Knowledge

K3 surface

Source 📝

20: 2955:. Many properties of a K3 surface are determined by its Picard lattice, as a symmetric bilinear form over the integers. This leads to a strong connection between the theory of K3 surfaces and the arithmetic of symmetric bilinear forms. As a first example of this connection: a complex analytic K3 surface is algebraic if and only if there is an element 259:
There are several equivalent ways to define K3 surfaces. The only compact complex surfaces with trivial canonical bundle are K3 surfaces and compact complex tori, and so one can add any condition excluding the latter to define K3 surfaces. For example, it is equivalent to define a complex analytic K3
5887:
gave K3 surfaces their name (see the quotation above) and made several influential conjectures about their classification. Kunihiko Kodaira completed the basic theory around 1960, in particular making the first systematic study of complex analytic K3 surfaces which are not algebraic. He showed that
3374:.) It follows that having an elliptic fibration is a codimension-1 condition on a K3 surface. So there are 19-dimensional families of complex analytic K3 surfaces with an elliptic fibration, and 18-dimensional moduli spaces of projective K3 surfaces with an elliptic fibration. 5457:
of the roots form a set of hyperplanes which all go through the positive cone. Then the ample cone is a connected component of the complement of these hyperplanes in the positive cone. Any two such components are isomorphic via the orthogonal group of the lattice
5623:, there is one other possibility: the cone of curves may be spanned by one (−2)-curve and one curve with self-intersection 0.) So the cone of curves is either the standard round cone, or else it has "sharp corners" (because every (−2)-curve spans an 3998: 705: 5751:
heterotic string, the Spin(32)/Z2 heterotic string, and M-theory are related by compactification on a K3 surface. For example, the Type IIA string compactified on a K3 surface is equivalent to the heterotic string compactified on a 4-torus
3872: 835: 5888:
any two complex analytic K3 surfaces are deformation-equivalent and hence diffeomorphic, which was new even for algebraic K3 surfaces. An important later advance was the proof of the Torelli theorem for complex algebraic K3 surfaces by
5635:
K3 surfaces are somewhat unusual among algebraic varieties in that their automorphism groups may be infinite, discrete, and highly nonabelian. By a version of the Torelli theorem, the Picard lattice of a complex algebraic K3 surface
2186:. This would be optimal if true, since equality holds for a complex K3 surface, which has signature 3−19 = −16. The conjecture would imply that every simply connected smooth 4-manifold with even intersection form is 5239: 5447: 4255: 3670: 1101: 250:
It can be useful to think of complex algebraic K3 surfaces as part of the broader family of complex analytic K3 surfaces. Many other types of algebraic varieties do not have such non-algebraic deformations.
553: 2694: 2018: 1190: 1935: 5179:
of ample divisors (up to automorphisms of the Picard lattice). The ample cone is determined by the Picard lattice as follows. By the Hodge index theorem, the intersection form on the real vector space
1871: 1763:
of algebraic K3 surfaces to show that all such K3 surfaces have the same Hodge numbers. A more low-brow calculation can be done using the calculation of the Betti numbers along with the parts of the
2127: 1447: 4073: 3230:, with the possible types of singular fibers classified by Kodaira. There are always some singular fibers, since the sum of the topological Euler characteristics of the singular fibers is 3335: 2991: 2908: 3753:
has arbitrarily small deformations which are isomorphic to smooth quartics.) For the same reason, there is not a meaningful moduli space of compact complex tori of dimension at least 2.
2062: 191: 1240: 981: 4176: 4132: 3599: 3447: 3224: 2831: 1809: 342: 4304: 295:
of a complex analytic K3 surface are computed as follows. (A similar argument gives the same answer for the Betti numbers of an algebraic K3 surface over any field, defined using
33:
Dans la seconde partie de mon rapport, il s'agit des variétés kÀhlériennes dites K3, ainsi nommées en l'honneur de Kummer, KÀhler, Kodaira et de la belle montagne K2 au Cachemire.
4840: 1578: 1514: 5006: 4975: 4944: 4909: 4878: 4754: 4649: 4569: 5087: 4396: 2232: 5844: 5791: 5157: 5116: 4532: 4495: 3539: 3408: 2549: 2517: 2466: 2341: 2305: 452: 399: 5591: 5559: 3152: 2787: 5513: 5277: 3743: 3714: 3263: 3126: 2953: 2384: 1620: 1358: 1023: 271:
There are also some variants of the definition. Over the complex numbers, some authors consider only the algebraic K3 surfaces. (An algebraic K3 surface is automatically
3910: 3024: 3469:; that is, it is not covered by a continuous family of rational curves. On the other hand, in contrast to negatively curved varieties such as surfaces of general type, 2437: 572: 5372: 5313: 5163:
is still irreducible of dimension 19 (containing the previous moduli space as an open subset). Formally, it works better to view this as a moduli space of K3 surfaces
4784: 4687: 3774: 3178: 3073: 1316: 1276: 874: 5870: 5681: 5621: 5533: 4719: 4599: 3368: 5535:
is empty, then the closed cone of curves is the closure of the positive cone. Otherwise, the closed cone of curves is the closed convex cone spanned by all elements
3901: 3290: 3047: 2870: 2738: 2718: 2631: 2158: 913: 720: 3453:. The moduli space of all smooth quartic surfaces (up to isomorphism) has dimension 19, while the subspace of quartic surfaces containing a line has dimension 18. 3512:
happens to be an elliptic K3 surface.) A stronger question that remains open is whether every complex K3 surface admits a nondegenerate holomorphic map from
2241:. On the other hand, there are smooth complex surfaces (some of them projective) that are homeomorphic but not diffeomorphic to a K3 surface, by Kodaira and 5743:
on these surfaces are not trivial, yet they are simple enough to analyze most of their properties in detail. The type IIA string, the type IIB string, the E
5008:. However, a concrete version of this idea is the fact that any two complex algebraic K3 surfaces are deformation-equivalent through algebraic K3 surfaces. 3749:. (For example, the space of smooth quartic surfaces is irreducible of dimension 19, and yet every complex analytic K3 surface in the 20-dimensional family 231:, and yet where a substantial understanding is possible. A complex K3 surface has real dimension 4, and it plays an important role in the study of smooth 3371: 7291: 6893: 4911:
corresponding to K3 surfaces of Picard number at least 2. Those K3 surfaces have polarizations of infinitely many different degrees, not just 2
5175:
A remarkable feature of algebraic K3 surfaces is that the Picard lattice determines many geometric properties of the surface, including the
3029:
Roughly speaking, the space of all complex analytic K3 surfaces has complex dimension 20, while the space of K3 surfaces with Picard number
5182: 223:(which are essentially unclassifiable). K3 surfaces can be considered the simplest algebraic varieties whose structure does not reduce to 5740: 2744:
contains no closed complex curves at all. By contrast, an algebraic surface always contains many continuous families of curves.) Over an
5380: 4181: 3604: 3226:. "Elliptic" means that all but finitely many fibers of this morphism are smooth curves of genus 1. The singular fibers are unions of 1034: 6780:"Géométrie des espaces de modules de courbes et de surfaces K3 (d'aprÚs Gritsenko-Hulek-Sankaran, Farkas-Popa, Mukai, Verra, et al.)" 2469: 464: 3082:
The precise description of which lattices can occur as Picard lattices of K3 surfaces is complicated. One clear statement, due to
2640: 1964: 1110: 5597:
contains no (−2)-curves; in the second case, the closed cone of curves is the closed convex cone spanned by all (−2)-curves. (If
1876: 1814: 215:) of dimension two. As such, they are at the center of the classification of algebraic surfaces, between the positively curved 6344: 6311: 3768:
holds: a K3 surface is determined by its Hodge structure. The period domain is defined as the 20-dimensional complex manifold
3075:(excluding the supersingular case). In particular, algebraic K3 surfaces occur in 19-dimensional families. More details about 6827: 6794: 6728: 6284: 2067: 711: 3295:
Whether a K3 surface is elliptic can be read from its Picard lattice. Namely, in characteristic not 2 or 3, a K3 surface
1666: 1369: 108: 6886: 6568: 6267:, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol. 4, 3087: 4018: 3680:
complex manifold of dimension 20. The set of isomorphism classes of complex analytic K3 surfaces is the quotient of
7258: 3188:
An important subclass of K3 surfaces, easier to analyze than the general case, consists of the K3 surfaces with an
2607: 559: 3302: 2958: 2875: 7488: 7223: 5645: 240: 2034: 8086: 7850: 5846:
with trivial canonical bundle and irregularity zero. In 1909, Enriques showed that such surfaces exist for all
5316: 124: 7430: 6936: 6879: 6860: 6720: 6708: 4880:
overlap in an intricate way. Indeed, there is a countably infinite set of codimension-1 subvarieties of each
1195: 6779: 5466:
across each root hyperplane. In this sense, the Picard lattice determines the ample cone up to isomorphism.
918: 7875: 7200: 6931: 4137: 4093: 3560: 3417: 3194: 2792: 2487: 1770: 302: 4260: 8076: 6749: 6703: 4789: 4610: 2391: 2238: 1519: 1455: 7455: 4980: 4949: 4918: 4883: 4852: 4728: 4623: 4543: 7376: 7081: 7028: 5034: 4343: 2745: 2197: 27:(of real dimension 2) in a certain complex K3 surface (of complex dimension 2, hence real dimension 4). 5820: 5767: 5133: 5092: 4508: 4471: 3515: 3461:
In contrast to positively curved varieties such as del Pezzo surfaces, a complex algebraic K3 surface
3384: 3154:
is the Picard lattice of some complex projective K3 surface. The space of such surfaces has dimension
2525: 2493: 2442: 2317: 2281: 8081: 7670: 4426: 3504:
is always covered by a continuous family of images of elliptic curves. (These curves are singular in
2555: 402: 89: 7715: 2767:) together with its intersection form, a symmetric bilinear form with values in the integers. (Over 2394:
of this singular surface may also be called a Kummer surface; that resolution is a K3 surface. When
2237:
Every complex surface that is diffeomorphic to a K3 surface is a K3 surface, by Robert Friedman and
408: 355: 7895: 7815: 7630: 7564: 6926: 6497: 5564: 5463: 3993:{\displaystyle H^{0}(X,\Omega ^{2})\subset H^{2}(X,\mathbb {C} )\cong \Lambda \otimes \mathbb {C} } 2753: 1938: 197: 7775: 5538: 3131: 2770: 2182:
with even intersection form has second Betti number at least 11/8 times the absolute value of the
700:{\displaystyle \chi (X,{\mathcal {O}}_{X}):=\sum _{i}(-1)^{i}h^{i}(X,{\mathcal {O}}_{X})=1-0+1=2.} 37:
In the second part of my report, we deal with the KĂ€hler varieties known as K3, named in honor of
8035: 7845: 7559: 7397: 7371: 7243: 7112: 7001: 6943: 6330: 5492: 5244: 3867:{\displaystyle D=\{u\in P(\Lambda \otimes \mathbb {C} ):u^{2}=0,\,u\cdot {\overline {u}}>0\}.} 3719: 3690: 3233: 3093: 2920: 2360: 2021: 1583: 1321: 986: 280: 208: 7402: 6698: 2996: 212: 8091: 7800: 7541: 7347: 7238: 7210: 7033: 6654: 5889: 3746: 2405: 5341: 5282: 4977:. This is imprecise, since there is not a well-behaved space containing all the moduli spaces 4763: 4666: 3541:(where "nondegenerate" means that the derivative of the map is an isomorphism at some point). 3157: 3052: 2696:. It is an important feature of K3 surfaces that many different Picard numbers can occur. For 1285: 1245: 843: 830:{\displaystyle \chi (X,{\mathcal {O}}_{X})={\frac {1}{12}}\left(c_{1}(X)^{2}+c_{2}(X)\right),} 7655: 7595: 7536: 7503: 7498: 7296: 7286: 7253: 7117: 6994: 6989: 6984: 6969: 6959: 5849: 5666: 5600: 5518: 5454: 4692: 4578: 4000:. This is surjective, and a local isomorphism, but not an isomorphism (in particular because 3340: 2266:
branched along a smooth sextic (degree 6) curve is a K3 surface of genus 2 (that is, degree 2
236: 7950: 6555: 3880: 1650:. (Analogously, but much easier: every algebraic K3 surface over a field is projective.) By 8040: 7825: 7038: 7023: 6979: 6856: 6837: 6804: 6738: 6690: 6670: 6647: 6620: 6578: 6536: 6516: 6430: 6384: 6352: 6319: 6294: 6249: 6028: 4418: 4178:, that is, an isomorphism of abelian groups that preserves the intersection form and sends 3268: 3032: 2848: 2723: 2703: 2616: 2183: 2136: 1361: 1029: 891: 276: 6768: 6484: 6457: 5892:
and Igor Shafarevich (1971), extended to complex analytic K3 surfaces by Daniel Burns and
3716:, but this quotient is not a geometrically meaningful moduli space, because the action of 2171: 8: 7955: 7840: 7493: 7392: 7018: 5374:. Then the ample cone is equal to the positive cone. Thus it is the standard round cone. 4538: 3486: 2914: 2838: 2834: 2308: 93: 6865: 6674: 6563:, Cambridge Studies in Advanced Mathematics, vol. 158, Cambridge University Press, 6520: 6305: 1279: 8000: 7920: 7820: 7780: 7710: 7660: 7625: 7460: 7337: 7233: 6974: 6624: 6598: 6540: 6506: 6404: 6388: 6235: 5724: 3189: 3083: 2029: 272: 7387: 7965: 7870: 7705: 7615: 7585: 7381: 7276: 7228: 7122: 6823: 6790: 6724: 6564: 6551: 6464: 6437: 6280: 6227: 5919: 5806: 5159:
with self-intersection −2.) The moduli space of quasi-polarized K3 surfaces of genus
4330: 3473:
contains a large discrete set of rational curves (possibly singular). In particular,
2592: 2256: 1655: 296: 265: 228: 216: 112: 104: 6682: 6628: 6544: 6392: 7975: 7910: 7880: 7760: 7700: 7665: 7610: 7600: 7513: 7465: 7423: 7328: 7321: 7314: 7307: 7300: 7218: 7008: 6916: 6764: 6745: 6678: 6658: 6608: 6524: 6480: 6453: 6416: 6400: 6376: 6372: 6326: 6301: 6272: 5915: 5905: 5893: 5873: 4652: 3685: 3493: 3466: 2399: 2263: 2242: 1945: 1636: 261: 85: 81: 46: 7580: 6642:, Adv. Stud. Pure Math., vol. 45, Tokyo: Math. Soc. Japan, pp. 315–326, 1643: 8055: 8010: 7960: 7945: 7935: 7830: 7795: 7620: 7190: 6964: 6833: 6819: 6800: 6734: 6686: 6643: 6616: 6586: 6574: 6532: 6426: 6380: 6348: 6334: 6315: 6290: 6268: 6245: 5910: 5802: 5688: 5024: 5020: 4606: 3765: 3761: 3677: 3474: 2351: 2167: 1764: 1756: 224: 116: 100: 7900: 6495:; Sankaran, G. K. (2007), "The Kodaira dimension of the moduli of K3 surfaces", 6360: 42: 8030: 8025: 7985: 7925: 7755: 7745: 7740: 7735: 7650: 7645: 7640: 7605: 7590: 7518: 7195: 7058: 5736: 5478: 4414: 3757: 3227: 2347: 1752: 1651: 1104: 885: 24: 7915: 7835: 6528: 6276: 8070: 8020: 8005: 7980: 7970: 7940: 7885: 7860: 7790: 7785: 7750: 7725: 7685: 7475: 7127: 7043: 6921: 6902: 6775: 6635: 6338: 5798: 5469:
A related statement, due to SĂĄndor KovĂĄcs, is that knowing one ample divisor
4656: 3478: 3265:. A general elliptic K3 surface has exactly 24 singular fibers, each of type 2191: 1632: 455: 264:
compact complex manifold of dimension 2 with a nowhere-vanishing holomorphic
244: 111:
of surfaces, K3 surfaces form one of the four classes of minimal surfaces of
97: 7805: 6811: 268:. (The latter condition says exactly that the canonical bundle is trivial.) 8050: 7890: 7770: 7720: 7690: 7675: 7483: 7450: 7342: 7268: 7248: 7185: 7048: 6088:
Kamenova et al. (2014), Corollary 2.2; Huybrechts (2016), Corollary 13.2.2.
5794: 4757: 4602: 3370:. (In characteristic 2 or 3, the latter condition may also correspond to a 3076: 2568: 2187: 1760: 1647: 292: 220: 204: 38: 6612: 2789:, the intersection form means the restriction of the intersection form on 8045: 8015: 7995: 7855: 7810: 7765: 7730: 7680: 7445: 7414: 7175: 7132: 6492: 6260: 5176: 4722: 4660: 2917:
implies that the Picard lattice of an algebraic K3 surface has signature
1958: 881: 73: 6421: 5876:
showed that the moduli space of such surfaces has dimension 19 for each
2554:
There are several databases of K3 surfaces with du Val singularities in
7990: 7930: 7865: 7528: 7508: 7366: 7180: 6468: 6441: 6256: 6240: 5118:, but now it may contract finitely many (−2)-curves, so that the image 2833:. Over a general field, the intersection form can be defined using the 2275: 2161: 1659: 232: 7905: 7695: 7635: 7281: 7155: 7076: 7071: 7066: 6511: 5234:{\displaystyle N^{1}(X):=\operatorname {Pic} (X)\otimes \mathbb {R} } 4340:
is primitive (that is, not 2 or more times another line bundle) and
3299:
has an elliptic fibration if and only if there is a nonzero element
7551: 7440: 7435: 7165: 7160: 7097: 7013: 6340:
Géométrie des surfaces K3: modules et périodes, Séminaire Palaiseau
4915:–2. So one can say that infinitely many of the other moduli spaces 2720:
can be any integer between 1 and 20. In the complex analytic case,
2591:. The two definitions agree for a complex algebraic K3 surface, by 2175: 219:(which are easy to classify) and the negatively curved surfaces of 6603: 23:
A smooth quartic surface in 3-space. The figure shows part of the
7170: 7150: 7107: 7102: 6850: 6020: 5442:{\displaystyle \Delta =\{u\in \operatorname {Pic} (X):u^{2}=-2\}} 4250:{\displaystyle H^{0}(X,\Omega ^{2})\subset H^{2}(X,\mathbb {C} )} 3500:
is identically zero. The proof uses that an algebraic K3 surface
2837:
of curves on a surface, by identifying the Picard group with the
1811:
for an arbitrary K3 surface. In this case, Hodge symmetry forces
54: 6871: 3665:{\displaystyle \Lambda =E_{8}(-1)^{\oplus 2}\oplus U^{\oplus 3}} 1096:{\displaystyle 0\to \mathbb {Z} _{X}\to O_{X}\to O_{X}^{*}\to 0} 6661:(1971), "Torelli's theorem for algebraic surfaces of type K3", 4078:
is bijective. It follows that two complex analytic K3 surfaces
2386:. This results in 16 singularities, at the 2-torsion points of 67:, p. 546), describing the reason for the name "K3 surface" 7142: 548:{\displaystyle h^{2}(X,{\mathcal {O}}_{X})=h^{0}(X,K_{X})=1.} 19: 6325: 3492:
Another contrast to negatively curved varieties is that the
2689:{\displaystyle H^{2}(X,\mathbb {Z} )\cong \mathbb {Z} ^{22}} 2579:
means the abelian group of complex analytic line bundles on
2245:. These "homotopy K3 surfaces" all have Kodaira dimension 1. 2013:{\displaystyle H^{2}(X,\mathbb {Z} )\cong \mathbb {Z} ^{22}} 1185:{\displaystyle 0\to H^{1}(X,\mathbb {Z} )\to H^{1}(X,O_{X})} 6750:"Le superficie algebriche con curva canonica d'ordine zero" 6589:(2014), "Kobayashi pseudometric on hyperkÀhler manifolds", 5739:
and provide an important tool for the understanding of it.
2596: 2270:−2 = 2). (This terminology means that the inverse image in 1930:{\displaystyle H^{1}(X,\Omega _{X})\cong \mathbb {C} ^{20}} 6255: 4329:
is defined to be a projective K3 surface together with an
4309: 1866:{\displaystyle H^{0}(X;\Omega _{X}^{2})\cong \mathbb {C} } 1658:, it follows that every complex analytic K3 surface has a 6789:, SĂ©minaire Bourbaki. 2006/2007. Exp 981 (317): 467–490, 6653: 5918:, a mysterious relationship between K3 surfaces and the 5170: 4497:. In most cases, this morphism is an embedding, so that 1755:
of a specific K3 surface, and then using a variation of
2402:
of a curve of genus 2, Kummer showed that the quotient
2122:{\displaystyle E_{8}(-1)^{\oplus 2}\oplus U^{\oplus 3}} 50: 6490: 6052:
Huybrechts (2016), Corollary 14.3.1 and Remark 14.3.7.
5715:. A related statement, due to Hans Sterk, is that Aut( 5852: 5823: 5770: 5669: 5603: 5567: 5541: 5521: 5495: 5383: 5344: 5285: 5247: 5185: 5136: 5095: 5037: 4983: 4952: 4921: 4886: 4855: 4792: 4766: 4731: 4695: 4669: 4626: 4581: 4546: 4511: 4474: 4346: 4263: 4184: 4140: 4096: 4021: 3913: 3883: 3777: 3722: 3693: 3607: 3563: 3518: 3489:
to a positive linear combination of rational curves.
3420: 3387: 3343: 3305: 3271: 3236: 3197: 3160: 3134: 3096: 3055: 3035: 2999: 2961: 2923: 2878: 2851: 2795: 2773: 2726: 2706: 2643: 2619: 2528: 2496: 2479:
with du Val singularities, the minimal resolution of
2445: 2408: 2363: 2320: 2284: 2200: 2139: 2070: 2037: 1967: 1879: 1817: 1773: 1586: 1522: 1458: 1372: 1324: 1288: 1248: 1198: 1113: 1037: 989: 921: 894: 846: 723: 575: 467: 411: 358: 305: 127: 16:
Type of smooth complex surface of kodaira dimension 0
6442:"Richerche di geometria sulle superficie algebriche" 6263:; Peters, Chris A.M.; Van de Ven, Antonius (2004) , 6638:(2006), "Polarized K3 surfaces of genus thirteen", 6584: 6409:
Annales Scientifiques de l'École Normale SupĂ©rieure
6405:"On the Torelli problem for kĂ€hlerian K-3 surfaces" 4012:for K3 surfaces says that the quotient map of sets 1944:> 0, this was first shown by Alexey Rudakov and 1669:of any K3 surface are listed in the Hodge diamond: 1442:{\displaystyle \chi (X)=\sum _{i}(-1)^{i}b_{i}(X).} 286: 6814:(1958), "Final report on contract AF 18(603)-57", 6169:Huybrechts (2016), section 5.1.4 and Remark 6.4.5. 6115:Huybrechts (2016), section 6.3.1 and Remark 6.3.6. 5864: 5838: 5805:and other 19th-century geometers. More generally, 5785: 5675: 5615: 5585: 5553: 5527: 5507: 5441: 5366: 5307: 5271: 5233: 5151: 5110: 5081: 5000: 4969: 4938: 4903: 4872: 4834: 4778: 4748: 4713: 4681: 4643: 4593: 4563: 4526: 4489: 4390: 4298: 4249: 4170: 4126: 4067: 3992: 3895: 3866: 3737: 3708: 3664: 3593: 3533: 3441: 3402: 3362: 3329: 3284: 3257: 3218: 3172: 3146: 3120: 3067: 3041: 3018: 2985: 2947: 2902: 2864: 2825: 2781: 2732: 2712: 2688: 2625: 2543: 2511: 2460: 2431: 2378: 2335: 2299: 2226: 2152: 2121: 2056: 2012: 1929: 1865: 1803: 1614: 1572: 1508: 1441: 1352: 1310: 1270: 1234: 1184: 1095: 1017: 975: 907: 868: 829: 699: 547: 446: 393: 336: 185: 5323:the component that contains any ample divisor on 3456: 2752:> 0, there is a special class of K3 surfaces, 8068: 5663:)) generated by reflections in the set of roots 4398:. This is also called a polarized K3 surface of 2841:.) The Picard lattice of a K3 surface is always 6232:Fields, strings and duality (Boulder, CO, 1996) 5089:. Such a line bundle still gives a morphism to 5019:means a projective K3 surface with a primitive 2587:) means the group of algebraic line bundles on 2551:is a K3 surface of genus 5 (that is, degree 8). 2519:is a K3 surface of genus 4 (that is, degree 6). 2343:is a K3 surface of genus 3 (that is, degree 4). 4068:{\displaystyle N/O(\Lambda )\to D/O(\Lambda )} 6887: 6398: 5730: 5436: 5390: 3858: 3784: 3330:{\displaystyle u\in \operatorname {Pic} (X)} 2986:{\displaystyle u\in \operatorname {Pic} (X)} 2903:{\displaystyle u\in \operatorname {Pic} (X)} 2763:of a K3 surface means the abelian group Pic( 4849:The different 19-dimensional moduli spaces 2610:free abelian group; its rank is called the 283:of dimension 2), rather than being smooth. 107:that satisfies the same conditions. In the 6894: 6880: 6591:Journal of the London Mathematical Society 6550: 6230:(1996), "K3 surfaces and string duality", 5809:observed in 1893 that for various numbers 5735:K3 surfaces appear almost ubiquitously in 4571:of polarized complex K3 surfaces of genus 3090:, is that every even lattice of signature 2057:{\displaystyle \operatorname {II} _{3,19}} 2024:with values in the integers, known as the 6602: 6510: 6420: 6300: 6239: 6226: 5753: 5703:is commensurable with the quotient group 5279:. It follows that the set of elements of 5227: 5130:on a surface means a curve isomorphic to 4240: 4161: 4117: 4086:are isomorphic if and only if there is a 3986: 3969: 3835: 3806: 3584: 3521: 2816: 2775: 2676: 2664: 2000: 1988: 1917: 1859: 1794: 1751:One way to show this is to calculate the 1631:Any two complex analytic K3 surfaces are 1219: 1140: 1046: 186:{\displaystyle x^{4}+y^{4}+z^{4}+w^{4}=0} 92:zero. An (algebraic) K3 surface over any 6463: 6436: 5655:be the subgroup of the orthogonal group 5315:with positive self-intersection has two 2475:More generally: for any quartic surface 2133:is the hyperbolic lattice of rank 2 and 1642:Every complex analytic K3 surface has a 275:.) Or one may allow K3 surfaces to have 18: 6714: 6696: 4310:Moduli spaces of projective K3 surfaces 3676:of marked complex K3 surfaces is a non- 3183: 2314:A smooth quartic (degree 4) surface in 1235:{\displaystyle H^{1}(X,\mathbb {Z} )=0} 299:.) By definition, the canonical bundle 8069: 6774: 6744: 6307:Bourbaki seminar, Vol. 1982/83 Exp 609 6234:, World Scientific, pp. 421–540, 6070:Huybrechts (2016), Proposition 11.1.3. 4843: 4501:is isomorphic to a surface of degree 2 3557:to be an isomorphism of lattices from 3377:Example: Every smooth quartic surface 2522:The intersection of three quadrics in 976:{\displaystyle c_{1}(K_{X})=-c_{1}(X)} 558:As a result, the arithmetic genus (or 203:Together with two-dimensional compact 6875: 6640:Moduli spaces and arithmetic geometry 6634: 6361:"A database of polarized K3 surfaces" 6358: 5992:Huybrechts (2016), Proposition 3.3.5. 5640:determines the automorphism group of 5630: 5627:extremal ray of the cone of curves). 5171:The ample cone and the cone of curves 4842:. A survey of this area was given by 4421:implies that there is a smooth curve 4171:{\displaystyle H^{2}(Y,\mathbb {Z} )} 4127:{\displaystyle H^{2}(X,\mathbb {Z} )} 3594:{\displaystyle H^{2}(X,\mathbb {Z} )} 3442:{\displaystyle X\to \mathbf {P} ^{1}} 3219:{\displaystyle X\to \mathbf {P} ^{1}} 2826:{\displaystyle H^{2}(X,\mathbb {Z} )} 2562: 2350:is the quotient of a two-dimensional 1804:{\displaystyle H^{2}(X;\mathbb {Z} )} 337:{\displaystyle K_{X}=\Omega _{X}^{2}} 115:zero. A simple example is the Fermat 7292:Bogomol'nyi–Prasad–Sommerfield bound 6868:, lectures by David Morrison (1988). 6810: 6343:, AstĂ©risque, vol. 126, Paris: 6310:, AstĂ©risque, vol. 105, Paris: 6187:Huybrechts (2016), Corollary 8.3.12. 6178:Huybrechts (2016), Corollary 8.2.11. 6142:Huybrechts (2016), Definition 2.4.1. 6079:Huybrechts (2016), Corollary 13.1.5. 6010:Huybrechts (2016), Remark 1.3.6(ii). 5884: 4299:{\displaystyle H^{0}(Y,\Omega ^{2})} 64: 6151:Huybrechts (2016), Corollary 6.4.4. 4835:{\displaystyle g=47,51,55,58,59,61} 2583:. For an algebraic K3 surface, Pic( 2575:) of a complex analytic K3 surface 2194:of copies of the K3 surface and of 1573:{\displaystyle b_{1}(X)=b_{3}(X)=0} 1509:{\displaystyle b_{0}(X)=b_{4}(X)=1} 235:. K3 surfaces have been applied to 13: 6818:, vol. II, Berlin, New York: 6816:Scientific works. Collected papers 6097:Huybrechts (2016), section 13.0.3. 6061:Huybrechts (2016), Remark 11.1.12. 5974:Barth et al. (2004), section IV.3. 5699:)), and the automorphism group of 5670: 5548: 5522: 5384: 5001:{\displaystyle {\mathcal {F}}_{g}} 4987: 4970:{\displaystyle {\mathcal {F}}_{g}} 4956: 4939:{\displaystyle {\mathcal {F}}_{h}} 4925: 4904:{\displaystyle {\mathcal {F}}_{g}} 4890: 4873:{\displaystyle {\mathcal {F}}_{g}} 4859: 4749:{\displaystyle {\mathcal {F}}_{g}} 4735: 4644:{\displaystyle {\mathcal {F}}_{g}} 4630: 4564:{\displaystyle {\mathcal {F}}_{g}} 4550: 4284: 4205: 4059: 4036: 3979: 3934: 3799: 3729: 3700: 3608: 1953:For a complex analytic K3 surface 1900: 1838: 915:is trivial, its first Chern class 739: 659: 591: 490: 320: 14: 8103: 6901: 6844: 6663:Mathematics of the USSR-Izvestiya 6196:Huybrechts (2016), Theorem 8.4.2. 6160:Huybrechts (2016), section 7.1.1. 6133:Huybrechts (2016), Theorem 7.5.3. 6124:Huybrechts (2016), section 7.1.3. 6106:Huybrechts (2016), section 6.3.3. 6043:Barth et al. (2004), Theorem 6.1. 5983:Huybrechts (2016), Theorem 9.5.1. 5965:Huybrechts (2016), Theorem 7.1.1. 5082:{\displaystyle c_{1}(L)^{2}=2g-2} 4725:and Gregory Sankaran showed that 4721:. In contrast, Valery Gritsenko, 4659:showed that this moduli space is 4655:complex variety of dimension 19. 4391:{\displaystyle c_{1}(L)^{2}=2g-2} 3553:of a complex analytic K3 surface 3544: 3496:on a complex analytic K3 surface 2740:may also be zero. (In that case, 2602:The Picard group of a K3 surface 2227:{\displaystyle S^{2}\times S^{2}} 2028:. This is isomorphic to the even 344:is trivial, and the irregularity 6585:Kamenova, Ljudmila; Lu, Steven; 5839:{\displaystyle \mathbf {P} ^{g}} 5826: 5813:, there are surfaces of degree 2 5786:{\displaystyle \mathbf {P} ^{3}} 5773: 5152:{\displaystyle \mathbf {P} ^{1}} 5139: 5111:{\displaystyle \mathbf {P} ^{g}} 5098: 4527:{\displaystyle \mathbf {P} ^{g}} 4514: 4490:{\displaystyle \mathbf {P} ^{g}} 4477: 4452:The vector space of sections of 3534:{\displaystyle \mathbb {C} ^{2}} 3449:, given by projecting away from 3429: 3403:{\displaystyle \mathbf {P} ^{3}} 3390: 3206: 3079:of K3 surfaces are given below. 2700:a complex algebraic K3 surface, 2544:{\displaystyle \mathbf {P} ^{5}} 2531: 2512:{\displaystyle \mathbf {P} ^{4}} 2499: 2461:{\displaystyle \mathbf {P} ^{3}} 2448: 2336:{\displaystyle \mathbf {P} ^{3}} 2323: 2300:{\displaystyle \mathbf {P} ^{2}} 2287: 560:holomorphic Euler characteristic 287:Calculation of the Betti numbers 7489:Eleven-dimensional supergravity 6683:10.1070/IM1971v005n03ABEH001075 6473:Rendiconti Accademia di Bologna 6214:Enriques (1909); Severi (1909). 6208: 6205:Enriques (1893), section III.6. 6199: 6190: 6181: 6172: 6163: 6154: 6145: 6136: 6127: 6118: 6109: 6100: 6091: 6082: 6073: 6064: 6055: 6046: 6037: 6013: 5956:Huybrechts (2016), section 2.4. 5947:Huybrechts (2016), section 2.3. 5938:Huybrechts (2016), Remark 1.1.2 109:Enriques–Kodaira classification 6377:10.1080/10586458.2007.10128983 6345:SociĂ©tĂ© MathĂ©matique de France 6312:SociĂ©tĂ© MathĂ©matique de France 6004: 5995: 5986: 5977: 5968: 5959: 5950: 5941: 5932: 5411: 5405: 5302: 5296: 5266: 5248: 5220: 5214: 5202: 5196: 5055: 5048: 4433:|. All such curves have genus 4364: 4357: 4293: 4274: 4244: 4230: 4214: 4195: 4165: 4151: 4121: 4107: 4062: 4056: 4042: 4039: 4033: 3973: 3959: 3943: 3924: 3887: 3810: 3796: 3732: 3726: 3703: 3697: 3634: 3624: 3588: 3574: 3457:Rational curves on K3 surfaces 3424: 3324: 3318: 3246: 3240: 3201: 3115: 3097: 2980: 2974: 2942: 2924: 2897: 2891: 2820: 2806: 2668: 2654: 2426: 2417: 2367: 2091: 2081: 1992: 1978: 1909: 1890: 1852: 1828: 1798: 1784: 1603: 1597: 1561: 1555: 1539: 1533: 1497: 1491: 1475: 1469: 1433: 1427: 1408: 1398: 1382: 1376: 1341: 1335: 1305: 1299: 1265: 1259: 1223: 1209: 1179: 1160: 1147: 1144: 1130: 1117: 1087: 1069: 1056: 1041: 1006: 1000: 970: 964: 945: 932: 863: 857: 816: 810: 788: 781: 750: 727: 670: 647: 628: 618: 602: 579: 536: 517: 501: 478: 447:{\displaystyle H^{1}(X,O_{X})} 441: 422: 394:{\displaystyle h^{1}(X,O_{X})} 388: 369: 84:of dimension 2 with Đ° trivial 49:and of the beautiful mountain 1: 6937:Second superstring revolution 6861:Magma computer algebra system 6851:Graded Ring Database homepage 6822:, pp. 390–395, 545–547, 6721:American Mathematical Society 6717:The wild world of 4-manifolds 6469:"Le superficie di genere uno" 6220: 5586:{\displaystyle A\cdot u>0} 3764:. When stated carefully, the 2468:as a quartic surface with 16 1625: 254: 7431:Generalized complex manifold 6932:First superstring revolution 6853:for a catalog of K3 surfaces 6001:Scorpan (2005), section 5.3. 5554:{\displaystyle u\in \Delta } 5330:Case 1: There is no element 3847: 3147:{\displaystyle \rho \leq 11} 2782:{\displaystyle \mathbb {C} } 1957:, the intersection form (or 1360:is equal to the topological 7: 6866:The geometry of K3 surfaces 6715:Scorpan, Alexandru (2005), 6704:Encyclopedia of Mathematics 6446:Memorie Accademia di Torino 5899: 5723:with a rational polyhedral 5508:{\displaystyle \rho \geq 3} 5462:), since that contains the 5453:of the Picard lattice. The 5272:{\displaystyle (1,\rho -1)} 5167:with du Val singularities. 3738:{\displaystyle O(\Lambda )} 3709:{\displaystyle O(\Lambda )} 3481:showed that every curve on 3258:{\displaystyle \chi (X)=24} 3121:{\displaystyle (1,\rho -1)} 2948:{\displaystyle (1,\rho -1)} 2845:, meaning that the integer 2633:. In the complex case, Pic( 2483:is an algebraic K3 surface. 2379:{\displaystyle a\mapsto -a} 2249: 2174:predicts that every smooth 1615:{\displaystyle b_{2}(X)=22} 1353:{\displaystyle c_{2}(X)=24} 1018:{\displaystyle c_{2}(X)=24} 714:(Noether's formula) says: 10: 8108: 7029:Non-critical string theory 5759: 5731:Relation to string duality 5719:) acts on the nef cone of 4417:. In characteristic zero, 3903:sends a marked K3 surface 3760:sends a K3 surface to its 3414:has an elliptic fibration 3019:{\displaystyle u^{2}>0} 2746:algebraically closed field 2556:weighted projective spaces 1635:as smooth 4-manifolds, by 198:complex projective 3-space 7573: 7550: 7527: 7474: 7359: 7267: 7209: 7141: 7090: 7057: 6952: 6909: 6529:10.1007/s00222-007-0054-1 6277:10.1007/978-3-642-57739-0 4409:Under these assumptions, 2756:, with Picard number 22. 2754:supersingular K3 surfaces 2432:{\displaystyle A/(\pm 1)} 403:coherent sheaf cohomology 7565:Introduction to M-theory 7259:Wess–Zumino–Witten model 7201:Hanany–Witten transition 6927:History of string theory 6757:Atti del Istituto Veneto 6498:Inventiones Mathematicae 6365:Experimental Mathematics 6265:Compact complex surfaces 5926: 5741:String compactifications 5367:{\displaystyle u^{2}=-2} 5308:{\displaystyle N^{1}(X)} 4779:{\displaystyle g\geq 63} 4682:{\displaystyle g\leq 13} 4601:; it can be viewed as a 4537:There is an irreducible 4445:) is said to have genus 3372:quasi-elliptic fibration 3173:{\displaystyle 20-\rho } 3068:{\displaystyle 20-\rho } 1311:{\displaystyle b_{3}(X)} 1271:{\displaystyle b_{1}(X)} 1242:. Thus the Betti number 869:{\displaystyle c_{i}(X)} 103:geometrically connected 7244:Vertex operator algebra 6944:String theory landscape 6697:Rudakov, A.N. (2001) , 6655:PjateckiÄ­-Ć apiro, I. I. 6557:Lectures on K3 surfaces 6304:(1983), "Surfaces K3", 5865:{\displaystyle g\geq 3} 5676:{\displaystyle \Delta } 5616:{\displaystyle \rho =2} 5528:{\displaystyle \Delta } 5485:. Namely, suppose that 5477:) determines the whole 5377:Case 2: Otherwise, let 4714:{\displaystyle g=18,20} 4594:{\displaystyle g\geq 2} 3363:{\displaystyle u^{2}=0} 3292:(a nodal cubic curve). 2022:symmetric bilinear form 1318:is also zero. Finally, 710:On the other hand, the 281:canonical singularities 80:is a compact connected 7542:AdS/CFT correspondence 7297:Exceptional Lie groups 7239:Superconformal algebra 7211:Conformal field theory 7082:Montonen–Olive duality 7034:Non-linear sigma model 5890:Ilya Piatetski-Shapiro 5866: 5840: 5787: 5677: 5617: 5587: 5555: 5529: 5515:. If the set of roots 5509: 5455:orthogonal complements 5443: 5368: 5309: 5273: 5235: 5153: 5112: 5083: 5002: 4971: 4940: 4905: 4874: 4836: 4780: 4750: 4715: 4683: 4645: 4595: 4565: 4528: 4491: 4464:gives a morphism from 4437:, which explains why ( 4392: 4300: 4251: 4172: 4128: 4069: 4010:global Torelli theorem 4008:is not). However, the 3994: 3897: 3896:{\displaystyle N\to D} 3868: 3747:properly discontinuous 3739: 3710: 3666: 3595: 3535: 3443: 3404: 3364: 3331: 3286: 3259: 3220: 3174: 3148: 3122: 3069: 3043: 3020: 2987: 2949: 2904: 2866: 2827: 2783: 2734: 2714: 2690: 2627: 2545: 2513: 2486:The intersection of a 2462: 2433: 2380: 2337: 2301: 2228: 2154: 2123: 2058: 2014: 1931: 1867: 1805: 1616: 1574: 1510: 1443: 1354: 1312: 1272: 1236: 1186: 1097: 1019: 977: 909: 870: 831: 701: 549: 448: 395: 338: 207:, K3 surfaces are the 187: 60: 28: 8087:Differential geometry 7537:Holographic principle 7504:Type IIB supergravity 7499:Type IIA supergravity 7351:-form electrodynamics 6970:Bosonic string theory 6359:Brown, Gavin (2007), 6030:K3 database for Magma 5867: 5841: 5788: 5678: 5618: 5593:. In the first case, 5588: 5556: 5530: 5510: 5444: 5369: 5310: 5274: 5236: 5154: 5113: 5084: 5003: 4972: 4941: 4906: 4875: 4837: 4781: 4751: 4716: 4684: 4646: 4596: 4566: 4529: 4492: 4393: 4301: 4252: 4173: 4129: 4070: 3995: 3898: 3869: 3740: 3711: 3667: 3596: 3536: 3444: 3410:that contains a line 3405: 3365: 3332: 3287: 3285:{\displaystyle I_{1}} 3260: 3221: 3175: 3149: 3123: 3070: 3044: 3042:{\displaystyle \rho } 3021: 2988: 2950: 2905: 2867: 2865:{\displaystyle u^{2}} 2828: 2784: 2735: 2733:{\displaystyle \rho } 2715: 2713:{\displaystyle \rho } 2691: 2628: 2626:{\displaystyle \rho } 2546: 2514: 2463: 2439:can be embedded into 2434: 2381: 2338: 2307:is a smooth curve of 2302: 2229: 2155: 2153:{\displaystyle E_{8}} 2124: 2059: 2015: 1937:. For K3 surfaces in 1932: 1868: 1806: 1617: 1575: 1511: 1444: 1355: 1313: 1273: 1237: 1187: 1107:of cohomology groups 1098: 1020: 978: 910: 908:{\displaystyle K_{X}} 871: 832: 702: 550: 449: 396: 339: 213:hyperkĂ€hler manifolds 188: 76:, a complex analytic 31: 22: 7456:Hoƙava–Witten theory 7403:HyperkĂ€hler manifold 7091:Particles and fields 7039:Tachyon condensation 7024:Matrix string theory 6314:, pp. 217–229, 6022:Graded Ring Database 5850: 5821: 5768: 5764:Quartic surfaces in 5667: 5601: 5565: 5539: 5519: 5493: 5381: 5342: 5317:connected components 5283: 5245: 5183: 5134: 5093: 5035: 5015:K3 surface of genus 4981: 4950: 4919: 4884: 4853: 4790: 4764: 4729: 4693: 4667: 4624: 4579: 4544: 4509: 4472: 4468:to projective space 4344: 4261: 4182: 4138: 4094: 4019: 3911: 3907:to the complex line 3881: 3775: 3720: 3691: 3605: 3561: 3516: 3418: 3385: 3341: 3303: 3269: 3234: 3195: 3184:Elliptic K3 surfaces 3158: 3132: 3094: 3053: 3033: 2997: 2959: 2921: 2876: 2849: 2793: 2771: 2724: 2704: 2641: 2617: 2526: 2494: 2443: 2406: 2361: 2318: 2282: 2198: 2137: 2068: 2035: 1965: 1877: 1815: 1771: 1584: 1520: 1456: 1370: 1362:Euler characteristic 1322: 1286: 1246: 1196: 1111: 1035: 1030:exponential sequence 987: 919: 892: 844: 721: 712:Riemann–Roch theorem 573: 465: 409: 356: 303: 277:du Val singularities 209:Calabi–Yau manifolds 125: 7494:Type I supergravity 7398:Calabi–Yau manifold 7393:Ricci-flat manifold 7372:Kaluza–Klein theory 7113:Ramond–Ramond field 7019:String field theory 6675:1971IzMat...5..547P 6613:10.1112/jlms/jdu038 6521:2007InMat.169..519G 6422:10.24033/asens.1287 4539:coarse moduli space 3877:The period mapping 3487:linearly equivalent 2915:Hodge index theorem 2839:divisor class group 2835:intersection theory 2637:) is a subgroup of 1851: 1654:'s solution to the 1086: 333: 8077:Algebraic surfaces 7461:K-theory (physics) 7338:ADE classification 6975:Superstring theory 6552:Huybrechts, Daniel 6491:Gritsenko, V. A.; 6465:Enriques, Federigo 6438:Enriques, Federigo 6331:Bourguignon, J.-P. 5862: 5836: 5783: 5725:fundamental domain 5673: 5648:. Namely, let the 5631:Automorphism group 5613: 5583: 5551: 5525: 5505: 5489:has Picard number 5439: 5364: 5305: 5269: 5231: 5149: 5108: 5079: 5011:More generally, a 4998: 4967: 4936: 4901: 4870: 4832: 4776: 4746: 4711: 4679: 4641: 4591: 4561: 4524: 4487: 4388: 4296: 4247: 4168: 4124: 4065: 3990: 3893: 3864: 3745:is far from being 3735: 3706: 3662: 3601:to the K3 lattice 3591: 3531: 3439: 3400: 3360: 3327: 3282: 3255: 3216: 3190:elliptic fibration 3170: 3144: 3118: 3084:Viacheslav Nikulin 3065: 3039: 3016: 2983: 2945: 2900: 2862: 2823: 2779: 2748:of characteristic 2730: 2710: 2686: 2623: 2608:finitely generated 2563:The Picard lattice 2541: 2509: 2458: 2429: 2392:minimal resolution 2376: 2333: 2297: 2224: 2150: 2119: 2064:, or equivalently 2054: 2030:unimodular lattice 2010: 1927: 1863: 1837: 1801: 1612: 1580:, it follows that 1570: 1506: 1439: 1397: 1350: 1308: 1268: 1232: 1182: 1093: 1072: 1015: 973: 905: 866: 827: 697: 617: 545: 444: 391: 334: 319: 237:Kac–Moody algebras 217:del Pezzo surfaces 183: 29: 8064: 8063: 7846:van Nieuwenhuizen 7382:Why 10 dimensions 7287:Chern–Simons form 7254:Kac–Moody algebra 7234:Conformal algebra 7229:Conformal anomaly 7123:Magnetic monopole 7118:Kalb–Ramond field 6960:Nambu–Goto action 6829:978-0-387-90330-9 6796:978-2-85629-253-2 6746:Severi, Francesco 6730:978-0-8218-3749-8 6401:Rapoport, Michael 6302:Beauville, Arnaud 6286:978-3-540-00832-3 5920:Mathieu group M24 5916:Mathieu moonshine 5807:Federigo Enriques 4419:Bertini's theorem 4331:ample line bundle 4004:is Hausdorff and 3850: 2872:is even for each 2593:Jean-Pierre Serre 1746: 1745: 1656:Calabi conjecture 1388: 764: 608: 352:) (the dimension 297:l-adic cohomology 229:abelian varieties 113:Kodaira dimension 105:algebraic surface 8099: 8082:Complex surfaces 7574:String theorists 7514:Lie superalgebra 7466:Twisted K-theory 7424:Spin(7)-manifold 7377:Compactification 7219:Virasoro algebra 7002:Heterotic string 6896: 6889: 6882: 6873: 6872: 6840: 6807: 6784: 6771: 6754: 6741: 6711: 6693: 6659:Ć afarevič, I. R. 6650: 6631: 6606: 6587:Verbitsky, Misha 6581: 6562: 6547: 6514: 6487: 6460: 6433: 6424: 6395: 6355: 6322: 6297: 6252: 6243: 6215: 6212: 6206: 6203: 6197: 6194: 6188: 6185: 6179: 6176: 6170: 6167: 6161: 6158: 6152: 6149: 6143: 6140: 6134: 6131: 6125: 6122: 6116: 6113: 6107: 6104: 6098: 6095: 6089: 6086: 6080: 6077: 6071: 6068: 6062: 6059: 6053: 6050: 6044: 6041: 6035: 6033: 6025: 6017: 6011: 6008: 6002: 5999: 5993: 5990: 5984: 5981: 5975: 5972: 5966: 5963: 5957: 5954: 5948: 5945: 5939: 5936: 5906:Enriques surface 5894:Michael Rapoport 5874:Francesco Severi 5871: 5869: 5868: 5863: 5845: 5843: 5842: 5837: 5835: 5834: 5829: 5793:were studied by 5792: 5790: 5789: 5784: 5782: 5781: 5776: 5754:Aspinwall (1996) 5682: 5680: 5679: 5674: 5646:commensurability 5622: 5620: 5619: 5614: 5592: 5590: 5589: 5584: 5560: 5558: 5557: 5552: 5534: 5532: 5531: 5526: 5514: 5512: 5511: 5506: 5448: 5446: 5445: 5440: 5426: 5425: 5373: 5371: 5370: 5365: 5354: 5353: 5314: 5312: 5311: 5306: 5295: 5294: 5278: 5276: 5275: 5270: 5240: 5238: 5237: 5232: 5230: 5195: 5194: 5158: 5156: 5155: 5150: 5148: 5147: 5142: 5126:is singular. (A 5117: 5115: 5114: 5109: 5107: 5106: 5101: 5088: 5086: 5085: 5080: 5063: 5062: 5047: 5046: 5007: 5005: 5004: 4999: 4997: 4996: 4991: 4990: 4976: 4974: 4973: 4968: 4966: 4965: 4960: 4959: 4945: 4943: 4942: 4937: 4935: 4934: 4929: 4928: 4910: 4908: 4907: 4902: 4900: 4899: 4894: 4893: 4879: 4877: 4876: 4871: 4869: 4868: 4863: 4862: 4841: 4839: 4838: 4833: 4785: 4783: 4782: 4777: 4755: 4753: 4752: 4747: 4745: 4744: 4739: 4738: 4720: 4718: 4717: 4712: 4688: 4686: 4685: 4680: 4653:quasi-projective 4650: 4648: 4647: 4642: 4640: 4639: 4634: 4633: 4600: 4598: 4597: 4592: 4570: 4568: 4567: 4562: 4560: 4559: 4554: 4553: 4533: 4531: 4530: 4525: 4523: 4522: 4517: 4496: 4494: 4493: 4488: 4486: 4485: 4480: 4397: 4395: 4394: 4389: 4372: 4371: 4356: 4355: 4305: 4303: 4302: 4297: 4292: 4291: 4273: 4272: 4256: 4254: 4253: 4248: 4243: 4229: 4228: 4213: 4212: 4194: 4193: 4177: 4175: 4174: 4169: 4164: 4150: 4149: 4133: 4131: 4130: 4125: 4120: 4106: 4105: 4074: 4072: 4071: 4066: 4052: 4029: 3999: 3997: 3996: 3991: 3989: 3972: 3958: 3957: 3942: 3941: 3923: 3922: 3902: 3900: 3899: 3894: 3873: 3871: 3870: 3865: 3851: 3843: 3825: 3824: 3809: 3744: 3742: 3741: 3736: 3715: 3713: 3712: 3707: 3686:orthogonal group 3671: 3669: 3668: 3663: 3661: 3660: 3645: 3644: 3623: 3622: 3600: 3598: 3597: 3592: 3587: 3573: 3572: 3540: 3538: 3537: 3532: 3530: 3529: 3524: 3494:Kobayashi metric 3448: 3446: 3445: 3440: 3438: 3437: 3432: 3409: 3407: 3406: 3401: 3399: 3398: 3393: 3369: 3367: 3366: 3361: 3353: 3352: 3336: 3334: 3333: 3328: 3291: 3289: 3288: 3283: 3281: 3280: 3264: 3262: 3261: 3256: 3225: 3223: 3222: 3217: 3215: 3214: 3209: 3179: 3177: 3176: 3171: 3153: 3151: 3150: 3145: 3127: 3125: 3124: 3119: 3074: 3072: 3071: 3066: 3048: 3046: 3045: 3040: 3025: 3023: 3022: 3017: 3009: 3008: 2992: 2990: 2989: 2984: 2954: 2952: 2951: 2946: 2909: 2907: 2906: 2901: 2871: 2869: 2868: 2863: 2861: 2860: 2832: 2830: 2829: 2824: 2819: 2805: 2804: 2788: 2786: 2785: 2780: 2778: 2739: 2737: 2736: 2731: 2719: 2717: 2716: 2711: 2695: 2693: 2692: 2687: 2685: 2684: 2679: 2667: 2653: 2652: 2632: 2630: 2629: 2624: 2550: 2548: 2547: 2542: 2540: 2539: 2534: 2518: 2516: 2515: 2510: 2508: 2507: 2502: 2467: 2465: 2464: 2459: 2457: 2456: 2451: 2438: 2436: 2435: 2430: 2416: 2385: 2383: 2382: 2377: 2342: 2340: 2339: 2334: 2332: 2331: 2326: 2306: 2304: 2303: 2298: 2296: 2295: 2290: 2264:projective plane 2243:Michael Freedman 2233: 2231: 2230: 2225: 2223: 2222: 2210: 2209: 2159: 2157: 2156: 2151: 2149: 2148: 2128: 2126: 2125: 2120: 2118: 2117: 2102: 2101: 2080: 2079: 2063: 2061: 2060: 2055: 2053: 2052: 2019: 2017: 2016: 2011: 2009: 2008: 2003: 1991: 1977: 1976: 1946:Igor Shafarevich 1936: 1934: 1933: 1928: 1926: 1925: 1920: 1908: 1907: 1889: 1888: 1872: 1870: 1869: 1864: 1862: 1850: 1845: 1827: 1826: 1810: 1808: 1807: 1802: 1797: 1783: 1782: 1675: 1674: 1637:Kunihiko Kodaira 1621: 1619: 1618: 1613: 1596: 1595: 1579: 1577: 1576: 1571: 1554: 1553: 1532: 1531: 1515: 1513: 1512: 1507: 1490: 1489: 1468: 1467: 1448: 1446: 1445: 1440: 1426: 1425: 1416: 1415: 1396: 1359: 1357: 1356: 1351: 1334: 1333: 1317: 1315: 1314: 1309: 1298: 1297: 1280:PoincarĂ© duality 1278:is zero, and by 1277: 1275: 1274: 1269: 1258: 1257: 1241: 1239: 1238: 1233: 1222: 1208: 1207: 1191: 1189: 1188: 1183: 1178: 1177: 1159: 1158: 1143: 1129: 1128: 1102: 1100: 1099: 1094: 1085: 1080: 1068: 1067: 1055: 1054: 1049: 1024: 1022: 1021: 1016: 999: 998: 983:is zero, and so 982: 980: 979: 974: 963: 962: 944: 943: 931: 930: 914: 912: 911: 906: 904: 903: 875: 873: 872: 867: 856: 855: 836: 834: 833: 828: 823: 819: 809: 808: 796: 795: 780: 779: 765: 757: 749: 748: 743: 742: 706: 704: 703: 698: 669: 668: 663: 662: 646: 645: 636: 635: 616: 601: 600: 595: 594: 554: 552: 551: 546: 535: 534: 516: 515: 500: 499: 494: 493: 477: 476: 453: 451: 450: 445: 440: 439: 421: 420: 400: 398: 397: 392: 387: 386: 368: 367: 343: 341: 340: 335: 332: 327: 315: 314: 262:simply connected 192: 190: 189: 184: 176: 175: 163: 162: 150: 149: 137: 136: 86:canonical bundle 82:complex manifold 68: 8107: 8106: 8102: 8101: 8100: 8098: 8097: 8096: 8067: 8066: 8065: 8060: 7569: 7546: 7523: 7470: 7418: 7388:KĂ€hler manifold 7355: 7332: 7325: 7318: 7311: 7304: 7263: 7224:Mirror symmetry 7205: 7191:Brane cosmology 7137: 7086: 7053: 7009:N=2 superstring 6995:Type IIB string 6990:Type IIA string 6965:Polyakov action 6948: 6905: 6900: 6847: 6830: 6820:Springer-Verlag 6797: 6782: 6752: 6731: 6571: 6560: 6399:Burns, Daniel; 6287: 6228:Aspinwall, Paul 6223: 6218: 6213: 6209: 6204: 6200: 6195: 6191: 6186: 6182: 6177: 6173: 6168: 6164: 6159: 6155: 6150: 6146: 6141: 6137: 6132: 6128: 6123: 6119: 6114: 6110: 6105: 6101: 6096: 6092: 6087: 6083: 6078: 6074: 6069: 6065: 6060: 6056: 6051: 6047: 6042: 6038: 6027: 6019: 6018: 6014: 6009: 6005: 6000: 5996: 5991: 5987: 5982: 5978: 5973: 5969: 5964: 5960: 5955: 5951: 5946: 5942: 5937: 5933: 5929: 5911:Tate conjecture 5902: 5851: 5848: 5847: 5830: 5825: 5824: 5822: 5819: 5818: 5803:Friedrich Schur 5777: 5772: 5771: 5769: 5766: 5765: 5762: 5750: 5746: 5733: 5689:normal subgroup 5668: 5665: 5664: 5633: 5602: 5599: 5598: 5566: 5563: 5562: 5540: 5537: 5536: 5520: 5517: 5516: 5494: 5491: 5490: 5421: 5417: 5382: 5379: 5378: 5349: 5345: 5343: 5340: 5339: 5290: 5286: 5284: 5281: 5280: 5246: 5243: 5242: 5226: 5190: 5186: 5184: 5181: 5180: 5173: 5143: 5138: 5137: 5135: 5132: 5131: 5102: 5097: 5096: 5094: 5091: 5090: 5058: 5054: 5042: 5038: 5036: 5033: 5032: 5013:quasi-polarized 4992: 4986: 4985: 4984: 4982: 4979: 4978: 4961: 4955: 4954: 4953: 4951: 4948: 4947: 4930: 4924: 4923: 4922: 4920: 4917: 4916: 4895: 4889: 4888: 4887: 4885: 4882: 4881: 4864: 4858: 4857: 4856: 4854: 4851: 4850: 4791: 4788: 4787: 4765: 4762: 4761: 4740: 4734: 4733: 4732: 4730: 4727: 4726: 4694: 4691: 4690: 4668: 4665: 4664: 4635: 4629: 4628: 4627: 4625: 4622: 4621: 4607:Shimura variety 4580: 4577: 4576: 4555: 4549: 4548: 4547: 4545: 4542: 4541: 4518: 4513: 4512: 4510: 4507: 4506: 4481: 4476: 4475: 4473: 4470: 4469: 4367: 4363: 4351: 4347: 4345: 4342: 4341: 4312: 4287: 4283: 4268: 4264: 4262: 4259: 4258: 4239: 4224: 4220: 4208: 4204: 4189: 4185: 4183: 4180: 4179: 4160: 4145: 4141: 4139: 4136: 4135: 4116: 4101: 4097: 4095: 4092: 4091: 4048: 4025: 4020: 4017: 4016: 3985: 3968: 3953: 3949: 3937: 3933: 3918: 3914: 3912: 3909: 3908: 3882: 3879: 3878: 3842: 3820: 3816: 3805: 3776: 3773: 3772: 3766:Torelli theorem 3762:Hodge structure 3721: 3718: 3717: 3692: 3689: 3688: 3653: 3649: 3637: 3633: 3618: 3614: 3606: 3603: 3602: 3583: 3568: 3564: 3562: 3559: 3558: 3547: 3525: 3520: 3519: 3517: 3514: 3513: 3475:Fedor Bogomolov 3459: 3433: 3428: 3427: 3419: 3416: 3415: 3394: 3389: 3388: 3386: 3383: 3382: 3348: 3344: 3342: 3339: 3338: 3304: 3301: 3300: 3276: 3272: 3270: 3267: 3266: 3235: 3232: 3231: 3228:rational curves 3210: 3205: 3204: 3196: 3193: 3192: 3186: 3159: 3156: 3155: 3133: 3130: 3129: 3095: 3092: 3091: 3054: 3051: 3050: 3034: 3031: 3030: 3004: 3000: 2998: 2995: 2994: 2960: 2957: 2956: 2922: 2919: 2918: 2877: 2874: 2873: 2856: 2852: 2850: 2847: 2846: 2815: 2800: 2796: 2794: 2791: 2790: 2774: 2772: 2769: 2768: 2725: 2722: 2721: 2705: 2702: 2701: 2680: 2675: 2674: 2663: 2648: 2644: 2642: 2639: 2638: 2618: 2615: 2614: 2565: 2535: 2530: 2529: 2527: 2524: 2523: 2503: 2498: 2497: 2495: 2492: 2491: 2490:and a cubic in 2452: 2447: 2446: 2444: 2441: 2440: 2412: 2407: 2404: 2403: 2362: 2359: 2358: 2352:abelian variety 2327: 2322: 2321: 2319: 2316: 2315: 2291: 2286: 2285: 2283: 2280: 2279: 2252: 2218: 2214: 2205: 2201: 2199: 2196: 2195: 2172:11/8 conjecture 2168:Yukio Matsumoto 2144: 2140: 2138: 2135: 2134: 2110: 2106: 2094: 2090: 2075: 2071: 2069: 2066: 2065: 2042: 2038: 2036: 2033: 2032: 2004: 1999: 1998: 1987: 1972: 1968: 1966: 1963: 1962: 1921: 1916: 1915: 1903: 1899: 1884: 1880: 1878: 1875: 1874: 1858: 1846: 1841: 1822: 1818: 1816: 1813: 1812: 1793: 1778: 1774: 1772: 1769: 1768: 1765:Hodge structure 1757:Hodge structure 1628: 1591: 1587: 1585: 1582: 1581: 1549: 1545: 1527: 1523: 1521: 1518: 1517: 1485: 1481: 1463: 1459: 1457: 1454: 1453: 1421: 1417: 1411: 1407: 1392: 1371: 1368: 1367: 1329: 1325: 1323: 1320: 1319: 1293: 1289: 1287: 1284: 1283: 1253: 1249: 1247: 1244: 1243: 1218: 1203: 1199: 1197: 1194: 1193: 1173: 1169: 1154: 1150: 1139: 1124: 1120: 1112: 1109: 1108: 1081: 1076: 1063: 1059: 1050: 1045: 1044: 1036: 1033: 1032: 994: 990: 988: 985: 984: 958: 954: 939: 935: 926: 922: 920: 917: 916: 899: 895: 893: 890: 889: 851: 847: 845: 842: 841: 804: 800: 791: 787: 775: 771: 770: 766: 756: 744: 738: 737: 736: 722: 719: 718: 664: 658: 657: 656: 641: 637: 631: 627: 612: 596: 590: 589: 588: 574: 571: 570: 530: 526: 511: 507: 495: 489: 488: 487: 472: 468: 466: 463: 462: 435: 431: 416: 412: 410: 407: 406: 382: 378: 363: 359: 357: 354: 353: 328: 323: 310: 306: 304: 301: 300: 289: 257: 241:mirror symmetry 171: 167: 158: 154: 145: 141: 132: 128: 126: 123: 122: 117:quartic surface 70: 62: 35: 34: 17: 12: 11: 5: 8105: 8095: 8094: 8089: 8084: 8079: 8062: 8061: 8059: 8058: 8053: 8048: 8043: 8038: 8033: 8028: 8023: 8018: 8013: 8008: 8003: 7998: 7993: 7988: 7983: 7978: 7973: 7968: 7963: 7958: 7953: 7948: 7943: 7938: 7933: 7928: 7923: 7918: 7913: 7908: 7903: 7898: 7896:Randjbar-Daemi 7893: 7888: 7883: 7878: 7873: 7868: 7863: 7858: 7853: 7848: 7843: 7838: 7833: 7828: 7823: 7818: 7813: 7808: 7803: 7798: 7793: 7788: 7783: 7778: 7773: 7768: 7763: 7758: 7753: 7748: 7743: 7738: 7733: 7728: 7723: 7718: 7713: 7708: 7703: 7698: 7693: 7688: 7683: 7678: 7673: 7668: 7663: 7658: 7653: 7648: 7643: 7638: 7633: 7628: 7623: 7618: 7613: 7608: 7603: 7598: 7593: 7588: 7583: 7577: 7575: 7571: 7570: 7568: 7567: 7562: 7556: 7554: 7548: 7547: 7545: 7544: 7539: 7533: 7531: 7525: 7524: 7522: 7521: 7519:Lie supergroup 7516: 7511: 7506: 7501: 7496: 7491: 7486: 7480: 7478: 7472: 7471: 7469: 7468: 7463: 7458: 7453: 7448: 7443: 7438: 7433: 7428: 7427: 7426: 7421: 7416: 7412: 7411: 7410: 7400: 7390: 7385: 7379: 7374: 7369: 7363: 7361: 7357: 7356: 7354: 7353: 7345: 7340: 7335: 7330: 7323: 7316: 7309: 7302: 7294: 7289: 7284: 7279: 7273: 7271: 7265: 7264: 7262: 7261: 7256: 7251: 7246: 7241: 7236: 7231: 7226: 7221: 7215: 7213: 7207: 7206: 7204: 7203: 7198: 7196:Quiver diagram 7193: 7188: 7183: 7178: 7173: 7168: 7163: 7158: 7153: 7147: 7145: 7139: 7138: 7136: 7135: 7130: 7125: 7120: 7115: 7110: 7105: 7100: 7094: 7092: 7088: 7087: 7085: 7084: 7079: 7074: 7069: 7063: 7061: 7059:String duality 7055: 7054: 7052: 7051: 7046: 7041: 7036: 7031: 7026: 7021: 7016: 7011: 7006: 7005: 7004: 6999: 6998: 6997: 6992: 6985:Type II string 6982: 6972: 6967: 6962: 6956: 6954: 6950: 6949: 6947: 6946: 6941: 6940: 6939: 6934: 6924: 6922:Cosmic strings 6919: 6913: 6911: 6907: 6906: 6899: 6898: 6891: 6884: 6876: 6870: 6869: 6863: 6854: 6846: 6845:External links 6843: 6842: 6841: 6828: 6808: 6795: 6776:Voisin, Claire 6772: 6742: 6729: 6712: 6694: 6669:(3): 547–588, 6651: 6636:Mukai, Shigeru 6632: 6597:(2): 436–450, 6582: 6570:978-1107153042 6569: 6548: 6505:(3): 519–567, 6488: 6461: 6434: 6415:(2): 235–273, 6396: 6356: 6323: 6298: 6285: 6257:Barth, Wolf P. 6253: 6241:hep-th/9611137 6222: 6219: 6217: 6216: 6207: 6198: 6189: 6180: 6171: 6162: 6153: 6144: 6135: 6126: 6117: 6108: 6099: 6090: 6081: 6072: 6063: 6054: 6045: 6036: 6012: 6003: 5994: 5985: 5976: 5967: 5958: 5949: 5940: 5930: 5928: 5925: 5924: 5923: 5913: 5908: 5901: 5898: 5861: 5858: 5855: 5833: 5828: 5780: 5775: 5761: 5758: 5748: 5744: 5737:string duality 5732: 5729: 5672: 5632: 5629: 5612: 5609: 5606: 5582: 5579: 5576: 5573: 5570: 5550: 5547: 5544: 5524: 5504: 5501: 5498: 5479:cone of curves 5438: 5435: 5432: 5429: 5424: 5420: 5416: 5413: 5410: 5407: 5404: 5401: 5398: 5395: 5392: 5389: 5386: 5363: 5360: 5357: 5352: 5348: 5304: 5301: 5298: 5293: 5289: 5268: 5265: 5262: 5259: 5256: 5253: 5250: 5241:has signature 5229: 5225: 5222: 5219: 5216: 5213: 5210: 5207: 5204: 5201: 5198: 5193: 5189: 5172: 5169: 5146: 5141: 5105: 5100: 5078: 5075: 5072: 5069: 5066: 5061: 5057: 5053: 5050: 5045: 5041: 4995: 4989: 4964: 4958: 4933: 4927: 4898: 4892: 4867: 4861: 4831: 4828: 4825: 4822: 4819: 4816: 4813: 4810: 4807: 4804: 4801: 4798: 4795: 4775: 4772: 4769: 4743: 4737: 4710: 4707: 4704: 4701: 4698: 4678: 4675: 4672: 4638: 4632: 4609:for the group 4590: 4587: 4584: 4558: 4552: 4521: 4516: 4484: 4479: 4456:has dimension 4415:basepoint-free 4387: 4384: 4381: 4378: 4375: 4370: 4366: 4362: 4359: 4354: 4350: 4311: 4308: 4295: 4290: 4286: 4282: 4279: 4276: 4271: 4267: 4246: 4242: 4238: 4235: 4232: 4227: 4223: 4219: 4216: 4211: 4207: 4203: 4200: 4197: 4192: 4188: 4167: 4163: 4159: 4156: 4153: 4148: 4144: 4123: 4119: 4115: 4112: 4109: 4104: 4100: 4088:Hodge isometry 4076: 4075: 4064: 4061: 4058: 4055: 4051: 4047: 4044: 4041: 4038: 4035: 4032: 4028: 4024: 3988: 3984: 3981: 3978: 3975: 3971: 3967: 3964: 3961: 3956: 3952: 3948: 3945: 3940: 3936: 3932: 3929: 3926: 3921: 3917: 3892: 3889: 3886: 3875: 3874: 3863: 3860: 3857: 3854: 3849: 3846: 3841: 3838: 3834: 3831: 3828: 3823: 3819: 3815: 3812: 3808: 3804: 3801: 3798: 3795: 3792: 3789: 3786: 3783: 3780: 3758:period mapping 3734: 3731: 3728: 3725: 3705: 3702: 3699: 3696: 3659: 3656: 3652: 3648: 3643: 3640: 3636: 3632: 3629: 3626: 3621: 3617: 3613: 3610: 3590: 3586: 3582: 3579: 3576: 3571: 3567: 3546: 3545:The period map 3543: 3528: 3523: 3458: 3455: 3436: 3431: 3426: 3423: 3397: 3392: 3359: 3356: 3351: 3347: 3326: 3323: 3320: 3317: 3314: 3311: 3308: 3279: 3275: 3254: 3251: 3248: 3245: 3242: 3239: 3213: 3208: 3203: 3200: 3185: 3182: 3169: 3166: 3163: 3143: 3140: 3137: 3117: 3114: 3111: 3108: 3105: 3102: 3099: 3088:David Morrison 3064: 3061: 3058: 3049:has dimension 3038: 3015: 3012: 3007: 3003: 2982: 2979: 2976: 2973: 2970: 2967: 2964: 2944: 2941: 2938: 2935: 2932: 2929: 2926: 2899: 2896: 2893: 2890: 2887: 2884: 2881: 2859: 2855: 2822: 2818: 2814: 2811: 2808: 2803: 2799: 2777: 2761:Picard lattice 2729: 2709: 2683: 2678: 2673: 2670: 2666: 2662: 2659: 2656: 2651: 2647: 2622: 2564: 2561: 2560: 2559: 2552: 2538: 2533: 2520: 2506: 2501: 2484: 2473: 2455: 2450: 2428: 2425: 2422: 2419: 2415: 2411: 2375: 2372: 2369: 2366: 2357:by the action 2348:Kummer surface 2344: 2330: 2325: 2312: 2294: 2289: 2251: 2248: 2247: 2246: 2235: 2221: 2217: 2213: 2208: 2204: 2165: 2147: 2143: 2116: 2113: 2109: 2105: 2100: 2097: 2093: 2089: 2086: 2083: 2078: 2074: 2051: 2048: 2045: 2041: 2007: 2002: 1997: 1994: 1990: 1986: 1983: 1980: 1975: 1971: 1951: 1950: 1949: 1939:characteristic 1924: 1919: 1914: 1911: 1906: 1902: 1898: 1895: 1892: 1887: 1883: 1861: 1857: 1854: 1849: 1844: 1840: 1836: 1833: 1830: 1825: 1821: 1800: 1796: 1792: 1789: 1786: 1781: 1777: 1753:Jacobian ideal 1749: 1748: 1747: 1744: 1743: 1741: 1739: 1736: 1734: 1731: 1730: 1728: 1725: 1723: 1720: 1717: 1716: 1713: 1711: 1708: 1706: 1702: 1701: 1699: 1696: 1694: 1691: 1688: 1687: 1685: 1683: 1680: 1678: 1663: 1662:KĂ€hler metric. 1652:Shing-Tung Yau 1640: 1627: 1624: 1611: 1608: 1605: 1602: 1599: 1594: 1590: 1569: 1566: 1563: 1560: 1557: 1552: 1548: 1544: 1541: 1538: 1535: 1530: 1526: 1505: 1502: 1499: 1496: 1493: 1488: 1484: 1480: 1477: 1474: 1471: 1466: 1462: 1450: 1449: 1438: 1435: 1432: 1429: 1424: 1420: 1414: 1410: 1406: 1403: 1400: 1395: 1391: 1387: 1384: 1381: 1378: 1375: 1349: 1346: 1343: 1340: 1337: 1332: 1328: 1307: 1304: 1301: 1296: 1292: 1267: 1264: 1261: 1256: 1252: 1231: 1228: 1225: 1221: 1217: 1214: 1211: 1206: 1202: 1181: 1176: 1172: 1168: 1165: 1162: 1157: 1153: 1149: 1146: 1142: 1138: 1135: 1132: 1127: 1123: 1119: 1116: 1105:exact sequence 1092: 1089: 1084: 1079: 1075: 1071: 1066: 1062: 1058: 1053: 1048: 1043: 1040: 1014: 1011: 1008: 1005: 1002: 997: 993: 972: 969: 966: 961: 957: 953: 950: 947: 942: 938: 934: 929: 925: 902: 898: 886:tangent bundle 865: 862: 859: 854: 850: 838: 837: 826: 822: 818: 815: 812: 807: 803: 799: 794: 790: 786: 783: 778: 774: 769: 763: 760: 755: 752: 747: 741: 735: 732: 729: 726: 708: 707: 696: 693: 690: 687: 684: 681: 678: 675: 672: 667: 661: 655: 652: 649: 644: 640: 634: 630: 626: 623: 620: 615: 611: 607: 604: 599: 593: 587: 584: 581: 578: 556: 555: 544: 541: 538: 533: 529: 525: 522: 519: 514: 510: 506: 503: 498: 492: 486: 483: 480: 475: 471: 454:) is zero. By 443: 438: 434: 430: 427: 424: 419: 415: 390: 385: 381: 377: 374: 371: 366: 362: 331: 326: 322: 318: 313: 309: 288: 285: 256: 253: 211:(and also the 194: 193: 182: 179: 174: 170: 166: 161: 157: 153: 148: 144: 140: 135: 131: 30: 15: 9: 6: 4: 3: 2: 8104: 8093: 8092:String theory 8090: 8088: 8085: 8083: 8080: 8078: 8075: 8074: 8072: 8057: 8054: 8052: 8049: 8047: 8044: 8042: 8041:Zamolodchikov 8039: 8037: 8036:Zamolodchikov 8034: 8032: 8029: 8027: 8024: 8022: 8019: 8017: 8014: 8012: 8009: 8007: 8004: 8002: 7999: 7997: 7994: 7992: 7989: 7987: 7984: 7982: 7979: 7977: 7974: 7972: 7969: 7967: 7964: 7962: 7959: 7957: 7954: 7952: 7949: 7947: 7944: 7942: 7939: 7937: 7934: 7932: 7929: 7927: 7924: 7922: 7919: 7917: 7914: 7912: 7909: 7907: 7904: 7902: 7899: 7897: 7894: 7892: 7889: 7887: 7884: 7882: 7879: 7877: 7874: 7872: 7869: 7867: 7864: 7862: 7859: 7857: 7854: 7852: 7849: 7847: 7844: 7842: 7839: 7837: 7834: 7832: 7829: 7827: 7824: 7822: 7819: 7817: 7814: 7812: 7809: 7807: 7804: 7802: 7799: 7797: 7794: 7792: 7789: 7787: 7784: 7782: 7779: 7777: 7774: 7772: 7769: 7767: 7764: 7762: 7759: 7757: 7754: 7752: 7749: 7747: 7744: 7742: 7739: 7737: 7734: 7732: 7729: 7727: 7724: 7722: 7719: 7717: 7714: 7712: 7709: 7707: 7704: 7702: 7699: 7697: 7694: 7692: 7689: 7687: 7684: 7682: 7679: 7677: 7674: 7672: 7669: 7667: 7664: 7662: 7659: 7657: 7654: 7652: 7649: 7647: 7644: 7642: 7639: 7637: 7634: 7632: 7629: 7627: 7624: 7622: 7619: 7617: 7614: 7612: 7609: 7607: 7604: 7602: 7599: 7597: 7594: 7592: 7589: 7587: 7584: 7582: 7579: 7578: 7576: 7572: 7566: 7563: 7561: 7560:Matrix theory 7558: 7557: 7555: 7553: 7549: 7543: 7540: 7538: 7535: 7534: 7532: 7530: 7526: 7520: 7517: 7515: 7512: 7510: 7507: 7505: 7502: 7500: 7497: 7495: 7492: 7490: 7487: 7485: 7482: 7481: 7479: 7477: 7476:Supersymmetry 7473: 7467: 7464: 7462: 7459: 7457: 7454: 7452: 7449: 7447: 7444: 7442: 7439: 7437: 7434: 7432: 7429: 7425: 7422: 7420: 7413: 7409: 7406: 7405: 7404: 7401: 7399: 7396: 7395: 7394: 7391: 7389: 7386: 7383: 7380: 7378: 7375: 7373: 7370: 7368: 7365: 7364: 7362: 7358: 7352: 7350: 7346: 7344: 7341: 7339: 7336: 7333: 7326: 7319: 7312: 7305: 7298: 7295: 7293: 7290: 7288: 7285: 7283: 7280: 7278: 7275: 7274: 7272: 7270: 7266: 7260: 7257: 7255: 7252: 7250: 7247: 7245: 7242: 7240: 7237: 7235: 7232: 7230: 7227: 7225: 7222: 7220: 7217: 7216: 7214: 7212: 7208: 7202: 7199: 7197: 7194: 7192: 7189: 7187: 7184: 7182: 7179: 7177: 7174: 7172: 7169: 7167: 7164: 7162: 7159: 7157: 7154: 7152: 7149: 7148: 7146: 7144: 7140: 7134: 7131: 7129: 7128:Dual graviton 7126: 7124: 7121: 7119: 7116: 7114: 7111: 7109: 7106: 7104: 7101: 7099: 7096: 7095: 7093: 7089: 7083: 7080: 7078: 7075: 7073: 7070: 7068: 7065: 7064: 7062: 7060: 7056: 7050: 7047: 7045: 7044:RNS formalism 7042: 7040: 7037: 7035: 7032: 7030: 7027: 7025: 7022: 7020: 7017: 7015: 7012: 7010: 7007: 7003: 7000: 6996: 6993: 6991: 6988: 6987: 6986: 6983: 6981: 6980:Type I string 6978: 6977: 6976: 6973: 6971: 6968: 6966: 6963: 6961: 6958: 6957: 6955: 6951: 6945: 6942: 6938: 6935: 6933: 6930: 6929: 6928: 6925: 6923: 6920: 6918: 6915: 6914: 6912: 6908: 6904: 6903:String theory 6897: 6892: 6890: 6885: 6883: 6878: 6877: 6874: 6867: 6864: 6862: 6858: 6855: 6852: 6849: 6848: 6839: 6835: 6831: 6825: 6821: 6817: 6813: 6809: 6806: 6802: 6798: 6792: 6788: 6781: 6777: 6773: 6770: 6766: 6762: 6758: 6751: 6747: 6743: 6740: 6736: 6732: 6726: 6722: 6718: 6713: 6710: 6706: 6705: 6700: 6695: 6692: 6688: 6684: 6680: 6676: 6672: 6668: 6664: 6660: 6656: 6652: 6649: 6645: 6641: 6637: 6633: 6630: 6626: 6622: 6618: 6614: 6610: 6605: 6600: 6596: 6592: 6588: 6583: 6580: 6576: 6572: 6566: 6559: 6558: 6553: 6549: 6546: 6542: 6538: 6534: 6530: 6526: 6522: 6518: 6513: 6508: 6504: 6500: 6499: 6494: 6489: 6486: 6482: 6478: 6474: 6470: 6466: 6462: 6459: 6455: 6451: 6447: 6443: 6439: 6435: 6432: 6428: 6423: 6418: 6414: 6410: 6406: 6402: 6397: 6394: 6390: 6386: 6382: 6378: 6374: 6370: 6366: 6362: 6357: 6354: 6350: 6346: 6342: 6341: 6336: 6332: 6328: 6327:Beauville, A. 6324: 6321: 6317: 6313: 6309: 6308: 6303: 6299: 6296: 6292: 6288: 6282: 6278: 6274: 6270: 6266: 6262: 6258: 6254: 6251: 6247: 6242: 6237: 6233: 6229: 6225: 6224: 6211: 6202: 6193: 6184: 6175: 6166: 6157: 6148: 6139: 6130: 6121: 6112: 6103: 6094: 6085: 6076: 6067: 6058: 6049: 6040: 6032: 6031: 6024: 6023: 6016: 6007: 5998: 5989: 5980: 5971: 5962: 5953: 5944: 5935: 5931: 5921: 5917: 5914: 5912: 5909: 5907: 5904: 5903: 5897: 5895: 5891: 5886: 5881: 5879: 5875: 5859: 5856: 5853: 5831: 5816: 5812: 5808: 5804: 5800: 5799:Arthur Cayley 5796: 5778: 5757: 5755: 5742: 5738: 5728: 5726: 5722: 5718: 5714: 5710: 5706: 5702: 5698: 5694: 5690: 5686: 5662: 5658: 5654: 5651: 5647: 5643: 5639: 5628: 5626: 5610: 5607: 5604: 5596: 5580: 5577: 5574: 5571: 5568: 5545: 5542: 5502: 5499: 5496: 5488: 5484: 5480: 5476: 5472: 5467: 5465: 5461: 5456: 5452: 5449:, the set of 5433: 5430: 5427: 5422: 5418: 5414: 5408: 5402: 5399: 5396: 5393: 5387: 5375: 5361: 5358: 5355: 5350: 5346: 5337: 5333: 5328: 5326: 5322: 5321:positive cone 5318: 5299: 5291: 5287: 5263: 5260: 5257: 5254: 5251: 5223: 5217: 5211: 5208: 5205: 5199: 5191: 5187: 5178: 5168: 5166: 5162: 5144: 5129: 5125: 5121: 5103: 5076: 5073: 5070: 5067: 5064: 5059: 5051: 5043: 5039: 5030: 5026: 5022: 5018: 5014: 5009: 4993: 4962: 4931: 4914: 4896: 4865: 4847: 4845: 4844:Voisin (2008) 4829: 4826: 4823: 4820: 4817: 4814: 4811: 4808: 4805: 4802: 4799: 4796: 4793: 4773: 4770: 4767: 4759: 4741: 4724: 4708: 4705: 4702: 4699: 4696: 4676: 4673: 4670: 4662: 4658: 4657:Shigeru Mukai 4654: 4636: 4619: 4615: 4613: 4608: 4604: 4588: 4585: 4582: 4574: 4556: 4540: 4535: 4519: 4504: 4500: 4482: 4467: 4463: 4459: 4455: 4450: 4448: 4444: 4440: 4436: 4432: 4428: 4427:linear system 4424: 4420: 4416: 4412: 4407: 4405: 4401: 4385: 4382: 4379: 4376: 4373: 4368: 4360: 4352: 4348: 4339: 4335: 4332: 4328: 4325: 4321: 4317: 4307: 4288: 4280: 4277: 4269: 4265: 4236: 4233: 4225: 4221: 4217: 4209: 4201: 4198: 4190: 4186: 4157: 4154: 4146: 4142: 4113: 4110: 4102: 4098: 4089: 4085: 4081: 4053: 4049: 4045: 4030: 4026: 4022: 4015: 4014: 4013: 4011: 4007: 4003: 3982: 3976: 3965: 3962: 3954: 3950: 3946: 3938: 3930: 3927: 3919: 3915: 3906: 3890: 3884: 3861: 3855: 3852: 3844: 3839: 3836: 3832: 3829: 3826: 3821: 3817: 3813: 3802: 3793: 3790: 3787: 3781: 3778: 3771: 3770: 3769: 3767: 3763: 3759: 3754: 3752: 3748: 3723: 3694: 3687: 3683: 3679: 3675: 3657: 3654: 3650: 3646: 3641: 3638: 3630: 3627: 3619: 3615: 3611: 3580: 3577: 3569: 3565: 3556: 3552: 3542: 3526: 3511: 3507: 3503: 3499: 3495: 3490: 3488: 3484: 3480: 3479:David Mumford 3476: 3472: 3468: 3464: 3454: 3452: 3434: 3421: 3413: 3395: 3380: 3375: 3373: 3357: 3354: 3349: 3345: 3321: 3315: 3312: 3309: 3306: 3298: 3293: 3277: 3273: 3252: 3249: 3243: 3237: 3229: 3211: 3198: 3191: 3181: 3167: 3164: 3161: 3141: 3138: 3135: 3112: 3109: 3106: 3103: 3100: 3089: 3085: 3080: 3078: 3077:moduli spaces 3062: 3059: 3056: 3036: 3027: 3013: 3010: 3005: 3001: 2977: 2971: 2968: 2965: 2962: 2939: 2936: 2933: 2930: 2927: 2916: 2911: 2894: 2888: 2885: 2882: 2879: 2857: 2853: 2844: 2840: 2836: 2812: 2809: 2801: 2797: 2766: 2762: 2757: 2755: 2751: 2747: 2743: 2727: 2707: 2699: 2681: 2671: 2660: 2657: 2649: 2645: 2636: 2620: 2613: 2612:Picard number 2609: 2605: 2600: 2598: 2594: 2590: 2586: 2582: 2578: 2574: 2570: 2557: 2553: 2536: 2521: 2504: 2489: 2485: 2482: 2478: 2474: 2471: 2453: 2423: 2420: 2413: 2409: 2401: 2397: 2393: 2389: 2373: 2370: 2364: 2356: 2353: 2349: 2345: 2328: 2313: 2310: 2292: 2277: 2274:of a general 2273: 2269: 2265: 2261: 2258: 2254: 2253: 2244: 2240: 2236: 2219: 2215: 2211: 2206: 2202: 2193: 2192:connected sum 2189: 2185: 2181: 2177: 2173: 2169: 2166: 2163: 2145: 2141: 2132: 2114: 2111: 2107: 2103: 2098: 2095: 2087: 2084: 2076: 2072: 2049: 2046: 2043: 2039: 2031: 2027: 2023: 2005: 1995: 1984: 1981: 1973: 1969: 1960: 1956: 1952: 1947: 1943: 1940: 1922: 1912: 1904: 1896: 1893: 1885: 1881: 1855: 1847: 1842: 1834: 1831: 1823: 1819: 1790: 1787: 1779: 1775: 1766: 1762: 1758: 1754: 1750: 1742: 1740: 1737: 1735: 1733: 1732: 1729: 1726: 1724: 1721: 1719: 1718: 1714: 1712: 1709: 1707: 1704: 1703: 1700: 1697: 1695: 1692: 1690: 1689: 1686: 1684: 1681: 1679: 1677: 1676: 1673: 1672: 1671: 1670: 1668: 1667:Hodge numbers 1664: 1661: 1657: 1653: 1649: 1645: 1644:KĂ€hler metric 1641: 1638: 1634: 1633:diffeomorphic 1630: 1629: 1623: 1609: 1606: 1600: 1592: 1588: 1567: 1564: 1558: 1550: 1546: 1542: 1536: 1528: 1524: 1503: 1500: 1494: 1486: 1482: 1478: 1472: 1464: 1460: 1436: 1430: 1422: 1418: 1412: 1404: 1401: 1393: 1389: 1385: 1379: 1373: 1366: 1365: 1364: 1363: 1347: 1344: 1338: 1330: 1326: 1302: 1294: 1290: 1281: 1262: 1254: 1250: 1229: 1226: 1215: 1212: 1204: 1200: 1174: 1170: 1166: 1163: 1155: 1151: 1136: 1133: 1125: 1121: 1114: 1106: 1090: 1082: 1077: 1073: 1064: 1060: 1051: 1038: 1031: 1026: 1012: 1009: 1003: 995: 991: 967: 959: 955: 951: 948: 940: 936: 927: 923: 900: 896: 887: 883: 879: 860: 852: 848: 824: 820: 813: 805: 801: 797: 792: 784: 776: 772: 767: 761: 758: 753: 745: 733: 730: 724: 717: 716: 715: 713: 694: 691: 688: 685: 682: 679: 676: 673: 665: 653: 650: 642: 638: 632: 624: 621: 613: 609: 605: 597: 585: 582: 576: 569: 568: 567: 565: 561: 542: 539: 531: 527: 523: 520: 512: 508: 504: 496: 484: 481: 473: 469: 461: 460: 459: 457: 456:Serre duality 436: 432: 428: 425: 417: 413: 404: 383: 379: 375: 372: 364: 360: 351: 347: 329: 324: 316: 311: 307: 298: 294: 293:Betti numbers 284: 282: 278: 274: 269: 267: 263: 260:surface as a 252: 248: 246: 245:string theory 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 201: 199: 180: 177: 172: 168: 164: 159: 155: 151: 146: 142: 138: 133: 129: 121: 120: 119: 118: 114: 110: 106: 102: 99: 95: 91: 87: 83: 79: 75: 69: 66: 59: 58: 56: 52: 48: 44: 40: 26: 21: 7586:Arkani-Hamed 7484:Supergravity 7451:Moduli space 7407: 7348: 7343:Dirac string 7269:Gauge theory 7249:Loop algebra 7186:Black string 7049:GS formalism 6815: 6786: 6760: 6756: 6716: 6702: 6699:"K3 surface" 6666: 6662: 6639: 6594: 6590: 6556: 6512:math/0607339 6502: 6496: 6493:Hulek, Klaus 6476: 6472: 6449: 6445: 6412: 6408: 6368: 6364: 6339: 6335:Demazure, M. 6306: 6264: 6261:Hulek, Klaus 6231: 6210: 6201: 6192: 6183: 6174: 6165: 6156: 6147: 6138: 6129: 6120: 6111: 6102: 6093: 6084: 6075: 6066: 6057: 6048: 6039: 6029: 6021: 6015: 6006: 5997: 5988: 5979: 5970: 5961: 5952: 5943: 5934: 5882: 5877: 5814: 5810: 5795:Ernst Kummer 5763: 5734: 5720: 5716: 5712: 5708: 5704: 5700: 5696: 5692: 5684: 5660: 5656: 5652: 5649: 5641: 5637: 5634: 5624: 5594: 5486: 5482: 5474: 5470: 5468: 5459: 5450: 5376: 5335: 5331: 5329: 5324: 5320: 5174: 5164: 5160: 5127: 5123: 5119: 5028: 5027:line bundle 5016: 5012: 5010: 4912: 4848: 4758:general type 4617: 4611: 4605:subset of a 4603:Zariski open 4572: 4536: 4502: 4498: 4465: 4461: 4460:+ 1, and so 4457: 4453: 4451: 4446: 4442: 4438: 4434: 4430: 4422: 4410: 4408: 4403: 4399: 4337: 4333: 4326: 4323: 4319: 4315: 4313: 4087: 4083: 4079: 4077: 4009: 4005: 4001: 3904: 3876: 3755: 3750: 3681: 3673: 3672:. The space 3554: 3550: 3548: 3509: 3505: 3501: 3497: 3491: 3482: 3470: 3462: 3460: 3450: 3411: 3378: 3376: 3296: 3294: 3187: 3081: 3028: 2912: 2842: 2764: 2760: 2758: 2749: 2741: 2697: 2634: 2611: 2606:is always a 2603: 2601: 2588: 2584: 2580: 2576: 2572: 2569:Picard group 2566: 2480: 2476: 2395: 2387: 2354: 2271: 2267: 2259: 2257:double cover 2188:homeomorphic 2179: 2130: 2025: 1954: 1941: 1767:computed on 1648:Yum-Tong Siu 1451: 1027: 877: 839: 709: 563: 557: 349: 345: 290: 270: 258: 249: 221:general type 205:complex tori 202: 195: 90:irregularity 77: 71: 61: 36: 32: 7946:Silverstein 7446:Orientifold 7181:Black holes 7176:Black brane 7133:Dual photon 6857:K3 database 6812:Weil, AndrĂ© 6763:: 249–260, 6452:: 171–232, 6411:, SĂ©rie 4, 6371:(1): 7–20, 5885:Weil (1958) 5319:. Call the 5177:convex cone 4723:Klaus Hulek 4661:unirational 4616:. For each 4318:K3 surface 2239:John Morgan 2178:4-manifold 1959:cup product 882:Chern class 233:4-manifolds 74:mathematics 25:real points 8071:Categories 7966:Strominger 7961:Steinhardt 7956:Staudacher 7871:Polchinski 7821:Nanopoulos 7781:Mandelstam 7761:Kontsevich 7601:Berenstein 7529:Holography 7509:Superspace 7408:K3 surface 7367:Worldsheet 7282:Instantons 6910:Background 6787:AstĂ©risque 6769:40.0683.03 6485:40.0685.01 6458:25.1212.02 6221:References 5650:Weyl group 5464:reflection 5128:(−2)-curve 5031:such that 4336:such that 2276:hyperplane 2162:E8 lattice 2026:K3 lattice 1660:Ricci-flat 1626:Properties 1028:Next, the 273:projective 255:Definition 78:K3 surface 65:Weil (1958 8001:Veneziano 7881:Rajaraman 7776:Maldacena 7666:Gopakumar 7616:Dijkgraaf 7611:Curtright 7277:Anomalies 7156:NS5-brane 7077:U-duality 7072:S-duality 7067:T-duality 6709:EMS Press 6604:1308.5667 6479:: 25–28, 5857:≥ 5671:Δ 5605:ρ 5572:⋅ 5549:Δ 5546:∈ 5523:Δ 5500:≥ 5497:ρ 5431:− 5403:⁡ 5397:∈ 5385:Δ 5359:− 5261:− 5258:ρ 5224:⊗ 5212:⁡ 5074:− 4771:≥ 4674:≤ 4586:≥ 4575:for each 4383:− 4316:polarized 4285:Ω 4218:⊂ 4206:Ω 4060:Λ 4043:→ 4037:Λ 3983:⊗ 3980:Λ 3977:≅ 3947:⊂ 3935:Ω 3888:→ 3848:¯ 3840:⋅ 3803:⊗ 3800:Λ 3791:∈ 3730:Λ 3701:Λ 3678:Hausdorff 3655:⊕ 3647:⊕ 3639:⊕ 3628:− 3609:Λ 3549:Define a 3508:, unless 3425:→ 3316:⁡ 3310:∈ 3238:χ 3202:→ 3168:ρ 3165:− 3139:≤ 3136:ρ 3110:− 3107:ρ 3063:ρ 3060:− 3037:ρ 2972:⁡ 2966:∈ 2937:− 2934:ρ 2889:⁡ 2883:∈ 2728:ρ 2708:ρ 2672:≅ 2621:ρ 2599:theorem. 2421:± 2371:− 2368:↦ 2212:× 2184:signature 2112:⊕ 2104:⊕ 2096:⊕ 2085:− 1996:≅ 1913:≅ 1901:Ω 1856:≅ 1839:Ω 1402:− 1390:∑ 1374:χ 1192:, and so 1148:→ 1118:→ 1103:gives an 1088:→ 1083:∗ 1070:→ 1057:→ 1042:→ 952:− 725:χ 680:− 622:− 610:∑ 577:χ 321:Ω 8056:Zwiebach 8011:Verlinde 8006:Verlinde 7981:Townsend 7976:Susskind 7911:Sagnotti 7876:Polyakov 7831:Nekrasov 7796:Minwalla 7791:Martinec 7756:Knizhnik 7751:Klebanov 7746:Kapustin 7711:'t Hooft 7646:Fischler 7581:Aganagić 7552:M-theory 7441:Conifold 7436:Orbifold 7419:manifold 7360:Geometry 7166:M5-brane 7161:M2-brane 7098:Graviton 7014:F-theory 6859:for the 6778:(2008), 6748:(1909), 6629:28495199 6554:(2016), 6545:14877568 6467:(1909), 6440:(1893), 6403:(1975), 6393:24693572 6337:(1985), 6269:Springer 5900:See also 5896:(1975). 5625:isolated 3467:uniruled 2400:Jacobian 2250:Examples 2176:oriented 2129:, where 1873:, hence 888:. Since 96:means a 7986:Trivedi 7971:Sundrum 7936:Shenker 7926:Seiberg 7921:Schwarz 7891:Randall 7851:Novikov 7841:Nielsen 7826:Năstase 7736:Kallosh 7721:Gibbons 7661:Gliozzi 7651:Friedan 7641:Ferrara 7626:Douglas 7621:Distler 7171:S-brane 7151:D-brane 7108:Tachyon 7103:Dilaton 6917:Strings 6838:0537935 6805:2487743 6739:2136212 6691:0284440 6671:Bibcode 6648:2310254 6621:3263959 6579:3586372 6537:2336040 6517:Bibcode 6431:0447635 6385:2312974 6353:0785216 6320:0728990 6295:2030225 6250:1479699 5760:History 5683:. Then 5473:in Pic( 5338:) with 5334:of Pic( 4425:in the 3684:by the 3551:marking 3465:is not 2488:quadric 2398:is the 2262:of the 2160:is the 1759:on the 884:of the 876:is the 401:of the 55:Kashmir 47:Kodaira 8051:Zumino 8046:Zaslow 8031:Yoneya 8021:Witten 7941:Siegel 7916:Scherk 7886:Ramond 7861:Ooguri 7786:Marolf 7741:Kaluza 7726:Kachru 7716:Hoƙava 7706:Harvey 7701:Hanson 7686:Gubser 7676:Greene 7606:Bousso 7591:Atiyah 7143:Branes 6953:Theory 6836:  6826:  6803:  6793:  6767:  6737:  6727:  6689:  6646:  6627:  6619:  6577:  6567:  6543:  6535:  6483:  6456:  6429:  6391:  6383:  6351:  6318:  6293:  6283:  6248:  5883:AndrĂ© 5872:, and 5817:−2 in 5644:up to 4756:is of 4614:(2,19) 4505:−2 in 4400:degree 2390:. The 1761:moduli 1452:Since 840:where 405:group 266:2-form 225:curves 101:proper 98:smooth 63:AndrĂ© 43:KĂ€hler 39:Kummer 7991:Turok 7901:Roček 7866:Ovrut 7856:Olive 7836:Neveu 7816:Myers 7811:Mukhi 7801:Moore 7771:Linde 7766:Klein 7691:Gukov 7681:Gross 7671:Green 7656:Gates 7636:Dvali 7596:Banks 6783:(PDF) 6753:(PDF) 6625:S2CID 6599:arXiv 6561:(PDF) 6541:S2CID 6507:arXiv 6448:, 2, 6389:S2CID 6236:arXiv 5927:Notes 5707:(Pic( 5695:(Pic( 5687:is a 5659:(Pic( 5561:with 5451:roots 4946:meet 4651:is a 4324:genus 4090:from 3337:with 3128:with 2993:with 2470:nodes 2309:genus 2190:to a 2020:is a 1961:) on 1646:, by 562:) of 279:(the 94:field 8016:Wess 7996:Vafa 7906:Rohm 7806:Motl 7731:Kaku 7696:Guth 7631:Duff 6824:ISBN 6791:ISBN 6725:ISBN 6565:ISBN 6281:ISBN 5578:> 5458:Pic( 5023:and 4406:−2. 4082:and 3853:> 3756:The 3477:and 3086:and 3011:> 2913:The 2843:even 2759:The 2597:GAGA 2571:Pic( 2567:The 2255:The 1665:The 1516:and 880:-th 566:is: 291:The 243:and 88:and 8026:Yau 7951:SÆĄn 7931:Sen 6765:JFM 6679:doi 6609:doi 6525:doi 6503:169 6481:JFM 6454:JFM 6417:doi 6373:doi 6273:doi 5756:). 5711:))/ 5691:of 5481:of 5400:Pic 5209:Pic 5122:of 5025:big 5021:nef 4786:or 4760:if 4689:or 4663:if 4413:is 4322:of 4257:to 4134:to 3485:is 3381:in 3313:Pic 2969:Pic 2886:Pic 2595:'s 2311:2.) 2278:in 2170:'s 227:or 196:in 72:In 53:in 8073:: 7327:, 7320:, 7313:, 7306:, 6834:MR 6832:, 6801:MR 6799:, 6785:, 6761:68 6759:, 6755:, 6735:MR 6733:, 6723:, 6719:, 6707:, 6701:, 6687:MR 6685:, 6677:, 6665:, 6657:; 6644:MR 6623:, 6617:MR 6615:, 6607:, 6595:90 6593:, 6575:MR 6573:, 6539:, 6533:MR 6531:, 6523:, 6515:, 6501:, 6477:13 6475:, 6471:, 6450:44 6444:, 6427:MR 6425:, 6407:, 6387:, 6381:MR 6379:, 6369:16 6367:, 6363:, 6349:MR 6347:, 6333:; 6329:; 6316:MR 6291:MR 6289:, 6279:, 6271:, 6259:; 6246:MR 6244:, 6026:; 5880:. 5801:, 5797:, 5747:×E 5727:. 5327:. 5206::= 4846:. 4830:61 4824:59 4818:58 4812:55 4806:51 4800:47 4774:63 4709:20 4703:18 4677:13 4620:, 4612:SO 4534:. 4449:. 4314:A 4306:. 3253:24 3180:. 3162:20 3142:11 3057:20 3026:. 2910:. 2682:22 2346:A 2050:19 2040:II 2006:22 1923:20 1710:20 1622:. 1610:22 1348:24 1282:, 1025:. 1013:24 762:12 695:2. 606::= 543:1. 458:, 247:. 239:, 200:. 51:K2 45:, 41:, 7417:2 7415:G 7384:? 7349:p 7334:) 7331:8 7329:E 7324:7 7322:E 7317:6 7315:E 7310:4 7308:F 7303:2 7301:G 7299:( 6895:e 6888:t 6881:v 6681:: 6673:: 6667:5 6611:: 6601:: 6527:: 6519:: 6509:: 6419:: 6413:8 6375:: 6275:: 6238:: 6034:. 5922:. 5878:g 5860:3 5854:g 5832:g 5827:P 5815:g 5811:g 5779:3 5774:P 5752:( 5749:8 5745:8 5721:X 5717:X 5713:W 5709:X 5705:O 5701:X 5697:X 5693:O 5685:W 5661:X 5657:O 5653:W 5642:X 5638:X 5611:2 5608:= 5595:X 5581:0 5575:u 5569:A 5543:u 5503:3 5487:X 5483:X 5475:X 5471:A 5460:X 5437:} 5434:2 5428:= 5423:2 5419:u 5415:: 5412:) 5409:X 5406:( 5394:u 5391:{ 5388:= 5362:2 5356:= 5351:2 5347:u 5336:X 5332:u 5325:X 5303:) 5300:X 5297:( 5292:1 5288:N 5267:) 5264:1 5255:, 5252:1 5249:( 5228:R 5221:) 5218:X 5215:( 5203:) 5200:X 5197:( 5192:1 5188:N 5165:Y 5161:g 5145:1 5140:P 5124:X 5120:Y 5104:g 5099:P 5077:2 5071:g 5068:2 5065:= 5060:2 5056:) 5052:L 5049:( 5044:1 5040:c 5029:L 5017:g 4994:g 4988:F 4963:g 4957:F 4932:h 4926:F 4913:g 4897:g 4891:F 4866:g 4860:F 4827:, 4821:, 4815:, 4809:, 4803:, 4797:= 4794:g 4768:g 4742:g 4736:F 4706:, 4700:= 4697:g 4671:g 4637:g 4631:F 4618:g 4589:2 4583:g 4573:g 4557:g 4551:F 4520:g 4515:P 4503:g 4499:X 4483:g 4478:P 4466:X 4462:L 4458:g 4454:L 4447:g 4443:L 4441:, 4439:X 4435:g 4431:L 4429:| 4423:C 4411:L 4404:g 4402:2 4386:2 4380:g 4377:2 4374:= 4369:2 4365:) 4361:L 4358:( 4353:1 4349:c 4338:L 4334:L 4327:g 4320:X 4294:) 4289:2 4281:, 4278:Y 4275:( 4270:0 4266:H 4245:) 4241:C 4237:, 4234:X 4231:( 4226:2 4222:H 4215:) 4210:2 4202:, 4199:X 4196:( 4191:0 4187:H 4166:) 4162:Z 4158:, 4155:Y 4152:( 4147:2 4143:H 4122:) 4118:Z 4114:, 4111:X 4108:( 4103:2 4099:H 4084:Y 4080:X 4063:) 4057:( 4054:O 4050:/ 4046:D 4040:) 4034:( 4031:O 4027:/ 4023:N 4006:N 4002:D 3987:C 3974:) 3970:C 3966:, 3963:X 3960:( 3955:2 3951:H 3944:) 3939:2 3931:, 3928:X 3925:( 3920:0 3916:H 3905:X 3891:D 3885:N 3862:. 3859:} 3856:0 3845:u 3837:u 3833:, 3830:0 3827:= 3822:2 3818:u 3814:: 3811:) 3807:C 3797:( 3794:P 3788:u 3785:{ 3782:= 3779:D 3751:N 3733:) 3727:( 3724:O 3704:) 3698:( 3695:O 3682:N 3674:N 3658:3 3651:U 3642:2 3635:) 3631:1 3625:( 3620:8 3616:E 3612:= 3589:) 3585:Z 3581:, 3578:X 3575:( 3570:2 3566:H 3555:X 3527:2 3522:C 3510:X 3506:X 3502:X 3498:X 3483:X 3471:X 3463:X 3451:L 3435:1 3430:P 3422:X 3412:L 3396:3 3391:P 3379:X 3358:0 3355:= 3350:2 3346:u 3325:) 3322:X 3319:( 3307:u 3297:X 3278:1 3274:I 3250:= 3247:) 3244:X 3241:( 3212:1 3207:P 3199:X 3116:) 3113:1 3104:, 3101:1 3098:( 3014:0 3006:2 3002:u 2981:) 2978:X 2975:( 2963:u 2943:) 2940:1 2931:, 2928:1 2925:( 2898:) 2895:X 2892:( 2880:u 2858:2 2854:u 2821:) 2817:Z 2813:, 2810:X 2807:( 2802:2 2798:H 2776:C 2765:X 2750:p 2742:X 2698:X 2677:Z 2669:) 2665:Z 2661:, 2658:X 2655:( 2650:2 2646:H 2635:X 2604:X 2589:X 2585:X 2581:X 2577:X 2573:X 2558:. 2537:5 2532:P 2505:4 2500:P 2481:Y 2477:Y 2472:. 2454:3 2449:P 2427:) 2424:1 2418:( 2414:/ 2410:A 2396:A 2388:A 2374:a 2365:a 2355:A 2329:3 2324:P 2293:2 2288:P 2272:X 2268:g 2260:X 2234:. 2220:2 2216:S 2207:2 2203:S 2180:X 2164:. 2146:8 2142:E 2131:U 2115:3 2108:U 2099:2 2092:) 2088:1 2082:( 2077:8 2073:E 2047:, 2044:3 2001:Z 1993:) 1989:Z 1985:, 1982:X 1979:( 1974:2 1970:H 1955:X 1948:. 1942:p 1918:C 1910:) 1905:X 1897:, 1894:X 1891:( 1886:1 1882:H 1860:C 1853:) 1848:2 1843:X 1835:; 1832:X 1829:( 1824:0 1820:H 1799:) 1795:Z 1791:; 1788:X 1785:( 1780:2 1776:H 1738:1 1727:0 1722:0 1715:1 1705:1 1698:0 1693:0 1682:1 1639:. 1607:= 1604:) 1601:X 1598:( 1593:2 1589:b 1568:0 1565:= 1562:) 1559:X 1556:( 1551:3 1547:b 1543:= 1540:) 1537:X 1534:( 1529:1 1525:b 1504:1 1501:= 1498:) 1495:X 1492:( 1487:4 1483:b 1479:= 1476:) 1473:X 1470:( 1465:0 1461:b 1437:. 1434:) 1431:X 1428:( 1423:i 1419:b 1413:i 1409:) 1405:1 1399:( 1394:i 1386:= 1383:) 1380:X 1377:( 1345:= 1342:) 1339:X 1336:( 1331:2 1327:c 1306:) 1303:X 1300:( 1295:3 1291:b 1266:) 1263:X 1260:( 1255:1 1251:b 1230:0 1227:= 1224:) 1220:Z 1216:, 1213:X 1210:( 1205:1 1201:H 1180:) 1175:X 1171:O 1167:, 1164:X 1161:( 1156:1 1152:H 1145:) 1141:Z 1137:, 1134:X 1131:( 1126:1 1122:H 1115:0 1091:0 1078:X 1074:O 1065:X 1061:O 1052:X 1047:Z 1039:0 1010:= 1007:) 1004:X 1001:( 996:2 992:c 971:) 968:X 965:( 960:1 956:c 949:= 946:) 941:X 937:K 933:( 928:1 924:c 901:X 897:K 878:i 864:) 861:X 858:( 853:i 849:c 825:, 821:) 817:) 814:X 811:( 806:2 802:c 798:+ 793:2 789:) 785:X 782:( 777:1 773:c 768:( 759:1 754:= 751:) 746:X 740:O 734:, 731:X 728:( 692:= 689:1 686:+ 683:0 677:1 674:= 671:) 666:X 660:O 654:, 651:X 648:( 643:i 639:h 633:i 629:) 625:1 619:( 614:i 603:) 598:X 592:O 586:, 583:X 580:( 564:X 540:= 537:) 532:X 528:K 524:, 521:X 518:( 513:0 509:h 505:= 502:) 497:X 491:O 485:, 482:X 479:( 474:2 470:h 442:) 437:X 433:O 429:, 426:X 423:( 418:1 414:H 389:) 384:X 380:O 376:, 373:X 370:( 365:1 361:h 350:X 348:( 346:q 330:2 325:X 317:= 312:X 308:K 181:0 178:= 173:4 169:w 165:+ 160:4 156:z 152:+ 147:4 143:y 139:+ 134:4 130:x 57:.

Index


real points
Kummer
KĂ€hler
Kodaira
K2
Kashmir
Weil (1958
mathematics
complex manifold
canonical bundle
irregularity
field
smooth
proper
algebraic surface
Enriques–Kodaira classification
Kodaira dimension
quartic surface
complex projective 3-space
complex tori
Calabi–Yau manifolds
hyperkÀhler manifolds
del Pezzo surfaces
general type
curves
abelian varieties
4-manifolds
Kac–Moody algebras
mirror symmetry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑