Knowledge

Kamacite

Source đź“ť

909:
sources thus they come in three types LL, L, and H; LL stands for Low iron, Low metal, L stands for Low iron abundance, and H is High iron content. All ordinary chondrites contain kamacite in decreasing abundance as you move from H to LL chondrites. Kamacite is also found in many of the less common meteorites mesosiderites and E chondrites. E chondrites are chondrites which are made primarily of enstatite and only account for 2% of meteorites that fall onto the Earth. E chondrites have an entirely different source rock than that of the ordinary chondrites. In analysis of kamacite in E chondrites it was found that they contain generally less nickel then average.
31: 825:). This is useful for giving clues as to how much the meteorite as a whole has been altered. Kamacite to tochilinite alteration can be seen in petrologic microscopes, scanning electron microscope, and electron microprobe analysis. This can be used to allow researchers to easily index the amount of alteration that has taken place in the sample. This index can be later referenced when analyzing other areas of the meteorite where alteration is not as clear. 638:, in which both iron and nickel have the valence zero (Fe and Ni) as they are metallic native elements commonly found in iron meteorites. Besides trace elements, it is normally considered to be made up of 90% iron and 10% nickel but can have a ratio of 95% iron and 5% nickel. This makes iron the dominant element in any sample of kamacite. It is grouped with the native elements in both Dana and Nickel-Strunz classification systems. 775:), as well as a P-rich phase. This was done in a lab to construct conditions concurrent with that of the solar nebula. With this information it would be possible to extract information about the thermodynamic, kinetic, and physical conditions of the early solar system. This still remains speculatory as many of the sulfides in meteorites are unstable and have been destroyed. Kamacite also alters to 880:
160–170 kg/mm and non-shocked meteorites can have values as high as 244 kg/mm. Shock causes a unique iron transformation structure that is able to be measured using metallographic and X-ray diffraction techniques. After using metallographic and X-ray diffraction techniques to determine shock history it was found that 49% of meteorites found on Earth contain evidence of shock.
1741: 842:
by the face centered taenite it is called an octahedrite as kamacite will exsolve from the octahedral crystal boundaries of taenite making the meteorite appear octahedral. Both hexahedrites and octahedrite only appear when the meteorite breaks along crystal planes or when prepared to accentuate the Thomson structures therefore many are mistakenly called ataxites ar first.
997:
the likeliness of a profitable return is fairly slim. Asteroid mining for space uses could be more practical, as transporting materials from Earth is costly. Similar to current plans of reusing the modules of the International Space Station in other missions, an iron meteorite could be used to build space craft in space.
837:
centered nature of the kamacite lattice and the body centered nature of the nickel lattice the two make intricate angles when they come in contact with each other. These angles reveal themselves macroscopically in the Thomson structure. Also due to this relationship we get the terms ataxite, hexahedrites and octahedrite.
984:
specimens involves washing them in a solvent, such as Thomson did with nitric acid to bring out the Thomson structures. Then they are heavily polished so they look shiny. Generally the kamacite can be told apart from taenite easily as after this process the kamacite looks slightly darker than the taenite.
996:
more profitable would be to gather the trace elements. One difficulty would be refining elements such as platinum and gold. Platinum is worth around 12,000 US$ /kg and (kamacite contains 16.11 ÎĽg/g platinum) and gold is worth around 12,000 US$ /kg (kamacite contains 0.52 ÎĽg/g gold); however
908:
present. There are three major types: enstatite chondrites, carbonaceous chondrites and ordinary chondrites. Ordinary chondrites are the most abundant type of meteorite found on Earth making up 85% of all meteorites recorded. Ordinary chondrites are thought to have all originated from three different
410:
There is evidence of a tetragonal phase, observed in X-ray powder tests and later under a microscope. When tested two meteorites gave d-values that could "be indexed on the basis of a tetragonal unit cell, but not on the basis of a cubic or hexagonal unit cell". It has been speculated to be e-iron, a
983:
Due to the rareness and the generally dull appearance of kamacite it is not popular among private collectors. However many museums and universities have samples of kamacite in their collection. Normally kamacite samples are prepared using polish and acid to show off the Thomson structures. Preparing
841:
refers to meteorites that do not show a grossly hexahedral or octahedral structure. Meteorites composed of 6 wt% or less nickel are often referred to as hexahedrites due to the crystal structure of kamacite being isometric and causing the meteorite to be cubic. Likewise if the meteorite is dominated
401:
Taenite contains more nickel (12 to 45 wt. % Ni) than kamacite (which has 5 to 12 wt. % Ni). The increase in nickel content causes taenite to have a face-centered unit cell, whereas kamacite's higher iron content causes its unit cell to be body centered. This difference is caused
376:
Kamacite is opaque, and its surface generally displays varying shades of gray streaking, or "quilting" patterns. Kamacite has a metallic luster. Kamacite can vary in hardness based on the extent of shock it has undergone, but commonly ranks a four on the mohs hardness scale. Shock increases kamacite
974:
The primary research use of kamacite is to shed light on a meteorite's history. Whether it is looking at the shock history in the iron structures or the conditions during the formation of the meteorite using the kamacite-taenite boundary understanding kamacite is key to understanding our universe.
850:
Trace elements have been analyzed in the formation of kamacite at different temperatures but the trace elements in taenite seem better suited to give clues of the formation temperature of the meteorite. As the meteorite cools and taenite and kamacite are sorting out of each other some of the trace
917:
Since kamacite is only formed in space and is only found on Earth in meteorites, it has very low abundance on Earth. Its abundance outside our solar system is difficult to determine. Iron, the main component of kamacite, is the sixth most abundant element in the universe and the most abundant of
879:
can be used on kamacite to determine the shock history of a meteorite. Using hardness to determine shock histories has been experimented with but was found to be too unreliable. Vickers hardness test was applied to a number of kamacite samples and shocked meteorites were found to have values of
836:
is the nickel rich end member of the kamacite–taenite solid solution. Taenite is naturally occurring on Earth whereas kamacite is only found on Earth when it comes from space. Kamacite forms taenite as it forms and expels nickel to the surrounding area, this area forms taenite. Due to the face
859:
Kamacite is only stable at temperatures below 723 Â°C or 600 Â°C (Stacey and Banerjee, 2012), as that is where iron becomes cool enough to arrange in a body centered crystal structure. Kamacite is also only stable at low pressures as can be assumed because it only forms in the
950:, Arizona. Meteor Crater was the first confirmed meteor impact site on the planet, and was not universally recognized as such until the 1950s. In the 1960s United States Geological Survey discovered kamacite in specimens gathered from around the site tying the mineral to meteorites. 387:. It has a massive crystal habit but normally individual crystals are indistinguishable in natural occurrences. There are no planes of cleavage present in kamacite which gives it a hackly fracture. Kamacite is magnetic, and isometric which makes it behave optically isometrically. 509:. Thermoremanent magnetization on Earth gives iron minerals formed in the Earth's crust, a higher magnetization than if they were formed in the same field at room temperature. This is a non-conventional thermoremanent magnetization because it appears to be due to a chemical 480:
changes into taenite and kamacite begins to precipitate out. It is in this window where the meteorite is cooling below 723 Â°C where the Thomson structures form and they can be greatly affected by the temperature, pressure, and composition of the meteorite.
682:
content varies from 5.26% to 6.81% and the cobalt content can be from 0.25% to 0.77%. All of these trace elements are metallic and their appearance near the kamacite taenite border can give important clues to the environment the meteorite was formed in.
452:). He published his observations in a French journal but due to the Napoleonic wars the English scientists, who were doing much of the meteorite research of the time, never discovered his work. It was not until 1808, four years later, that the same 851:
elements will prefer to be located in taenite or kamacite. Analyzing the taenite kamacite boundary can give clues to how quickly cooling occurred as well as a myriad of other conditions during formation by the final location of the trace elements.
1653:
Schröder, C.; Ashley, J. W.; Chapman, M. G.; Cohen, B. A.; Farrand, W. H.; Fleischer, I.; Gellert, R.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B. L.; Joseph, J.; Klingelhoefer, G.; Morris, R. V.; Squyres, S. W.; Wright, S. P. (22 March 2009).
530:
mineral with a body cubic centered unit cell. Kamacite is usually not found in large crystals; however the anomalously largest kamacite crystal found and documented measured 92Ă—54Ă—23 centimeters. Even with large crystals being so rare,
513:
process which is induced as taenite is cooled to kamacite. What makes this especially interesting is this has been shown to account for all of the ordinary chondrites magnetic field which has been shown to be as strong as 0.4
467:
Thomson structures or Widmanstätten patterns are created as the meteorite cools; at high temperatures both iron and nickel have face-centered lattices. When the meteorite is formed it starts out as entirely molten
1403:
Rasmussen, K.; Greenway, T.; Gwozdz, R. (1989). "The composition of kamacite in iron meteorites investigated by accelerator mass spectroscopy, neutron activation analysis and analytical electron microscopy".
650:
while nickel remains face centered. To accommodate this areas start to form of higher iron concentration displacing nickel to the areas around it which creates taenite which is the nickel end member.
464:
rates of kamacite and taenite. Widmanstätten told many of his colleagues about these patterns in correspondence leading to them being referred to as Widmanstätten patterns in most literature.
962:. The kamacite did not originate on Mars but was put there by a meteorite. This was particularly of interest because the meteorite fell under the lesser known class of 1368:
Nichiporuk, W. (1957). "Variations in the content of nickel, gallium, germanium, cobalt, copper and chromium in the kamacite and taenite phases of iron meteorites".
505:
As the meteorite cools below 750 Â°C iron becomes magnetic as it moves into the kamacite phase. During this cooling the meteorite takes on non-conventional
958:
Kamacite primarily forms on meteorites but has been found on extraterrestrial bodies such as Mars. This was discovered by The Mars Exploration Rover (MER)
377:
hardness, but this is not 100% reliable in determining shock histories as there are myriad other reasons that the hardness of kamacite could increase.
900:
Kamacite is primarily associated with meteorites because it needs high temperatures, low pressures and few other more reactive elements like oxygen.
432:, are textures often seen in meteorites that contain kamacite. These are bands which are usually alternating between kamacite and taenite. In 1804, 1517: 719:
Kamacite sulfurization has been done experimentally in laboratory conditions. Sulfurization resulted in three distinct phases: a mono-sulfide
1054:"International Mineralogical Association (IMA), Commission on New Minerals, Nomenclature and Classification, IMA Official List of Minerals" 555:
meaning it has three fourfold axes, four threefold axes, and six twofold axes and nine mirror planes. Kamacite has a space group of Fm
1547:
Rubin, A.; Jeffrey, T.; Maggiore, P. (1990). "Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships".
1673:
Flemming, R. (2007). "Micro X-ray diffraction (ÎĽXRD): a versatile technique for characterization of Earth and planetary materials".
275: 1723:
Brewster, Signe (29 August 2013). "NASA wants to build huge spacecraft in orbit with robots and 3D printers". Gigaom. Gigaom.
2591: 2465: 2414: 1781: 1855: 658:
There has been a great deal of research into kamacite's trace elements. The most notable trace elements in kamacite are
1752:, China. Size: 4.8Ă—3.0Ă—2.8 cm. The Nantan irons, a witnessed fall in 1516, have a composition of 92.35% iron and 6.96% 966:. Mesosiderites are very rare on Earth and its occurrence on Mars gives clues to the origin of its larger source rock. 2482: 349:
are often seen, which are evidence for structural deformation of adjacent kamacite plates due to shock from impacts.
1744:
Kamacite and taenite after taenite, exhibiting the octahedral structure of taenite, Nantan (Nandan) iron meteorite,
1252:
Ramsden, A. R. (1966). "Kamacite and taenite superstructures and a metastable tetragonal phase in iron meteorites".
2561: 2487: 1749: 1157:
Jain, V. A.; Gordon, R. B.; Lipschutz, M. E. (1972). "Hardness of Kamacite and Shock Histories of 119 Meteorites".
81: 1030: 457: 433: 303: 196: 547:, hexoctahedral crystals this causes the crystals to have many symmetry elements. Kamacite falls under the 4/m 436:
stumbled upon these structures when he noticed unexpected geometric patterns after cleaning a specimen with
1908: 1328: 552: 506: 2576: 2470: 2294: 282:. The proportion iron:nickel is between 90%:10% and 95%:5%; small quantities of other elements, such as 2581: 2419: 2409: 2198: 2193: 1894: 711:
to be an average of 0.22 (ÎĽg/g). The considerable amounts of cobalt and platinum are the most notable.
402:
by nickel and iron having a similar size but different interatomic magnetic and quantum interactions.
368:
Kamacite has many unique physical properties including Thomson structures and extremely high density.
2477: 1903: 1831: 1622: 1101: 535:
is extremely important to understand plays an important role in the formation of Thomson structures.
383: 992:
Kamacite and taenite both have the potential to be economically valuable. An option that would make
429: 338: 2566: 2131: 1899: 1890: 1880: 1774: 1525: 2439: 2188: 35: 2586: 1811: 1106: 1010: 604:(metallic Fe) atoms interacting with each other causes kamacite to have a body centered lattice. 2571: 1925: 1271:
Paneth, F. A. (1960). "The discovery and earliest reproductions of the Widmanstatten figures".
493:
and can be observed only in reflected light microscopy. It is isometric and therefore behaves
2377: 2347: 2154: 2149: 2068: 1114: 360:. The largest documented kamacite crystal measured 92Ă—54Ă—23 cm (36.2Ă—21.3Ă—9.1 in). 186: 1452: 888:
Kamacite meteorites have been found on every continent on Earth and have also been found on
2387: 2284: 2266: 2020: 1682: 1595: 1556: 1479: 1448: 1413: 1377: 1280: 1211: 1166: 544: 527: 460:
who was heating iron meteorites when he noticed geometric patterns caused by the differing
96: 1974: 1634:
Mead, C.; Littler, J.; Chao, E. (1965). "Metallic spheroids from Meteor crater, Arizona".
302:
is isometric-hexoctahedral. Its density is about 8 g/cm and its hardness is 4 on the
8: 2289: 2001: 1961: 1767: 959: 291: 219: 209: 1865: 1686: 1599: 1560: 1483: 1417: 1381: 1284: 1215: 1170: 2382: 2234: 1979: 1608: 1583: 1460: 1322: 1202:
Goldstein, J. I. (1965). "The formation of the kamacite phase in metallic meteorites".
425: 420: 295: 176: 2540: 2508: 2181: 2141: 1848: 1568: 1425: 1389: 1292: 876: 684: 647: 299: 1095: 2166: 1690: 1603: 1564: 1456: 1421: 1385: 1288: 1227: 1219: 1174: 1076: 490: 453: 229: 60: 1343: 1129: 2402: 2223: 2176: 2113: 2043: 993: 601: 532: 1504:
Field Guide to Meteors and Meteorites Patrick Moore's Practical Astronomy Series
2212: 2121: 2038: 1860: 1843: 1816: 1080: 720: 318: 91: 1655: 1584:"Studies of kamacite, perryite and schreibersite in E-chondrites and aubrites" 2555: 2528: 2434: 2424: 2256: 2239: 2086: 1759: 1745: 947: 872: 166: 103: 1232: 1223: 1178: 1041: 2518: 2274: 2161: 2126: 1994: 1936: 1836: 963: 714: 346: 148: 30: 2446: 2342: 2326: 2321: 2028: 1989: 1984: 1870: 1794: 930: 861: 776: 646:
Kamacite starts to form around 723 Â°C, where iron splits from being
472:(greater than 1500 Â°C) and as it cools past 723 Â°C the primary 437: 342: 330: 326: 322: 279: 126: 597: 593: 589: 2361: 2033: 2011: 1474:
Palmer, E. E. (2010). "A kamacite alteration index for CM chondrites".
473: 114: 1888: 2535: 2397: 2366: 2279: 2101: 2091: 2058: 2048: 1917: 1826: 1802: 1790: 978: 905: 901: 663: 510: 461: 271: 1694: 2503: 2171: 2053: 1439:
Lauretta, D. (1998). "Kamacite sulfurization in the solar nebula".
1314: 700: 688: 675: 494: 395: 357: 278:(IMA) it is considered a proper nickel-rich variety of the mineral 171:
Massive – uniformly indistinguishable crystals forming large masses
1001:
has put forward preliminary plans to build a space ship in space.
2316: 2096: 2081: 2076: 926: 838: 833: 708: 692: 659: 515: 469: 391: 353: 334: 39: 2523: 1821: 1753: 1067:
Burke, E.A.J. (2006). "A mass discreditation of GQN minerals".
696: 679: 671: 667: 309:
The name was coined in 1861 and is derived from the Greek root
287: 283: 267: 1740: 1660:
Proceedings of the 40th Lunar and Planetary Science Conference
2513: 477: 259: 38:
showing the two forms of nickel-iron minerals, kamacite and
998: 889: 704: 600:. The interatomic magnetic and quantum interactions of the 356:
that it is difficult to distinguish them visually, forming
263: 1656:"Santorini, Another Meteorite on Mars and Third of a Kind" 1652: 352:
At times kamacite can be found so closely intermixed with
317:"kamaks", meaning vine-pole. It is a major constituent of 933:
are minerals that are commonly associated with kamacite.
687:
has revealed kamacite to contain considerable amounts of
1053: 715:
Important minor elements, substitutions, solid solutions
394:
and a mixed area of kamacite and taenite referred to as
191:
Hackly – Jagged, torn surfaces, (e.g. fractured metals).
1402: 1304: 1302: 1152: 1150: 617:
Kamacite is made up of a repeating unit of α-(Fe, Ni),
567:
Kamacite is made up of a repeating unit of α-(Fe, Ni),
1546: 1299: 1147: 1406:
Nuclear Instruments and Methods in Physics Research
1156: 588:, which makes up cell dimensions of a = 8.603  1094: 1093: 979:Museums, university and photo specimen preparation 1497: 1495: 1493: 904:meteorites can be split into groups based on the 2553: 678:. Cobalt is the most notable of these where the 612: 290:may also be present. The mineral has a metallic 1708:Ross, S. (2001). "Near-Earth Asteroid Mining". 1633: 918:those elements generally considered metallic. 845: 1789: 1518:"NASA - Magnified Look at a Meteorite on Mars" 1490: 1341: 1308: 1127: 1775: 1013: â€“ Glossary of terms used in meteoritics 1506:. The Chondrites: Springer. pp. 75–111. 828: 16:Alloy of iron and nickel found in meteorites 1476:41st Lunar and Planetary Science Conference 1197: 1195: 1193: 1191: 1189: 306:. It is also sometimes called balkeneisen. 242:Non-radioactive, magnetic, Non-fluorescent. 1782: 1768: 1367: 641: 1623:Abundance in the Universe of the elements 1607: 1311:The Physical Principles of Rock Magnetism 1247: 1245: 1243: 1231: 1201: 1739: 1722: 1672: 1438: 1186: 987: 941: 1309:Stacey, F. D.; Banerjee, S. K. (2012). 1251: 946:Kamacite has been found and studied in 883: 333:it is found in bands interleaving with 276:International Mineralogical Association 2554: 1581: 1501: 1473: 1313:. Chapter 13 Magnetism in Meteorites: 1270: 1240: 921: 363: 1763: 1066: 707:to be an average of 0.75 (ÎĽg/g), and 484: 414: 1707: 1115:participating institution membership 936: 1441:Meteoritics & Planetary Science 405: 380:Kamacite has a measured density of 13: 1675:Canadian Journal of Earth Sciences 1609:10.1111/j.1945-5100.1986.tb01227.x 1461:10.1111/j.1945-5100.1998.tb01689.x 867: 854: 691:to be an average of 16.31 (ÎĽg/g), 521: 456:patterns were discovered by Count 270:, which is found on Earth only in 14: 2603: 703:to be an average of 1.97 (ÎĽg/g), 699:to be an average of 3.89 (ÎĽg/g), 695:to be an average of 5.40 (ÎĽg/g), 653: 371: 1750:Guangxi Zhuang Autonomous Region 29: 1736:. J. Wiley & Sons, New York 1716: 1701: 1666: 1646: 1627: 1616: 1575: 1549:Geochimica et Cosmochimica Acta 1540: 1510: 1467: 1432: 1396: 1370:Geochimica et Cosmochimica Acta 1361: 1335: 1273:Geochimica et Cosmochimica Acta 1264: 1204:Journal of Geophysical Research 1159:Journal of Geophysical Research 1121: 1087: 1060: 1046: 1035: 1024: 648:face centered to body centered 1: 1017: 895: 613:Formula and dominant elements 411:hexagonal polymorph of iron. 345:, fine parallel lines called 1569:10.1016/0016-7037(90)90148-e 1426:10.1016/0168-583X(89)90058-X 1390:10.1016/0016-7037(58)90025-5 1293:10.1016/0016-7037(60)90085-5 912: 846:Chemical explanation of heat 607: 562: 507:thermoremanent magnetization 500: 458:Alois von Beck Widmanstätten 7: 2592:Minerals in space group 229 1004: 538: 294:, is gray and has no clear 10: 2608: 2420:extraterrestrial materials 1081:10.2113/gscanmin.44.6.1557 953: 418: 2496: 2455: 2360: 2335: 2309: 2265: 2211: 2140: 2112: 2067: 2019: 2010: 1916: 1879: 1801: 1636:The American Mineralogist 1254:The American Mineralogist 1102:Oxford English Dictionary 1069:The Canadian Mineralogist 829:Relationship with taenite 428:, usually referred to as 246: 238: 228: 218: 208: 195: 185: 175: 165: 157: 147: 142: 125: 102: 90: 80: 59: 51: 46: 28: 23: 1327:: CS1 maint: location ( 745:), a pentlandite phase ( 553:Hermann–Mauguin notation 2562:Native element minerals 2199:Meteorites on Mars list 2194:Martian meteorites list 1453:1998M&PS...33..821L 1342:P. C. Rickwood (1981). 1224:10.1029/jz070i024p06223 1179:10.1029/jb077i035p06940 1128:P. C. Rickwood (1981). 1107:Oxford University Press 1011:Glossary of meteoritics 969: 642:Conditions of formation 1757: 1582:Easton, A. J. (1986). 1502:Norton, O. R. (2008). 1344:"The largest crystals" 1130:"The largest crystals" 430:Widmanstätten patterns 339:Widmanstätten patterns 161:Iron black, steel gray 2348:Nonmagmatic meteorite 1743: 1351:American Mineralogist 1137:American Mineralogist 1042:Kamacite Mineral Data 988:Looking to the future 942:Meteor crater Arizona 390:Kamacite occurs with 239:Other characteristics 82:Strunz classification 36:Widmanstätten pattern 2415:Ca–Al-rich inclusion 1528:on 28 September 2022 884:Geologic occurrences 1687:2007CaJES..44.1333F 1600:1986Metic..21...79E 1561:1990GeCoA..54.1217R 1484:2010LPI....41.2211P 1418:1989NIMPB..36...43R 1382:1958GeCoA..13..233N 1285:1960GeCoA..18..176P 1216:1965JGR....70.6223G 1171:1972JGR....77.6940J 1105:(Online ed.). 922:Associated minerals 364:Physical properties 274:. According to the 2577:Meteorite minerals 1758: 596:; V = 636.72  485:Optical properties 426:Thomson structures 421:Thomson structures 415:Thomson structures 2582:Magnetic minerals 2549: 2548: 2541:Near-Earth object 2509:Atmospheric entry 2356: 2355: 2305: 2304: 2207: 2206: 1210:(24): 6223–6232. 1165:(35): 6940–6954. 1113:(Subscription or 937:Specific examples 877:X-ray diffraction 685:Mass spectrometry 551:2/m class in the 300:crystal structure 253: 252: 55:Meteorite mineral 2599: 2374:Characteristics 2150:Basaltic Breccia 2017: 2016: 1914: 1913: 1886: 1885: 1784: 1777: 1770: 1761: 1760: 1732:Mason B., 1962: 1725: 1724: 1720: 1714: 1713: 1705: 1699: 1698: 1681:(9): 1333–1346. 1670: 1664: 1663: 1650: 1644: 1643: 1631: 1625: 1620: 1614: 1613: 1611: 1579: 1573: 1572: 1555:(5): 1217–1232. 1544: 1538: 1537: 1535: 1533: 1524:. Archived from 1514: 1508: 1507: 1499: 1488: 1487: 1471: 1465: 1464: 1436: 1430: 1429: 1400: 1394: 1393: 1365: 1359: 1358: 1348: 1339: 1333: 1332: 1326: 1318: 1306: 1297: 1296: 1268: 1262: 1261: 1249: 1238: 1237: 1235: 1233:2060/19650024149 1199: 1184: 1182: 1154: 1145: 1144: 1134: 1125: 1119: 1118: 1110: 1098: 1091: 1085: 1084: 1075:(6): 1557–1560. 1064: 1058: 1057: 1050: 1044: 1039: 1033: 1028: 824: 823: 822: 814: 813: 805: 804: 796: 795: 788: 787: 774: 773: 772: 764: 763: 755: 754: 744: 742: 741: 733: 732: 637: 636: 635: 627: 626: 587: 586: 585: 577: 576: 558: 550: 451: 450: 449: 406:Tetragonal phase 386: 230:Specific gravity 201: 137: 120: 111: 108:Hexoctahedral (m 66: 65:(repeating unit) 33: 21: 20: 2607: 2606: 2602: 2601: 2600: 2598: 2597: 2596: 2567:Nickel minerals 2552: 2551: 2550: 2545: 2492: 2451: 2364: 2352: 2331: 2301: 2261: 2203: 2177:Orthopyroxenite 2136: 2108: 2063: 2006: 1906: 1898: 1875: 1797: 1788: 1729: 1728: 1721: 1717: 1706: 1702: 1695:10.1139/e07-020 1671: 1667: 1651: 1647: 1632: 1628: 1621: 1617: 1580: 1576: 1545: 1541: 1531: 1529: 1516: 1515: 1511: 1500: 1491: 1472: 1468: 1437: 1433: 1401: 1397: 1366: 1362: 1346: 1340: 1336: 1320: 1319: 1307: 1300: 1269: 1265: 1250: 1241: 1200: 1187: 1155: 1148: 1132: 1126: 1122: 1112: 1092: 1088: 1065: 1061: 1052: 1051: 1047: 1040: 1036: 1031:Mineralienatlas 1029: 1025: 1020: 1007: 994:asteroid mining 990: 981: 972: 956: 944: 939: 924: 915: 898: 886: 870: 868:Effect of shock 857: 855:Stability range 848: 831: 821: 818: 817: 816: 812: 809: 808: 807: 803: 800: 799: 798: 794: 792: 791: 790: 786: 784: 783: 782: 780: 771: 768: 767: 766: 762: 759: 758: 757: 753: 750: 749: 748: 746: 740: 737: 736: 735: 731: 728: 727: 726: 724: 717: 656: 644: 634: 631: 630: 629: 625: 622: 621: 620: 618: 615: 610: 602:zerovalent iron 584: 581: 580: 579: 575: 572: 571: 570: 568: 565: 556: 548: 543:Kamacite forms 541: 533:crystallography 526:Kamacite is an 524: 522:Crystallography 503: 487: 448: 445: 444: 443: 441: 434:William Thomson 423: 417: 408: 381: 374: 366: 329:types). In the 319:iron meteorites 199: 135: 118: 113: 109: 76: 72: 64: 63: 42: 17: 12: 11: 5: 2605: 2595: 2594: 2589: 2587:Cubic minerals 2584: 2579: 2574: 2569: 2564: 2547: 2546: 2544: 2543: 2538: 2533: 2532: 2531: 2521: 2516: 2511: 2506: 2497: 2494: 2493: 2491: 2490: 2485: 2480: 2475: 2474: 2473: 2468: 2462:Meteorites by 2459: 2457: 2453: 2452: 2450: 2449: 2444: 2443: 2442: 2437: 2429: 2428: 2427: 2422: 2417: 2407: 2406: 2405: 2400: 2392: 2391: 2390: 2385: 2380: 2371: 2369: 2358: 2357: 2354: 2353: 2351: 2350: 2345: 2339: 2337: 2336:Obsolete terms 2333: 2332: 2330: 2329: 2324: 2319: 2313: 2311: 2307: 2306: 2303: 2302: 2300: 2299: 2298: 2297: 2292: 2287: 2277: 2271: 2269: 2263: 2262: 2260: 2259: 2254: 2251: 2248: 2245: 2242: 2237: 2232: 2229: 2226: 2221: 2217: 2215: 2209: 2208: 2205: 2204: 2202: 2201: 2196: 2191: 2186: 2185: 2184: 2174: 2169: 2164: 2159: 2158: 2157: 2146: 2144: 2138: 2137: 2135: 2134: 2129: 2124: 2122:Impact breccia 2118: 2116: 2110: 2109: 2107: 2106: 2105: 2104: 2099: 2094: 2084: 2079: 2073: 2071: 2065: 2064: 2062: 2061: 2056: 2051: 2046: 2041: 2036: 2031: 2025: 2023: 2014: 2008: 2007: 2005: 2004: 1999: 1998: 1997: 1992: 1987: 1977: 1972: 1971: 1970: 1967: 1959: 1958: 1957: 1954: 1951: 1948: 1945: 1942: 1939: 1934: 1931: 1922: 1920: 1911: 1883: 1881:Classification 1877: 1876: 1874: 1873: 1868: 1863: 1861:Micrometeorite 1858: 1853: 1852: 1851: 1841: 1840: 1839: 1834: 1829: 1824: 1814: 1808: 1806: 1799: 1798: 1787: 1786: 1779: 1772: 1764: 1738: 1737: 1727: 1726: 1715: 1700: 1665: 1645: 1626: 1615: 1574: 1539: 1509: 1489: 1478:(1533): 2211. 1466: 1431: 1395: 1376:(4): 233–236. 1360: 1334: 1317:. p. 170. 1298: 1279:(3): 176–182. 1263: 1239: 1185: 1146: 1120: 1086: 1059: 1045: 1034: 1022: 1021: 1019: 1016: 1015: 1014: 1006: 1003: 989: 986: 980: 977: 971: 968: 955: 952: 943: 940: 938: 935: 923: 920: 914: 911: 897: 894: 885: 882: 873:Metallographic 869: 866: 856: 853: 847: 844: 830: 827: 819: 810: 801: 793: 785: 769: 760: 751: 738: 729: 721:solid solution 716: 713: 655: 654:Trace elements 652: 643: 640: 632: 623: 614: 611: 609: 606: 592:, Z = 54  582: 573: 564: 561: 540: 537: 523: 520: 502: 499: 486: 483: 446: 419:Main article: 416: 413: 407: 404: 373: 372:Identification 370: 365: 362: 251: 250: 248: 244: 243: 240: 236: 235: 232: 226: 225: 222: 216: 215: 212: 206: 205: 202: 193: 192: 189: 183: 182: 179: 173: 172: 169: 163: 162: 159: 155: 154: 151: 145: 144: 143:Identification 140: 139: 129: 123: 122: 106: 100: 99: 94: 92:Crystal system 88: 87: 84: 78: 77: 74: 70: 67: 57: 56: 53: 49: 48: 44: 43: 34: 26: 25: 15: 9: 6: 4: 3: 2: 2604: 2593: 2590: 2588: 2585: 2583: 2580: 2578: 2575: 2573: 2572:Iron minerals 2570: 2568: 2565: 2563: 2560: 2559: 2557: 2542: 2539: 2537: 2534: 2530: 2527: 2526: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2499: 2498: 2495: 2489: 2488:Organizations 2486: 2484: 2481: 2479: 2476: 2472: 2469: 2467: 2466:find location 2464: 2463: 2461: 2460: 2458: 2454: 2448: 2445: 2441: 2440:Widmanstätten 2438: 2436: 2435:Neumann lines 2433: 2432: 2430: 2426: 2425:meteoric iron 2423: 2421: 2418: 2416: 2413: 2412: 2411: 2408: 2404: 2401: 2399: 2396: 2395: 2393: 2389: 2386: 2384: 2381: 2379: 2376: 2375: 2373: 2372: 2370: 2368: 2363: 2359: 2349: 2346: 2344: 2341: 2340: 2338: 2334: 2328: 2325: 2323: 2320: 2318: 2315: 2314: 2312: 2308: 2296: 2293: 2291: 2290:Eagle Station 2288: 2286: 2283: 2282: 2281: 2278: 2276: 2273: 2272: 2270: 2268: 2264: 2258: 2255: 2252: 2249: 2246: 2243: 2241: 2238: 2236: 2233: 2230: 2227: 2225: 2222: 2219: 2218: 2216: 2214: 2210: 2200: 2197: 2195: 2192: 2190: 2187: 2183: 2180: 2179: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2156: 2153: 2152: 2151: 2148: 2147: 2145: 2143: 2139: 2133: 2130: 2128: 2125: 2123: 2120: 2119: 2117: 2115: 2111: 2103: 2100: 2098: 2095: 2093: 2090: 2089: 2088: 2085: 2083: 2080: 2078: 2075: 2074: 2072: 2070: 2066: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2026: 2024: 2022: 2018: 2015: 2013: 2009: 2003: 2000: 1996: 1993: 1991: 1988: 1986: 1983: 1982: 1981: 1978: 1976: 1973: 1968: 1965: 1964: 1963: 1960: 1955: 1952: 1949: 1946: 1943: 1940: 1938: 1935: 1932: 1929: 1928: 1927: 1924: 1923: 1921: 1919: 1915: 1912: 1910: 1905: 1901: 1896: 1892: 1887: 1884: 1882: 1878: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1850: 1847: 1846: 1845: 1842: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1819: 1818: 1815: 1813: 1810: 1809: 1807: 1804: 1800: 1796: 1792: 1785: 1780: 1778: 1773: 1771: 1766: 1765: 1762: 1755: 1751: 1747: 1746:Nandan County 1742: 1735: 1731: 1730: 1719: 1711: 1704: 1696: 1692: 1688: 1684: 1680: 1676: 1669: 1661: 1657: 1649: 1641: 1637: 1630: 1624: 1619: 1610: 1605: 1601: 1597: 1593: 1589: 1585: 1578: 1570: 1566: 1562: 1558: 1554: 1550: 1543: 1527: 1523: 1519: 1513: 1505: 1498: 1496: 1494: 1485: 1481: 1477: 1470: 1462: 1458: 1454: 1450: 1446: 1442: 1435: 1427: 1423: 1419: 1415: 1411: 1407: 1399: 1391: 1387: 1383: 1379: 1375: 1371: 1364: 1356: 1352: 1345: 1338: 1330: 1324: 1316: 1312: 1305: 1303: 1294: 1290: 1286: 1282: 1278: 1274: 1267: 1259: 1255: 1248: 1246: 1244: 1234: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1196: 1194: 1192: 1190: 1180: 1176: 1172: 1168: 1164: 1160: 1153: 1151: 1142: 1138: 1131: 1124: 1116: 1108: 1104: 1103: 1097: 1090: 1082: 1078: 1074: 1070: 1063: 1055: 1049: 1043: 1038: 1032: 1027: 1023: 1012: 1009: 1008: 1002: 1000: 995: 985: 976: 967: 965: 964:mesosiderites 961: 951: 949: 948:Meteor Crater 934: 932: 928: 919: 910: 907: 903: 893: 891: 881: 878: 874: 865: 863: 852: 843: 840: 835: 826: 789:· 5-6 (Mg, Fe 778: 722: 712: 710: 706: 702: 698: 694: 690: 686: 681: 677: 673: 669: 665: 661: 651: 649: 639: 605: 603: 599: 595: 591: 560: 554: 546: 536: 534: 529: 519: 518:(symbol Oe). 517: 512: 508: 498: 496: 495:isotropically 492: 482: 479: 476:phase of the 475: 471: 465: 463: 459: 455: 439: 435: 431: 427: 422: 412: 403: 399: 397: 393: 388: 385: 378: 369: 361: 359: 355: 350: 348: 347:Neumann lines 344: 340: 336: 332: 328: 324: 320: 316: 312: 307: 305: 301: 298:although its 297: 293: 289: 285: 281: 277: 273: 269: 265: 261: 257: 249: 245: 241: 237: 233: 231: 227: 223: 221: 217: 213: 211: 207: 203: 198: 194: 190: 188: 184: 180: 178: 174: 170: 168: 167:Crystal habit 164: 160: 156: 152: 150: 146: 141: 133: 130: 128: 124: 116: 107: 105: 104:Crystal class 101: 98: 95: 93: 89: 85: 83: 79: 69:α-(Fe,Ni); Fe 68: 62: 58: 54: 50: 45: 41: 37: 32: 27: 22: 19: 2519:Impact event 2500: 2275:Mesosiderite 2189:Shergottites 2162:Chassignites 2127:Mare basalts 1926:Carbonaceous 1837:strewn field 1733: 1718: 1709: 1703: 1678: 1674: 1668: 1659: 1648: 1639: 1635: 1629: 1618: 1594:(1): 79–93. 1591: 1587: 1577: 1552: 1548: 1542: 1530:. Retrieved 1526:the original 1522:www.nasa.gov 1521: 1512: 1503: 1475: 1469: 1444: 1440: 1434: 1409: 1405: 1398: 1373: 1369: 1363: 1354: 1350: 1337: 1310: 1276: 1272: 1266: 1257: 1253: 1207: 1203: 1162: 1158: 1140: 1136: 1123: 1100: 1089: 1072: 1068: 1062: 1048: 1037: 1026: 991: 982: 973: 957: 945: 925: 916: 899: 887: 871: 858: 849: 832: 718: 657: 645: 616: 566: 542: 525: 504: 489:Kamacite is 488: 466: 424: 409: 400: 389: 379: 375: 367: 351: 343:hexahedrites 331:octahedrites 314: 310: 308: 255: 254: 149:Formula mass 131: 18: 2447:CI1 fossils 2343:Amphoterite 2327:Octahedrite 2322:Hexahedrite 2029:Acapulcoite 1956:C ungrouped 1871:Parent body 1795:meteoritics 1588:Meteoritics 960:Opportunity 931:tochilinite 777:tochilinite 438:nitric acid 327:hexahedrite 323:octahedrite 313:"kamak" or 280:native iron 153:56.13 g/mol 127:Space group 2556:Categories 2388:weathering 2362:Mineralogy 2310:Structural 2285:Main group 2267:Stony-iron 2069:Asteroidal 2034:Brachinite 2012:Achondrite 1832:statistics 1791:Meteorites 1734:Meteorites 1357:: 885–907. 1260:: 1–2, 37. 1143:: 885–907. 1117:required.) 1096:"kamacite" 1018:References 906:chondrules 896:Meteorites 474:metastable 304:Mohs scale 272:meteorites 247:References 197:Mohs scale 181:Indistinct 115:H-M symbol 2536:Meteoroid 2501:See also: 2431:Patterns 2398:chondrule 2367:petrology 2280:Pallasite 2172:Nakhlites 2102:Howardite 2092:Diogenite 2059:Winonaite 2049:Lodranite 2021:Primitive 1975:Kakangari 1962:Enstatite 1918:Chondrite 1827:impactite 1803:Meteorite 1712:: 107–81. 1532:5 October 1412:(1): 43. 1323:cite book 913:Abundance 902:Chondrite 664:germanium 608:Chemistry 563:Unit cell 545:isometric 528:isometric 501:Magnetism 462:oxidation 382:7.9  97:Isometric 2504:Asteroid 2483:Journals 2410:Minerals 2403:presolar 2295:Pyroxene 2182:ALH84001 2155:NWA 7034 2054:Ureilite 2002:Rumuruti 1980:Ordinary 1909:grouplet 1812:Glossary 1447:(4): 4. 1315:Elsevier 1005:See also 701:tungsten 689:platinum 676:chromium 539:Symmetry 511:remanent 396:plessite 358:plessite 337:forming 296:cleavage 256:Kamacite 214:Metallic 200:hardness 187:Fracture 177:Cleavage 52:Category 24:Kamacite 2394:Grains 2317:Ataxite 2142:Martian 2097:Eucrite 2082:Aubrite 2077:Angrite 1866:Notable 1856:Largest 1849:hunting 1683:Bibcode 1596:Bibcode 1557:Bibcode 1480:Bibcode 1449:Bibcode 1414:Bibcode 1378:Bibcode 1281:Bibcode 1212:Bibcode 1167:Bibcode 954:Planets 927:Taenite 839:Ataxite 834:Taenite 756:(Ni,Co) 734:(Ni,Co) 709:rhenium 693:iridium 660:gallium 516:oersted 470:taenite 454:etching 392:taenite 354:taenite 335:taenite 117:: (4/m 86:1.AE.05 61:Formula 47:General 40:taenite 2529:shower 2524:Meteor 2478:Awards 2167:Kaidun 1822:bolide 1754:nickel 1642:: 667. 929:, and 697:osmium 680:nickel 674:, and 672:copper 668:cobalt 491:opaque 311:καμακ- 292:luster 288:carbon 284:cobalt 268:nickel 258:is an 220:Streak 210:Luster 2514:Comet 2456:Lists 2378:shock 2244:IIIAB 2114:Lunar 2044:IIICD 1904:group 1895:class 1710:Space 1347:(PDF) 1133:(PDF) 1111: 862:space 478:alloy 341:. In 315:κάμαξ 260:alloy 158:Color 2471:type 2365:and 2250:IIIF 2247:IIIE 2224:IIAB 2213:Iron 2132:List 1907:and 1900:clan 1891:type 1844:Find 1817:Fall 1793:and 1534:2020 1329:link 999:NASA 970:Uses 890:Mars 875:and 815:(OH) 705:gold 384:g/cm 325:and 266:and 264:iron 224:Gray 121:2/m) 2383:TKW 2257:IVB 2253:IVA 2240:IIG 2235:IIE 2231:IID 2228:IIC 2087:HED 2039:IAB 1889:By 1805:... 1691:doi 1604:doi 1565:doi 1457:doi 1422:doi 1386:doi 1289:doi 1228:hdl 1220:doi 1175:doi 1077:doi 761:9-x 739:1-x 633:0.1 624:0.9 583:0.1 574:0.9 559:m. 442:HNO 286:or 262:of 234:7.9 112:m) 75:0.1 71:0.9 2558:: 2220:IC 1995:LL 1969:EL 1966:EH 1953:CV 1950:CR 1947:CO 1944:CM 1941:CK 1937:CI 1933:CH 1930:CB 1902:, 1893:, 1748:, 1689:. 1679:44 1677:. 1658:. 1640:50 1638:. 1602:. 1592:21 1590:. 1586:. 1563:. 1553:54 1551:. 1520:. 1492:^ 1455:. 1445:33 1443:. 1420:. 1410:36 1408:. 1384:. 1374:13 1372:. 1355:66 1353:. 1349:. 1325:}} 1321:{{ 1301:^ 1287:. 1277:18 1275:. 1258:51 1256:. 1242:^ 1226:. 1218:. 1208:70 1206:. 1188:^ 1173:. 1163:77 1161:. 1149:^ 1141:66 1139:. 1135:. 1099:. 1073:44 1071:. 892:. 864:. 820:10 781:Fe 747:Fe 725:Fe 670:, 666:, 662:, 628:Ni 619:Fe 578:Ni 569:Fe 497:. 398:. 73:Ni 1990:L 1985:H 1897:, 1783:e 1776:t 1769:v 1756:. 1697:. 1693:: 1685:: 1662:. 1612:. 1606:: 1598:: 1571:. 1567:: 1559:: 1536:. 1486:. 1482:: 1463:. 1459:: 1451:: 1428:. 1424:: 1416:: 1392:. 1388:: 1380:: 1331:) 1295:. 1291:: 1283:: 1236:. 1230:: 1222:: 1214:: 1183:. 1181:. 1177:: 1169:: 1109:. 1083:. 1079:: 1056:. 811:6 806:S 802:5 797:) 779:( 770:8 765:S 752:x 743:S 730:x 723:( 598:Ă… 594:Ă… 590:Ă… 557:3 549:3 447:3 440:( 321:( 204:4 138:m 136:3 134:m 132:I 119:3 110:3

Index


Widmanstätten pattern
taenite
Formula
Strunz classification
Crystal system
Isometric
Crystal class
H-M symbol
Space group
Formula mass
Crystal habit
Cleavage
Fracture
Mohs scale
Luster
Streak
Specific gravity
alloy
iron
nickel
meteorites
International Mineralogical Association
native iron
cobalt
carbon
luster
cleavage
crystal structure
Mohs scale

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑