Knowledge

Kleptothermy

Source 📝

345: 294: 247: 421:). These reptiles share the burrows made by the birds, and often stay when the birds are present which helps maintain a higher body temperature. Research has shown that fairy prions enable tuatara to maintain a higher body temperature through the night for several months of the year, October to January (austral spring to summer). During the night, tuatara sharing a burrow with a bird had the most thermal benefits and helped maintain their body temperature up to 15 hours the next day. 437:
that this behaviour exhibited by reptile embryos may well enhance offspring fitness where movements of these embryos enabled them to maximize heat gain from their surroundings and thus increase their body temperatures. This in turn leads to a variation in the embryonic development rate and the incubation period as well. This could benefit the embryos in which a warmer incubation increases developmental rate and therefore accelerating the hatching process.
32: 299: 297: 298: 296: 453:
temperatures that the embryo will experience before hatching. Instead, the embryo's behaviour and physiology combine, allowing the smallest embryos to control aspects of their own pre-hatching environment showing that the embryo is not simply a work in progress, but is a functioning organism with surprisingly sophisticated and effective behaviours.
360:
temperatures can be above 20 °C and can increase up to 37.5 °C, close to birds' body temperature. Therefore, this complex social behaviour is what enables all breeders to get an equal and normal access to an environment which allows them to save energy and successfully incubate their eggs during the Antarctic winter.
436:
falsify the assumption that behavioural thermoregulation is possible only for post-hatching stages of the reptile life history. Remarkably, even undeveloped and tiny embryos were able to detect thermal differentials within the egg and move to exploit that small-scale heterogeneity. Research has shown
452:
via modifications to a range of phenotypic traits where embryos with minimal temperature differences hatch at the same time decreasing the individuals' risk of predation. Therefore, the developmental rates of embryos of reptiles are not passive consequences of maternally enforced decisions about the
405:
incubating their chick. This in turn, raises its body temperature to 37.5 °C (99.5 °F), compared to 31.7 °C (89.1 °F) when present in other habitats. Its body temperature is also observed to be more stable. On the other hand, burrows without birds did not provide this heat, being
474:
On the other side, the mechanisms for thermoregulation did not evolve separately, but rather in connection with other functions. These mechanisms were more likely quantitative rather than qualitative and it involved selection of appropriate habitats, changes in levels of locomotor activity, optimum
461:
Ectotherms and endotherms undergo different evolutionary perspectives where mammals and birds thermoregulate far more precisely than ectotherms. A major benefit of precise thermoregulation is the ability to enhance performance through thermal specialization. Therefore, mammals and birds are assumed
359:
to save energy, maintain a high body temperature and sustain their breeding fast during the Antarctic winter. This huddling behaviour raises the ambient temperature that these penguins are exposed to above 0 °C (at average external temperatures of -17 °C). As a consequence of tight huddles, ambient
193:
This process requires two major conditions: the thermal heterogeneity created by the presence of a warm organism in a cool environment in addition to the use of that heterogeneity by another animal to maintain body temperatures at higher (and more stable) levels than would be possible elsewhere in
482:
Endothermy in vertebrates evolved along separate, but parallel lines from different groups of reptilian ancestors. The advantages of endothermy are manifested in the ability to occupy thermal areas that exclude many ectothermic vertebrates, a high degree of thermal independence from environmental
341:. This causes rival males to cover them in a mistaken attempt to mate, and so transfer heat to them. In turn, those males that mimic females become rapidly revitalized after hibernation (which depends upon raising their body temperature), giving them an advantage in their own attempts to mate. 321:, individuals maintain rest-phase body temperature above 32 °C despite air temperatures as low as -3.4 °C. This rest-phase body temperature was synchronized among individuals that cluster. Sometimes, kleptothermy is not reciprocal and might be accurately described as 440:
On the other hand, decreased incubation periods also may minimize the embryo's exposure to risks of nest predation or lethal extremes thermal conditions where embryos move to cooler regions of the egg during periods of dangerously high temperatures.
295: 483:
temperature, high muscular power output and sustained levels of activity. Endothermy, however, is energetically very expensive and requires a great deal of food, compared with ectotherms in order to support high metabolic rates.
205:
Kleptothermy is seen in cases where ectotherms regulate their own temperatures and exploit the high and constant body temperatures exhibited by endothermic species. In this case, the endotherms involved are not only
470:
would enable the evolution of thermal generalists in more heterothermic species. The physiologies of the endotherms allows them to adapt within the constraints imposed by genetics, development, and physics.
722:
Arends, Alexis; Bonaccorso, Frank J.; Genoud, Michel (1995). "Basal Rates of Metabolism of Nectarivorous Bats (Phyllostomidae) from a Semiarid Thorn Forest in Venezuela".
475:
energy liberation, and conservation of metabolic substrates. The evolution of endothermy is directly linked to the selection for high levels of activity sustained by
479:. The evolution of the complex behaviour patterns among the birds and mammals requires the evolution of metabolic systems that support the activity prior to that. 1352: 467: 137: 1121:
Corkery, Ilse; Bell, Ben D.; Nelson, Nicola J. (March–April 2014). "Investigating Kleptothermy: A Reptile-Seabird Association with Thermal Benefits".
844:
McKechnie, Andrew E.; Körtner, Gerhard; Lovegrove, Barry G. (2004). "Rest-Phase Thermoregulation in Free-Ranging White-Backed Mousebirds".
695:
Aubret, Fabien; Shine, Richard (2009). "Causes and consequences of aggregation by neonatal tiger snakes (Notechis scutatus, Elapidae)".
956:
Gilbert, C; Robertson, G; Lemaho, Y; Naito, Y; Aancel, A (2006-07-30). "Huddling behavior in emperor penguins: Dynamics of huddling".
392:
create high and regulated temperatures in their mounds, and this is exploited by some species of lizards, snakes and crocodiles.
130: 278:, increase their effective mass by clustering tightly together. It is also widespread amongst gregarious endotherms such as 1321: 798:
Ancel, André; Visser, Henk; Handrich, Yves; Masman, Dirkjan; Maho, Yvon Le (1997). "Energy saving in huddling penguins".
763: 262:
Huddling confers higher and more constant body temperatures than solitary resting. Some species of ectotherms including
641:
Shine; Hudson; Shah; Kearney (2003). "Sociality in Lizards: Why do Thick-tailed Geckos (Nephrurus milii) Aggregate?".
757:
Brown, C. R.; Foster, G. G. (1992). "The thermal and energetic significance of clustering in the speckled mousebird,
123: 511:
The Royal Society. Kleptothermy: an additional category of thermoregulation, and a possible example in sea kraits (
466:
of these endotherms would lead to losses of performance during certain periods and therefore genetic variation in
595: 1075:
Knapp, Charles R.; Owens, Audrey K. (2008). "Nesting Behavior and the Use of Termitaria by the Andros Iguana (
596:"Climatic, social and reproductive influences on behavioural thermoregulation in a female-dominated lemur" 1052:
Ehmann, H; Swan, G; Swan, G; Smith, B (1991). "Nesting, egg incubation and hatching by the heath monitor
1431: 1446: 510: 395:
Research has shown such kleptothermy can be advantageous in cases such as the blue-lipped sea krait (
431: 195: 543:"Kleptothermy: An additional category of thermoregulation, and a possible example in sea kraits ( 402: 219: 202:
and/or reduce the per capita metabolic expenditure needed to maintain stable body temperatures.
1441: 344: 311: 397: 1384: 1346: 1202: 905: 807: 8: 1436: 1317: 417: 1388: 1206: 909: 811: 194:
the local area. The purpose of this behaviour is to enable these groups to increase its
1233: 1190: 1154: 1096: 1034: 999: 965: 931: 869: 823: 780: 739: 677: 623: 571: 542: 476: 1408: 1400: 1296: 1288: 1238: 1220: 1146: 1138: 991: 983: 935: 923: 861: 708: 615: 576: 449: 1158: 1100: 1003: 873: 827: 784: 627: 16:
Form of thermoregulation in which an animal shares in the heat production of another
1392: 1325: 1278: 1228: 1210: 1130: 1088: 975: 913: 853: 815: 772: 731: 704: 650: 607: 566: 558: 445: 159: 22: 979: 611: 354: 304: 287: 271: 182:. However, kleptothermy can happen between different species that share the same 101: 86: 1375:
Bennett, A.; Ruben, J. (1979-11-09). "Endothermy and activity in vertebrates".
1195:
Proceedings of the National Academy of Sciences of the United States of America
654: 594:
Eppley, Timothy M.; Watzek, Julia; Hall, Katie; Donati, Giuseppe (2017-12-01).
234:. However, many cases of kleptothermy involve ectotherms sheltering inside the 246: 1425: 1404: 1292: 1224: 1142: 987: 865: 619: 316: 251: 167: 111: 91: 1215: 1396: 1300: 1242: 1150: 995: 927: 580: 562: 463: 415:) that forms a close association with a medium-sized reptile, the tuatara ( 326: 106: 81: 71: 66: 56: 290:) where it allows the sharing of body heat, particularly among juveniles. 1412: 410: 381: 368:
Many ectotherms exploit the heat produced by endotherms by sharing their
338: 275: 255: 231: 222:
where they provide thermal regimes that are exploited by a wide array of
61: 1330: 1038: 776: 743: 681: 668:
Myres, BC; Eells, MM (1968). "Thermal aggregation in Boa constrictor".
170:
of another animal. It may or may not be reciprocal, and occurs in both
970: 892:
Shine, R.; Phillips, B.; Waye, H.; Lemaster, M.; Mason, R. T. (2001).
348:
Bats cluster together to maintain high and constant body temperatures.
238:
used by endotherms to help maintain a high constant body temperature.
1092: 918: 893: 819: 334: 283: 199: 175: 171: 76: 51: 46: 41: 1017:
Newman, DG (1987). "Burrow use and population densities of Tuatara (
735: 1134: 492: 462:
to have evolved relatively narrow performance breadths. Thus, the
1283: 1266: 857: 389: 385: 330: 215: 183: 151: 373: 263: 235: 223: 207: 187: 163: 31: 377: 267: 227: 541:
Brischoux, François; Bonnet, Xavier; Shine, Richard (2009).
955: 369: 211: 218:
that maintain high and constant temperatures within their
891: 843: 797: 279: 1189:
Du, Wei-Guo; Zhao, Bo; Chen, Ye; Shine, Richard (2011).
429:
Research done on embryos of Chinese softshell turtles (
190:
are able to detect thermal changes in the environment.
721: 640: 593: 409:
Another example would be the case of the fairy prion (
401:), where these reptiles occupy a burrow of a pair of 352:
On the other hand, huddling allows emperor penguins (
540: 1267:"The evolution of thermal physiology in endotherms" 1051: 1120: 186:, and can also happen in pre-hatching life where 1423: 1351:: CS1 maint: bot: original URL status unknown ( 1191:"Behavioral thermoregulation by turtle embryos" 1188: 1021:) and how they are influenced by fairy prions ( 1322:Evolution of Regulatory Mechanisms in Bacteria 131: 1374: 1201:(23). National Academy of Sciences: 9513–5. 325:. For example, some male Canadian red sided 756: 694: 1334:. Archived from the original on 2023-04-28 1074: 667: 376:. For example, mammal burrows are used by 138: 124: 1329: 1282: 1232: 1214: 969: 917: 570: 343: 292: 245: 1316: 1424: 1370: 1368: 1366: 1364: 1362: 1312: 1310: 1264: 1260: 1258: 1256: 1254: 1252: 1184: 1182: 1180: 1178: 1176: 1174: 1172: 1170: 1168: 1016: 951: 949: 947: 945: 894:"Benefits of female mimicry in snakes" 887: 885: 883: 1123:Physiological and Biochemical Zoology 1116: 1114: 1112: 1110: 839: 837: 536: 534: 532: 530: 528: 526: 524: 522: 1025:) on Stephens Island, New Zealand". 424: 1359: 1307: 1249: 1165: 942: 880: 764:Journal of Comparative Physiology B 13: 1107: 834: 519: 380:and seabird burrows by Australian 363: 14: 1458: 709:10.1111/j.1442-9993.2008.01923.x 30: 1068: 1045: 1010: 791: 750: 715: 688: 661: 634: 587: 504: 406:only 28 °C (82 °F). 1: 980:10.1016/j.physbeh.2006.04.024 612:10.1016/j.anbehav.2017.10.003 498: 254:huddle around a female after 1324:(Report). Fort Belvoir, VA. 456: 7: 486: 333:in which they produce fake 241: 10: 1463: 1265:Cooper, Brandon S (2010). 655:10.1163/156853903322589632 1077:Cyclura cychlura cychlura 958:Physiology & Behavior 166:shares in the metabolic 1271:Frontiers in Bioscience 1216:10.1073/pnas.1102965108 448:could enhance hatching 444:In addition, embryonic 403:wedge-tailed shearwater 312:white-backed mousebirds 282:and birds (such as the 1397:10.1126/science.493968 1081:Journal of Herpetology 563:10.1098/rsbl.2009.0550 349: 307: 259: 178:. One of its forms is 1056:in a termite mound". 545:Laticauda laticaudata 513:Laticauda laticaudata 398:Laticauda laticaudata 347: 302: 249: 724:Journal of Mammalogy 355:Aptenodytes forsteri 337:after emerging from 1389:1979Sci...206..649B 1207:2011PNAS..108.9513D 1019:Sphenodon punctatus 910:2001Natur.414..267S 812:1997Natur.385..304A 432:Pelodiscus sinensis 418:Sphenodon punctatus 1331:10.21236/ada417800 1054:Varanus rosenbergi 777:10.1007/BF00296648 649:(8–9): 1039–1052. 477:aerobic metabolism 350: 308: 260: 1432:Animal physiology 1383:(4419): 649–654. 1023:Pachyptila turtur 806:(6614): 304–305. 468:thermosensitivity 425:Pre-hatching life 412:Pachyptila turtur 329:engage in female 305:emperor penguins. 300: 148: 147: 1454: 1447:Thermoregulation 1417: 1416: 1372: 1357: 1356: 1350: 1342: 1340: 1339: 1333: 1314: 1305: 1304: 1286: 1262: 1247: 1246: 1236: 1218: 1186: 1163: 1162: 1118: 1105: 1104: 1093:10.1670/07-098.1 1072: 1066: 1065: 1049: 1043: 1042: 1014: 1008: 1007: 973: 964:(4–5): 479–488. 953: 940: 939: 921: 919:10.1038/35104687 889: 878: 877: 841: 832: 831: 820:10.1038/385304a0 795: 789: 788: 754: 748: 747: 719: 713: 712: 692: 686: 685: 665: 659: 658: 638: 632: 631: 600:Animal Behaviour 591: 585: 584: 574: 538: 517: 508: 446:thermoregulation 384:and New Zealand 301: 272:boa constrictors 160:thermoregulation 140: 133: 126: 34: 23:Thermoregulation 19: 18: 1462: 1461: 1457: 1456: 1455: 1453: 1452: 1451: 1422: 1421: 1420: 1373: 1360: 1344: 1343: 1337: 1335: 1315: 1308: 1263: 1250: 1187: 1166: 1119: 1108: 1073: 1069: 1050: 1046: 1015: 1011: 954: 943: 890: 881: 842: 835: 796: 792: 759:Colius striatus 755: 751: 736:10.2307/1382765 720: 716: 697:Austral Ecology 693: 689: 666: 662: 639: 635: 592: 588: 551:Biology Letters 539: 520: 509: 505: 501: 489: 459: 427: 366: 364:Habitat sharing 293: 288:emperor penguin 244: 196:thermal inertia 158:is any form of 144: 107:Tachymetabolism 102:Bradymetabolism 87:Thermostability 17: 12: 11: 5: 1460: 1450: 1449: 1444: 1439: 1434: 1419: 1418: 1358: 1320:(2003-01-25). 1318:Ornston, L. N. 1306: 1277:(3): 861–881. 1248: 1164: 1135:10.1086/674566 1129:(2): 216–221. 1106: 1067: 1044: 1033:(3): 336–344. 1009: 941: 879: 833: 790: 771:(7): 658–664. 749: 714: 703:(2): 210–217. 687: 660: 633: 586: 557:(6): 729–731. 518: 502: 500: 497: 496: 495: 488: 485: 458: 455: 426: 423: 365: 362: 250:Male Canadian 243: 240: 214:; they can be 146: 145: 143: 142: 135: 128: 120: 117: 116: 115: 114: 109: 104: 99: 94: 89: 84: 79: 74: 69: 64: 59: 54: 49: 44: 36: 35: 27: 26: 15: 9: 6: 4: 3: 2: 1459: 1448: 1445: 1443: 1442:Heat transfer 1440: 1438: 1435: 1433: 1430: 1429: 1427: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1371: 1369: 1367: 1365: 1363: 1354: 1348: 1332: 1327: 1323: 1319: 1313: 1311: 1302: 1298: 1294: 1290: 1285: 1280: 1276: 1272: 1268: 1261: 1259: 1257: 1255: 1253: 1244: 1240: 1235: 1230: 1226: 1222: 1217: 1212: 1208: 1204: 1200: 1196: 1192: 1185: 1183: 1181: 1179: 1177: 1175: 1173: 1171: 1169: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1117: 1115: 1113: 1111: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1071: 1063: 1059: 1055: 1048: 1040: 1036: 1032: 1028: 1027:Herpetologica 1024: 1020: 1013: 1005: 1001: 997: 993: 989: 985: 981: 977: 972: 971:q-bio/0701051 967: 963: 959: 952: 950: 948: 946: 937: 933: 929: 925: 920: 915: 911: 907: 904:(6861): 267. 903: 899: 895: 888: 886: 884: 875: 871: 867: 863: 859: 855: 851: 847: 840: 838: 829: 825: 821: 817: 813: 809: 805: 801: 794: 786: 782: 778: 774: 770: 766: 765: 760: 753: 745: 741: 737: 733: 729: 725: 718: 710: 706: 702: 698: 691: 683: 679: 675: 671: 670:Herpetologica 664: 656: 652: 648: 644: 637: 629: 625: 621: 617: 613: 609: 605: 601: 597: 590: 582: 578: 573: 568: 564: 560: 556: 552: 548: 547:, Serpentes)" 546: 537: 535: 533: 531: 529: 527: 525: 523: 516: 514: 507: 503: 494: 491: 490: 484: 480: 478: 472: 469: 465: 454: 451: 447: 442: 438: 435: 433: 422: 420: 419: 414: 413: 407: 404: 400: 399: 393: 391: 387: 383: 379: 375: 371: 361: 358: 356: 346: 342: 340: 336: 332: 328: 327:garter snakes 324: 323:heat-stealing 320: 318: 317:Colius colius 313: 306: 291: 289: 285: 281: 277: 273: 269: 265: 257: 253: 252:garter snakes 248: 239: 237: 233: 229: 225: 221: 217: 213: 209: 203: 201: 197: 191: 189: 185: 181: 177: 173: 169: 168:thermogenesis 165: 161: 157: 153: 141: 136: 134: 129: 127: 122: 121: 119: 118: 113: 112:Thermogenesis 110: 108: 105: 103: 100: 98: 95: 93: 92:Gigantothermy 90: 88: 85: 83: 80: 78: 75: 73: 70: 68: 65: 63: 60: 58: 55: 53: 50: 48: 45: 43: 40: 39: 38: 37: 33: 29: 28: 24: 21: 20: 1380: 1376: 1336:. Retrieved 1284:10.2741/e148 1274: 1270: 1198: 1194: 1126: 1122: 1084: 1080: 1076: 1070: 1061: 1058:Herpetofauna 1057: 1053: 1047: 1030: 1026: 1022: 1018: 1012: 961: 957: 901: 897: 858:10.1650/7327 849: 845: 803: 799: 793: 768: 762: 758: 752: 727: 723: 717: 700: 696: 690: 676:(1): 61–66. 673: 669: 663: 646: 642: 636: 603: 599: 589: 554: 550: 544: 515:, Serpentes) 512: 506: 481: 473: 464:heterothermy 460: 443: 439: 430: 428: 416: 411: 408: 396: 394: 382:tiger snakes 367: 353: 351: 322: 315: 309: 303:Huddling in 276:tiger snakes 261: 258:when mating. 232:crocodilians 204: 192: 179: 162:by which an 156:kleptothermy 155: 149: 97:Kleptothermy 96: 82:Thermolabile 67:Heterothermy 57:Poikilotherm 1347:cite report 339:hibernation 256:hibernation 62:Homeothermy 1437:Parasitism 1426:Categories 1338:2023-04-28 852:(1): 143. 846:The Condor 730:(3): 947. 499:References 335:pheromones 270:, such as 176:ectotherms 172:endotherms 72:Stenotherm 25:in animals 1405:0036-8075 1293:1945-0494 1225:811394739 1143:1522-2152 1087:: 46–53. 988:0031-9384 936:205023381 866:0010-5422 643:Behaviour 620:0003-3472 606:: 25–34. 457:Evolution 284:mousebird 200:heat loss 198:, retard 77:Eurytherm 52:Mesotherm 47:Endotherm 42:Ectotherm 1301:20515760 1243:21606350 1159:37387863 1151:24642539 1101:86221541 1064:: 17–24. 1004:54332729 996:16740281 928:11713516 874:85156151 828:45614302 785:23969182 628:53180578 581:19656862 493:Rat king 487:See also 390:Termites 242:Huddling 216:termites 180:huddling 1385:Bibcode 1377:Science 1234:3111322 1203:Bibcode 1039:3892500 906:Bibcode 808:Bibcode 744:1382765 682:3891156 572:2828009 450:fitness 386:tuatara 374:burrows 331:mimicry 264:lizards 236:burrows 224:lizards 208:mammals 188:embryos 184:habitat 152:biology 1413:493968 1411:  1403:  1299:  1291:  1241:  1231:  1223:  1157:  1149:  1141:  1099:  1037:  1002:  994:  986:  934:  926:  898:Nature 872:  864:  826:  800:Nature 783:  742:  680:  626:  618:  579:  569:  378:geckos 268:snakes 228:snakes 220:mounds 164:animal 1155:S2CID 1097:S2CID 1035:JSTOR 1000:S2CID 966:arXiv 932:S2CID 870:S2CID 824:S2CID 781:S2CID 740:JSTOR 678:JSTOR 624:S2CID 370:nests 212:birds 1409:PMID 1401:ISSN 1353:link 1297:PMID 1289:ISSN 1239:PMID 1221:OCLC 1147:PMID 1139:ISSN 1079:)". 992:PMID 984:ISSN 924:PMID 862:ISSN 616:ISSN 577:PMID 372:and 286:and 280:bats 274:and 266:and 230:and 210:and 174:and 1393:doi 1381:206 1326:doi 1279:doi 1229:PMC 1211:doi 1199:108 1131:doi 1089:doi 976:doi 914:doi 902:414 854:doi 850:106 816:doi 804:385 773:doi 769:162 761:". 732:doi 705:doi 651:doi 647:140 608:doi 604:134 567:PMC 559:doi 388:. 310:In 150:In 1428:: 1407:. 1399:. 1391:. 1379:. 1361:^ 1349:}} 1345:{{ 1309:^ 1295:. 1287:. 1275:E2 1273:. 1269:. 1251:^ 1237:. 1227:. 1219:. 1209:. 1197:. 1193:. 1167:^ 1153:. 1145:. 1137:. 1127:87 1125:. 1109:^ 1095:. 1085:42 1083:. 1062:21 1060:. 1031:43 1029:. 998:. 990:. 982:. 974:. 962:88 960:. 944:^ 930:. 922:. 912:. 900:. 896:. 882:^ 868:. 860:. 848:. 836:^ 822:. 814:. 802:. 779:. 767:. 738:. 728:76 726:. 701:34 699:. 674:24 672:. 645:. 622:. 614:. 602:. 598:. 575:. 565:. 553:. 549:. 521:^ 226:, 154:, 1415:. 1395:: 1387:: 1355:) 1341:. 1328:: 1303:. 1281:: 1245:. 1213:: 1205:: 1161:. 1133:: 1103:. 1091:: 1041:. 1006:. 978:: 968:: 938:. 916:: 908:: 876:. 856:: 830:. 818:: 810:: 787:. 775:: 746:. 734:: 711:. 707:: 684:. 657:. 653:: 630:. 610:: 583:. 561:: 555:5 434:) 357:) 319:) 314:( 139:e 132:t 125:v

Index

Thermoregulation

Ectotherm
Endotherm
Mesotherm
Poikilotherm
Homeothermy
Heterothermy
Stenotherm
Eurytherm
Thermolabile
Thermostability
Gigantothermy
Kleptothermy
Bradymetabolism
Tachymetabolism
Thermogenesis
v
t
e
biology
thermoregulation
animal
thermogenesis
endotherms
ectotherms
habitat
embryos
thermal inertia
heat loss

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.