Knowledge

Karp's 21 NP-complete problems

Source 📝

313:
showed in 1996 that every one of these 21 problems has a constrained optimization version that is impossible to approximate within any constant factor unless P = NP, by showing that Karp's approach to reduction generalizes to a specific type of approximability reduction. Note however that these may
309:
As time went on it was discovered that many of the problems can be solved efficiently if restricted to special cases, or can be solved within any fixed percentage of the optimal result. However,
66:
computational problems, thereby showing that they are all NP-complete. This was one of the first demonstrations that many natural computational problems occurring throughout
314:
be different from the standard optimization versions of the problems, which may have approximation algorithms (as in the case of maximum cut).
86:
Karp's 21 problems are shown below, many with their original names. The nesting indicates the direction of the reductions used. For example,
204: 484: 452: 503: 407: 310: 20: 107: 44: 498: 387: 323: 71: 119: 186: 174: 132: 112: 252: 28: 429: 245: 146: 8: 271: 160: 75: 413: 55: 48: 448: 403: 278: 153: 123:(A variation in which only the restrictions must be satisfied, with no optimization) 475: 440: 417: 395: 259: 167: 88: 67: 425: 52: 444: 217: 212: 127: 479: 492: 59: 383: 224: 63: 40: 36: 463: 399: 285: 238: 231: 139: 94: 32: 264: 35:. In his 1972 paper, "Reducibility Among Combinatorial Problems", 74:, and it drove interest in the study of NP-completeness and the 392:
Proc. 3rd Annual ACM Symposium on Theory of Computing (STOC)
16:
Set of computational problems stated by Richard Karp (1973)
435:. In R. E. Miller; J. W. Thatcher; J.D. Bohlinger (eds.). 58:
from the boolean satisfiability problem to each of 21
111:: the boolean satisfiability problem for formulas in 464:"On Unapproximable Versions of NP-Complete Problems" 360: 205:Satisfiability with at most 3 literals per clause 490: 348: 336: 388:"The Complexity of Theorem Proving Procedures" 263:(Karp's definition of Knapsack is closer to 430:"Reducibility Among Combinatorial Problems" 461: 366: 92:was shown to be NP-complete by reducing 491: 439:. New York: Plenum. pp. 85–103. 424: 382: 354: 342: 437:Complexity of Computer Computations 13: 14: 515: 304: 190:(Karp's name, now usually called 178:(Karp's name, now usually called 47:is NP-complete (also called the 81: 21:computational complexity theory 45:boolean satisfiability problem 25:Karp's 21 NP-complete problems 1: 376: 324:List of NP-complete problems 192:Undirected Hamiltonian cycle 7: 445:10.1007/978-1-4684-2001-2_9 317: 187:Undirected Hamilton circuit 115:(often referred to as SAT) 72:computationally intractable 10: 520: 180:Directed Hamiltonian cycle 51:) to show that there is a 504:Mathematics-related lists 480:10.1137/S0097539794266407 468:SIAM Journal on Computing 462:Zuckerman, David (1996). 175:Directed Hamilton circuit 43:'s 1971 theorem that the 329: 133:independent set problem 120:0–1 integer programming 113:conjunctive normal form 253:3-dimensional matching 218:Graph Coloring Problem 208:(equivalent to 3-SAT) 29:computational problems 400:10.1145/800157.805047 499:NP-complete problems 394:. pp. 151–158. 76:P versus NP problem 56:many-one reduction 49:Cook-Levin theorem 454:978-1-4684-2003-6 216:(also called the 161:Feedback node set 64:graph theoretical 511: 483: 474:(6): 1293–1304. 458: 434: 426:Karp, Richard M. 421: 370: 364: 358: 352: 346: 340: 213:Chromatic number 168:Feedback arc set 68:computer science 519: 518: 514: 513: 512: 510: 509: 508: 489: 488: 455: 432: 410: 379: 374: 373: 365: 361: 353: 349: 341: 337: 332: 320: 311:David Zuckerman 307: 84: 53:polynomial time 17: 12: 11: 5: 517: 507: 506: 501: 487: 486: 459: 453: 422: 408: 378: 375: 372: 371: 367:Zuckerman 1996 359: 347: 334: 333: 331: 328: 327: 326: 319: 316: 306: 305:Approximations 303: 302: 301: 300: 299: 298: 297: 296: 295: 294: 293: 292: 291: 290: 289: 275: 272:Job sequencing 256: 249: 242: 228: 201: 200: 199: 198: 197: 196: 195: 171: 164: 157: 143: 124: 108:Satisfiability 83: 80: 15: 9: 6: 4: 3: 2: 516: 505: 502: 500: 497: 496: 494: 485: 481: 477: 473: 469: 465: 460: 456: 450: 446: 442: 438: 431: 427: 423: 419: 415: 411: 409:9781450374644 405: 401: 397: 393: 389: 385: 384:Cook, Stephen 381: 380: 368: 363: 356: 351: 344: 339: 335: 325: 322: 321: 315: 312: 288: 287: 283: 282: 281: 280: 276: 274: 273: 269: 268: 266: 262: 261: 257: 255: 254: 250: 248: 247: 243: 241: 240: 236: 235: 234: 233: 229: 227: 226: 222: 221: 219: 215: 214: 210: 209: 207: 206: 202: 193: 189: 188: 184: 183: 181: 177: 176: 172: 170: 169: 165: 163: 162: 158: 156: 155: 151: 150: 149: 148: 144: 142: 141: 137: 136: 134: 130: 129: 125: 122: 121: 117: 116: 114: 110: 109: 105: 104: 103: 101: 97: 96: 91: 90: 79: 77: 73: 69: 65: 61: 60:combinatorial 57: 54: 50: 46: 42: 38: 34: 30: 27:are a set of 26: 22: 471: 467: 436: 391: 362: 350: 338: 308: 284: 277: 270: 258: 251: 246:Steiner tree 244: 237: 230: 225:Clique cover 223: 211: 203: 191: 185: 179: 173: 166: 159: 154:Set covering 152: 147:Vertex cover 145: 138: 126: 118: 106: 99: 93: 87: 85: 82:The problems 41:Stephen Cook 37:Richard Karp 24: 18: 239:Hitting set 232:Exact cover 140:Set packing 95:Exact cover 33:NP-complete 493:Categories 377:References 265:Subset sum 131:(see also 31:which are 355:Cook 1971 343:Karp 1972 279:Partition 428:(1972). 386:(1971). 318:See also 260:Knapsack 100:Knapsack 89:Knapsack 418:7573663 286:Max cut 451:  416:  406:  128:Clique 433:(PDF) 414:S2CID 330:Notes 39:used 449:ISBN 404:ISBN 70:are 62:and 476:doi 441:doi 396:doi 98:to 19:In 495:: 472:25 470:. 466:. 447:. 412:. 402:. 390:. 267:) 220:) 182:) 135:) 102:. 78:. 23:, 482:. 478:: 457:. 443:: 420:. 398:: 369:. 357:. 345:. 194:)

Index

computational complexity theory
computational problems
NP-complete
Richard Karp
Stephen Cook
boolean satisfiability problem
Cook-Levin theorem
polynomial time
many-one reduction
combinatorial
graph theoretical
computer science
computationally intractable
P versus NP problem
Knapsack
Exact cover
Satisfiability
conjunctive normal form
0–1 integer programming
Clique
independent set problem
Set packing
Vertex cover
Set covering
Feedback node set
Feedback arc set
Directed Hamilton circuit
Undirected Hamilton circuit
Satisfiability with at most 3 literals per clause
Chromatic number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.