Knowledge

J-coupling

Source 📝

133: 81: 346:-coupling constant, the appearance of the NMR spectrum is unchanged if the sign of the coupling constant is reversed, although spectral lines at given positions may represent different transitions. The simple NMR spectrum therefore does not indicate the sign of the coupling constant, which there is no simple way of predicting. 175:
The multiplicity provides information on the number of centers coupled to the signal of interest, and their nuclear spin. For simple systems, as in H–H coupling in NMR spectroscopy, the multiplicity is one more than the number of adjacent protons which are magnetically nonequivalent to the protons of
341:
The value of each coupling constant also has a sign, and coupling constants of comparable magnitude often have opposite signs. If the coupling constant between two given spins is negative, the energy is lower when these two spins are parallel, and conversely if their coupling constant is positive.
251:
is related to the nuclear magnetic moments of the coupling partners. F, with a high nuclear magnetic moment, gives rise to large coupling to protons. Rh, with a very small nuclear magnetic moment, gives only small couplings to H. To correct for the effect of the nuclear magnetic moment (or
195:, which are called quadrupolar, can give rise to greater splitting, although in many cases coupling to quadrupolar nuclei is not observed. Many elements consist of nuclei with nuclear spin and without. In these cases, the observed spectrum is the sum of spectra for each 856:= 0.7 Hz). Such interaction came as a great surprise. The direct interaction between two magnetic dipoles depends on the relative position of two nuclei in such a way that when averaged over all possible orientations of the molecule it equals to zero. 215:
nuclei are either monoisotopic, e.g. P and F, or have very high natural abundance, e.g. H. An additional convenience is that C and O have no nuclear spin so these nuclei, which are common in organic molecules, do not cause splitting patterns in NMR.
176:
interest. For ethanol, each methyl proton is coupled to the two methylene protons, so the methyl signal is a triplet, while each methylene proton is coupled to the three methyl protons, so the methylene signal is a quartet.
786: 1611:
Blake, P. R.; Park, J.-B.; Adams, M. W. W.; Summers, M. F. (1992). "Novel observation of NH–S(Cys) hydrogen-bond-mediated scalar coupling in cadmium-113 substituted rubredoxin from Pyrococcus furiosus".
62:-coupling provides information on the connectivity of chemical bonds. It is responsible for the often complex splitting of resonance lines in the NMR spectra of fairly simple molecules. 1160:
the sign of J may be either positive or negative. The spectrum has precisely the same appearance in either case, but lines at corresponding positions represent different transitions.
830:, a monotonic decay in the echo envelope is obtained. In the Hahn–Maxwell experiment, the decay was modulated by two frequencies: one frequency corresponded with the difference in 1642: 1285: 881:. The mechanism is the magnetic interaction between each nucleus and the electron spin of its own atom together with the exchange coupling of the electron spins with each other. 704: 1562:
Blake, P.; Lee, B.; Summers, M.; Adams, M.; Park, J.-B.; Zhou, Z.; Bax, A. (1992). "Quantitative measurement of small through-hydrogen-bond and 'through-space' H–Cd and H–Hg
739: 659: 353:-coupling constants, the relative signs of the two constants can be experimentally determined by a double resonance experiment. For example in the diethylthallium ion (C 1669:
Mallory, F. B.; et al. (2000). "Nuclear Spin−Spin Coupling via Nonbonded Interactions. 8. 1 The Distance Dependence of Through-Space Fluorine−Fluorine Coupling".
945: 940: 236:. Generally speaking two-bond coupling (i.e. H–C–H) is stronger than three-bond coupling (H–C–C–H). The magnitude of the coupling also provides information on the 124:-coupling provides three parameters: the multiplicity (the "number of lines"), the magnitude of the coupling (strong, medium, weak), and the sign of the coupling. 907:
The spin–spin coupling between nonbonded atoms in close proximity has sometimes been observed between fluorine, nitrogen, carbon, silicon and phosphorus atoms.
1733:
Zong, J.; Mague, J. T.; Welch, E. C.; Eckert, I. M.; Pascal Jr, R. A. (2013). "Sterically congested macrobicycles with heteroatomic bridgehead functionality".
950: 589:-coupling tensor, a real 3 × 3 matrix. It depends on molecular orientation, but in an isotropic liquid it reduces to a number, the so-called 1235: 412:) ring protons was shown to be positive because the splitting of the two peaks for each proton decreases with the applied electric field. 593:. In 1D NMR, the scalar coupling leads to oscillations in the free induction decay as well as splittings of lines in the spectrum. 120: = 1, which means that a given photon (in the radio frequency range) can affect ("flip") only one of the two nuclear spins. 96:-coupling can be visualized by a vector model for a simple molecule such as hydrogen fluoride (HF). In HF, the two nuclei have spin 744: 112:. Four states are possible, depending on the relative alignment of the H and F nuclear spins with the external magnetic field. The 1096:
Pregosin, P. S.; Rueegger, H. (2004). "Nuclear magnetic resonance spectroscopy". In McCleverty, Jon A.; Thomas J., Meyer (eds.).
51: 928: 606: 1655: 1490:
Hahn, E. L.; Maxwell, D. E. (1951). "Chemical Shift and Field Independent Frequency Modulation of the Spin Echo Envelope".
1768: 233: 922: 1640:
Dingley, Andrew J.; Cordier, Florence; Grzesiek, Stephan (2001). "An introduction to hydrogen bond scalar couplings".
1297: 1245: 1212: 1181: 1138: 1113: 1080: 1055: 1030: 1219:
The double resonance technique has been successfully employed to determine the relative sign of coupling constants.
435: 199:. One of the great conveniences of NMR spectroscopy for organic molecules is that several important lighter spin 1454:
Gutowsky, H. S.; McCall, D. W.; Slichter, C. P. (1951). "Coupling among Nuclear Magnetic Dipoles in Molecules".
810:
are applied to the spin ensemble at the nuclear resonance condition and are separated by a time interval of
1568: 934: 409: 664: 965: 860: 389: 307: 299:
For coupling of a C nucleus and a directly bonded proton, the dominant term in the coupling constant
985:
Hahn, E. L.; Maxwell, D. E. (1952). "Spin Echo Measurements of Nuclear Spin Coupling in Molecules".
904:-couplings follow the same electron-mediated polarization mechanism as their covalent counterparts. 709: 1269:
Effects of a strong electric field on NMR spectra. The absolute sign of the spin coupling constant
632: 1697:
Zong, J.; Mague, J. T.; Kraml, C. M.; Pascal Jr, R. A. (2013). "A Congested in, in-Diphosphine".
477:= electron orbital–orbital, spin–orbital, spin–spin and electron-spin–external-field interactions 1359: 867:
proposed a mechanism that explained the observation and gave rise to an interaction of the form
741:, where they explained the presence of multiple resonance lines with an interaction of the form 626: 1237:
Optical, electric and magnetic properties of molecules. A review of the work of A.D.Buckingham
1735: 416: 311: 1536: 1500: 1464: 1421: 1371: 995: 916: 864: 384:
and Lovering, who suggested the use of a strong electric field to align the molecules of a
318: 58:-coupling contains information about relative bond distances and angles. Most importantly, 1234:
Burnell, Elliott (1997). "12. Anisotropic NMR". In Clary, David C.; Orr, Brian J. (eds.).
8: 1526:
Ramsey, N. F.; Purcell, E. M. (1952). "Interactions between Nuclear Spins in Molecules".
1360:"N.M.R. studies of 3,3,3-trifluoropropyne dissolved in different nematic liquid crystals" 622: 381: 1540: 1504: 1468: 1425: 1375: 999: 171:
hydrogens are coupling with each other, resulting in a triplet and quartet respectively.
1593: 800: 72:
that is not affected by the strength of the magnetic field, so is always stated in Hz.
1715: 1671: 1614: 1585: 1293: 1241: 1208: 1177: 1134: 1109: 1105: 1076: 1051: 1026: 892:. Initially, it was surprising to observe such couplings across hydrogen bonds since 385: 232:
decreases rapidly with the number of bonds between the coupled nuclei, especially in
75: 20: 1597: 1744: 1707: 1679: 1651: 1622: 1577: 1544: 1508: 1472: 1429: 1406:"Anisotropies and Absolute Signs of the Indirect Spin–Spin Coupling Constants in CH 1379: 1333: 1321: 1101: 1003: 960: 241: 50:
that arises from hyperfine interactions between the nuclei and local electrons. In
1699: 1528: 1492: 1456: 987: 827: 602: 164: 113: 24: 822:, the maximum value of the echo signal is measured and plotted as a function of 132: 831: 807: 804: 401: 326: 237: 152: 144: 47: 1748: 1383: 1762: 1476: 897: 889: 610: 500: 415:
Another way to align molecules for NMR spectroscopy is to dissolve them in a
43: 1512: 1007: 1719: 1548: 1188:
there is no simple way of specifying whether J will be positive or negative
156: 1589: 419:
solvent. This method has also been used to determine the absolute sign of
155:
is not coupling with the other H atoms and appears as a singlet, but the
1626: 1358:
Buckingham, A. D.; Burnell, E. E.; de Lange, C. A.; Rest, A. J. (1968).
1337: 46:
connecting two spins. It is an indirect interaction between two nuclear
1581: 1272: 955: 799:
which indicates the existence of an interaction between two protons in
792: 400:-coupling if their signs are opposed. This method was first applied to 196: 1711: 1683: 1433: 396:-coupling if their signs are parallel and subtracts from the observed 329:
which are of the order of millihertz and are not normally resolvable.
1566:
couplings in metal-substituted rubredoxin from Pyrococcus furiosus".
1405: 1656:
10.1002/1099-0534(2001)13:2<103::AID-CMR1001>3.0.CO;2-M
888:-couplings between magnetically active nuclei on both sides of the 148: 376:
The first experimental method to determine the absolute sign of a
76:
Vector model and manifestations for chemical structure assignments
1322:"Absolute Signs of Indirect Nuclear Spin-Spin Coupling Constants" 140: 838:, that was smaller and independent of magnetic field strength ( 896:-couplings are usually associated with the presence of purely 486:= magnetic interactions between nuclear spin and electron spin 1357: 834:
between the two non-equivalent spins and a second frequency,
781:{\displaystyle A\mathbf {\mu } _{1}\cdot \mathbf {\mu } _{2}} 884:
In the 1990s, direct evidence was found for the presence of
609:, eliminating or selectively reducing the coupling effect. 80: 724: 692: 679: 647: 325:-coupling signals of the order of hertz usually dominate 151:
atoms in ethanol regarding NMR. The hydrogen (H) on the
946:
Nuclear magnetic resonance spectroscopy of nucleic acids
941:
Nuclear magnetic resonance spectroscopy of carbohydrates
1696: 803:. In the echo experiment, two short, intense pulses of 317:
Where the external magnetic field is very low, e.g. as
1639: 1453: 1286:"The Absolute Sign of the Spin-Spin Coupling Constant" 1271:, Transactions Faraday Society, 58, 2077-2081 (1962), 900:. However, it is now well established that the H-bond 1610: 747: 712: 667: 635: 1732: 1561: 1283: 240:
relating the coupling partners, as described by the
1153: 951:
Nuclear magnetic resonance spectroscopy of proteins
814:. The echo appears with a given amplitude at time 2 613:spectra are often recorded with proton decoupling. 605:irradiation, NMR spectra can be fully or partially 503:molecular state and frequent molecular collisions, 365:
Tl, this method showed that the methyl-thallium (CH
780: 733: 698: 653: 1284:Buckingham, A. D.; McLauchlan, K. A. (May 1963). 1760: 1095: 1154:Carrington, Alan; McLachlan, Andrew D. (1967). 1319: 1171: 1128: 495:= direct interaction of nuclei with each other 1525: 1403: 1320:Bernheim, R.A.; Lavery, B.J. (1 March 1967). 1050:(4th ed.). McGraw-Hill. pp. 223–4. 1046:Banwell, Colin N.; McCash, Elaine M. (1994). 1045: 392:of the two spins, which adds to the observed 373:-Tl) coupling constants have opposite signs. 349:However for some molecules with two distinct 247:For heteronuclear coupling, the magnitude of 88:-coupling for the molecule hydrogen fluoride. 408:-coupling constant between two adjacent (or 1489: 984: 380:-coupling constant was proposed in 1962 by 1229: 1227: 1198: 1196: 219: 426: 16:Type of coupling used in NMR spectroscopy 1447: 1326:Journal of the American Chemical Society 1176:(8th ed.). Macmillan. p. 530. 1133:(8th ed.). Macmillan. p. 528. 131: 79: 1668: 1233: 1224: 1193: 1172:Atkins, Peter; de Paula, Julio (2006). 1129:Atkins, Peter; de Paula, Julio (2006). 1098:Comprehensive Coordination Chemistry II 438:of a molecular system may be taken as: 1761: 1519: 1048:Fundamentals of Molecular Spectroscopy 517:are almost zero. The full form of the 147:. There are three different types of 84:Energy diagram showing the effects of 1207:. W.B.Saunders Company. p. 280. 1202: 1075:. W.B.Saunders Company. p. 218. 1070: 1020: 826:. If the spin ensemble consists of a 521:-coupling interaction between spins ' 332: 1483: 1404:Krugh, T.R.; Bernheim, R.A. (1970). 1273:https://doi.org/10.1039/TF9625802077 1025:. W. B. Saunders. pp. 211–213. 252:equivalently the gyromagnetic ratio 1290:Proceedings of the Chemical Society 1267:Buckingham A.D. and Lovering E.G., 256:), the "reduced coupling constant" 244:for three-bond coupling constants. 228:For H–H coupling, the magnitude of 13: 1156:Introduction to Magnetic Resonance 929:Magnetic dipole–dipole interaction 923:Exclusive correlation spectroscopy 116:of NMR spectroscopy dictate that Δ 14: 1780: 699:{\displaystyle {\ce {CH_3OPF_2}}} 1158:. Harper & Row. p. 47. 791:Independently, in October 1951, 143:plotted as signal intensity vs. 1726: 1690: 1662: 1633: 1604: 1555: 1397: 1351: 1313: 1277: 1261: 734:{\displaystyle {\ce {POCl_2F}}} 369:-Tl) and methylene-thallium (CH 314:of the bond at the two nuclei. 179:Nuclei with spins greater than 127: 40:indirect dipole–dipole coupling 1643:Concepts in Magnetic Resonance 1240:. Elsevier. pp. 327–334. 1165: 1147: 1122: 1106:10.1016/B0-08-043748-6/01061-6 1100:. Vol. 2. pp. 1–35. 1089: 1064: 1039: 1014: 978: 388:. The field produces a direct 1: 1205:Physical Methods in Chemistry 1073:Physical Methods in Chemistry 1023:Physical Methods in Chemistry 971: 795:and D. E. Maxwell reported a 654:{\displaystyle {\ce {HPF_6}}} 596: 342:For a molecule with a single 310:, which is a measure of the 7: 1414:Journal of Chemical Physics 910: 10: 1785: 1769:Nuclear magnetic resonance 1203:Drago, Russell S. (1977). 1174:Atkins' Physical Chemistry 1131:Atkins' Physical Chemistry 1071:Drago, Russell S. (1977). 1021:Drago, Russell S. (1977). 935:Nuclear magnetic resonance 616: 260:is often discussed, where 1749:10.1016/j.tet.2013.10.018 1384:10.1080/00268976800100111 966:Residual dipolar coupling 539:on the same molecule is: 308:Fermi contact interaction 68:-coupling is a frequency 1477:10.1103/PhysRev.84.589.2 629:reported experiments on 1513:10.1103/PhysRev.84.1246 1008:10.1103/PhysRev.88.1070 42:) are mediated through 1549:10.1103/PhysRev.85.143 818:. For each setting of 782: 735: 700: 655: 417:nematic liquid crystal 172: 137:Example H NMR spectrum 89: 783: 736: 701: 656: 430:-coupling Hamiltonian 423:-coupling constants. 135: 83: 801:dichloroacetaldehyde 797:spin echo experiment 745: 710: 665: 633: 625:, D. W. McCall, and 1743:(48): 10316–10321. 1627:10.1021/ja00038a084 1541:1952PhRv...85..143R 1505:1951PhRv...84.1246H 1469:1951PhRv...84..589G 1426:1970JChPh..52.4942K 1376:1968MolPh..14..105B 1338:10.1021/ja00981a052 1000:1952PhRv...88.1070H 726: 694: 681: 649: 621:In September 1951, 234:saturated molecules 139:(1-dimensional) of 1582:10.1007/BF02192814 931:(dipolar coupling) 859:In November 1951, 778: 731: 714: 696: 682: 669: 651: 637: 173: 90: 36:spin-spin coupling 1712:10.1021/ol400728m 1684:10.1021/ja993032z 1678:(17): 4108–4116. 1672:J. Am. Chem. Soc. 1621:(12): 4931–4933. 1615:J. Am. Chem. Soc. 1434:10.1063/1.1672729 1364:Molecular Physics 917:Earth's field NMR 729: 717: 685: 672: 640: 319:Earth's field NMR 21:nuclear chemistry 1776: 1753: 1752: 1730: 1724: 1723: 1706:(9): 2179–2181. 1694: 1688: 1687: 1666: 1660: 1659: 1637: 1631: 1630: 1608: 1602: 1601: 1559: 1553: 1552: 1523: 1517: 1516: 1499:(6): 1246–1247. 1487: 1481: 1480: 1451: 1445: 1444: 1442: 1440: 1401: 1395: 1394: 1392: 1390: 1355: 1349: 1348: 1346: 1344: 1332:(5): 1279–1280. 1317: 1311: 1310: 1308: 1306: 1281: 1275: 1265: 1259: 1258: 1256: 1254: 1231: 1222: 1221: 1200: 1191: 1190: 1169: 1163: 1162: 1151: 1145: 1144: 1126: 1120: 1119: 1093: 1087: 1086: 1068: 1062: 1061: 1043: 1037: 1036: 1018: 1012: 1011: 982: 961:Relaxation (NMR) 855: 853: 852: 849: 846: 787: 785: 784: 779: 777: 776: 771: 762: 761: 756: 740: 738: 737: 732: 730: 727: 725: 722: 715: 705: 703: 702: 697: 695: 693: 690: 683: 680: 677: 670: 660: 658: 657: 652: 650: 648: 645: 638: 404:, for which the 390:dipolar coupling 294: 292: 291: 279: 276: 242:Karplus equation 214: 212: 211: 208: 205: 194: 192: 191: 188: 185: 111: 109: 108: 105: 102: 52:NMR spectroscopy 1784: 1783: 1779: 1778: 1777: 1775: 1774: 1773: 1759: 1758: 1757: 1756: 1731: 1727: 1695: 1691: 1667: 1663: 1638: 1634: 1609: 1605: 1560: 1556: 1524: 1520: 1488: 1484: 1452: 1448: 1438: 1436: 1409: 1402: 1398: 1388: 1386: 1356: 1352: 1342: 1340: 1318: 1314: 1304: 1302: 1300: 1282: 1278: 1266: 1262: 1252: 1250: 1248: 1232: 1225: 1215: 1201: 1194: 1184: 1170: 1166: 1152: 1148: 1141: 1127: 1123: 1116: 1094: 1090: 1083: 1069: 1065: 1058: 1044: 1040: 1033: 1019: 1015: 983: 979: 974: 913: 880: 873: 850: 847: 842: 841: 839: 828:magnetic moment 772: 767: 766: 757: 752: 751: 746: 743: 742: 723: 718: 713: 711: 708: 707: 691: 686: 678: 673: 668: 666: 663: 662: 646: 641: 636: 634: 631: 630: 619: 603:radio frequency 599: 591:scalar coupling 584: 572: 563: 554: 537: 528: 516: 509: 494: 485: 476: 465: 458: 451: 432: 372: 368: 364: 360: 356: 339: 327:chemical shifts 305: 289: 285: 280: 277: 271: 270: 268: 238:dihedral angles 226: 209: 206: 203: 202: 200: 189: 186: 183: 182: 180: 168: 160: 130: 114:selection rules 106: 103: 100: 99: 97: 78: 25:nuclear physics 17: 12: 11: 5: 1782: 1772: 1771: 1755: 1754: 1725: 1689: 1661: 1650:(2): 103–127. 1632: 1603: 1576:(5): 527–533. 1569:J. Biomol. NMR 1554: 1535:(1): 143–144. 1518: 1482: 1446: 1407: 1396: 1370:(2): 105–109. 1350: 1312: 1298: 1276: 1260: 1246: 1223: 1213: 1192: 1182: 1164: 1146: 1139: 1121: 1114: 1088: 1081: 1063: 1056: 1038: 1031: 1013: 994:(5): 1070–84. 976: 975: 973: 970: 969: 968: 963: 958: 953: 948: 943: 938: 932: 926: 920: 912: 909: 898:covalent bonds 878: 871: 832:chemical shift 808:magnetic field 805:radiofrequency 775: 770: 765: 760: 755: 750: 721: 689: 676: 644: 627:C. P. Slichter 623:H. S. Gutowsky 618: 615: 598: 595: 580: 574: 573: 568: 559: 550: 535: 526: 514: 507: 497: 496: 492: 487: 483: 478: 474: 468: 467: 463: 456: 449: 431: 425: 402:4-nitrotoluene 370: 366: 362: 358: 354: 338: 331: 303: 297: 296: 287: 283: 225: 218: 166: 158: 145:chemical shift 129: 126: 92:The origin of 77: 74: 44:chemical bonds 15: 9: 6: 4: 3: 2: 1781: 1770: 1767: 1766: 1764: 1750: 1746: 1742: 1738: 1737: 1729: 1721: 1717: 1713: 1709: 1705: 1702: 1701: 1693: 1685: 1681: 1677: 1674: 1673: 1665: 1657: 1653: 1649: 1645: 1644: 1636: 1628: 1624: 1620: 1617: 1616: 1607: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1570: 1565: 1558: 1550: 1546: 1542: 1538: 1534: 1531: 1530: 1522: 1514: 1510: 1506: 1502: 1498: 1495: 1494: 1486: 1478: 1474: 1470: 1466: 1463:(3): 589–90. 1462: 1459: 1458: 1450: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1400: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1354: 1339: 1335: 1331: 1327: 1323: 1316: 1301: 1299:9780080538068 1295: 1291: 1287: 1280: 1274: 1270: 1264: 1249: 1247:0-444-82596-7 1243: 1239: 1238: 1230: 1228: 1220: 1216: 1214:0-7216-3184-3 1210: 1206: 1199: 1197: 1189: 1185: 1183:0-7167-8759-8 1179: 1175: 1168: 1161: 1157: 1150: 1142: 1140:0-7167-8759-8 1136: 1132: 1125: 1117: 1115:9780080437484 1111: 1107: 1103: 1099: 1092: 1084: 1082:0-7216-3184-3 1078: 1074: 1067: 1059: 1057:0-07-707976-0 1053: 1049: 1042: 1034: 1032:0-7216-3184-3 1028: 1024: 1017: 1009: 1005: 1001: 997: 993: 990: 989: 981: 977: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 936: 933: 930: 927: 924: 921: 918: 915: 914: 908: 905: 903: 899: 895: 891: 890:hydrogen bond 887: 882: 877: 870: 866: 865:E. M. Purcell 862: 857: 845: 837: 833: 829: 825: 821: 817: 813: 809: 806: 802: 798: 794: 789: 773: 768: 763: 758: 753: 748: 719: 687: 674: 642: 628: 624: 614: 612: 611:Carbon-13 NMR 608: 604: 601:By selective 594: 592: 588: 583: 579: 571: 567: 562: 558: 553: 549: 545: 542: 541: 540: 538: 533: 529: 524: 520: 513: 506: 502: 491: 488: 482: 479: 473: 470: 469: 462: 455: 448: 444: 441: 440: 439: 437: 429: 424: 422: 418: 413: 411: 407: 403: 399: 395: 391: 387: 383: 379: 374: 352: 347: 345: 336: 330: 328: 324: 320: 315: 313: 309: 302: 290: 275: 266: 263: 262: 261: 259: 255: 250: 245: 243: 239: 235: 231: 223: 220:Magnitude of 217: 198: 177: 170: 162: 154: 150: 146: 142: 138: 134: 125: 123: 119: 115: 95: 87: 82: 73: 71: 67: 63: 61: 57: 53: 49: 45: 41: 37: 34:(also called 33: 31: 26: 22: 1740: 1734: 1728: 1703: 1698: 1692: 1675: 1670: 1664: 1647: 1641: 1635: 1618: 1613: 1606: 1573: 1567: 1563: 1557: 1532: 1527: 1521: 1496: 1491: 1485: 1460: 1455: 1449: 1437:. Retrieved 1420:(10): 4942. 1417: 1413: 1399: 1387:. Retrieved 1367: 1363: 1353: 1341:. Retrieved 1329: 1325: 1315: 1303:. Retrieved 1289: 1279: 1268: 1263: 1251:. Retrieved 1236: 1218: 1204: 1187: 1173: 1167: 1159: 1155: 1149: 1130: 1124: 1097: 1091: 1072: 1066: 1047: 1041: 1022: 1016: 991: 986: 980: 906: 901: 893: 885: 883: 875: 868: 861:N. F. Ramsey 858: 843: 835: 823: 819: 815: 811: 796: 790: 620: 600: 590: 586: 581: 577: 575: 569: 565: 560: 556: 551: 547: 543: 534: 531: 525: 522: 518: 511: 504: 498: 489: 480: 471: 460: 453: 446: 442: 433: 427: 420: 414: 405: 397: 393: 386:polar liquid 377: 375: 350: 348: 343: 340: 334: 322: 316: 300: 298: 281: 273: 264: 257: 253: 248: 246: 229: 227: 221: 178: 174: 136: 128:Multiplicity 121: 117: 93: 91: 85: 69: 65: 64: 59: 55: 39: 35: 29: 28: 18: 1736:Tetrahedron 436:Hamiltonian 312:s-character 1700:Org. Lett. 1529:Phys. Rev. 1493:Phys. Rev. 1457:Phys. Rev. 1439:27 January 1389:27 January 1343:27 January 1305:23 January 1253:23 January 988:Phys. Rev. 972:References 956:Proton NMR 793:E. L. Hahn 597:Decoupling 382:Buckingham 197:isotopomer 70:difference 32:-couplings 769:μ 764:⋅ 754:μ 607:decoupled 337:-coupling 224:-coupling 153:−OH group 1763:Category 1720:23611689 1598:19420482 911:See also 333:Sign of 163:and the 1590:1422158 1537:Bibcode 1501:Bibcode 1465:Bibcode 1422:Bibcode 1372:Bibcode 1292:: 144. 996:Bibcode 925:(ECOSY) 919:(EFNMR) 854:⁠ 840:⁠ 617:History 585:is the 501:singlet 306:is the 293:⁠ 269:⁠ 213:⁠ 201:⁠ 193:⁠ 181:⁠ 141:ethanol 110:⁠ 98:⁠ 1718:  1596:  1588:  1296:  1244:  1211:  1180:  1137:  1112:  1079:  1054:  1029:  706:, and 576:where 499:For a 1594:S2CID 937:(NMR) 546:= 2π 410:ortho 48:spins 1716:PMID 1586:PMID 1441:2021 1391:2021 1345:2021 1307:2021 1294:ISBN 1255:2021 1242:ISBN 1209:ISBN 1178:ISBN 1135:ISBN 1110:ISBN 1077:ISBN 1052:ISBN 1027:ISBN 863:and 716:POCl 530:and 510:and 434:The 23:and 1745:doi 1708:doi 1680:doi 1676:122 1652:doi 1623:doi 1619:114 1578:doi 1545:doi 1509:doi 1473:doi 1430:doi 1380:doi 1334:doi 1102:doi 1004:doi 684:OPF 639:HPF 304:C–H 165:−CH 38:or 19:In 1765:: 1741:69 1739:. 1714:. 1704:15 1648:13 1646:. 1592:. 1584:. 1572:. 1543:. 1533:85 1507:. 1497:84 1471:. 1461:84 1428:. 1418:52 1416:. 1412:. 1410:F" 1378:. 1368:14 1366:. 1362:. 1330:89 1328:. 1324:. 1288:. 1226:^ 1217:. 1195:^ 1186:. 1108:. 1002:. 992:88 851:2π 788:. 671:CH 661:, 582:jk 564:· 561:jk 555:· 459:+ 452:+ 445:= 321:, 282:hγ 272:4π 267:= 157:CH 54:, 27:, 1751:. 1747:: 1722:. 1710:: 1686:. 1682:: 1658:. 1654:: 1629:. 1625:: 1600:. 1580:: 1574:2 1564:J 1551:. 1547:: 1539:: 1515:. 1511:: 1503:: 1479:. 1475:: 1467:: 1443:. 1432:: 1424:: 1408:3 1393:. 1382:: 1374:: 1347:. 1336:: 1309:. 1257:. 1143:. 1118:. 1104:: 1085:. 1060:. 1035:. 1010:. 1006:: 998:: 902:J 894:J 886:J 879:2 876:I 874:· 872:1 869:I 848:/ 844:J 836:J 824:τ 820:τ 816:τ 812:τ 774:2 759:1 749:A 728:F 720:2 688:2 675:3 643:6 587:J 578:J 570:k 566:I 557:J 552:j 548:I 544:H 536:k 532:I 527:j 523:I 519:J 515:3 512:D 508:1 505:D 493:3 490:D 484:2 481:D 475:1 472:D 466:, 464:3 461:D 457:2 454:D 450:1 447:D 443:H 428:J 421:J 406:J 398:J 394:J 378:J 371:2 367:3 363:2 361:) 359:5 357:H 355:2 351:J 344:J 335:J 323:J 301:J 295:. 288:y 286:γ 284:x 278:/ 274:J 265:K 258:K 254:γ 249:J 230:J 222:J 210:2 207:/ 204:1 190:2 187:/ 184:1 169:− 167:2 161:− 159:3 149:H 122:J 118:I 107:2 104:/ 101:1 94:J 86:J 66:J 60:J 56:J 30:J

Index

nuclear chemistry
nuclear physics
chemical bonds
spins
NMR spectroscopy

selection rules

ethanol
chemical shift
H
−OH group
CH3
−CH2
isotopomer
saturated molecules
dihedral angles
Karplus equation
Fermi contact interaction
s-character
Earth's field NMR
chemical shifts
Buckingham
polar liquid
dipolar coupling
4-nitrotoluene
ortho
nematic liquid crystal
Hamiltonian
singlet

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.