Knowledge

Laser diode

Source 📝

177: 376:. The active region of the laser diode is in the intrinsic (I) region, and the carriers (electrons and holes) are pumped into that region from the N and P regions respectively. While initial diode laser research was conducted on simple P–N diodes, all modern lasers use the double-hetero-structure implementation, where the carriers and the photons are confined in order to maximize their chances for recombination and light generation. Unlike a regular diode, the goal for a laser diode is to recombine all carriers in the I region, and produce light. Thus, laser diodes are fabricated using 560: 721:
Center) in Yorktown Heights, NY. The priority is given to General Electric group who have obtained and submitted their results earlier; they also went further and made a resonant cavity for their diode. It was initially speculated, by MIT's Ben Lax among other leading physicists, that silicon or germanium could be used to create a lasing effect, but theoretical analyses convinced William P. Dumke that these materials would not work. Instead, he suggested Gallium Arsenide as a good candidate. The first visible wavelength laser diode was demonstrated by
656:
pointers, and fiber optics. Note that these lasers may still support multiple longitudinal modes, and thus can lase at multiple wavelengths simultaneously. The wavelength emitted is a function of the band-gap of the semiconductor material and the modes of the optical cavity. In general, the maximum gain will occur for photons with energy slightly above the band-gap energy, and the modes nearest the peak of the gain curve will lase most strongly. The width of the gain curve will determine the number of additional
185: 479:. Optically pumped semiconductor lasers (OPSL) use a III-V semiconductor chip as the gain medium, and another laser (often another diode laser) as the pump source. OPSLs offer several advantages over ILDs, particularly in wavelength selection and lack of interference from internal electrode structures. A further advantage of OPSLs is invariance of the beam parameters – divergence, shape, and pointing – as pump power (and hence output power) is varied, even over a 10:1 output power ratio. 1018: 917: 854: 3460: 552: 1454: 312: 698: 169: 1104: 85: 36: 3507: 3883: 1264: 1114:(VCSELs) have the optical cavity axis along the direction of current flow rather than perpendicular to the current flow as in conventional laser diodes. The active region length is very short compared with the lateral dimensions so that the radiation emerges from the surface of the cavity rather than from its edge as shown in the figure. The reflectors at the ends of the cavity are 1081:-systems. To stabilize the lasing wavelength, a diffraction grating is etched close to the p–n junction of the diode. This grating acts like an optical filter, causing a single wavelength to be fed back to the gain region and lase. Since the grating provides the feedback that is required for lasing, reflection from the facets is not required. Thus, at least one facet of a DFB is 365: 592:, travelling in the same direction as the first photon. This means that stimulated emission will cause gain in an optical wave (of the correct wavelength) in the injection region, and the gain increases as the number of electrons and holes injected across the junction increases. The spontaneous and stimulated emission processes are vastly more efficient in 1628:. Areas of use include clock distribution for high-performance integrated circuits, high-peak-power sources for laser-induced breakdown spectroscopy sensing, arbitrary waveform generation for radio-frequency waves, photonic sampling for analog-to-digital conversion, and optical code-division-multiple-access systems for secure communication. 528:. Other materials, the so-called compound semiconductors, have virtually identical crystalline structures as silicon or germanium but use alternating arrangements of two different atomic species in a checkerboard-like pattern to break the symmetry. The transition between the materials in the alternating pattern creates the critical 902:—is confined to the thin middle layer. This means that many more of the electron-hole pairs can contribute to amplification—not so many are left out in the poorly amplifying periphery. In addition, light is reflected within the heterojunction; hence, the light is confined to the region where the amplification takes place. 499:— i.e., the electron may re-occupy the energy state of the hole, emitting a photon with energy equal to the difference between the electron's original state and hole's state. (In a conventional semiconductor junction diode, the energy released from the recombination of electrons and holes is carried away as 247:. Due to the drop of the electron from a higher energy level to a lower one, radiation, in the form of an emitted photon is generated. This is spontaneous emission. Stimulated emission can be produced when the process is continued and further generates light with the same phase, coherence and wavelength. 1544:
Uses of laser diodes can be categorized in various ways. Most applications could be served by larger solid-state lasers or optical parametric oscillators, but the low cost of mass-produced diode lasers makes them essential for mass-market applications. Diode lasers can be used in a great many fields;
1378:
interactions. This heats the cleaved mirror. In addition, the mirror may heat simply because the edge of the diode laser—which is electrically pumped—is in less-than-perfect contact with the mount that provides a path for heat removal. The heating of the mirror causes the bandgap of the semiconductor
635:
Some important properties of laser diodes are determined by the geometry of the optical cavity. Generally, the light is contained within a very thin layer, and the structure supports only a single optical mode in the direction perpendicular to the layers. In the transverse direction, if the waveguide
1209:
One of the most interesting features of any VECSEL is the small thickness of the semiconductor gain region in the direction of propagation, less than 100 nm. In contrast, a conventional in-plane semiconductor laser entails light propagation over distances of from 250 μm upward to 2 mm
1182:
Additionally, because VCSELs emit the beam perpendicular to the active region of the laser as opposed to parallel as with an edge emitter, tens of thousands of VCSELs can be processed simultaneously on a three-inch gallium arsenide wafer. Furthermore, even though the VCSEL production process is more
1088:
The threshold current of this DFB laser, based on its static characteristic, is around 11 mA. The appropriate bias current in a linear regime could be taken in the middle of the static characteristic (50 mA).Several techniques have been proposed in order to enhance the single-mode operation in these
720:
research center and by Marshall Nathan at the IBM T.J. Watson Research Center. There has been ongoing debate as to whether IBM or GE invented the first laser diode which was largely based on theoretical work by William P. Dumke at IBM's Kitchawan Lab (currently known as the Thomas J. Watson Research
1591:. Soft tissue is not cut by the laser's beam, but is instead cut by contact with a hot charred glass tip. The laser's irradiation is highly absorbed at the distal end of the tip and heats it up to 500 °C to 900 °C. Because the tip is so hot, it can be used to cut soft-tissue and can cause 760:
The first diode lasers were homojunction diodes. That is, the material (and thus the bandgap) of the waveguide core layer and that of the surrounding clad layers, were identical. It was recognized that there was an opportunity, particularly afforded by the use of liquid phase epitaxy using aluminum
756:
Diode lasers of that era operated with threshold current densities of 1000 A/cm at 77 K temperatures. Such performance enabled continuous-lasing to be demonstrated in the earliest days. However, when operated at room temperature, about 300 K, threshold current densities were two orders of magnitude
748:
In the early 1960s liquid phase epitaxy (LPE) was invented by Herbert Nelson of RCA Laboratories. By layering the highest quality crystals of varying compositions, it enabled the demonstration of the highest quality heterojunction semiconductor laser materials for many years. LPE was adopted by all
681:
must be used in order to form a collimated beam like that produced by a laser pointer. If a circular beam is required, cylindrical lenses and other optics are used. For single spatial mode lasers, using symmetrical lenses, the collimated beam ends up being elliptical in shape, due to the difference
655:
In applications where a small focused beam is needed, the waveguide must be made narrow, on the order of the optical wavelength. This way, only a single transverse mode is supported and one ends up with a diffraction-limited beam. Such single spatial mode devices are used for optical storage, laser
1205:
as part of the diode structure, or grown separately and bonded directly to the semiconductor containing the active region. VECSELs are distinguished by a construction in which one of the two mirrors is external to the diode structure. As a result, the cavity includes a free-space region. A typical
1178:
There are several advantages to producing VCSELs when compared with the production process of edge-emitting lasers. Edge-emitters cannot be tested until the end of the production process. If the edge-emitter does not work, whether due to bad contacts or poor material growth quality, the production
1049:
consisting of an electrically or optically pumped gain region between two mirrors to provide feedback. One of the mirrors is a broadband reflector and the other mirror is wavelength selective so that gain is favored on a single longitudinal mode, resulting in lasing at a single resonant frequency.
660:
that may also lase, depending on the operating conditions. Single spatial mode lasers that can support multiple longitudinal modes are called Fabry Perot (FP) lasers. An FP laser will lase at multiple cavity modes within the gain bandwidth of the lasing medium. The number of lasing modes in an FP
1441:
Reliability of high-power diode laser pump bars (used to pump solid-state lasers) remains a difficult problem in a variety of applications, in spite of these proprietary advances. Indeed, the physics of diode laser failure is still being worked out and research on this subject remains active, if
1217:
Several workers demonstrated optically pumped VECSELs, and they continue to be developed for many applications including high power sources for use in industrial machining (cutting, punching, etc.) because of their unusually high power and efficiency when pumped by multi-mode diode laser bars.
519:
The difference between the photon-emitting semiconductor laser and a conventional phonon-emitting (non-light-emitting) semiconductor junction diode lies in the type of semiconductor used, one whose physical and atomic structure confers the possibility for photon emission. These photon-emitting
664:
Single spatial mode diode lasers can be designed so as to operate on a single longitudinal mode. These single frequency diode lasers exhibit a high degree of stability, and are used in spectroscopy and metrology, and as frequency references. Single frequency diode lasers are classed as either
1394:
In the 1970s, this problem, which is particularly nettlesome for GaAs-based lasers emitting between 0.630 μm and 1 μm wavelengths (less so for InP-based lasers used for long-haul telecommunications which emit between 1.3 μm and 2 μm), was identified. Michael Ettenberg, a
1089:
kinds of lasers by inserting a onephase-shift (1PS) or multiple-phase-shift (MPS) in the uniform Bragg grating. However, multiple-phase-shift DFB lasers represent the optimal solution because they have the combination of higher side-mode suppression ratio and reduced spatial hole-burning.
788:-type layers beneath. It worked; the 300 K threshold currents went down by 10× to 10,000 amperes per square centimeter. Unfortunately, this was still not in the needed range and these single-heterostructure diode lasers did not function in continuous wave operation at room temperature. 1583:: medicine and especially dentistry have found many new uses for diode lasers. The shrinking size and cost of the units and their increasing user friendliness makes them very attractive to clinicians for minor soft tissue procedures. Diode wavelengths range from 810 to 1,100 1617:, generation of radio-frequency or terahertz waves, atomic clock state preparation, quantum key cryptography, frequency doubling and conversion, water purification (in the UV), and photodynamic therapy (where a particular wavelength of light would cause a substance such as 1085:. The DFB laser has a stable wavelength that is set during manufacturing by the pitch of the grating, and can only be tuned slightly with temperature. DFB lasers are widely used in optical communication applications where a precise and stable wavelength is critical. 1418:
Since then, various other refinements have been employed. One approach is to create a so-called non-absorbing mirror (NAM) such that the final 10 μm or so before the light emits from the cleaved facet are rendered non-absorbing at the wavelength of interest.
616:
to form a laser. In the simplest form of laser diode, an optical waveguide is made on that crystal's surface, such that the light is confined to a relatively narrow line. The two ends of the crystal are cleaved to form perfectly smooth, parallel edges, forming a
1249:
As type. The first external-cavity diode lasers used intracavity etalons and simple tuning Littrow gratings. Other designs include gratings in grazing-incidence configuration, multiple-prism grating configurations and piezo-transduced diode laser configuration.
765:, while working at RCA Laboratories in the mid-1950s, as having unique advantages for several types of electronic and optoelectronic devices including diode lasers. LPE afforded the technology of making heterojunction diode lasers. In 1963 he proposed the 740:
were also involved in and received credit for their historic initial demonstrations of efficient light emission and lasing in semiconductor diodes in 1962 and thereafter. GaAs lasers were also produced in early 1963 in the Soviet Union by the team led by
1537:(LAS) for high-speed, low-cost assessment or monitoring of the concentration of various species in gas phase. High-power laser diodes are used in industrial applications such as heat treating, cladding, seam welding and for pumping other lasers, such as 1175:= λ/2 which then leads to the constructive interference of all partially reflected waves at the interfaces. But there is a disadvantage: because of the high mirror reflectivities, VCSELs have lower output powers when compared to edge-emitting lasers. 844:
The simple laser diode structure, described above, is inefficient. Such devices require so much power that they can only achieve pulsed operation without damage. Although historically important and easy to explain, such devices are not practical.
2189: 1054:
with high reflectivity. The diffraction grating is within a non-pumped, or passive region of the cavity . A DBR laser is a monolithic single chip device with the grating etched into the semiconductor. DBR lasers can be edge emitting lasers or
757:
greater, or 100,000 A/cm in the best devices. The dominant challenge for the remainder of the 1960s was to obtain low threshold current density at 300 K and thereby to demonstrate continuous-wave lasing at room temperature from a diode laser.
1025:
The problem with the simple quantum well diode described above is that the thin layer is simply too small to effectively confine the light. To compensate, another two layers are added on, outside the first three. These layers have a lower
1369:
As a result, when light propagates through the cleavage plane and transits to free space from within the semiconductor crystal, a fraction of the light energy is absorbed by the surface states where it is converted to heat by
761:
gallium arsenide, to introduce heterojunctions. Heterostructures consist of layers of semiconductor crystal having varying bandgap and refractive index. Heterojunctions (formed from heterostructures) had been recognized by
621:
resonator. Photons emitted into a mode of the waveguide will travel along the waveguide and be reflected several times from each end face before they exit. As a light wave passes through the cavity, it is amplified by
1505:. Both low and high-power diodes are used extensively in the printing industry both as light sources for scanning (input) of images and for very high-speed and high-resolution printing plate (output) manufacturing. 1422:
In the very early 1990s, SDL, Inc. began supplying high power diode lasers with good reliability characteristics. CEO Donald Scifres and CTO David Welch presented new reliability performance data at, e.g.,
2220: 1457:
Laser diodes can be arrayed to produce very high power outputs, continuous wave or pulsed. Such arrays may be used to efficiently pump solid-state lasers for high average power drilling, burning or for
803:-type) and a third melt of gallium arsenide. It had to be done rapidly since the gallium arsenide core region needed to be significantly under 1 μm in thickness. The first laser diode to achieve 524:
semiconductors. The properties of silicon and germanium, which are single-element semiconductors, have bandgaps that do not align in the way needed to allow photon emission and are not considered
1610:, certain applications utilize the coherence of laser diodes. These include interferometric distance measurement, holography, coherent communications, and coherent control of chemical reactions. 1214:
nonlinearities in the diode laser gain region to be minimized. The result is a large-cross-section single-mode optical beam that is not attainable from in-plane ("edge-emitting") diode lasers.
2543: 2516: 2103: 1059:. Alternative hybrid architectures that share the same topology include extended cavity diode lasers and volume Bragg grating lasers, but these are not properly called DBR lasers. 689:
The simple diode described above has been heavily modified in recent years to accommodate modern technology, resulting in a variety of types of laser diodes, as described below.
572:
In the absence of stimulated emission (e.g., lasing) conditions, electrons and holes may coexist in proximity to one another, without recombining, for a certain time, termed the
1379:
to shrink in the warmer areas. The bandgap shrinkage brings more electronic band-to-band transitions into alignment with the photon energy causing yet more absorption. This is
1545:
since light has many different properties (power, wavelength, spectral and beam quality, polarization, etc.) it is useful to classify applications by these basic properties.
1362:
The atomic states at the cleavage plane are altered compared to their bulk properties within the crystal by the termination of the perfectly periodic lattice at that plane.
791:
The innovation that met the room temperature challenge was the double heterostructure laser. The trick was to quickly move the wafer in the LPE apparatus between different
1427:
Photonics West conferences of the era. The methods used by SDL to defeat COD were considered to be highly proprietary and were still undisclosed publicly as of June 2006.
1339:
Semiconductor lasers can be surface-emitting lasers such as VCSELs, or in-plane edge-emitting lasers. For edge-emitting lasers, the edge facet mirror is often formed by
580:(about a nanosecond for typical diode laser materials), before they recombine. A nearby photon with energy equal to the recombination energy can cause recombination by 460:-type semiconductors wherever they are in physical contact.) Due to the use of charge injection in powering most diode lasers, this class of lasers is sometimes termed 1121:
Such dielectric mirrors provide a high degree of wavelength-selective reflectance at the required free surface wavelength λ if the thicknesses of alternating layers
626:, but light is also lost due to absorption and by incomplete reflection from the end facets. Finally, if there is more amplification than loss, the diode begins to 780:-type gallium arsenide layers grown on the substrate by LPE. An admixture of aluminum replaced gallium in the semiconductor crystal and raised the bandgap of the 3946: 3774: 3111: 1465:
Laser diodes are numerically the most common laser type, with 2004 sales of approximately 733 million units, as compared to 131,000 of other types of lasers.
192:) image of a commercial laser diode with its case and window cut away. The anode connection on the right has been accidentally broken by the case cut process. 57: 987:, the difference between quantum well energy levels is used for the laser transition instead of the bandgap. This enables laser action at relatively long 468:(ILD). As diode lasers are semiconductor devices, they may also be classified as semiconductor lasers. Either designation distinguishes diode lasers from 180:
A laser diode with the case cut away. The laser diode chip is the small black chip at the front; a photodiode at the back is used to control output power.
1050:
The broadband mirror is usually coated with a low reflectivity coating to allow emission. The wavelength selective mirror is a periodically structured
2528: 511:. Spontaneous emission is necessary to initiate laser oscillation, but it is one among several sources of inefficiency once the laser is oscillating. 2555: 1424: 1282: 1030:
than the centre layers, and hence confine the light effectively. Such a design is called a separate confinement heterostructure (SCH) laser diode.
1183:
labor- and material-intensive, the yield can be controlled to a more predictable outcome. However, they normally show a lower power output level.
940:
function of electrons in the quantum well system has an abrupt edge that concentrates electrons in energy states that contribute to laser action.
4090: 3986: 3127: 1192: 1009:(ICL) is a type of laser diode that can produce coherent radiation over a large part of the mid-infrared region of the electromagnetic spectrum. 749:
the leading laboratories, worldwide and used for many years. It was finally supplanted in the 1970s by molecular beam epitaxy and organometallic
2903: 3872: 1225:
Electrically pumped VECSELs have also been demonstrated. Applications for electrically pumped VECSELs include projection displays, served by
2868:
Romanos, Georgios E. (2013-12-01). "Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes".
2775: 3496: 1878: 1614: 1613:
Laser diodes are used for their narrow spectral properties in the areas of range-finding, telecommunications, infra-red countermeasures,
2652:"A Scoping Review of the Efficacy of Diode Lasers Used for Minimally Invasive Exposure of Impacted Teeth or Teeth with Delayed Eruption" 2012: 1983: 1965: 1953: 1933: 1912: 44: 5138: 4964: 1840: 3655: 712:
light emission from a gallium arsenide (GaAs) semiconductor diode (a laser diode) was demonstrated in 1962 by two US groups led by
4605: 3420: 250:
The choice of the semiconductor material determines the wavelength of the emitted beam, which in today's laser diodes range from
3980: 1111: 1098: 1056: 3673: 3070: 2758: 2290: 2087: 1572:(as power beaming), and directed energy weaponry. Some of these applications are well-established while others are emerging. 677:, the beam diverges (expands) rapidly after leaving the chip, typically at 30 degrees vertically by 10 degrees laterally. A 4522: 2741:
Borzabadi-Farahani, A (2024). "Laser Use in Muco-Gingival Surgical Orthodontics". In Coluzzi, D.J.; Parker, S.P.A. (eds.).
644:. These transversely multi-mode lasers are adequate in cases where one needs a very large amount of power, but not a small 240: 129: 1438:
which conferred extraordinary resistance to COD in GaAs-based lasers. This process, too, was undisclosed as of June 2006.
833:
working in the United States. However, it is widely accepted that Zhores I. Alferov and team reached the milestone first.
4303: 4083: 772:
The first heterojunction diode lasers were single-heterojunction lasers. These lasers utilized aluminum gallium arsenide
3087: 1445:
Extension of the lifetime of laser diodes is critical to their continued adaptation to a wide variety of applications.
4286: 4182: 3918: 3865: 2995: 2843: 2816: 2460: 2410:
Fleming, M. W.; Mooradian, A. (1981). "Spectral characteristics of external-cavity controlled semiconductor lasers".
2318: 1300: 1042: 351: 1343:
the semiconductor wafer to form a specularly reflecting plane. This approach is facilitated by the weakness of the
4426: 4153: 3159: 836:
For their accomplishment and that of their co-workers, Alferov and Kroemer shared the 2000 Nobel Prize in Physics.
1740:
bar-code readers, first diode-laser pointers (now obsolete, replaced by brighter 650 nm and 671 nm DPSS)
4474: 4273: 4057: 3809: 3489: 2596:
Andreana, S (2005). "The use of diode lasers in periodontal therapy: literature review and suggested technique".
2133:
Coherent white paper (2018-05). "Advantages of Optically Pumped Semiconductor Lasers – Invariant Beam Properties"
1330:
Many of the advances in reliability of diode lasers in the last 20 years remain proprietary to their developers.
957:
Further improvements in the laser efficiency have also been demonstrated by reducing the quantum well layer to a
548:
are all examples of compound semiconductor materials that can be used to create junction diodes that emit light.
258:(UV) spectrum. Laser diodes are the most common type of lasers produced, with a wide range of uses that include 4076: 3731: 3329: 2569:
Yeh, S; Jain, K; Andreana, S (2005). "Using a diode laser to uncover dental implants in second-stage surgery".
1538: 333: 3108: 5128: 1603:. Diode lasers when used on soft tissue can cause extensive collateral thermal damage to surrounding tissue. 1534: 1400: 521: 377: 2335: 5148: 4505: 4257: 3858: 2260: 1336:
is not always able to reveal the differences between more-reliable and less-reliable diode laser products.
329: 189: 176: 17: 1624:
Laser diodes are used for their ability to generate ultra-short pulses of light by the technique known as
5153: 4309: 4246: 3385: 1459: 1323: 708:
Following theoretical treatments of M.G. Bernard, G. Duraffourg and William P. Dumke in the early 1960s
4969: 4516: 4029: 4024: 3924: 3482: 3189: 2926: 1366:
at the cleaved plane have energy levels within the (otherwise forbidden) bandgap of the semiconductor.
1074: 1068: 898:
The advantage of a DH laser is that the region where free electrons and holes exist simultaneously—the
891:(DH) laser. The kind of laser diode described in the first part of the article may be referred to as a 870: 1021:
Diagram of front view of a separate confinement heterostructure quantum well laser diode; not to scale
4723: 4437: 4280: 4165: 3575: 3097: 3024:
Iga, Kenichi (2000). "Surface-emitting laser—Its birth and generation of new optoelectronics field".
2478:"Design of a Littrow-type diode laser with independent control of cavity length and grating rotation" 1825: 750: 452:, devoid of any charge carriers, forms as a result of the difference in electrical potential between 259: 1621:
to become chemically active as an anti-cancer agent only where the tissue is illuminated by light).
1411:
was deposited on the facet. If the aluminum oxide thickness is chosen correctly, it functions as an
991:, which can be tuned simply by altering the thickness of the layer. They are heterojunction lasers. 5158: 4732: 4590: 4442: 4298: 4003: 3649: 3530: 1716: 645: 2188:
Nathan, Marshall I.; Dumke, William P.; Burns, Gerald; Dill, Frederick H.; Lasher, Gordon (1962).
5133: 4743: 4463: 4262: 3997: 3839: 2104:"Optically Pumped Semiconductor Lasers: Green OPSLs poised to enter scientific pump-laser market" 1569: 1412: 1314: 1082: 1006: 1000: 488: 393: 322: 49: 5143: 4912: 4479: 4344: 4320: 3632: 3359: 3179: 2808: 2051: 2046: 1482: 1356: 1344: 865:
material is sandwiched between two high bandgap layers. One commonly-used pair of materials is
810: 766: 729: 1673:
blue laser multimode diode recently introduced (2010) for use in mercury-free high-brightness
1210:
or longer. The significance of the short propagation distance is that it causes the effect of
1077:(DFB) is a type of single frequency laser diode. DFBs are the most common transmitter type in 4981: 4933: 4754: 4570: 4485: 4416: 4252: 3940: 3663: 3643: 3247: 1754: 1404: 1352: 984: 978: 3120: 3007: 2367:
Voumard, C. (1977). "External-cavity-controlled 32-MHz narrow-band cw GaA1As-diode lasers".
1218:
However, because of their lack of p–n junction, optically pumped VECSELs are not considered
5055: 4799: 4694: 4468: 4361: 4215: 4176: 4107: 4099: 3992: 3963: 3354: 3237: 3225: 3152: 3033: 2938: 2663: 2419: 2376: 2204: 2160: 1637: 1318: 585: 508: 496: 389: 225: 110: 416:
junction diodes. Forward electrical bias across the laser diode causes the two species of
8: 4775: 4683: 4575: 4411: 4388: 3886: 3626: 3405: 3324: 3264: 3184: 3092: 2950: 1607: 1510: 1332: 1051: 899: 709: 623: 581: 229: 3037: 2942: 2667: 2423: 2380: 2208: 2164: 1415:, reducing reflection at the surface. This alleviated the heating and COD at the facet. 559: 5080: 4940: 4648: 4615: 4431: 4315: 4293: 3930: 2954: 2801: 2723: 2623:
Borzabadi-Farahani A (2017). "The Adjunctive Soft-Tissue Diode Laser in Orthodontics".
1340: 1226: 1033:
Almost all commercial laser diodes since the 1990s have been SCH quantum well diodes.
947:
lasers. Multiple quantum wells improve the overlap of the gain region with the optical
933: 911: 818: 722: 661:
laser is usually unstable, and can fluctuate due to changes in current or temperature.
541: 3814: 2132: 618: 5075: 4996: 4887: 4839: 4668: 4595: 4557: 3935: 3638: 3510: 3425: 3299: 3274: 3066: 2991: 2958: 2877: 2839: 2812: 2754: 2715: 2692: 2632: 2605: 2578: 2497: 2456: 2392: 2314: 2286: 2108: 2083: 2075: 1811: 1801: 1474: 1384: 1278: 1115: 937: 733: 636:
is wide compared to the wavelength of light, then the waveguide can support multiple
469: 368:
Semi-conductor lasers (Bottom to Top: 660 nm, 635 nm, 532 nm, 520 nm, 445 nm, 405 nm)
2727: 2120: 503:, i.e., lattice vibrations, rather than as photons.) Spontaneous emission below the 4791: 4738: 4565: 4204: 4051: 3435: 3400: 3380: 3349: 3041: 2946: 2746: 2707: 2671: 2489: 2427: 2384: 2347: 2212: 2168: 2036: 1490: 1118:
made from alternating high and low refractive index quarter-wave thick multilayer.
1027: 866: 737: 717: 628: 597: 537: 533: 504: 233: 4600: 5068: 5001: 4854: 4585: 4495: 4339: 4045: 4008: 3463: 3344: 3334: 3145: 3115: 2833: 2450: 2336:"Theorical analysis of a monolithic all-active three-section semiconductor laser" 2147:; Fenner, G. E.; Kingsley, J. D.; Soltys, T. J.; Carlson, R. O. (November 1962). 2077: 1958: 1712:
better red-laser pointers, same power subjectively twice as bright as 650 nm
1380: 883: 805: 762: 637: 545: 476: 184: 4226: 5043: 4824: 4814: 4580: 4383: 3742: 3596: 3440: 3430: 3390: 3339: 3257: 3210: 3194: 2236: 2144: 1938: 1674: 1580: 1561: 1557: 1522: 1486: 1408: 1363: 1046: 814: 713: 665:
distributed-feedback (DFB) lasers or distributed Bragg reflector (DBR) lasers.
613: 593: 529: 449: 417: 385: 287: 283: 263: 139: 3008:"Room temperature cw operation of GaAs vertical cavity surface emitting laser" 2750: 2711: 2173: 2148: 682:
in the vertical and lateral divergences. This is easily observable with a red
5122: 5105: 4928: 4844: 4663: 4490: 4458: 3824: 3784: 3769: 3395: 3375: 3316: 3242: 2676: 2651: 2501: 2431: 2143: 1787: 1731: 1600: 1596: 1565: 1553: 1502: 1478: 1238: 826: 742: 701: 683: 678: 649: 589: 421: 267: 244: 221: 143: 125: 106: 3850: 3102: 686:. The long axis of the ellipse is at right-angles to the plane of the chip. 4986: 4974: 4862: 4829: 4658: 4643: 4210: 3834: 3829: 3779: 3591: 3543: 3538: 3415: 3284: 3279: 3220: 3133: 3054: 2881: 2719: 2636: 2609: 2582: 2446: 2396: 2041: 1794: 1777: 1723: 1659: 1530: 1045:(DBR) is a type of single frequency laser diode. It is characterized by an 958: 929: 925: 881:
As). Each of the junctions between different bandgap materials is called a
857:
Diagram of front view of a double heterostructure laser diode; not to scale
830: 822: 397: 3474: 2076:
Larry A. Coldren; Scott W. Corzine; Milan L. Mashanovitch (2 March 2012).
648:
TEM00 beam; for example in printing, activating chemicals, microscopy, or
5028: 4770: 4719: 4625: 4610: 4393: 3799: 3794: 3789: 3737: 3445: 3306: 3289: 2743:
Lasers in Dentistry—Current Concepts. Textbooks in Contemporary Dentistry
2352: 1431: 1017: 966: 951: 674: 408:
Laser diodes form a subset of the larger classification of semiconductor
392:
substrate, and growing the I doped active layer, followed by the P doped
255: 4068: 3045: 2388: 932:, and thus a component of its energy, is quantized. The efficiency of a 920:
Diagram of front view of a simple quantum well laser diode; not to scale
916: 853: 172:
The laser diode chip removed and placed on the eye of a needle for scale
5100: 5090: 5023: 4897: 4867: 4834: 4809: 4804: 4781: 4653: 4633: 4511: 4373: 4350: 4236: 4138: 4133: 4128: 3747: 3621: 3613: 3294: 3058: 1592: 1481:
communication. They are used in various measuring instruments, such as
988: 336: in this section. Unsourced material may be challenged and removed. 291: 2904:"Oral Soft Tissue Laser Ablative and Coagulative Efficiencies Spectra" 2493: 2476:
Duca, Lucia; Perego, Elia; Berto, Federico; Sias, Carlo (2021-06-15).
2216: 1587:, are poorly absorbed by soft tissue, and are not used for cutting or 5063: 4907: 4902: 4892: 4819: 4699: 4533: 4528: 4453: 4378: 3410: 3252: 3232: 3215: 2544:"Laser Marketplace 2005: Consumer applications boost laser sales 10%" 1797:(e.g., in green laser pointers or as arrays in higher-powered lasers) 1618: 1584: 1552:
property of an optical beam. In this category, one might include the
948: 551: 487:
When an electron and a hole are present in the same region, they may
381: 373: 2477: 1453: 1201:, are similar to VCSELs. In VCSELs, the mirrors are typically grown 311: 228:
in which a diode pumped directly with electrical current can create
5085: 5033: 5013: 4991: 4877: 4872: 4760: 4749: 4678: 4448: 3819: 3752: 1988: 1588: 1506: 1375: 1206:
distance from the diode to the external mirror would be 1 cm.
697: 425: 251: 168: 1186: 555:
Diagram of a simple laser diode, such as shown above; not to scale
294:
illumination. With the use of a phosphor like that found on white
4945: 4882: 4704: 4689: 4543: 4500: 4148: 3688: 3059:"Broadly tunable dispersive external-cavity semiconductor lasers" 1897: 1892: 1885: 1874: 1859: 1854: 1847: 1836: 1751: 1737: 1720: 1709: 1202: 862: 601: 279: 160: 3912: 1468: 943:
Lasers containing more than one quantum well layer are known as
704:, inventor of first visible wavelength semiconductor laser diode 440:
junction into the depletion region. Holes are injected from the
35: 5018: 4709: 4673: 4638: 4198: 4170: 4143: 4118: 1822: 1815: 1807: 1784: 1774: 1759: 1698: 1663: 1526: 1514: 1371: 1198: 1103: 500: 400:, which provide lower threshold current and higher efficiency. 396:, and a contact layer. The active layer most often consists of 2977: 1533:
technology. Diode lasers have also found many applications in
1012: 84: 5095: 5006: 4765: 4538: 4331: 4193: 4188: 3804: 3506: 3168: 1917: 1702: 1694: 1690:
bluish-green laser; also became widely available in mid-2018.
1687: 1680: 1670: 1655: 1498: 514: 156: 94: 90: 3882: 2313:(Second ed.). New York: McGraw-Hill, Inc. p. 317. 1548:
Many applications of diode lasers primarily make use of the
1229:
of near-IR VECSEL emitters to produce blue and green light.
5038: 4421: 4367: 4268: 4221: 4159: 3132:
Application explaining how to design and test laser driver
2409: 1829: 1791: 1348: 1078: 928:. This means that the vertical variation of the electron's 475:
Another method of powering some diode lasers is the use of
2693:"Laser applications in oral surgery and implant dentistry" 2190:"Stimulated Emission of Radiation from GaAs p–n Junctions" 612:
As in other lasers, the gain region is surrounded with an
3137: 1727: 1518: 1494: 1477:
as easily modulated and easily coupled light sources for
1396: 1241:
which use mainly double heterostructures diodes of the Al
1092: 725:
later in 1962; he used gallium arsenide-phosphide alloy.
364: 295: 275: 2541: 3775:
ZEUS-HLONS (HMMWV Laser Ordnance Neutralization System)
1387:, and the result can be melting of the facet, known as 584:. This generates another photon of the same frequency, 271: 239:
Driven by voltage, the doped p–n-transition allows for
3026:
IEEE Journal of Selected Topics in Quantum Electronics
2649: 2249:"After Glow". Illinois Alumni Magazine. May–June 2007. 1683:
green-blue laser; became widely available in mid-2018.
924:
If the middle layer is made thin enough, it acts as a
97:
green-blue laser; became widely available in mid-2018.
1560:, illuminators, designators, optical data recording, 1197:
Vertical external-cavity surface-emitting lasers, or
1036: 895:
laser, for contrast with these more popular devices.
482: 298:, laser diodes can be used for general illumination. 2187: 2071: 2069: 2067: 1179:
time and the processing materials have been wasted.
567: 2475: 1273:
may be too technical for most readers to understand
813:demonstrated in 1970 essentially simultaneously by 448:-doped semiconductor, and electrons vice versa. (A 3906: 3005: 2800: 2745:(2nd ed.). Springer, Cham. pp. 379–398. 2740: 2622: 2064: 1107:Diagram of a simple VCSEL structure; not to scale 936:is greater than that of a bulk laser because the 607: 563:A simple and low power metal enclosed laser diode 403: 5120: 2799:Wright, V. Cecil; Fisher, John C. (1993-01-01). 2333: 848: 3987:Vertical-external-cavity surface-emitting-laser 3128:current and temperature control of laser diodes 2870:Compendium of Continuing Education in Dentistry 2568: 1232: 1193:Vertical-external-cavity surface-emitting-laser 1187:Vertical-external-cavity surface-emitting-laser 3093:Overview of available single mode diode lasers 2986:Saleh, Bahaa E.A.; Teich, Malvin Carl (1991). 2444: 1434:) announced that it had devised its so-called 1222:, and are classified as semiconductor lasers. 1062: 4084: 3880: 3866: 3490: 3153: 3121:Britney Spears Guide to Semiconductor Physics 2924: 2803:Laser Surgery in Gynecology: A Clinical Guide 2237:Oral History Transcript — Dr. Marshall Nathan 2149:"Coherent Light Emission From GaAs Junctions" 2121:"Optically Pumped Semiconductor Laser (OPSL)" 2079:Diode Lasers and Photonic Integrated Circuits 1469:Telecommunications, scanning and spectrometry 3109:Driving Diode Lasers. EuroPhotonics, 08/2004 2798: 2691:Deppe, Herbert; Horch, Hans-Henning (2007). 2285:. Tata McGraw-Hill Education. p. 1.14. 1636:Laser diodes are used as a light source for 1631: 1568:, industrial sorting, industrial machining, 1430:In the mid-1990s, IBM Research (Ruschlikon, 3504: 3126:Application and technical notes explaining 3006:Koyama, F.; Kinoshita, S.; Iga, K. (1988). 2517:"Diode-laser market grows at a slower rate" 2334:Bouchene, M.M.; Hamdi, R.; Zou, Q. (2017). 1013:Separate confinement heterostructure lasers 994: 604:is not a common material for laser diodes. 4091: 4077: 3913:Separate confinement heterostructure laser 3873: 3859: 3497: 3483: 3160: 3146: 2985: 2975: 2773: 2690: 2542:Kincade, Kathy; Anderson, Stephen (2005). 1888:fiber-optic communication, service channel 1697:green diodes recently (2010) developed by 668: 515:Direct and indirect bandgap semiconductors 83: 4098: 2675: 2351: 2172: 1347:in III-V semiconductor crystals (such as 1301:Learn how and when to remove this message 1285:, without removing the technical details. 972: 352:Learn how and when to remove this message 3656:Neodymium-doped yttrium lithium fluoride 3098:Video showing laser bar assembly process 2831: 2595: 2304: 2302: 2242: 1452: 1102: 1016: 915: 852: 696: 558: 550: 363: 183: 175: 167: 60:of all important aspects of the article. 3421:Multiple-prism grating laser oscillator 2867: 2366: 1395:researcher and later Vice President at 1112:Vertical-cavity surface-emitting lasers 388:techniques, usually starting from an N 14: 5121: 3981:Vertical-cavity surface-emitting laser 3053: 2901: 2514: 2280: 2274: 1407:, devised a solution. A thin layer of 1099:Vertical-cavity surface-emitting laser 1093:Vertical-cavity surface-emitting laser 905: 56:Please consider expanding the lead to 4072: 3854: 3674:Neodymium-doped yttrium orthovanadate 3478: 3141: 2978:"Principles of Semiconductor Devices" 2897: 2895: 2893: 2891: 2863: 2861: 2859: 2857: 2855: 2308: 2299: 1643: 1327:(COD) when operated at higher power. 1283:make it understandable to non-experts 4523:Three-dimensional integrated circuit 1257: 384:structure is grown using one of the 334:adding citations to reliable sources 305: 130:carrier generation and recombination 89:A packaged laser diode shown with a 29: 4304:Programmable unijunction transistor 3023: 2982:(for direct and indirect band gaps) 2925:Lingrong Jian; et al. (2016). 1509:and red laser diodes are common in 24: 4205:Multi-gate field-effect transistor 3077:(For external cavity diode lasers) 2969: 2888: 2852: 1606:As laser beam light is inherently 1359:, etc.) compared to other planes. 1321:. In addition they are subject to 1037:Distributed Bragg reflector lasers 507:produces similar properties to an 483:Generation of spontaneous emission 25: 5170: 4183:Insulated-gate bipolar transistor 3919:Distributed Bragg reflector laser 3685:Yttrium calcium oxoborate (YCOB) 3081: 2835:Endoscopic Laser Surgery Handbook 2102:Arrigoni, M. et al. (2009-09-28) 1237:External-cavity diode lasers are 1043:distributed Bragg reflector laser 861:In these devices, a layer of low 568:Generation of stimulated emission 520:semiconductors are the so-called 5139:Heat-assisted magnetic recording 4427:Heterostructure barrier varactor 4154:Chemical field-effect transistor 3881: 3505: 3459: 3458: 1648: 1473:Laser diodes are widely used in 1262: 784:-type injector over that of the 380:semiconductors. The laser diode 372:A laser diode is electrically a 310: 34: 4475:Mixed-signal integrated circuit 4058:List of semiconductor materials 3810:Laboratory for Laser Energetics 3088:An Introduction to Laser Diodes 3065:. CRC Press. pp. 203–241. 2918: 2825: 2792: 2767: 2734: 2684: 2650:Borzabadi-Farahani, A. (2022). 2643: 2616: 2589: 2562: 2535: 2508: 2469: 2445:Zorabedian, P. (1995). "8". In 2438: 2403: 2360: 2327: 2239:, American Institute of Physics 1575: 1539:diode-pumped solid-state lasers 1448: 321:needs additional citations for 48:may be too short to adequately 3732:Diode-pumped solid-state laser 3330:Amplified spontaneous emission 3012:IEICE Transactions (1976-1990) 2951:10.1088/1674-4926/37/11/111001 2927:"GaN-based green laser diodes" 2832:Shapshay, S. M. (1987-06-16). 2253: 2230: 2181: 2137: 2126: 2114: 2096: 1253: 795:of aluminum gallium arsenide ( 776:-type injectors situated over 608:Optical cavity and laser modes 404:Electrical and optical pumping 58:provide an accessible overview 13: 1: 2838:. CRC Press. pp. 1–130. 2774:Feuerstein, Paul (May 2011). 2057: 1535:laser absorption spectrometry 1401:David Sarnoff Research Center 849:Double heterostructure lasers 817:and collaborators (including 4506:Silicon controlled rectifier 4368:Organic light-emitting diode 4258:Diffused junction transistor 3907:Double heterostructure laser 1233:External-cavity diode lasers 640:, and the laser is known as 190:scanning electron microscope 7: 4310:Static induction transistor 4247:Bipolar junction transistor 4199:MOS field-effect transistor 4171:Fin field-effect transistor 3386:Chirped pulse amplification 2340:Photonics Letters of Poland 2030: 1850:pump for optical amplifiers 1744: 1485:. Another common use is in 1460:inertial confinement fusion 1389:catastrophic optical damage 1324:catastrophic optical damage 1313:Laser diodes have the same 1063:Distributed-feedback lasers 432:from opposite sides of the 10: 5175: 4517:Static induction thyristor 4030:Laser diode rate equations 4025:Semiconductor laser theory 3925:Distributed-feedback laser 3190:List of laser applications 3167: 3063:Tunable Laser Applications 2515:Steele, Robert V. (2005). 1190: 1096: 1075:distributed-feedback laser 1069:Distributed-feedback laser 1066: 998: 976: 909: 871:aluminium gallium arsenide 692: 600:semiconductors; therefore 260:fiber-optic communications 232:conditions at the diode's 5054: 4954: 4921: 4853: 4790: 4718: 4686:(Hexode, Heptode, Octode) 4624: 4556: 4438:Hybrid integrated circuit 4402: 4330: 4281:Light-emitting transistor 4235: 4117: 4106: 4038: 4017: 3973: 3956: 3893: 3762: 3724: 3611: 3584: 3529: 3517: 3454: 3368: 3315: 3203: 3175: 3002:(For Stimulated Emission) 2988:Fundamentals of Photonics 2931:Journal of Semiconductors 2751:10.1007/978-3-031-43338-2 2712:10.1007/s10103-007-0440-3 2700:Lasers in Medical Science 2174:10.1103/PhysRevLett.9.366 2082:. John Wiley & Sons. 1881:fiber-optic communication 1843:fiber-optic communication 1826:fiber-optic communication 1638:maskless photolithography 1632:Maskless photolithography 751:chemical vapor deposition 301: 150: 135: 116: 102: 82: 4733:Backward-wave oscillator 4443:Light emitting capacitor 4299:Point-contact transistor 4269:Junction Gate FET (JFET) 4004:Semiconductor ring laser 3650:Yttrium lithium fluoride 3531:Yttrium aluminium garnet 2677:10.3390/photonics9040265 2625:Compend Contin Educ Dent 2432:10.1109/JQE.1981.1070634 2412:IEEE J. Quantum Electron 1135:with refractive indices 995:Interband cascade lasers 839: 638:transverse optical modes 282:disc reading/recording, 4744:Crossed-field amplifier 4263:Field-effect transistor 3998:Interband cascade laser 3840:List of petawatt lasers 3105:by Samuel M. Goldwasser 2876:(10): 752–7, quiz 758. 2452:Tunable Lasers Handbook 2197:Applied Physics Letters 2153:Physical Review Letters 1570:wireless power transfer 1413:anti-reflective coating 1007:Interband cascade laser 1001:Interband cascade laser 669:Formation of laser beam 652:other types of lasers. 596:semiconductors than in 152:Pin configuration  93:for scale*488 nm: 4913:Voltage-regulator tube 4480:MOS integrated circuit 4345:Constant-current diode 4321:Unijunction transistor 3633:Terbium gallium garnet 3180:List of laser articles 2052:Superluminescent diode 2047:List of laser articles 1658:blue-violet laser, in 1462: 1345:crystallographic plane 1317:and failure issues as 1108: 1083:anti-reflection coated 1022: 973:Quantum cascade lasers 921: 889:double heterostructure 858: 811:double heterostructure 767:double heterostructure 730:MIT Lincoln Laboratory 705: 564: 556: 466:injection laser diodes 369: 243:of an electron with a 193: 181: 173: 4982:Electrolytic detector 4755:Inductive output tube 4571:Low-dropout regulator 4486:Organic semiconductor 4417:Printed circuit board 4253:Darlington transistor 4100:Electronic components 3947:External-cavity laser 3941:Quantum-cascade laser 3664:Yttrium orthovanadate 3644:Solid-state dye laser 2976:Van Zeghbroeck, B.J. 2807:. Saunders. pp.  2281:Chatak, Ajoy (2009). 1705:for laser projectors. 1615:spectroscopic sensing 1456: 1405:Princeton, New Jersey 1319:light-emitting diodes 1106: 1020: 985:quantum cascade laser 979:Quantum cascade laser 945:multiple quantum well 919: 856: 700: 562: 554: 367: 206:injection laser diode 187: 179: 171: 5129:Semiconductor lasers 4800:Beam deflection tube 4469:Metal-oxide varistor 4362:Light-emitting diode 4216:Thin-film transistor 4177:Floating-gate MOSFET 3993:Hybrid silicon laser 3964:Volume Bragg grating 3887:Semiconductor lasers 3355:Population inversion 3123:Edge-emitting lasers 2631:(eBook 5): e18–e31. 2353:10.4302/plp.v9i4.785 2309:Hecht, Jeff (1992). 1832:laser pump frequency 574:upper-state lifetime 497:spontaneous emission 330:improve this article 226:light-emitting diode 224:device similar to a 111:light-emitting diode 5149:American inventions 4776:Traveling-wave tube 4576:Switching regulator 4412:Printed electronics 4389:Step recovery diode 4166:Depletion-load NMOS 3627:Yttrium iron garnet 3523:Semiconductor laser 3406:Laser beam profiler 3325:Active laser medium 3265:Free-electron laser 3185:List of laser types 3046:10.1109/2944.902168 3038:2000IJSTQ...6.1201I 2943:2016JSemi..37k1001L 2908:Implant Practice US 2902:Vitruk, PP (2015). 2776:"Cuts Like A Knife" 2668:2022Photo...9..265B 2554:(1). Archived from 2527:(2). Archived from 2424:1981IJQE...17...44F 2389:10.1364/OL.1.000061 2381:1977OptL....1...61V 2311:The Laser Guidebook 2209:1962ApPhL...1...62N 2165:1962PhRvL...9..366H 2123:, Sam's Laser FAQs. 1562:combustion ignition 1556:, barcode readers, 1525:lasers are used in 1333:Reverse engineering 1052:diffraction grating 906:Quantum well lasers 646:diffraction-limited 624:stimulated emission 582:stimulated emission 214:semiconductor laser 79: 27:Semiconductor laser 5154:1962 introductions 5081:Crystal oscillator 4941:Variable capacitor 4616:Switched capacitor 4558:Voltage regulators 4432:Integrated circuit 4316:Tetrode transistor 4294:Pentode transistor 4287:Organic LET (OLET) 4274:Organic FET (OFET) 3931:Quantum well laser 3511:Solid-state lasers 3114:2021-04-24 at the 2604:(11): 130, 132–5. 2455:. Academic Press. 2261:"Nicolay G. Basov" 1812:optical amplifiers 1730:drives, cheap red 1644:Common wavelengths 1493:lasers, typically 1463: 1227:frequency doubling 1116:dielectric mirrors 1109: 1023: 934:quantum well laser 922: 912:Quantum well laser 859: 819:Dmitri Z. Garbuzov 723:Nick Holonyak, Jr. 706: 578:recombination time 565: 557: 542:gallium antimonide 470:solid-state lasers 370: 194: 182: 174: 144:Nick Holonyak, Jr. 77: 5116: 5115: 5076:Ceramic resonator 4888:Mercury-arc valve 4840:Video camera tube 4792:Cathode-ray tubes 4552: 4551: 4160:Complementary MOS 4066: 4065: 3936:Quantum dot laser 3848: 3847: 3646:(SSDL/SSOL/SSDPL) 3639:Ti:sapphire laser 3518:Distinct subtypes 3472: 3471: 3426:Optical amplifier 3275:Solid-state laser 3072:978-1-4822-6106-6 2760:978-3-031-43338-2 2571:General Dentistry 2558:on June 28, 2006. 2548:Laser Focus World 2521:Laser Focus World 2494:10.1364/OL.423813 2488:(12): 2840–2843. 2292:978-0-07-026215-7 2217:10.1063/1.1777371 2109:Laser Focus World 2089:978-1-118-14817-4 1715:650–660 nm: 1693:510–525 nm: 1669:445–465 nm: 1475:telecommunication 1385:positive feedback 1311: 1310: 1303: 938:density of states 887:, hence the name 734:Texas Instruments 362: 361: 354: 166: 165: 118:Working principle 75: 74: 16:(Redirected from 5166: 4970:electrical power 4855:Gas-filled tubes 4739:Cavity magnetron 4566:Linear regulator 4115: 4114: 4093: 4086: 4079: 4070: 4069: 4052:Gallium arsenide 3885: 3875: 3868: 3861: 3852: 3851: 3509: 3499: 3492: 3485: 3476: 3475: 3462: 3461: 3436:Optical isolator 3401:Injection seeder 3381:Beam homogenizer 3360:Ultrashort pulse 3350:Lasing threshold 3162: 3155: 3148: 3139: 3138: 3076: 3049: 3019: 3001: 2981: 2963: 2962: 2922: 2916: 2915: 2899: 2886: 2885: 2865: 2850: 2849: 2829: 2823: 2822: 2806: 2796: 2790: 2789: 2787: 2786: 2780:Dental Economics 2771: 2765: 2764: 2738: 2732: 2731: 2697: 2688: 2682: 2681: 2679: 2647: 2641: 2640: 2620: 2614: 2613: 2593: 2587: 2586: 2566: 2560: 2559: 2539: 2533: 2532: 2512: 2506: 2505: 2473: 2467: 2466: 2442: 2436: 2435: 2407: 2401: 2400: 2364: 2358: 2357: 2355: 2331: 2325: 2324: 2306: 2297: 2296: 2278: 2272: 2271: 2269: 2268: 2263:. Nobelprize.org 2257: 2251: 2250: 2246: 2240: 2234: 2228: 2227: 2225: 2219:. Archived from 2194: 2185: 2179: 2178: 2176: 2141: 2135: 2130: 2124: 2118: 2112: 2100: 2094: 2093: 2073: 2037:Collimating lens 2026: 2025: 2024: 2008: 2006: 2005: 1997: 1996: 1979: 1978: 1977: 1961: 1949: 1947: 1946: 1929: 1926: 1925: 1908: 1906: 1905: 1870: 1868: 1867: 1770: 1768: 1767: 1501:, are common as 1306: 1299: 1295: 1292: 1286: 1266: 1265: 1258: 1028:refractive index 867:gallium arsenide 809:operation was a 738:RCA Laboratories 718:General Electric 598:indirect bandgap 538:indium phosphide 534:Gallium arsenide 522:"direct bandgap" 505:lasing threshold 462:injection lasers 450:depletion region 444:-doped into the 357: 350: 346: 343: 337: 314: 306: 153: 122: 121: 87: 80: 76: 70: 67: 61: 38: 30: 21: 5174: 5173: 5169: 5168: 5167: 5165: 5164: 5163: 5159:1962 neologisms 5119: 5118: 5117: 5112: 5050: 4965:audio and video 4950: 4917: 4849: 4786: 4714: 4695:Photomultiplier 4620: 4548: 4496:Quantum circuit 4404: 4398: 4340:Avalanche diode 4326: 4238: 4231: 4120: 4109: 4102: 4097: 4067: 4062: 4046:Indium arsenide 4034: 4013: 4009:Polariton laser 3969: 3952: 3889: 3879: 3849: 3844: 3815:Laser Mégajoule 3763:Specific lasers 3758: 3720: 3714: 3708: 3679: 3669: 3607: 3580: 3525: 3513: 3503: 3473: 3468: 3450: 3364: 3345:Laser linewidth 3335:Continuous wave 3311: 3204:Types of lasers 3199: 3171: 3166: 3116:Wayback Machine 3103:Sam's Laser FAQ 3084: 3073: 2998: 2972: 2970:Further reading 2967: 2966: 2923: 2919: 2900: 2889: 2866: 2853: 2846: 2830: 2826: 2819: 2797: 2793: 2784: 2782: 2772: 2768: 2761: 2739: 2735: 2695: 2689: 2685: 2648: 2644: 2621: 2617: 2598:Dentistry Today 2594: 2590: 2567: 2563: 2540: 2536: 2513: 2509: 2474: 2470: 2463: 2443: 2439: 2408: 2404: 2365: 2361: 2332: 2328: 2321: 2307: 2300: 2293: 2279: 2275: 2266: 2264: 2259: 2258: 2254: 2248: 2247: 2243: 2235: 2231: 2223: 2192: 2186: 2182: 2145:Hall, Robert N. 2142: 2138: 2131: 2127: 2119: 2115: 2101: 2097: 2090: 2074: 2065: 2060: 2033: 2023: 2020: 2019: 2018: 2016: 2011:3,330 nm: 2004: 2001: 2000: 1999: 1995: 1992: 1991: 1990: 1987: 1982:3,030 nm: 1976: 1973: 1972: 1971: 1969: 1964:2,680 nm: 1957: 1952:2,330 nm: 1945: 1942: 1941: 1940: 1937: 1932:2,004 nm: 1924: 1921: 1920: 1919: 1916: 1911:1,877 nm: 1904: 1901: 1900: 1899: 1896: 1891:1,654 nm: 1884:1,625 nm: 1873:1,550 nm: 1866: 1863: 1862: 1861: 1858: 1853:1,512 nm: 1846:1,480 nm: 1835:1,310 nm: 1821:1,064 nm: 1766: 1763: 1762: 1761: 1758: 1747: 1675:data projectors 1651: 1646: 1634: 1578: 1550:directed energy 1497:but later also 1487:barcode readers 1471: 1451: 1381:thermal runaway 1307: 1296: 1290: 1287: 1279:help improve it 1276: 1267: 1263: 1256: 1248: 1244: 1235: 1195: 1189: 1174: 1168: 1161: 1155: 1148: 1141: 1134: 1127: 1101: 1095: 1071: 1065: 1039: 1015: 1003: 997: 981: 975: 914: 908: 884:heterostructure 880: 876: 851: 842: 806:continuous wave 763:Herbert Kroemer 728:Other teams at 695: 671: 610: 570: 546:gallium nitride 517: 485: 477:optical pumping 406: 378:direct band-gap 358: 347: 341: 338: 327: 315: 304: 264:barcode readers 151: 119: 117: 98: 71: 65: 62: 55: 43:This article's 39: 28: 23: 22: 15: 12: 11: 5: 5172: 5162: 5161: 5156: 5151: 5146: 5141: 5136: 5134:Optical diodes 5131: 5114: 5113: 5111: 5110: 5109: 5108: 5103: 5093: 5088: 5083: 5078: 5073: 5072: 5071: 5060: 5058: 5052: 5051: 5049: 5048: 5047: 5046: 5044:Wollaston wire 5036: 5031: 5026: 5021: 5016: 5011: 5010: 5009: 5004: 4994: 4989: 4984: 4979: 4978: 4977: 4972: 4967: 4958: 4956: 4952: 4951: 4949: 4948: 4943: 4938: 4937: 4936: 4925: 4923: 4919: 4918: 4916: 4915: 4910: 4905: 4900: 4895: 4890: 4885: 4880: 4875: 4870: 4865: 4859: 4857: 4851: 4850: 4848: 4847: 4842: 4837: 4832: 4827: 4825:Selectron tube 4822: 4817: 4815:Magic eye tube 4812: 4807: 4802: 4796: 4794: 4788: 4787: 4785: 4784: 4779: 4773: 4768: 4763: 4758: 4752: 4747: 4741: 4736: 4729: 4727: 4716: 4715: 4713: 4712: 4707: 4702: 4697: 4692: 4687: 4681: 4676: 4671: 4666: 4661: 4656: 4651: 4646: 4641: 4636: 4630: 4628: 4622: 4621: 4619: 4618: 4613: 4608: 4603: 4598: 4593: 4588: 4583: 4578: 4573: 4568: 4562: 4560: 4554: 4553: 4550: 4549: 4547: 4546: 4541: 4536: 4531: 4526: 4520: 4514: 4509: 4503: 4498: 4493: 4488: 4483: 4477: 4472: 4466: 4461: 4456: 4451: 4446: 4440: 4435: 4429: 4424: 4419: 4414: 4408: 4406: 4400: 4399: 4397: 4396: 4391: 4386: 4384:Schottky diode 4381: 4376: 4371: 4365: 4359: 4353: 4348: 4342: 4336: 4334: 4328: 4327: 4325: 4324: 4318: 4313: 4307: 4301: 4296: 4291: 4290: 4289: 4278: 4277: 4276: 4271: 4260: 4255: 4250: 4243: 4241: 4233: 4232: 4230: 4229: 4224: 4219: 4213: 4208: 4202: 4196: 4191: 4186: 4180: 4174: 4168: 4163: 4157: 4151: 4146: 4141: 4136: 4131: 4125: 4123: 4112: 4104: 4103: 4096: 4095: 4088: 4081: 4073: 4064: 4063: 4061: 4060: 4055: 4049: 4042: 4040: 4036: 4035: 4033: 4032: 4027: 4021: 4019: 4015: 4014: 4012: 4011: 4006: 4001: 3995: 3990: 3984: 3977: 3975: 3971: 3970: 3968: 3967: 3960: 3958: 3954: 3953: 3951: 3950: 3944: 3938: 3933: 3928: 3922: 3916: 3910: 3904: 3897: 3895: 3891: 3890: 3878: 3877: 3870: 3863: 3855: 3846: 3845: 3843: 3842: 3837: 3832: 3827: 3822: 3817: 3812: 3807: 3802: 3797: 3792: 3787: 3782: 3777: 3772: 3766: 3764: 3760: 3759: 3757: 3756: 3750: 3745: 3743:Figure-8 laser 3740: 3735: 3728: 3726: 3722: 3721: 3719: 3718: 3715: 3712: 3709: 3706: 3703: 3700: 3697: 3694: 3693: 3692: 3683: 3682: 3681: 3677: 3667: 3661: 3660: 3659: 3647: 3641: 3636: 3630: 3624: 3618: 3616: 3609: 3608: 3606: 3605: 3602: 3599: 3594: 3588: 3586: 3582: 3581: 3579: 3578: 3573: 3570: 3567: 3564: 3561: 3558: 3555: 3552: 3549: 3546: 3541: 3535: 3533: 3527: 3526: 3521: 3519: 3515: 3514: 3502: 3501: 3494: 3487: 3479: 3470: 3469: 3467: 3466: 3455: 3452: 3451: 3449: 3448: 3443: 3441:Output coupler 3438: 3433: 3431:Optical cavity 3428: 3423: 3418: 3413: 3408: 3403: 3398: 3393: 3391:Gain-switching 3388: 3383: 3378: 3372: 3370: 3366: 3365: 3363: 3362: 3357: 3352: 3347: 3342: 3340:Laser ablation 3337: 3332: 3327: 3321: 3319: 3313: 3312: 3310: 3309: 3304: 3303: 3302: 3297: 3292: 3287: 3282: 3272: 3267: 3262: 3261: 3260: 3255: 3250: 3245: 3240: 3238:Carbon dioxide 3230: 3229: 3228: 3226:Liquid-crystal 3223: 3213: 3211:Chemical laser 3207: 3205: 3201: 3200: 3198: 3197: 3195:Laser acronyms 3192: 3187: 3182: 3176: 3173: 3172: 3165: 3164: 3157: 3150: 3142: 3136: 3135: 3130: 3124: 3118: 3106: 3100: 3095: 3090: 3083: 3082:External links 3080: 3079: 3078: 3071: 3051: 3032:(6): 1201–15. 3021: 3018:(11): 1089–90. 3003: 2996: 2983: 2971: 2968: 2965: 2964: 2937:(11): 111001. 2917: 2887: 2851: 2844: 2824: 2817: 2791: 2766: 2759: 2733: 2706:(4): 217–221. 2683: 2642: 2615: 2588: 2561: 2534: 2531:on 2006-04-08. 2507: 2482:Optics Letters 2468: 2461: 2437: 2402: 2369:Optics Letters 2359: 2326: 2319: 2298: 2291: 2273: 2252: 2241: 2229: 2226:on 2011-05-03. 2180: 2136: 2125: 2113: 2095: 2088: 2062: 2061: 2059: 2056: 2055: 2054: 2049: 2044: 2039: 2032: 2029: 2028: 2027: 2021: 2009: 2002: 1993: 1980: 1974: 1962: 1950: 1943: 1930: 1922: 1909: 1902: 1889: 1882: 1871: 1864: 1851: 1844: 1833: 1819: 1804: 1798: 1781: 1771: 1764: 1746: 1743: 1742: 1741: 1734: 1732:laser pointers 1713: 1706: 1691: 1684: 1677: 1667: 1650: 1647: 1645: 1642: 1633: 1630: 1581:Laser medicine 1577: 1574: 1558:image scanning 1554:laser printers 1503:laser pointers 1470: 1467: 1450: 1447: 1409:aluminum oxide 1399:Laboratories' 1364:Surface states 1309: 1308: 1270: 1268: 1261: 1255: 1252: 1246: 1242: 1239:tunable lasers 1234: 1231: 1191:Main article: 1188: 1185: 1172: 1166: 1159: 1153: 1149:are such that 1146: 1139: 1132: 1125: 1097:Main article: 1094: 1091: 1067:Main article: 1064: 1061: 1047:optical cavity 1038: 1035: 1014: 1011: 999:Main article: 996: 993: 977:Main article: 974: 971: 910:Main article: 907: 904: 878: 874: 850: 847: 841: 838: 815:Zhores Alferov 714:Robert N. Hall 694: 691: 670: 667: 614:optical cavity 609: 606: 594:direct bandgap 569: 566: 530:direct bandgap 516: 513: 484: 481: 418:charge carrier 405: 402: 386:crystal growth 360: 359: 318: 316: 309: 303: 300: 288:laser scanning 284:laser printing 268:laser pointers 164: 163: 154: 148: 147: 140:Robert N. Hall 137: 133: 132: 123: 114: 113: 104: 100: 99: 88: 73: 72: 52:the key points 42: 40: 33: 26: 9: 6: 4: 3: 2: 5171: 5160: 5157: 5155: 5152: 5150: 5147: 5145: 5144:Dental lasers 5142: 5140: 5137: 5135: 5132: 5130: 5127: 5126: 5124: 5107: 5106:mercury relay 5104: 5102: 5099: 5098: 5097: 5094: 5092: 5089: 5087: 5084: 5082: 5079: 5077: 5074: 5070: 5067: 5066: 5065: 5062: 5061: 5059: 5057: 5053: 5045: 5042: 5041: 5040: 5037: 5035: 5032: 5030: 5027: 5025: 5022: 5020: 5017: 5015: 5012: 5008: 5005: 5003: 5000: 4999: 4998: 4995: 4993: 4990: 4988: 4985: 4983: 4980: 4976: 4973: 4971: 4968: 4966: 4963: 4962: 4960: 4959: 4957: 4953: 4947: 4944: 4942: 4939: 4935: 4932: 4931: 4930: 4929:Potentiometer 4927: 4926: 4924: 4920: 4914: 4911: 4909: 4906: 4904: 4901: 4899: 4896: 4894: 4891: 4889: 4886: 4884: 4881: 4879: 4876: 4874: 4871: 4869: 4866: 4864: 4861: 4860: 4858: 4856: 4852: 4846: 4845:Williams tube 4843: 4841: 4838: 4836: 4833: 4831: 4828: 4826: 4823: 4821: 4818: 4816: 4813: 4811: 4808: 4806: 4803: 4801: 4798: 4797: 4795: 4793: 4789: 4783: 4780: 4777: 4774: 4772: 4769: 4767: 4764: 4762: 4759: 4756: 4753: 4751: 4748: 4745: 4742: 4740: 4737: 4734: 4731: 4730: 4728: 4725: 4721: 4717: 4711: 4708: 4706: 4703: 4701: 4698: 4696: 4693: 4691: 4688: 4685: 4682: 4680: 4677: 4675: 4672: 4670: 4667: 4665: 4664:Fleming valve 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4640: 4637: 4635: 4632: 4631: 4629: 4627: 4623: 4617: 4614: 4612: 4609: 4607: 4604: 4602: 4599: 4597: 4594: 4592: 4589: 4587: 4584: 4582: 4579: 4577: 4574: 4572: 4569: 4567: 4564: 4563: 4561: 4559: 4555: 4545: 4542: 4540: 4537: 4535: 4532: 4530: 4527: 4524: 4521: 4518: 4515: 4513: 4510: 4507: 4504: 4502: 4499: 4497: 4494: 4492: 4491:Photodetector 4489: 4487: 4484: 4481: 4478: 4476: 4473: 4470: 4467: 4465: 4462: 4460: 4459:Memtransistor 4457: 4455: 4452: 4450: 4447: 4444: 4441: 4439: 4436: 4433: 4430: 4428: 4425: 4423: 4420: 4418: 4415: 4413: 4410: 4409: 4407: 4401: 4395: 4392: 4390: 4387: 4385: 4382: 4380: 4377: 4375: 4372: 4369: 4366: 4363: 4360: 4357: 4354: 4352: 4349: 4346: 4343: 4341: 4338: 4337: 4335: 4333: 4329: 4322: 4319: 4317: 4314: 4311: 4308: 4305: 4302: 4300: 4297: 4295: 4292: 4288: 4285: 4284: 4282: 4279: 4275: 4272: 4270: 4267: 4266: 4264: 4261: 4259: 4256: 4254: 4251: 4248: 4245: 4244: 4242: 4240: 4234: 4228: 4225: 4223: 4220: 4217: 4214: 4212: 4209: 4206: 4203: 4200: 4197: 4195: 4192: 4190: 4187: 4184: 4181: 4178: 4175: 4172: 4169: 4167: 4164: 4161: 4158: 4155: 4152: 4150: 4147: 4145: 4142: 4140: 4137: 4135: 4132: 4130: 4127: 4126: 4124: 4122: 4116: 4113: 4111: 4108:Semiconductor 4105: 4101: 4094: 4089: 4087: 4082: 4080: 4075: 4074: 4071: 4059: 4056: 4053: 4050: 4047: 4044: 4043: 4041: 4037: 4031: 4028: 4026: 4023: 4022: 4020: 4016: 4010: 4007: 4005: 4002: 3999: 3996: 3994: 3991: 3988: 3985: 3982: 3979: 3978: 3976: 3972: 3965: 3962: 3961: 3959: 3955: 3948: 3945: 3942: 3939: 3937: 3934: 3932: 3929: 3926: 3923: 3920: 3917: 3914: 3911: 3908: 3905: 3902: 3899: 3898: 3896: 3892: 3888: 3884: 3876: 3871: 3869: 3864: 3862: 3857: 3856: 3853: 3841: 3838: 3836: 3833: 3831: 3828: 3826: 3825:Mercury laser 3823: 3821: 3818: 3816: 3813: 3811: 3808: 3806: 3803: 3801: 3798: 3796: 3793: 3791: 3788: 3786: 3785:Cyclops laser 3783: 3781: 3778: 3776: 3773: 3771: 3770:Trident laser 3768: 3767: 3765: 3761: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3733: 3730: 3729: 3727: 3723: 3716: 3710: 3704: 3701: 3698: 3695: 3690: 3687: 3686: 3684: 3675: 3672: 3671: 3665: 3662: 3657: 3654: 3653: 3651: 3648: 3645: 3642: 3640: 3637: 3634: 3631: 3628: 3625: 3623: 3620: 3619: 3617: 3615: 3610: 3603: 3600: 3598: 3595: 3593: 3590: 3589: 3587: 3583: 3577: 3574: 3571: 3568: 3565: 3562: 3559: 3556: 3553: 3550: 3547: 3545: 3542: 3540: 3537: 3536: 3534: 3532: 3528: 3524: 3520: 3516: 3512: 3508: 3500: 3495: 3493: 3488: 3486: 3481: 3480: 3477: 3465: 3457: 3456: 3453: 3447: 3444: 3442: 3439: 3437: 3434: 3432: 3429: 3427: 3424: 3422: 3419: 3417: 3414: 3412: 3409: 3407: 3404: 3402: 3399: 3397: 3396:Gaussian beam 3394: 3392: 3389: 3387: 3384: 3382: 3379: 3377: 3376:Beam expander 3374: 3373: 3371: 3367: 3361: 3358: 3356: 3353: 3351: 3348: 3346: 3343: 3341: 3338: 3336: 3333: 3331: 3328: 3326: 3323: 3322: 3320: 3318: 3317:Laser physics 3314: 3308: 3305: 3301: 3298: 3296: 3293: 3291: 3288: 3286: 3283: 3281: 3278: 3277: 3276: 3273: 3271: 3268: 3266: 3263: 3259: 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3239: 3236: 3235: 3234: 3231: 3227: 3224: 3222: 3219: 3218: 3217: 3214: 3212: 3209: 3208: 3206: 3202: 3196: 3193: 3191: 3188: 3186: 3183: 3181: 3178: 3177: 3174: 3170: 3163: 3158: 3156: 3151: 3149: 3144: 3143: 3140: 3134: 3131: 3129: 3125: 3122: 3119: 3117: 3113: 3110: 3107: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3085: 3074: 3068: 3064: 3060: 3056: 3052: 3050:(for VECSELS) 3047: 3043: 3039: 3035: 3031: 3027: 3022: 3017: 3013: 3009: 3004: 2999: 2997:0-471-83965-5 2993: 2989: 2984: 2979: 2974: 2973: 2960: 2956: 2952: 2948: 2944: 2940: 2936: 2932: 2928: 2921: 2913: 2909: 2905: 2898: 2896: 2894: 2892: 2883: 2879: 2875: 2871: 2864: 2862: 2860: 2858: 2856: 2847: 2845:9780824777111 2841: 2837: 2836: 2828: 2820: 2818:9780721640075 2814: 2810: 2805: 2804: 2795: 2781: 2777: 2770: 2762: 2756: 2752: 2748: 2744: 2737: 2729: 2725: 2721: 2717: 2713: 2709: 2705: 2701: 2694: 2687: 2678: 2673: 2669: 2665: 2661: 2657: 2653: 2646: 2638: 2634: 2630: 2626: 2619: 2611: 2607: 2603: 2599: 2592: 2584: 2580: 2576: 2572: 2565: 2557: 2553: 2549: 2545: 2538: 2530: 2526: 2522: 2518: 2511: 2503: 2499: 2495: 2491: 2487: 2483: 2479: 2472: 2464: 2462:0-12-222695-X 2458: 2454: 2453: 2448: 2441: 2433: 2429: 2425: 2421: 2417: 2413: 2406: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2363: 2354: 2349: 2345: 2341: 2337: 2330: 2322: 2320:0-07-027738-9 2316: 2312: 2305: 2303: 2294: 2288: 2284: 2277: 2262: 2256: 2245: 2238: 2233: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2191: 2184: 2175: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2140: 2134: 2129: 2122: 2117: 2111: 2110: 2105: 2099: 2091: 2085: 2081: 2080: 2072: 2070: 2068: 2063: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2035: 2034: 2015:gas sensing: 2014: 2010: 2007: 1986:gas sensing: 1985: 1981: 1968:gas sensing: 1967: 1963: 1960: 1956:gas sensing: 1955: 1951: 1948: 1936:gas sensing: 1935: 1931: 1928: 1915:gas sensing: 1914: 1910: 1907: 1895:gas sensing: 1894: 1890: 1887: 1883: 1880: 1876: 1872: 1869: 1857:gas sensing: 1856: 1852: 1849: 1845: 1842: 1838: 1834: 1831: 1827: 1824: 1820: 1817: 1813: 1809: 1806:980 nm: 1805: 1803: 1800:848 nm: 1799: 1796: 1795:Nd:YAG lasers 1793: 1789: 1786: 1783:808 nm: 1782: 1779: 1776: 1773:785 nm: 1772: 1769: 1756: 1753: 1750:760 nm: 1749: 1748: 1739: 1736:670 nm: 1735: 1733: 1729: 1725: 1722: 1718: 1714: 1711: 1708:635 nm: 1707: 1704: 1700: 1696: 1692: 1689: 1686:505 nm: 1685: 1682: 1679:488 nm: 1678: 1676: 1672: 1668: 1665: 1661: 1657: 1654:405 nm: 1653: 1652: 1649:Visible light 1641: 1639: 1629: 1627: 1622: 1620: 1616: 1611: 1609: 1604: 1602: 1601:carbonization 1598: 1597:cauterization 1594: 1590: 1586: 1582: 1573: 1571: 1567: 1566:laser surgery 1563: 1559: 1555: 1551: 1546: 1542: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1466: 1461: 1455: 1446: 1443: 1442:proprietary. 1439: 1437: 1433: 1428: 1426: 1420: 1416: 1414: 1410: 1406: 1402: 1398: 1392: 1390: 1386: 1382: 1377: 1373: 1367: 1365: 1360: 1358: 1354: 1350: 1346: 1342: 1337: 1335: 1334: 1328: 1326: 1325: 1320: 1316: 1305: 1302: 1294: 1284: 1280: 1274: 1271:This section 1269: 1260: 1259: 1251: 1240: 1230: 1228: 1223: 1221: 1215: 1213: 1207: 1204: 1200: 1194: 1184: 1180: 1176: 1171: 1165: 1158: 1152: 1145: 1138: 1131: 1124: 1119: 1117: 1113: 1105: 1100: 1090: 1086: 1084: 1080: 1076: 1070: 1060: 1058: 1053: 1048: 1044: 1034: 1031: 1029: 1019: 1010: 1008: 1002: 992: 990: 986: 980: 970: 968: 964: 960: 955: 953: 950: 946: 941: 939: 935: 931: 927: 918: 913: 903: 901: 900:active region 896: 894: 890: 886: 885: 872: 868: 864: 855: 846: 837: 834: 832: 828: 827:Morton Panish 824: 820: 816: 812: 808: 807: 802: 798: 794: 789: 787: 783: 779: 775: 770: 768: 764: 758: 754: 752: 746: 744: 743:Nikolay Basov 739: 735: 731: 726: 724: 719: 715: 711: 703: 702:Nick Holonyak 699: 690: 687: 685: 684:laser pointer 680: 676: 666: 662: 659: 653: 651: 647: 643: 639: 633: 631: 630: 625: 620: 615: 605: 603: 599: 595: 591: 587: 583: 579: 575: 561: 553: 549: 547: 543: 539: 535: 531: 527: 523: 512: 510: 506: 502: 498: 494: 490: 480: 478: 473: 471: 467: 463: 459: 455: 451: 447: 443: 439: 435: 431: 427: 423: 419: 415: 411: 401: 399: 398:quantum wells 395: 391: 387: 383: 379: 375: 366: 356: 353: 345: 335: 331: 325: 324: 319:This section 317: 313: 308: 307: 299: 297: 293: 289: 285: 281: 277: 273: 269: 265: 261: 257: 253: 248: 246: 242: 241:recombination 237: 235: 231: 227: 223: 222:semiconductor 219: 215: 211: 207: 203: 199: 191: 186: 178: 170: 162: 158: 155: 149: 145: 141: 138: 134: 131: 127: 126:semiconductor 124: 115: 112: 108: 107:semiconductor 105: 101: 96: 92: 86: 81: 69: 66:November 2016 59: 53: 51: 46: 41: 37: 32: 31: 19: 4863:Cold cathode 4830:Storage tube 4720:Vacuum tubes 4669:Neutron tube 4644:Beam tetrode 4626:Vacuum tubes 4355: 4211:Power MOSFET 3957:Hybrid types 3900: 3835:Vulcan laser 3780:Nova (laser) 3544:Er:YAG laser 3539:Nd:YAG laser 3522: 3416:Mode locking 3369:Laser optics 3269: 3062: 3055:Duarte, F.J. 3029: 3025: 3020:(for VCSELS) 3015: 3011: 2987: 2934: 2930: 2920: 2911: 2907: 2873: 2869: 2834: 2827: 2802: 2794: 2783:. Retrieved 2779: 2769: 2742: 2736: 2703: 2699: 2686: 2659: 2655: 2645: 2628: 2624: 2618: 2601: 2597: 2591: 2577:(6): 414–7. 2574: 2570: 2564: 2556:the original 2551: 2547: 2537: 2529:the original 2524: 2520: 2510: 2485: 2481: 2471: 2451: 2447:F. J. Duarte 2440: 2415: 2411: 2405: 2372: 2368: 2362: 2346:(4): 131–3. 2343: 2339: 2329: 2310: 2282: 2276: 2265:. Retrieved 2255: 2244: 2232: 2221:the original 2200: 2196: 2183: 2159:(9): 366–8. 2156: 2152: 2139: 2128: 2116: 2107: 2098: 2078: 2042:Laser safety 1778:compact disc 1660:Blu-ray Disc 1635: 1626:mode-locking 1625: 1623: 1612: 1605: 1579: 1576:Medical uses 1549: 1547: 1543: 1521:technology. 1483:rangefinders 1472: 1464: 1449:Applications 1444: 1440: 1435: 1429: 1421: 1417: 1393: 1388: 1383:, a form of 1368: 1361: 1338: 1331: 1329: 1322: 1312: 1297: 1288: 1272: 1236: 1224: 1220:diode lasers 1219: 1216: 1211: 1208: 1196: 1181: 1177: 1169: 1163: 1156: 1150: 1143: 1136: 1129: 1122: 1120: 1110: 1087: 1072: 1040: 1032: 1024: 1004: 982: 967:quantum dots 962: 959:quantum wire 956: 944: 942: 930:wavefunction 926:quantum well 923: 897: 893:homojunction 892: 888: 882: 869:(GaAs) with 860: 843: 835: 831:Izuo Hayashi 823:Soviet Union 804: 800: 796: 792: 790: 785: 781: 777: 773: 771: 759: 755: 747: 727: 707: 688: 672: 663: 657: 654: 641: 634: 627: 611: 586:polarization 577: 573: 571: 525: 518: 495:producing a 492: 486: 474: 465: 461: 457: 453: 445: 441: 437: 433: 429: 413: 409: 407: 371: 348: 339: 328:Please help 323:verification 320: 249: 238: 217: 213: 209: 205: 201: 197: 195: 63: 47: 45:lead section 18:Laser diodes 5029:Transformer 4771:Sutton tube 4611:Charge pump 4464:Memory cell 4394:Zener diode 4356:Laser diode 4239:transistors 4121:transistors 3974:Other Types 3901:Laser diode 3894:Basic types 3800:Shiva laser 3795:Argus laser 3790:Janus laser 3738:Fiber laser 3601:Er:Yb:glass 3446:Q-switching 3307:X-ray laser 3300:Ti-sapphire 3270:Laser diode 3248:Helium–neon 2914:(6): 19–27. 2375:(2): 61–3. 1818:DPSS lasers 1755:gas sensing 1479:fiber-optic 1432:Switzerland 1315:reliability 1254:Reliability 1212:antiguiding 1203:epitaxially 989:wavelengths 675:diffraction 619:Fabry–Pérot 256:ultraviolet 218:diode laser 198:laser diode 78:Laser diode 5123:Categories 5101:reed relay 5091:Parametron 5024:Thermistor 5002:resettable 4961:Connector 4922:Adjustable 4898:Nixie tube 4868:Crossatron 4835:Trochotron 4810:Iconoscope 4805:Charactron 4782:X-ray tube 4654:Compactron 4634:Acorn tube 4591:Buck–boost 4512:Solaristor 4374:Photodiode 4351:Gunn diode 4347:(CLD, CRD) 4129:Transistor 3748:Disk laser 3725:Structures 3622:Ruby laser 3614:gain media 2785:2016-04-12 2662:(4): 265. 2267:2009-06-06 2058:References 1802:laser mice 1593:hemostasis 1511:CD players 1436:E2 process 1391:, or COD. 658:side modes 642:multi-mode 532:property. 493:annihilate 292:light beam 5064:Capacitor 4908:Trigatron 4903:Thyratron 4893:Neon lamp 4820:Monoscope 4700:Phototube 4684:Pentagrid 4649:Barretter 4534:Trancitor 4529:Thyristor 4454:Memristor 4379:PIN diode 4156:(ChemFET) 4039:Materials 3572:Ce:Gd:YAG 3554:Nd:Ce:YAG 3548:Nd:Cr:YAG 3411:M squared 3233:Gas laser 3216:Dye laser 2990:. Wiley. 2959:114572097 2656:Photonics 2502:1539-4794 2418:: 44–59. 2203:(3): 62. 1879:InGaAsNSb 1810:pump for 1619:porphyrin 1291:July 2011 949:waveguide 821:) of the 489:recombine 426:electrons 382:epitaxial 374:PIN diode 342:July 2011 50:summarize 5086:Inductor 5056:Reactive 5034:Varistor 5014:Resistor 4992:Antifuse 4878:Ignitron 4873:Dekatron 4761:Klystron 4750:Gyrotron 4679:Nuvistor 4596:Split-pi 4482:(MOS IC) 4449:Memistor 4207:(MuGFET) 4201:(MOSFET) 4173:(FinFET) 3989:(VECSEL) 3820:LULI2000 3753:F-center 3699:Ce:LiCAF 3696:Ce:LiSAF 3658:(Nd:YLF) 3604:Yb:glass 3597:Er:glass 3592:Nd:glass 3464:Category 3258:Nitrogen 3112:Archived 3057:(2016). 2882:24571504 2728:23606690 2720:17268764 2637:28509563 2610:16358809 2583:16366049 2397:19680331 2031:See also 2013:GaInAsSb 1984:GaInAsSb 1966:GaInAsSb 1954:GaInAsSb 1934:GaInAsSb 1913:GaInAsSb 1745:Infrared 1608:coherent 1595:through 1589:ablation 1507:Infrared 1376:electron 1341:cleaving 961:or to a 710:coherent 430:injected 428:– to be 394:cladding 252:infrared 234:junction 142:, 1962; 136:Invented 4987:Ferrite 4955:Passive 4946:Varicap 4934:digital 4883:Krytron 4705:Tetrode 4690:Pentode 4544:Varicap 4525:(3D IC) 4501:RF CMOS 4405:devices 4179:(FGMOS) 4110:devices 3983:(VCSEL) 3830:ISKRA-6 3734:(DPSSL) 3717:Yb:SFAP 3702:Cr:ZnSe 3689:Nd:YCOB 3676:(Nd:YVO 3243:Excimer 3034:Bibcode 2939:Bibcode 2664:Bibcode 2449:(ed.). 2420:Bibcode 2377:Bibcode 2205:Bibcode 2161:Bibcode 1893:InGaAsP 1886:InGaAsP 1875:InGaAsP 1855:InGaAsP 1848:InGaAsP 1841:InGaAsN 1837:InGaAsP 1752:AlGaInP 1738:AlGaInP 1721:AlGaInP 1710:AlGaInP 1531:Blu-ray 1515:CD-ROMs 1491:Visible 1277:Please 1199:VECSELs 863:bandgap 769:laser. 716:at the 693:History 673:Due to 650:pumping 602:silicon 501:phonons 280:Blu-ray 254:to the 220:) is a 204:, also 161:cathode 120:‍ 5019:Switch 4710:Triode 4674:Nonode 4639:Audion 4519:(SITh) 4403:Other 4370:(OLED) 4332:Diodes 4283:(LET) 4265:(FET) 4237:Other 4185:(IGBT) 4162:(CMOS) 4149:BioFET 4144:BiCMOS 4054:(GaAs) 4048:(InAs) 4018:Theory 3711:Sm:CaF 3652:(YLF) 3612:Other 3576:Gd:YAG 3569:Ce:YAG 3566:Tb:YAG 3563:Sm:YAG 3560:Dy:YAG 3557:Ho:YAG 3551:Yb:YAG 3285:Nd:YAG 3280:Er:YAG 3221:Bubble 3169:Lasers 3069:  2994:  2957:  2880:  2842:  2815:  2757:  2726:  2718:  2635:  2608:  2581:  2500:  2459:  2395:  2317:  2289:  2283:Optics 2086:  1823:AlGaAs 1816:Yb:YAG 1814:, for 1808:InGaAs 1785:GaAlAs 1780:drives 1775:GaAlAs 1699:Nichia 1666:drives 1664:HD DVD 1527:HD DVD 1523:Violet 1372:phonon 1057:VCSELs 825:, and 799:- and 736:, and 588:, and 544:, and 526:direct 456:- and 302:Theory 230:lasing 146:, 1962 5096:Relay 5069:types 5007:eFUSE 4778:(TWT) 4766:Maser 4757:(IOT) 4746:(CFA) 4735:(BWO) 4659:Diode 4606:SEPIC 4586:Boost 4539:TRIAC 4508:(SCR) 4471:(MOV) 4445:(LEC) 4364:(LED) 4323:(UJT) 4312:(SIT) 4306:(PUT) 4249:(BJT) 4218:(TFT) 4194:LDMOS 4189:ISFET 4000:(ICL) 3966:laser 3949:(ECL) 3943:(QCL) 3927:(DFB) 3921:(DBR) 3915:(SCH) 3805:HiPER 3755:laser 3705:U:CaF 3691:laser 3635:(TGG) 3629:(YIG) 3585:Glass 3290:Raman 2955:S2CID 2811:–81. 2724:S2CID 2696:(PDF) 2224:(PDF) 2193:(PDF) 1788:pumps 1717:GaInP 1703:OSRAM 1695:InGaN 1688:InGaN 1681:InGaN 1671:InGaN 1656:InGaN 1499:green 1247:(1-x) 983:In a 879:(1-x) 840:Types 793:melts 590:phase 464:, or 422:holes 390:doped 188:SEM ( 157:Anode 95:InGaN 91:penny 5039:Wire 4997:Fuse 4581:Buck 4434:(IC) 4422:DIAC 4358:(LD) 4227:UMOS 4222:VMOS 4139:PMOS 4134:NMOS 4119:MOS 3909:(DH) 3903:(LD) 3666:(YVO 3295:Ruby 3067:ISBN 2992:ISBN 2878:PMID 2840:ISBN 2813:ISBN 2755:ISBN 2716:PMID 2633:PMID 2606:PMID 2579:PMID 2498:ISSN 2457:ISBN 2393:PMID 2315:ISBN 2287:ISBN 2084:ISBN 1830:DPSS 1792:DPSS 1726:and 1701:and 1662:and 1599:and 1529:and 1517:and 1425:SPIE 1357:GaSb 1349:GaAs 1142:and 1128:and 1079:DWDM 952:mode 829:and 679:lens 629:lase 424:and 296:LEDs 290:and 245:hole 159:and 103:Type 4601:Ćuk 3253:Ion 3042:doi 2947:doi 2747:doi 2708:doi 2672:doi 2490:doi 2428:doi 2385:doi 2348:doi 2213:doi 2169:doi 1790:in 1728:DVD 1519:DVD 1495:red 1403:in 1397:RCA 1353:InP 1281:to 1005:An 965:of 963:sea 873:(Al 576:or 509:LED 491:or 332:by 276:DVD 216:or 212:or 210:ILD 208:or 5125:: 4975:RF 4724:RF 3670:) 3061:. 3040:. 3028:. 3016:71 3014:. 3010:. 2953:. 2945:. 2935:37 2933:. 2929:. 2910:. 2906:. 2890:^ 2874:34 2872:. 2854:^ 2809:58 2778:. 2753:. 2722:. 2714:. 2704:22 2702:. 2698:. 2670:. 2658:. 2654:. 2629:37 2627:. 2602:24 2600:. 2575:53 2573:. 2552:41 2550:. 2546:. 2525:41 2523:. 2519:. 2496:. 2486:46 2484:. 2480:. 2426:. 2416:17 2414:. 2391:. 2383:. 2371:. 2342:. 2338:. 2301:^ 2211:. 2199:. 2195:. 2167:. 2155:. 2151:. 2106:, 2066:^ 2017:CH 1970:CO 1959:CO 1939:CO 1898:CH 1877:, 1860:NH 1839:, 1828:, 1757:: 1724:CD 1640:. 1585:nm 1564:, 1541:. 1513:, 1489:. 1355:, 1351:, 1245:Ga 1162:+ 1073:A 1041:A 969:. 954:. 877:Ga 753:. 745:. 732:, 632:. 540:, 536:, 472:. 420:– 286:, 272:CD 270:, 266:, 262:, 236:. 202:LD 196:A 128:, 109:, 4726:) 4722:( 4092:e 4085:t 4078:v 3874:e 3867:t 3860:v 3713:2 3707:2 3680:) 3678:4 3668:4 3498:e 3491:t 3484:v 3161:e 3154:t 3147:v 3075:. 3048:. 3044:: 3036:: 3030:6 3000:. 2980:. 2961:. 2949:: 2941:: 2912:7 2884:. 2848:. 2821:. 2788:. 2763:. 2749:: 2730:. 2710:: 2680:. 2674:: 2666:: 2660:9 2639:. 2612:. 2585:. 2504:. 2492:: 2465:. 2434:. 2430:: 2422:: 2399:. 2387:: 2379:: 2373:1 2356:. 2350:: 2344:9 2323:. 2295:. 2270:. 2215:: 2207:: 2201:1 2177:. 2171:: 2163:: 2157:9 2092:. 2022:4 2003:2 1998:H 1994:2 1989:C 1975:2 1944:2 1927:O 1923:2 1918:H 1903:4 1865:3 1765:2 1760:O 1719:/ 1374:- 1304:) 1298:( 1293:) 1289:( 1275:. 1243:x 1173:2 1170:d 1167:2 1164:n 1160:1 1157:d 1154:1 1151:n 1147:2 1144:n 1140:1 1137:n 1133:2 1130:d 1126:1 1123:d 875:x 801:n 797:p 786:n 782:p 778:n 774:p 458:p 454:n 446:n 442:p 438:n 436:– 434:p 414:n 412:– 410:p 355:) 349:( 344:) 340:( 326:. 278:/ 274:/ 200:( 68:) 64:( 54:. 20:)

Index

Laser diodes

lead section
summarize
provide an accessible overview

penny
InGaN
semiconductor
light-emitting diode
semiconductor
carrier generation and recombination
Robert N. Hall
Nick Holonyak, Jr.
Anode
cathode



scanning electron microscope
semiconductor
light-emitting diode
lasing
junction
recombination
hole
infrared
ultraviolet
fiber-optic communications
barcode readers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.