2104: 2045: 2041: 1975: 1971: 1918: 1914: 1873:(3): e0119284. 1859: 1855: 1802: 1798: 1751: 1747: 1696: 1692: 1647: 1640: 1593: 1586: 1533: 1529: 1498: 1483: 1451: 1447: 1402: 1395: 1334: 1327: 1291: 1287: 1279: 1243:(10): 752–764. 1232: 1226: 1215: 1160: 1153: 1092: 1088: 1051: 1036: 983: 966: 954: 952: 943: 942: 934: 930: 923: 909: 892: 879: 875: 862: 858: 845: 841: 828: 824: 817: 803: 799: 761: 739: 735: 730: 708: 646: 635: 629: 626: 583: 581: 567: 551: 540: 529: 525: 521: 517: 512: 503: 492: 466: 459: 418:microaerophilic 401: 310: 294: 291: 290: 288: 284: 277: 274: 273: 271: 267: 263: 227: 223: 219: 216:+ 4Fe(II) + 10H 212: 209: 208: 206: 202: 190: 178: 116:from dissolved 17: 12: 11: 5: 2465: 2455: 2454: 2449: 2444: 2439: 2437:Pseudomonadota 2434: 2429: 2415: 2414: 2409: 2402: 2401:External links 2399: 2396: 2395: 2383: 2353: 2328: 2269: 2210: 2161: 2102: 2039: 1969: 1912: 1853: 1796: 1745: 1690: 1638: 1584: 1547:(4): 717–727. 1527: 1508:(1): 561–583. 1481: 1445: 1393: 1348:(1): 686–694. 1325: 1285: 1282:on 2019-12-03. 1213: 1151: 1086: 1034: 997:(2): 250–260. 964: 955:|journal= 928: 921: 890: 873: 856: 839: 822: 815: 797: 759: 732: 731: 729: 726: 725: 724: 719: 714: 707: 704: 648: 647: 554: 552: 545: 539: 536: 527: 523: 519: 515: 510: 502: 499: 490: 465: 462: 457: 454:shield volcano 409:microorganisms 400: 397: 380:and some like 350:Actinomycetota 346:Thermoproteota 322:Pseudomonadota 309: 306: 286: 282: 265: 261: 225: 221: 217: 200: 188: 177: 174: 15: 9: 6: 4: 3: 2: 2464: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2424: 2422: 2413: 2410: 2408: 2405: 2404: 2386: 2380: 2376: 2372: 2368: 2364: 2357: 2350:(1): 3. 2017. 2349: 2345: 2338: 2332: 2324: 2320: 2315: 2310: 2306: 2302: 2297: 2292: 2288: 2284: 2280: 2273: 2265: 2261: 2256: 2251: 2247: 2243: 2238: 2233: 2229: 2225: 2221: 2214: 2206: 2202: 2197: 2192: 2188: 2184: 2180: 2176: 2172: 2165: 2157: 2153: 2148: 2143: 2139: 2135: 2130: 2125: 2121: 2117: 2113: 2106: 2098: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2043: 2035: 2031: 2027: 2023: 2019: 2015: 2010: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1973: 1965: 1961: 1956: 1951: 1947: 1943: 1939: 1935: 1932:(4): 717–27. 1931: 1927: 1923: 1916: 1908: 1904: 1899: 1894: 1889: 1884: 1880: 1876: 1872: 1868: 1864: 1857: 1849: 1845: 1840: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1800: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1749: 1741: 1737: 1732: 1727: 1722: 1717: 1713: 1709: 1705: 1701: 1694: 1686: 1682: 1677: 1672: 1668: 1664: 1660: 1656: 1652: 1645: 1643: 1634: 1630: 1625: 1620: 1615: 1610: 1606: 1602: 1598: 1591: 1589: 1580: 1576: 1571: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1531: 1523: 1519: 1515: 1511: 1507: 1503: 1496: 1494: 1492: 1490: 1488: 1486: 1477: 1473: 1469: 1465: 1461: 1457: 1449: 1441: 1437: 1432: 1427: 1423: 1419: 1416:(3): 335–43. 1415: 1411: 1407: 1400: 1398: 1389: 1385: 1380: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1332: 1330: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1289: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1231: 1224: 1222: 1220: 1218: 1209: 1205: 1200: 1195: 1191: 1187: 1182: 1177: 1173: 1169: 1165: 1158: 1156: 1147: 1143: 1139: 1135: 1130: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1090: 1082: 1078: 1073: 1068: 1064: 1060: 1056: 1049: 1047: 1045: 1043: 1041: 1039: 1030: 1026: 1022: 1018: 1013: 1008: 1004: 1000: 996: 992: 988: 981: 979: 977: 975: 973: 971: 969: 960: 947: 939: 932: 924: 918: 914: 907: 905: 903: 901: 899: 897: 895: 887: 886:0-07-054970-2 883: 877: 870: 869:0-07-035447-2 866: 860: 853: 852:0-07-054970-2 849: 843: 836: 835:0-07-035447-2 832: 826: 818: 816:0-8306-0654-8 812: 808: 801: 795: 791: 787: 783: 780: 776: 770: 766: 762: 756: 752: 748: 744: 737: 733: 723: 720: 718: 715: 713: 710: 709: 703: 699: 695: 693: 688: 686: 680: 676: 674: 670: 667: 659: 654: 644: 641: 633: 622: 619: 615: 612: 608: 605: 601: 598: 594: 591: –  590: 586: 585:Find sources: 579: 575: 571: 565: 564: 560: 555:This section 553: 549: 544: 543: 535: 531: 507: 498: 496: 486: 484: 483:cyanobacteria 480: 476: 472: 461: 455: 451: 447: 446: 441: 439: 435: 434:anoxic waters 431: 427: 422: 419: 414: 410: 406: 396: 393: 389: 388: 383: 379: 377: 372: 371: 365: 363: 359: 355: 351: 347: 343: 342:Euryarchaeota 339: 335: 331: 327: 323: 319: 315: 305: 301: 269: 259: 253: 249: 247: 246: 241: 237: 236:R. capsulatus 231: 230:(∆G° > 0) 224:O] + 4Fe(OH) 204: 198: 194: 183: 173: 171: 167: 163: 159: 155: 151: 147: 143: 139: 135: 130: 128: 124: 119: 115: 110: 108: 104: 100: 96: 92: 89: 85: 81: 77: 73: 69: 65: 63: 58: 56: 52: 48: 44: 40: 37: 33: 32:iron bacteria 29: 21: 2388:, retrieved 2366: 2356: 2347: 2343: 2331: 2286: 2282: 2272: 2227: 2223: 2213: 2178: 2174: 2164: 2119: 2115: 2105: 2056: 2052: 2042: 1983: 1979: 1972: 1929: 1925: 1915: 1870: 1866: 1856: 1813: 1809: 1799: 1758: 1754: 1748: 1711: 1707: 1693: 1658: 1654: 1604: 1600: 1544: 1540: 1530: 1505: 1501: 1459: 1455: 1448: 1413: 1409: 1345: 1341: 1303: 1299: 1288: 1277:the original 1240: 1236: 1171: 1167: 1103: 1099: 1089: 1062: 1059:Microbiology 1058: 994: 990: 946:cite journal 931: 912: 876: 859: 842: 825: 806: 800: 742: 736: 700: 696: 692:sewer jetter 689: 681: 677: 673:ferric oxide 666:water-supply 663: 636: 627: 617: 610: 603: 596: 584: 568:Please help 556: 532: 508: 504: 487: 467: 443: 442: 423: 413:neutrophilic 402: 392:biosignature 385: 381: 374: 368: 366: 362:Nitrospirota 311: 302: 270: 254: 250: 243: 235: 232: 205: 181: 179: 148:involved in 131: 125:to volatile 111: 66: 59: 41:that derive 36:chemotrophic 31: 27: 26: 2432:Lithotrophs 2289:: 1003033. 2230:: 1851242. 1462:: 272–281. 1306:: 272–281. 788:electronic- 630:August 2021 495:Precambrian 358:Chlorobiota 285:O → 2Fe(OH) 220:O → [CH 150:biochemical 101:fuels like 72:Groundwater 2421:Categories 2390:2022-12-22 2009:1885/28834 1761:(8): 110. 854:pp.446-447 728:References 717:Iron cycle 600:newspapers 197:rTCA cycle 195:cycle (or 176:Metabolism 158:hemoglobin 49:dissolved 2305:2235-2988 2246:2314-6141 2138:1664-302X 2081:0036-8075 2018:0036-8075 1775:1573-0972 1661:(4): 18. 1561:1751-7362 1370:0099-2240 1257:1740-1534 1190:1664-302X 1021:0168-6496 794:1868-0402 786:1559-0836 557:does not 405:anaerobic 354:Bacillota 142:metabolic 138:organisms 118:manganese 99:petroleum 62:insoluble 47:oxidizing 2323:36211965 2264:27872845 2205:16940055 2156:26779157 2122:: 1502. 2097:11752699 2089:21659566 2034:12607336 2026:18079392 1964:21107443 1907:25760332 1867:PLOS ONE 1848:12039770 1791:49685224 1783:29974320 1740:26834704 1685:30715272 1633:26779157 1579:21107443 1522:20565252 1440:19732145 1388:16391108 1273:91320892 1265:16980937 1208:25538702 1138:17693559 1081:21511765 1029:18811650 769:23595674 706:See also 272:2Fe + NO 146:proteins 123:sulfates 107:microbes 103:gasoline 91:leachate 88:landfill 80:bog iron 39:bacteria 2314:9534288 2255:5107826 2196:1693972 2147:4701967 2061:Bibcode 2053:Science 1988:Bibcode 1980:Science 1955:3105749 1934:Bibcode 1898:4356598 1875:Bibcode 1818:Bibcode 1731:4720738 1676:6443915 1624:4701967 1570:3105749 1464:Bibcode 1418:Bibcode 1379:1352251 1350:Bibcode 1308:Bibcode 1199:4258642 1146:6110532 1129:2074999 1108:Bibcode 999:Bibcode 685:biofilm 614:scholar 578:removed 563:sources 399:Habitat 364:phyla. 314:Archaea 2381:  2321:  2311:  2303:  2262:  2252:  2244:  2203:  2193:  2154:  2144:  2136:  2095:  2087:  2079:  2032:  2024:  2016:  1962:  1952:  1905:  1895:  1846:  1839:123976 1836:  1789:  1781:  1773:  1738:  1728:  1714:: 18. 1683:  1673:  1631:  1621:  1577:  1567:  1559:  1520:  1438:  1386:  1376:  1368:  1271:  1263:  1255:  1206:  1196:  1188:  1144:  1136:  1126:  1079:  1027:  1019:  919:  884:  867:  850:  833:  813:  792:  784:  777:  767:  757:  616:  609:  602:  595:  587:  373:, and 360:, and 344:" and 336:, and 184:use Fe 160:, and 76:swamps 55:oxygen 43:energy 34:) are 2442:Water 2340:(PDF) 2093:S2CID 2030:S2CID 1787:S2CID 1607:: 6. 1280:(PDF) 1269:S2CID 1233:(PDF) 1174:: 9. 1142:S2CID 888:p.459 871:p.544 837:p.213 669:wells 621:JSTOR 607:books 497:eon. 334:Gamma 326:Alpha 318:phyla 308:Types 86:like 2379:ISBN 2319:PMID 2301:ISSN 2260:PMID 2242:ISSN 2228:2016 2201:PMID 2152:PMID 2134:ISSN 2085:PMID 2077:ISSN 2022:PMID 2014:ISSN 1960:PMID 1903:PMID 1844:PMID 1779:PMID 1771:ISSN 1736:PMID 1681:PMID 1629:PMID 1575:PMID 1557:ISSN 1518:PMID 1436:PMID 1384:PMID 1366:ISSN 1261:PMID 1253:ISSN 1204:PMID 1186:ISSN 1134:PMID 1077:PMID 1025:PMID 1017:ISSN 959:help 917:ISBN 882:ISBN 865:ISBN 848:ISBN 831:ISBN 811:ISBN 790:ISSN 782:ISSN 775:ISBN 765:PMID 755:ISBN 658:burn 593:news 561:any 559:cite 432:and 430:oxic 384:and 330:Beta 298:+ 4H 289:+ NO 281:+ 5H 228:+ 7H 203:O): 51:iron 30:(or 2371:doi 2309:PMC 2291:doi 2250:PMC 2232:doi 2191:PMC 2183:doi 2142:PMC 2124:doi 2069:doi 2057:333 2004:hdl 1996:doi 1984:318 1950:PMC 1942:doi 1893:PMC 1883:doi 1834:PMC 1826:doi 1763:doi 1726:PMC 1716:doi 1671:PMC 1663:doi 1619:PMC 1609:doi 1565:PMC 1549:doi 1510:doi 1472:doi 1460:454 1426:doi 1374:PMC 1358:doi 1316:doi 1304:454 1245:doi 1194:PMC 1176:doi 1124:PMC 1116:doi 1067:doi 1063:157 1007:doi 747:doi 572:by 485:). 264:/NO 207:HCO 45:by 2423:: 2377:, 2365:, 2346:. 2342:. 2317:. 2307:. 2299:. 2287:12 2285:. 2281:. 2258:. 2248:. 2240:. 2226:. 2222:. 2199:. 2189:. 2179:50 2177:. 2173:. 2150:. 2140:. 2132:. 2118:. 2114:. 2091:. 2083:. 2075:. 2067:. 2055:. 2028:. 2020:. 2012:. 2002:. 1994:. 1982:. 1958:. 1948:. 1940:. 1928:. 1924:. 1901:. 1891:. 1881:. 1871:10 1869:. 1865:. 1842:. 1832:. 1824:. 1814:68 1812:. 1808:. 1785:. 1777:. 1769:. 1759:34 1757:. 1734:. 1724:. 1710:. 1706:. 1679:. 1669:. 1659:95 1657:. 1653:. 1641:^ 1627:. 1617:. 1603:. 1599:. 1587:^ 1573:. 1563:. 1555:. 1543:. 1539:. 1516:. 1506:64 1504:. 1484:^ 1470:. 1458:. 1434:. 1424:. 1414:70 1412:. 1408:. 1396:^ 1382:. 1372:. 1364:. 1356:. 1346:72 1344:. 1340:. 1328:^ 1314:. 1302:. 1298:. 1267:. 1259:. 1251:. 1239:. 1235:. 1216:^ 1202:. 1192:. 1184:. 1170:. 1166:. 1154:^ 1140:. 1132:. 1122:. 1114:. 1104:73 1102:. 1098:. 1075:. 1061:. 1057:. 1037:^ 1023:. 1015:. 1005:. 995:66 993:. 989:. 967:^ 950:: 948:}} 944:{{ 893:^ 763:. 753:. 656:A 514:CO 489:NO 356:, 352:, 332:, 328:, 248:. 156:, 93:, 2373:: 2348:1 2325:. 2293:: 2266:. 2234:: 2207:. 2185:: 2158:. 2126:: 2120:6 2099:. 2071:: 2063:: 2036:. 2006:: 1998:: 1990:: 1966:. 1944:: 1936:: 1930:5 1909:. 1885:: 1877:: 1850:. 1828:: 1820:: 1793:. 1765:: 1742:. 1718:: 1712:6 1687:. 1665:: 1635:. 1611:: 1605:6 1581:. 1551:: 1545:5 1524:. 1512:: 1478:. 1474:: 1466:: 1442:. 1428:: 1420:: 1390:. 1360:: 1352:: 1322:. 1318:: 1310:: 1247:: 1241:4 1210:. 1178:: 1172:5 1148:. 1118:: 1110:: 1083:. 1069:: 1031:. 1009:: 1001:: 961:) 957:( 940:. 925:. 819:. 771:. 749:: 643:) 637:( 632:) 628:( 618:· 611:· 604:· 597:· 580:. 566:. 528:2 524:2 520:3 516:2 511:2 491:3 458:2 378:, 295:2 292:− 287:3 283:2 278:3 275:− 266:2 262:3 226:3 222:2 218:2 213:3 210:− 201:2 189:2

Index


chemotrophic
bacteria
energy
oxidizing
iron
oxygen
insoluble
Organic material
Groundwater
swamps
bog iron
Anthropogenic hazards
landfill
leachate
septic drain fields
petroleum
gasoline
microbes
manganese dioxide
manganese
sulfates
hydrogen sulfide
chemical element
organisms
metabolic
proteins
biochemical
iron–sulfur proteins
hemoglobin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.