Knowledge

Lie algebra

Source 📝

19778: 12863: 12142: 13524: 13512: 13500: 53: 12599: 11908: 5911: 13489: 15431: 12858:{\displaystyle F_{1}=\left({\begin{array}{ccc}0&0&0\\0&0&-1\\0&1&0\end{array}}\right),\quad F_{2}=\left({\begin{array}{ccc}0&0&1\\0&0&0\\-1&0&0\end{array}}\right),\quad F_{3}=\left({\begin{array}{ccc}0&-1&0\\1&0&0\\0&0&0\end{array}}\right)~.\quad } 20017:(for example, in the diffeomorphism group of the circle, there are diffeomorphisms arbitrarily close to the identity that are not in the image of the exponential map). Moreover, in terms of the existing notions of infinite-dimensional Lie groups, some infinite-dimensional Lie algebras do not come from any group. 12137:{\displaystyle X=\left({\begin{array}{ccc}0&1&0\\0&0&0\\0&0&0\end{array}}\right),\quad Y=\left({\begin{array}{ccc}0&0&0\\0&0&1\\0&0&0\end{array}}\right),\quad Z=\left({\begin{array}{ccc}0&0&1\\0&0&0\\0&0&0\end{array}}\right)~.\quad } 19334:
asserts that every finite-dimensional Lie algebra over a field of characteristic zero is a semidirect product of its solvable radical and a semisimple Lie algebra. Moreover, a semisimple Lie algebra in characteristic zero is a product of simple Lie algebras, as mentioned above. This focuses attention
16086:
The representation theory of Lie algebras plays an important role in various parts of theoretical physics. There, one considers operators on the space of states that satisfy certain natural commutation relations. These commutation relations typically come from a symmetry of the problem—specifically,
19998:
of Lie groups. For finite-dimensional representations, there is an equivalence of categories between representations of a real Lie algebra and representations of the corresponding simply connected Lie group. This simplifies the representation theory of Lie groups: it is often easier to classify the
15097:
One important aspect of the study of Lie algebras (especially semisimple Lie algebras, as defined below) is the study of their representations. Although Ado's theorem is an important result, the primary goal of representation theory is not to find a faithful representation of a given Lie algebra
5624: 11489: 13333: 17580: 16938: 16794: 1637:
In physics, Lie groups appear as symmetry groups of physical systems, and their Lie algebras (tangent vectors near the identity) may be thought of as infinitesimal symmetry motions. Thus Lie algebras and their representations are used extensively in physics, notably in
16161:. Typically, the space of states is far from being irreducible under the pertinent operators, but one can attempt to decompose it into irreducible pieces. In doing so, one needs to know the irreducible representations of the given Lie algebra. In the study of the 4515: 8541: 8139: 15319: 15150:
says that every finite-dimensional representation is a direct sum of irreducible representations (those with no nontrivial invariant subspaces). The finite-dimensional irreducible representations are well understood from several points of view; see the
5244: 17177: 7295: 5042: 12315: 20917: 18265: 15001: 7951: 22100: 19201: 21726: 18676: 17460: 6761: 1880: 6161: 5906:{\displaystyle {\begin{aligned}\left&={\begin{bmatrix}ax&by\\cx&dy\\\end{bmatrix}}-{\begin{bmatrix}ax&bx\\cy&dy\\\end{bmatrix}}\\&={\begin{bmatrix}0&b(y-x)\\c(x-y)&0\end{bmatrix}}\end{aligned}}} 10476: 1368: 20590: 8890: 11351: 11161: 11386: 18851: 2168: 8672: 21306: 20214: 14221: 21654: 19724: 14766: 6617: 6571: 4666: 21839: 13484:{\displaystyle H=\left({\begin{array}{cc}1&0\\0&-1\end{array}}\right),\ E=\left({\begin{array}{cc}0&1\\0&0\end{array}}\right),\ F=\left({\begin{array}{cc}0&0\\1&0\end{array}}\right).} 9021: 8780: 4710: 18596: 6384: 6078: 7666: 17707: 16997: 15279: 17495: 16853: 16643: 4305: 4268: 15701: 8309: 17046: 16043: 15965: 21126: 7529: 5629: 4797: 5368: 5306: 15876: 12454: 12190: 10763: 8035: 7993: 7602: 20326: 20282: 14448: 14343: 14265: 14125: 13984: 13928: 13577: 13324: 11293: 11058: 10221: 9826: 9654: 9354: 9252: 5106: 4029: 3943: 3839: 1682: 6705: 4620: 4383: 21985: 21915: 21539: 15426:{\displaystyle T({\mathfrak {g}})=F\oplus {\mathfrak {g}}\oplus ({\mathfrak {g}}\otimes {\mathfrak {g}})\oplus ({\mathfrak {g}}\otimes {\mathfrak {g}}\otimes {\mathfrak {g}})\oplus \cdots } 12233: 10677: 10632: 21592: 20397:
of it is a real form that splits; i.e., it has a Cartan subalgebra which acts via an adjoint representation with real eigenvalues. A split form exists and is unique (up to isomorphism). A
10378: 10029: 9915: 9782: 9208: 9162: 9077: 3985: 3884: 9873: 9740: 8044: 850: 21460: 15063: 11685: 9310: 4361: 1142: 19502: 8414: 4915: 19445: 9504: 8149:(defined below) over a field of characteristic zero, every derivation is inner. This is related to the theorem that the outer automorphism group of a semisimple Lie group is finite. 7089: 3732: 19604: 19553: 19321: 16571: 15641: 12521: 12368: 11762: 7893: 4836: 19072: 19030: 18984: 18942: 18900: 18739: 18310: 17797: 17620: 14902: 6345: 6033: 5449: 4079: 3689: 3147: 1922: 11892: 7802: 1773: 20362: 20136: 18464: 18380: 17957: 17921: 17864: 17828: 17651: 16199: 16125: 15922: 15751: 14622: 14165: 13253: 13213: 13164: 13128: 12562: 11199: 9610: 8379: 8244: 8208: 7127: 5945: 5564: 5528: 5489: 5407: 5141: 3621: 3191: 20010:, once the Lie algebra is known. For example, the real semisimple Lie algebras were classified by Cartan, and so the classification of semisimple Lie groups is well understood. 16076: 15812: 15555: 10177: 8953: 13612: 10713: 7834: 6904: 2077: 20715: 20682: 16351: 16319: 16159: 14299: 13092: 10581: 10516: 10058: 9948: 9574: 9533: 9420: 9116: 7468: 7433: 4116: 1095: 1058: 20833: 20512: 20389: 20238: 20166: 20105: 19924: 19880: 19661: 19256: 19228: 19115: 18201: 18177: 18147: 18123: 18099: 18075: 18051: 18021: 17487: 17211: 17090: 17082: 16845: 16821: 16626: 16595: 16463: 16290: 16254: 15996: 15775: 15486: 15462: 15307: 15144: 15120: 15087: 14938: 14841: 14813: 14704: 11709: 11565: 11379: 11249: 11007: 10839: 10811: 10547: 10409: 10336: 9987: 9451: 9391: 8700: 8568: 8337: 7626: 7556: 7170: 6669: 6641: 6525: 6501: 6477: 6316: 6004: 5972: 5066: 4942: 4754: 4581: 4557: 3335: 3311: 3283: 3259: 3038: 2912: 2755: 2567: 2463: 1624: 1592: 1317: 20046: 12240: 11615: 9692: 7352: 6830: 21754: 21178: 20838: 14515: 11097: 21415: 20612: 20469: 19985: 19856: 19683: 19633: 18486: 18402: 17744: 14404: 14375: 13280: 12588: 10301: 10279: 10113: 7386: 7160:
has finite dimension as a vector space.) For this reason, spaces of derivations are a natural way to construct Lie algebras: they are the "infinitesimal automorphisms" of
2012: 804: 1732: 2695: 15506: 12394: 11641: 11541: 10257: 6939: 21774: 21020: 18769: 18538: 18428: 18336: 18206: 17983: 17890: 16424: 15233: 13057: 12994: 12931: 11225: 10907: 5590: 19753: 15605: 14676: 8618: 3782: 3498: 1510: 16398: 14950: 14076: 14036: 13836: 12481: 11798: 10140: 7898: 7764: 6997: 6970: 6285: 4730: 2984: 2731: 2439: 2270: 14789: 14558: 13788: 13697: 2519: 2357: 21046: 20766: 18681:
The concept of semisimplicity for Lie algebras is closely related with the complete reducibility (semisimplicity) of their representations. When the ground field
18512: 13878: 13653: 10865: 6451: 5616: 4182: 3098: 3014: 2888: 2862: 2387: 16045:
is injective implies that every Lie algebra (possibly of infinite dimension) has a faithful representation (of infinite dimension), namely its representation on
13735: 10983: 10945: 4878: 3448: 21862: 20941: 20066: 19900: 19823: 19803: 16371: 11515: 8910: 8406: 8170: 5326: 5264: 5135: 4936: 4226: 3585: 3565: 3538: 3518: 3425: 3405: 3372: 2543: 2407: 2100: 1962: 1942: 1416: 1396: 21996: 20987: 19123: 16535: 16503: 2806: 1448: 21483:—without considering individual elements. (In this section, the field over which the algebra is defined is assumed to be of characteristic different from 2.) 18696:
if its adjoint representation is semisimple. Every reductive Lie algebra is isomorphic to the product of an abelian Lie algebra and a semisimple Lie algebra.
21662: 18601: 17229: 14858:
extended this result to finite-dimensional Lie algebras over a field of any characteristic. Equivalently, every finite-dimensional Lie algebra over a field
6710: 1781: 3149:. If a Lie algebra is associated with a Lie group, then the algebra is denoted by the fraktur version of the group's name: for example, the Lie algebra of 1566:
In more detail: for any Lie group, the multiplication operation near the identity element 1 is commutative to first order. In other words, every Lie group
14854:
states that every finite-dimensional Lie algebra over a field of characteristic zero has a faithful representation on a finite-dimensional vector space.
10782: 10418: 1964:. The Lie bracket is a measure of the non-commutativity between two rotations. Since a rotation commutes with itself, one has the alternating property 1329: 20533: 8785: 16165:, for example, quantum mechanics textbooks classify (more or less explicitly) the finite-dimensional irreducible representations of the Lie algebra 15122:. Indeed, in the semisimple case, the adjoint representation is already faithful. Rather, the goal is to understand all possible representations of 1626:
the structure of a Lie algebra. It is a remarkable fact that these second-order terms (the Lie algebra) completely determine the group structure of
15152: 11484:{\displaystyle X=\left({\begin{array}{cc}1&0\\0&0\end{array}}\right),\qquad Y=\left({\begin{array}{cc}0&1\\0&0\end{array}}\right).} 470: 11300: 11113: 1378:
for which the multiplication operation (called the Lie bracket) is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors
18777: 2108: 518: 19089:) gives conditions for a finite-dimensional Lie algebra of characteristic zero to be solvable or semisimple. It is expressed in terms of the 8623: 1598:
at the identity. To second order, the group operation may be non-commutative, and the second-order terms describing the non-commutativity of
1247: 21183: 20729:
involves showing that a simple Lie algebra over the complex numbers comes from a Lie algebra over the integers, and then (with more care) a
20171: 20020:
Lie theory also does not work so neatly for infinite-dimensional representations of a finite-dimensional group. Even for the additive group
14173: 6083: 13930:
is simple, and classify its finite-dimensional representations (defined below). In the terminology of quantum mechanics, one can think of
4802:
For the Lie algebra of a Lie group, the Lie bracket is a kind of infinitesimal commutator. As a result, for any Lie algebra, two elements
523: 21603: 19688: 14716: 6576: 6530: 4625: 22178: 21782: 15147: 513: 508: 8958: 8717: 19760: 15704: 4675: 19931: 19772: 1556: 328: 18543: 20068:
can usually not be differentiated to produce a representation of its Lie algebra on the same space, or vice versa. The theory of
19729:
In the years leading up to 2004, the finite-dimensional simple Lie algebras over an algebraically closed field of characteristic
17575:{\displaystyle 0={\mathfrak {m}}_{0}\subseteq {\mathfrak {m}}_{1}\subseteq \cdots \subseteq {\mathfrak {m}}_{r}={\mathfrak {g}},} 16933:{\displaystyle 0={\mathfrak {a}}_{0}\subseteq {\mathfrak {a}}_{1}\subseteq \cdots \subseteq {\mathfrak {a}}_{r}={\mathfrak {g}},} 16789:{\displaystyle {\mathfrak {g}}\supseteq \supseteq ,{\mathfrak {g}}]\supseteq ,{\mathfrak {g}}],{\mathfrak {g}}]\supseteq \cdots } 14941: 592: 475: 19836:
The relationship between Lie groups and Lie algebras can be summarized as follows. Each Lie group determines a Lie algebra over
7631: 17656: 16946: 15241: 4276: 4239: 23236: 23206: 23104: 23003: 22973: 22888: 22812: 15646: 20645:-groups. The direct sum of the lower central factors is given the structure of a Lie ring by defining the bracket to be the 17799:
is its center, the 1-dimensional subspace spanned by the identity matrix. An example of a solvable Lie algebra is the space
14458: 8266: 6350: 6044: 20403:
is a real form that is the Lie algebra of a compact Lie group. A compact form exists and is also unique up to isomorphism.
17002: 16005: 15927: 704: 623: 23137: 23121: 21061: 7493: 4759: 14355:
The Lie algebra of vector fields on a smooth manifold of positive dimension is an infinite-dimensional Lie algebra over
5331: 5269: 4510:{\displaystyle \phi \colon {\mathfrak {g}}\to {\mathfrak {h}},\quad \phi ()=\ {\text{for all}}\ x,y\in {\mathfrak {g}}.} 23270: 22931: 15817: 12399: 12153: 10721: 7998: 7956: 7565: 20287: 20243: 14409: 14304: 14226: 14086: 13945: 13889: 13538: 13285: 11254: 11012: 10182: 9787: 9615: 9315: 9213: 5074: 3990: 3904: 3800: 1648: 23075: 23042: 22842: 19763:.) It turns out that there are many more simple Lie algebras in positive characteristic than in characteristic zero. 9695: 8134:{\displaystyle {\text{Out}}_{F}({\mathfrak {g}})={\text{Der}}_{F}({\mathfrak {g}})/{\text{Inn}}_{F}({\mathfrak {g}})} 6674: 4589: 1285: 1240: 1192: 21926: 21870: 21500: 12198: 10637: 10592: 22188: 21547: 17724:, nilpotent (respectively, solvable) Lie groups correspond to nilpotent (respectively, solvable) Lie algebras over 10341: 9992: 9878: 9745: 9171: 9125: 9040: 3948: 3847: 20411:
A Lie algebra may be equipped with additional structures that are compatible with the Lie bracket. For example, a
11711:
can be broken into abelian "pieces", meaning that it is solvable (though not nilpotent), in the terminology below.
9839: 9706: 2761:
Given a Lie group, the Jacobi identity for its Lie algebra follows from the associativity of the group operation.
814: 22122: 20420: 16078:. This also shows that every Lie algebra is contained in the Lie algebra associated to some associative algebra. 8536:{\displaystyle {\mathfrak {g}}=\{X=c'(0)\in M_{n}(\mathbb {R} ):{\text{ smooth }}c:\mathbb {R} \to G,\ c(0)=I\}.} 485: 23299: 21430: 16433:
A more general class of Lie algebras is defined by the vanishing of all commutators of given length. First, the
16209:
Lie algebras can be classified to some extent. This is a powerful approach to the classification of Lie groups.
15009: 11646: 9271: 4313: 22860: 6764: 1109: 20006:
central subgroup. So classifying Lie groups becomes simply a matter of counting the discrete subgroups of the
19456: 4890: 23323: 22872: 22117: 19402: 9464: 7895:. (This is a derivation as a consequence of the Jacobi identity.) That gives a homomorphism of Lie algebras, 7002: 6787: 3694: 480: 460: 22344:
By the anticommutativity of the commutator, the notions of a left and right ideal in a Lie algebra coincide.
19564: 19513: 19261: 16540: 15610: 12486: 12333: 11727: 7839: 5239:{\displaystyle {\mathfrak {n}}_{\mathfrak {g}}(S)=\{x\in {\mathfrak {g}}:\in S\ {\text{ for all}}\ s\in S\}} 4805: 20013:
For infinite-dimensional Lie algebras, Lie theory works less well. The exponential map need not be a local
19035: 18993: 18947: 18905: 18863: 18702: 18273: 17760: 17588: 15168: 14865: 7436: 5412: 4042: 3652: 3110: 2023: 1892: 1233: 1100: 425: 333: 31: 17: 21487: 11809: 7777: 1737: 23318: 22213: 22128: 20331: 20110: 18433: 18349: 17926: 17895: 17833: 17802: 17625: 16168: 16094: 15881: 15710: 14591: 14134: 13222: 13182: 13133: 13097: 12531: 11170: 9579: 8346: 8213: 8175: 7094: 5919: 5533: 5502: 5458: 5381: 4031:
describes the failure of commutativity for matrix multiplication, or equivalently for the composition of
3784:. This is a special case of the previous example; it is a key example of a Lie algebra. It is called the 3590: 3160: 1324: 950: 21132:
is a Lie ring, with addition given by the group multiplication (which is abelian on each quotient group
17172:{\displaystyle \operatorname {ad} (u):{\mathfrak {g}}\to {\mathfrak {g}},\quad \operatorname {ad} (u)v=} 16048: 15784: 15527: 10149: 8918: 7290:{\displaystyle (1+\epsilon D)(xy)\equiv (1+\epsilon D)(x)\cdot (1+\epsilon D)(y){\pmod {\epsilon ^{2}}}} 5037:{\displaystyle {\mathfrak {z}}_{\mathfrak {g}}(S)=\{x\in {\mathfrak {g}}:=0\ {\text{ for all }}s\in S\}} 4366:
In the correspondence between Lie groups and Lie algebras, subgroups correspond to Lie subalgebras, and
23067: 23026: 22864: 22158: 19934:. This Lie group is not determined uniquely; however, any two Lie groups with the same Lie algebra are 19339: 14574: 13585: 12310:{\displaystyle \left({\begin{array}{ccc}1&a&c\\0&1&b\\0&0&1\end{array}}\right)} 10686: 7807: 6841: 2057: 710: 465: 20912:{\displaystyle G=G_{1}\supseteq G_{2}\supseteq G_{3}\supseteq \cdots \supseteq G_{n}\supseteq \cdots } 20691: 20658: 19858:(concretely, the tangent space at the identity). Conversely, for every finite-dimensional Lie algebra 16327: 16295: 16130: 14270: 13068: 10552: 10487: 10034: 9924: 9545: 9509: 9396: 9092: 7478:. So the Lie bracket of vector fields describes the non-commutativity of the diffeomorphism group. An 7442: 7407: 6321: 6009: 4087: 1071: 1034: 725: 23224: 21480: 20771: 20493: 20370: 20219: 20147: 20086: 19991: 19962: 19905: 19861: 19829:
Although Lie algebras can be studied in their own right, historically they arose as a means to study
19642: 19237: 19209: 19096: 18686: 18182: 18158: 18128: 18104: 18080: 18056: 18032: 18002: 17468: 17192: 17063: 16826: 16802: 16607: 16576: 16444: 16271: 16235: 16088: 15977: 15756: 15467: 15443: 15288: 15125: 15101: 15068: 14919: 14822: 14794: 14685: 11690: 11546: 11360: 11230: 10988: 10820: 10792: 10521: 10383: 10310: 10307:
times a skew-hermitian matrix is hermitian, rather than skew-hermitian.) Likewise, the unitary group
9961: 9539:
of a matrix. The orthogonal group has two connected components; the identity component is called the
9425: 9365: 8681: 8549: 8318: 7607: 7537: 7400:
gives a derivation of the space of smooth functions by differentiating functions in the direction of
6650: 6622: 6506: 6482: 6458: 6297: 6291: 5985: 5953: 5047: 4735: 4669: 4562: 4538: 3316: 3292: 3264: 3240: 3019: 2893: 2736: 2548: 2444: 1605: 1573: 1560: 1298: 20072:
is a more subtle relation between infinite-dimensional representations for groups and Lie algebras.
20023: 11570: 9659: 7321: 6803: 21734: 21135: 20472: 17717: 16597:, in fact the smallest ideal such that the quotient Lie algebra is abelian. It is analogous to the 14485: 11067: 8142: 3206: 3041: 1645:
An elementary example (not directly coming from an associative algebra) is the 3-dimensional space
1185: 988: 938: 616: 100: 21313: 20595: 20452: 19968: 19839: 19666: 19616: 18902:, the 1-dimensional subspace spanned by the identity matrix. Since the special linear Lie algebra 18469: 18385: 17727: 17716:
Every finite-dimensional Lie algebra over a field has a unique maximal solvable ideal, called its
14387: 14358: 13263: 13094:
is given by the same formula in terms of the standard basis; so that Lie algebra is isomorphic to
12571: 10284: 10262: 10075: 9576:, consisting of the orthogonal matrices with determinant 1. Both groups have the same Lie algebra 7369: 3374:
endowed with the identically zero Lie bracket becomes a Lie algebra. Such a Lie algebra is called
1967: 787: 23313: 19990:
The correspondence between Lie algebras and Lie groups is used in several ways, including in the
19607: 10680: 10061: 9918: 6942: 1690: 1451: 997: 731: 690: 18685:
has characteristic zero, every finite-dimensional representation of a semisimple Lie algebra is
18260:{\displaystyle {\mathfrak {g}}\cong {\mathfrak {g}}_{1}\times \cdots \times {\mathfrak {g}}_{r}} 9422:
to itself that preserve the length of vectors. For example, rotations and reflections belong to
3378:. Every one-dimensional Lie algebra is abelian, by the alternating property of the Lie bracket. 22223: 22148: 22138: 19927: 18151: 17994: 17183: 15156: 10716: 9265: 8146: 3520:
is a Lie algebra. (The Jacobi identity follows from the associativity of the multiplication on
3210: 2587: 1552: 1154: 1005: 956: 737: 420: 383: 351: 338: 15491: 14996:{\displaystyle \operatorname {ad} \colon {\mathfrak {g}}\to {\mathfrak {gl}}({\mathfrak {g}})} 14531:, modulo only the relations coming from the definition of a Lie algebra. The free Lie algebra 12373: 11620: 11520: 10226: 7946:{\displaystyle \operatorname {ad} \colon {\mathfrak {g}}\to {\text{Der}}_{F}({\mathfrak {g}})} 6912: 23354: 23158: 23145: 22153: 21759: 21048:. (For the Lazard correspondence, one takes the filtration to be the lower central series of 20992: 20652: 20069: 20007: 19995: 19082: 18748: 18693: 18517: 18407: 18315: 17962: 17869: 16630: 16403: 15188: 14381: 13000: 12937: 12874: 11204: 10870: 10769: 10482: 5569: 3150: 452: 120: 20742:
Here is a construction of Lie rings arising from the study of abstract groups. For elements
19732: 16087:
they are the relations of the Lie algebra of the relevant symmetry group. An example is the
15560: 14631: 8573: 3737: 3453: 1465: 195: 185: 175: 165: 23280: 23246: 23216: 23187: 23114: 23085: 23052: 23013: 22983: 22949: 22898: 22852: 22822: 20523: 19345:
of characteristic zero were classified by Killing and Cartan in the 1880s and 1890s, using
17215: 16635: 16376: 15999: 14049: 14009: 13794: 12565: 12459: 11771: 10118: 9035: 8152:
In contrast, an abelian Lie algebra has many outer derivations. Namely, for a vector space
7674: 7471: 6975: 6948: 6776: 6169: 4715: 3842: 3642: 2930: 2704: 2412: 2186: 1375: 878: 752: 80: 70: 14774: 14534: 13749: 13658: 2483: 2276: 8: 23349: 23141: 23129: 23125: 22095:{\displaystyle \circ (\otimes \mathrm {id} )\circ (\mathrm {id} +\sigma +\sigma ^{2})=0.} 21025: 20745: 20081: 19196:{\displaystyle K(u,v)=\operatorname {tr} (\operatorname {ad} (u)\operatorname {ad} (v)),} 18491: 16598: 15521: 13842: 13617: 12787: 12704: 12621: 12249: 12069: 11996: 11923: 10844: 10143: 9165: 6389: 5595: 4143: 3047: 2993: 2867: 2811: 2366: 2080: 1520: 1455: 1160: 968: 919: 864: 758: 744: 672: 640: 609: 597: 438: 268: 13702: 10950: 10912: 4845: 3430: 23175: 22957: 22112: 21847: 21721:{\displaystyle \sigma =(\mathrm {id} \otimes \tau )\circ (\tau \otimes \mathrm {id} ),} 21471:
The definition of a Lie algebra can be reformulated more abstractly in the language of
20926: 20726: 20412: 20051: 19885: 19808: 19788: 19756: 19331: 19231: 18025: 17721: 17053: 16356: 16162: 14406:, with structure much like that of the finite-dimensional simple Lie algebras (such as 11722: 11500: 8895: 8703: 8675: 8391: 8155: 7152:. (This is literally true when the automorphism group is a Lie group, for example when 7145: 6644: 5311: 5249: 5120: 4921: 4229: 4187: 3570: 3550: 3523: 3503: 3410: 3390: 3357: 2528: 2392: 2085: 1947: 1927: 1401: 1381: 1173: 659: 369: 359: 20946: 20483:
The definition of a Lie algebra over a field extends to define a Lie algebra over any
18671:{\displaystyle {\mathfrak {so}}(4)\cong {\mathfrak {su}}(2)\times {\mathfrak {su}}(2)} 17455:{\displaystyle {\mathfrak {g}}\supseteq \supseteq ,]\supseteq ,],,]]\supseteq \cdots } 16508: 16468: 6756:{\displaystyle {\mathfrak {g}}={\mathfrak {g}}/{\mathfrak {i}}\ltimes {\mathfrak {i}}} 2767: 1875:{\displaystyle x\times (y\times z)+\ y\times (z\times x)+\ z\times (x\times y)\ =\ 0.} 1421: 23266: 23232: 23202: 23194: 23100: 23071: 23038: 22999: 22969: 22962: 22937: 22927: 22902: 22884: 22838: 22808: 22218: 20439: 20435: 13171: 5496: 5452: 3887: 3544: 2918: 1886: 1639: 1563:
of Lie groups in terms of Lie algebras, which are simpler objects of linear algebra.
1214: 1011: 776: 717: 433: 396: 548: 286: 23167: 23059: 23030: 22919: 22876: 22798: 22248: 22183: 20722: 20484: 20416: 19951: 19825:
were the identity element of a Lie group, the tangent space would be a Lie algebra.
19636: 18203:
is semisimple if and only if it is isomorphic to a product of simple Lie algebras,
14855: 14851: 14519: 14465: 14128: 12193: 11900: 10587: 9360: 4532: 2103: 1524: 1271: 1220: 1206: 1020: 962: 925: 698: 684: 568: 248: 240: 232: 224: 216: 149: 130: 90: 13447: 13399: 13348: 11447: 11401: 11309: 11122: 10471:{\displaystyle i\mathbb {R} \subset \mathbb {C} ={\mathfrak {gl}}(1,\mathbb {C} )} 7534:
A Lie algebra can be viewed as a non-associative algebra, and so each Lie algebra
23276: 23242: 23212: 23183: 23110: 23081: 23048: 23009: 22991: 22979: 22945: 22894: 22848: 22818: 22802: 22228: 22198: 22193: 22143: 21472: 20447: 19939: 16222: 13939: 8386: 7355: 4367: 4082: 2031: 1544: 1371: 982: 932: 770: 553: 306: 291: 62: 19961:
Lie groups, there is a complete correspondence: taking the Lie algebra gives an
1570:
is (to first order) approximately a real vector space, namely the tangent space
1363:{\displaystyle {\mathfrak {g}}\times {\mathfrak {g}}\rightarrow {\mathfrak {g}}} 23262: 23153: 22203: 21424: 20718: 20585:{\displaystyle \colon {\mathfrak {g}}\times {\mathfrak {g}}\to {\mathfrak {g}}} 20443: 20431: 20003: 18692:
A finite-dimensional Lie algebra over a field of characteristic zero is called
17220: 16226: 15509: 15437: 14168: 13580: 13167: 8885:{\displaystyle \exp(X)=I+X+{\tfrac {1}{2!}}X^{2}+{\tfrac {1}{3!}}X^{3}+\cdots } 6037: 1548: 1540: 1535:
for the Lie group.) Conversely, to any finite-dimensional Lie algebra over the
1026: 573: 391: 296: 22968:. Graduate Texts in Mathematics. Vol. 9 (2nd ed.). Springer-Verlag. 22923: 22880: 19086: 13215:
cannot be broken into pieces in the way that the previous examples can: it is
558: 23343: 23254: 23034: 22941: 22906: 22830: 22208: 22168: 22163: 20685: 20424: 20014: 16218: 14469: 14454: 10909:. (This determines the Lie bracket completely, because the axioms imply that 9956: 9119: 5492: 4531:
As with normal subgroups in groups, ideals in Lie algebras are precisely the
3044:
2, then anticommutativity implies the alternating property, since it implies
1685: 1532: 1528: 1167: 1063: 678: 281: 110: 16292:. In particular, the Lie algebra of an abelian Lie group (such as the group 14267:. As a result, it is common to analyze complex representations of the group 11346:{\displaystyle \left({\begin{array}{cc}c&d\\0&0\end{array}}\right).} 23259:
Group Theory and its Application to the Quantum Mechanics of Atomic Spectra
22133: 20730: 20399: 19090: 15236: 14480: 11156:{\displaystyle \left({\begin{array}{cc}a&b\\0&1\end{array}}\right)} 11061: 10412: 8260: 7479: 7389: 6833: 2039: 1293: 1199: 974: 870: 578: 563: 364: 346: 276: 19965:
from simply connected Lie groups to Lie algebras of finite dimension over
1458:
gives rise to a Lie algebra, consisting of the same vector space with the
23092: 23064:
Representation Theory of Semisimple Groups: an Overview Based on Examples
22918:. Graduate Texts in Mathematics. Vol. 222 (2nd ed.). Springer. 22916:
Lie groups, Lie Algebras, and Representations: An Elementary Introduction
19346: 18846:{\displaystyle {\mathfrak {gl}}(n,F)\cong F\times {\mathfrak {sl}}(n,F),} 4884: 4137: 3898: 2163:{\displaystyle :{\mathfrak {g}}\times {\mathfrak {g}}\to {\mathfrak {g}}} 1536: 1261: 1179: 890: 764: 646: 404: 21475:. Namely, one can define a Lie algebra in terms of linear maps—that is, 21423:
For example, the Lie ring associated to the lower central series on the
20002:
Every connected Lie group is isomorphic to its universal cover modulo a
16353:) is abelian. Every finite-dimensional abelian Lie algebra over a field 14223:. The formulas for the Lie bracket are easier to analyze in the case of 1531:
at the identity. (In this case, the Lie bracket measures the failure of
23295: 23179: 22173: 21427:
of order 8 is the Heisenberg Lie algebra of dimension 3 over the field
20646: 20393: 19206:
where tr denotes the trace of a linear operator. Namely: a Lie algebra
13995: 13326:
of 2 x 2 matrices of trace zero. A basis is given by the three matrices
8667:{\displaystyle {\mathfrak {g}}\subset {\mathfrak {gl}}(n,\mathbb {R} )} 5113: 4032: 3337:
is spanned (as a vector space) by all iterated brackets of elements of
2027: 1459: 944: 543: 409: 301: 21301:{\displaystyle G_{i}/G_{i+1}\times G_{j}/G_{j+1}\to G_{i+j}/G_{i+j+1}} 20209:{\displaystyle {\mathfrak {g}}_{0}\otimes _{\mathbb {R} }\mathbb {C} } 19777: 14216:{\displaystyle {\mathfrak {so}}(3)\otimes _{\mathbb {R} }\mathbb {C} } 13219:, meaning that it is not abelian and its only ideals are 0 and all of 6156:{\displaystyle (x,x'),\,x\in {\mathfrak {g}},\ x'\in {\mathfrak {g'}}} 30:"Lie bracket" redirects here. For the operation on vector fields, see 23305: 22875:, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. 20423:
also comes with a differential, making the underlying vector space a
20140: 19830: 17056:, a Lie algebra over any field is nilpotent if and only if for every 15968: 9536: 4525: 3734:, is a Lie algebra with bracket given by the commutator of matrices: 1516: 904: 809: 40: 23171: 18077:. (In particular, a one-dimensional—necessarily abelian—Lie algebra 15146:. For a semisimple Lie algebra over a field of characteristic zero, 9393:
plays a basic role in geometry: it is the group of linear maps from
21476: 18101:
is by definition not simple, even though its only ideals are 0 and
9089:
matrices with determinant 1. This is the group of linear maps from
4232:
and algebras (and also for groups) has analogs for Lie algebras. A
898: 884: 23332: 21649:{\displaystyle \sigma :A\otimes A\otimes A\to A\otimes A\otimes A} 19719:{\displaystyle {\mathfrak {g}}\otimes _{\mathbb {R} }\mathbb {C} } 19613:
The classification of finite-dimensional simple Lie algebras over
14761:{\displaystyle \pi \colon {\mathfrak {g}}\to {\mathfrak {gl}}(V).} 13614:. In particular, the Lie brackets of the vector fields shown are: 6612:{\displaystyle {\mathfrak {g}}/{\mathfrak {i}}\to {\mathfrak {g}}} 6566:{\displaystyle {\mathfrak {g}}\to {\mathfrak {g}}/{\mathfrak {i}}} 4661:{\displaystyle {\mathfrak {g}}\to {\mathfrak {g}}/{\mathfrak {i}}} 21834:{\displaystyle \sigma (x\otimes y\otimes z)=y\otimes z\otimes x.} 20626: 20615: 19639:
for an equivalent classification). One can analyze a Lie algebra
14384:
are a large class of infinite-dimensional Lie algebras, say over
13523: 13511: 13499: 8674:, one can recover the Lie group as the subgroup generated by the 3901:), where the group operation is matrix multiplication. Likewise, 3104: 1775:, and instead of associativity it satisfies the Jacobi identity: 782: 666: 500: 20592:
that satisfies the Jacobi identity. A Lie algebra over the ring
16229:, one can define abelian, nilpotent, and solvable Lie algebras. 9016:{\displaystyle \exp :M_{n}(\mathbb {C} )\to M_{n}(\mathbb {C} )} 8775:{\displaystyle \exp :M_{n}(\mathbb {R} )\to M_{n}(\mathbb {R} )} 21466: 20622:. (This is not directly related to the notion of a Lie group.) 19782: 19759:, Robert Lee Wilson, Alexander Premet, and Helmut Strade. (See 18342:
of characteristic zero (or just of characteristic not dividing
15464:, also called the free associative algebra on the vector space 10781:
Some Lie algebras of low dimension are described here. See the
2914:. Thus bilinearity and the alternating property together imply 21844:
With this notation, a Lie algebra can be defined as an object
17489:
is solvable if there is a finite sequence of Lie subalgebras,
4705:{\displaystyle \phi \colon {\mathfrak {g}}\to {\mathfrak {h}}} 3285:
such that any Lie subalgebra (as defined below) that contains
1277: 22247:
More generally, one has the notion of a Lie algebra over any
19947: 19943: 16322: 15643:; then the universal enveloping algebra is the quotient ring 14457:
is an infinite-dimensional Lie algebra that contains all the
13260:
Another simple Lie algebra of dimension 3, in this case over
13170:
angular-momentum component operators for spin-1 particles in
9268:
0. Similarly, one can define the analogous complex Lie group
4377:
is a linear map compatible with the respective Lie brackets:
1924:
may be pictured as an infinitesimal rotation around the axis
22125:(the integrability being the same as being a Lie subalgebra) 19761:
restricted Lie algebra#Classification of simple Lie algebras
18591:{\displaystyle {\mathfrak {so}}(3)\cong {\mathfrak {su}}(2)} 14527:. It is spanned by all iterated Lie brackets of elements of 4307:
is a linear subspace that satisfies the stronger condition:
1527:: every Lie group gives rise to a Lie algebra, which is the 23333:"An Elementary Introduction to Lie Algebras for Physicists" 21486:
For the category-theoretic definition of Lie algebras, two
19635:
is more complicated, but it was also solved by Cartan (see
16091:, whose commutation relations are those of the Lie algebra 10772:
are those listed above, along with variants over any field.
5974:
is an abelian Lie subalgebra, but it need not be an ideal.
52: 21864:
in the category of vector spaces together with a morphism
14624:
denote the Lie algebra consisting of all linear maps from
7661:{\displaystyle D\colon {\mathfrak {g}}\to {\mathfrak {g}}} 23301:
Course notes for MIT 18.745: Introduction to Lie Algebras
20406: 17702:{\displaystyle {\mathfrak {m}}_{j}/{\mathfrak {m}}_{j-1}} 16992:{\displaystyle {\mathfrak {a}}_{j}/{\mathfrak {a}}_{j-1}} 15274:{\displaystyle {\mathfrak {g}}\mapsto U({\mathfrak {g}})} 11899:
It can be viewed as the Lie algebra of 3×3 strictly
2170:
called the Lie bracket, satisfying the following axioms:
19999:
representations of a Lie algebra, using linear algebra.
18689:(that is, a direct sum of irreducible representations). 16823:
is nilpotent if there is a finite sequence of ideals in
13886:
Using these formulas, one can show that the Lie algebra
11903:
matrices, with the commutator Lie bracket and the basis
10583:
consists of the skew-hermitian matrices with trace zero.
9026:
Here are some matrix Lie groups and their Lie algebras.
8315:
is matrix multiplication. The corresponding Lie algebra
4300:{\displaystyle {\mathfrak {i}}\subseteq {\mathfrak {g}}} 4263:{\displaystyle {\mathfrak {h}}\subseteq {\mathfrak {g}}} 4131: 3103:
It is customary to denote a Lie algebra by a lower-case
23095:(2010) , "Remarks on infinite-dimensional Lie groups", 19335:
on the problem of classifying the simple Lie algebras.
15696:{\displaystyle U({\mathfrak {g}})=T({\mathfrak {g}})/I} 14301:
by relating them to representations of the Lie algebra
5950:
Every one-dimensional linear subspace of a Lie algebra
4228:. Nonetheless, much of the terminology for associative 22964:
Introduction to Lie Algebras and Representation Theory
17465:
becomes zero after finitely many steps. Equivalently,
16799:
becomes zero after finitely many steps. Equivalently,
16505:, meaning the linear subspace spanned by all brackets 16204: 8850: 8820: 8339:
is the space of matrices which are tangent vectors to
8304:{\displaystyle G\subset \mathrm {GL} (n,\mathbb {R} )} 7091:
is again a derivation. This operation makes the space
6379:{\displaystyle {\mathfrak {g}}\times {\mathfrak {g'}}} 6073:{\displaystyle {\mathfrak {g}}\times {\mathfrak {g'}}} 5838: 5780: 5729: 5681: 5642: 3897:
real matrices (or equivalently, matrices with nonzero
23136: 23120: 22296: 22284: 21999: 21929: 21873: 21850: 21785: 21762: 21737: 21665: 21606: 21550: 21503: 21433: 21316: 21186: 21138: 21064: 21028: 20995: 20949: 20929: 20841: 20774: 20748: 20694: 20661: 20649:
of two coset representatives; see the example below.
20598: 20536: 20496: 20455: 20373: 20334: 20290: 20246: 20222: 20174: 20150: 20113: 20089: 20054: 20026: 19971: 19908: 19888: 19864: 19842: 19811: 19791: 19735: 19691: 19669: 19645: 19619: 19567: 19516: 19459: 19405: 19264: 19240: 19212: 19126: 19099: 19038: 18996: 18950: 18908: 18866: 18780: 18751: 18705: 18604: 18546: 18520: 18494: 18472: 18436: 18410: 18388: 18352: 18318: 18276: 18209: 18185: 18161: 18131: 18107: 18083: 18059: 18035: 18005: 17965: 17929: 17898: 17892:. An example of a nilpotent Lie algebra is the space 17872: 17836: 17805: 17763: 17730: 17659: 17628: 17591: 17498: 17471: 17232: 17195: 17093: 17066: 17041:{\displaystyle {\mathfrak {g}}/{\mathfrak {a}}_{j-1}} 17005: 16949: 16856: 16829: 16805: 16646: 16610: 16579: 16543: 16511: 16471: 16447: 16406: 16379: 16359: 16330: 16298: 16274: 16238: 16171: 16133: 16097: 16051: 16038:{\displaystyle {\mathfrak {g}}\to U({\mathfrak {g}})} 16008: 16002:
over the universal enveloping algebra. The fact that
15980: 15960:{\displaystyle {\mathfrak {g}}\to U({\mathfrak {g}})} 15930: 15884: 15820: 15787: 15759: 15713: 15649: 15613: 15563: 15530: 15494: 15470: 15446: 15322: 15291: 15244: 15191: 15128: 15104: 15071: 15012: 14953: 14922: 14868: 14825: 14797: 14777: 14719: 14688: 14634: 14594: 14537: 14488: 14412: 14390: 14361: 14307: 14273: 14229: 14176: 14137: 14089: 14052: 14012: 13948: 13892: 13845: 13797: 13752: 13705: 13661: 13620: 13588: 13541: 13336: 13288: 13266: 13225: 13185: 13136: 13100: 13071: 13003: 12940: 12877: 12869:
The commutation relations among these generators are
12602: 12574: 12534: 12489: 12462: 12402: 12376: 12336: 12243: 12201: 12156: 11911: 11812: 11774: 11730: 11693: 11649: 11623: 11573: 11549: 11523: 11503: 11389: 11363: 11303: 11257: 11233: 11207: 11173: 11116: 11070: 11015: 10991: 10953: 10915: 10873: 10847: 10823: 10795: 10724: 10689: 10640: 10595: 10555: 10524: 10490: 10421: 10386: 10344: 10313: 10287: 10265: 10229: 10185: 10152: 10121: 10078: 10037: 9995: 9964: 9927: 9881: 9842: 9790: 9748: 9709: 9662: 9618: 9582: 9548: 9512: 9467: 9428: 9399: 9368: 9318: 9274: 9216: 9174: 9128: 9095: 9043: 8961: 8921: 8898: 8788: 8720: 8684: 8626: 8576: 8552: 8417: 8394: 8349: 8321: 8269: 8216: 8178: 8158: 8047: 8001: 7959: 7901: 7842: 7810: 7780: 7677: 7634: 7610: 7568: 7540: 7496: 7445: 7410: 7372: 7324: 7173: 7097: 7005: 6978: 6951: 6915: 6844: 6806: 6713: 6677: 6653: 6625: 6579: 6533: 6509: 6485: 6461: 6392: 6353: 6324: 6300: 6172: 6086: 6047: 6012: 5988: 5956: 5922: 5627: 5598: 5572: 5536: 5505: 5461: 5415: 5384: 5334: 5314: 5272: 5252: 5144: 5123: 5077: 5050: 4945: 4924: 4893: 4848: 4808: 4762: 4738: 4718: 4678: 4628: 4592: 4565: 4541: 4386: 4316: 4279: 4242: 4190: 4146: 4090: 4045: 3993: 3951: 3907: 3850: 3803: 3740: 3697: 3655: 3593: 3573: 3553: 3526: 3506: 3456: 3433: 3413: 3393: 3360: 3319: 3295: 3267: 3243: 3163: 3113: 3050: 3022: 2996: 2933: 2896: 2870: 2814: 2770: 2739: 2707: 2590: 2551: 2531: 2486: 2447: 2415: 2395: 2369: 2279: 2189: 2111: 2088: 2060: 2022:
Lie algebras were introduced to study the concept of
1970: 1950: 1930: 1895: 1784: 1740: 1693: 1651: 1608: 1576: 1468: 1424: 1404: 1384: 1332: 1301: 1286: 1112: 1074: 1037: 817: 790: 19338:
The simple Lie algebras of finite dimension over an
11687:
are abelian (because 1-dimensional). In this sense,
9696:
infinitesimal rotations with skew-symmetric matrices
8915:
The same comments apply to complex Lie subgroups of
1274: 23229:
Lie Groups, Lie Algebras, and Their Representations
21121:{\displaystyle L=\bigoplus _{i\geq 1}G_{i}/G_{i+1}} 16260:if the Lie bracket vanishes; that is, = 0 for all 16212: 16081: 12568:is the space of skew-symmetric 3 x 3 matrices over 10783:
classification of low-dimensional real Lie algebras
10415:, and its Lie algebra (from this point of view) is 8381:: this consists of derivatives of smooth curves in 7524:{\displaystyle {\mathfrak {g}}\to {\text{Vect}}(X)} 4792:{\displaystyle {\mathfrak {g}}/{\text{ker}}(\phi )} 22961: 22262:-bilinear map that satisfies the Jacobi identity ( 22094: 21979: 21909: 21856: 21833: 21768: 21748: 21720: 21648: 21586: 21533: 21454: 21409: 21300: 21172: 21120: 21040: 21014: 20981: 20935: 20911: 20827: 20760: 20709: 20676: 20606: 20584: 20506: 20463: 20383: 20356: 20320: 20276: 20232: 20208: 20160: 20130: 20099: 20060: 20040: 19979: 19918: 19894: 19874: 19850: 19817: 19797: 19747: 19718: 19677: 19655: 19627: 19598: 19547: 19496: 19439: 19315: 19250: 19222: 19195: 19109: 19066: 19024: 18978: 18936: 18894: 18845: 18763: 18733: 18670: 18590: 18532: 18506: 18480: 18458: 18422: 18396: 18374: 18330: 18304: 18259: 18195: 18171: 18141: 18117: 18093: 18069: 18045: 18015: 17977: 17951: 17915: 17884: 17858: 17822: 17791: 17738: 17701: 17645: 17614: 17574: 17481: 17454: 17205: 17171: 17076: 17040: 16991: 16932: 16839: 16815: 16788: 16620: 16589: 16565: 16529: 16497: 16457: 16418: 16392: 16365: 16345: 16313: 16284: 16248: 16193: 16153: 16119: 16070: 16037: 15990: 15959: 15916: 15870: 15806: 15769: 15745: 15695: 15635: 15599: 15549: 15500: 15480: 15456: 15425: 15301: 15273: 15227: 15138: 15114: 15081: 15057: 14995: 14932: 14896: 14835: 14807: 14783: 14760: 14698: 14670: 14616: 14552: 14509: 14475:The functor that takes a Lie algebra over a field 14442: 14398: 14369: 14337: 14293: 14259: 14215: 14159: 14119: 14070: 14030: 13978: 13922: 13872: 13830: 13782: 13729: 13691: 13647: 13606: 13571: 13483: 13318: 13274: 13247: 13207: 13158: 13122: 13086: 13051: 12988: 12925: 12857: 12582: 12556: 12515: 12475: 12448: 12388: 12362: 12309: 12227: 12184: 12136: 11886: 11792: 11768:is the three-dimensional Lie algebra with a basis 11756: 11703: 11679: 11635: 11609: 11559: 11535: 11509: 11483: 11373: 11345: 11287: 11243: 11219: 11193: 11155: 11091: 11052: 11009:can be viewed as the Lie algebra of the Lie group 11001: 10977: 10939: 10901: 10859: 10833: 10805: 10757: 10707: 10671: 10626: 10575: 10541: 10518:is the subgroup of matrices with determinant 1 in 10510: 10470: 10403: 10372: 10330: 10295: 10273: 10251: 10215: 10171: 10134: 10107: 10052: 10023: 9981: 9942: 9909: 9867: 9820: 9776: 9734: 9686: 9648: 9604: 9568: 9527: 9498: 9445: 9414: 9385: 9348: 9304: 9246: 9202: 9156: 9110: 9071: 9015: 8947: 8904: 8884: 8774: 8694: 8666: 8612: 8562: 8535: 8400: 8373: 8331: 8303: 8263:is a Lie group consisting of invertible matrices, 8238: 8202: 8164: 8133: 8029: 7987: 7945: 7887: 7828: 7796: 7758: 7660: 7620: 7596: 7550: 7523: 7462: 7427: 7380: 7346: 7289: 7121: 7083: 6991: 6964: 6933: 6898: 6824: 6755: 6699: 6663: 6635: 6611: 6565: 6519: 6495: 6471: 6445: 6378: 6339: 6310: 6279: 6155: 6072: 6027: 5998: 5966: 5939: 5905: 5610: 5584: 5558: 5522: 5483: 5443: 5401: 5363:{\displaystyle {\mathfrak {n}}_{\mathfrak {g}}(S)} 5362: 5320: 5301:{\displaystyle {\mathfrak {n}}_{\mathfrak {g}}(S)} 5300: 5258: 5238: 5129: 5100: 5060: 5036: 4930: 4909: 4872: 4830: 4791: 4748: 4724: 4704: 4660: 4614: 4575: 4551: 4509: 4355: 4299: 4262: 4220: 4176: 4110: 4073: 4023: 3979: 3937: 3878: 3833: 3776: 3726: 3683: 3615: 3579: 3559: 3532: 3512: 3492: 3442: 3419: 3399: 3366: 3329: 3305: 3277: 3253: 3185: 3141: 3092: 3032: 3008: 2978: 2906: 2882: 2856: 2800: 2749: 2725: 2689: 2561: 2537: 2513: 2457: 2433: 2401: 2381: 2351: 2264: 2162: 2094: 2071: 2006: 1956: 1936: 1916: 1874: 1767: 1726: 1676: 1618: 1586: 1504: 1442: 1410: 1390: 1362: 1311: 1136: 1089: 1052: 844: 798: 20075: 19230:is semisimple if and only if the Killing form is 16430:-dimensional vector space with Lie bracket zero. 15871:{\displaystyle e_{1}^{i_{1}}\cdots e_{n}^{i_{n}}} 15092: 14819:to itself, in such a way that the Lie bracket on 12449:{\displaystyle {\mathfrak {h}}_{3}(F)/(F\cdot Z)} 12185:{\displaystyle {\mathfrak {h}}_{3}(\mathbb {R} )} 10758:{\displaystyle {\mathfrak {sp}}(2n,\mathbb {R} )} 8030:{\displaystyle {\text{Der}}_{F}({\mathfrak {g}})} 7988:{\displaystyle {\text{Inn}}_{F}({\mathfrak {g}})} 7597:{\displaystyle {\text{Der}}_{F}({\mathfrak {g}})} 7140:Informally speaking, the space of derivations of 5977: 3450:, a Lie bracket may be defined by the commutator 23341: 20321:{\displaystyle {\mathfrak {sl}}(2,\mathbb {R} )} 20277:{\displaystyle {\mathfrak {sl}}(2,\mathbb {C} )} 15153:representation theory of semisimple Lie algebras 14443:{\displaystyle {\mathfrak {sl}}(n,\mathbb {C} )} 14338:{\displaystyle {\mathfrak {sl}}(2,\mathbb {C} )} 14260:{\displaystyle {\mathfrak {sl}}(2,\mathbb {C} )} 14120:{\displaystyle {\mathfrak {sl}}(2,\mathbb {C} )} 13979:{\displaystyle {\mathfrak {sl}}(2,\mathbb {C} )} 13923:{\displaystyle {\mathfrak {sl}}(2,\mathbb {C} )} 13572:{\displaystyle {\mathfrak {sl}}(2,\mathbb {C} )} 13319:{\displaystyle {\mathfrak {sl}}(2,\mathbb {C} )} 11288:{\displaystyle {\mathfrak {gl}}(2,\mathbb {R} )} 11053:{\displaystyle G=\mathrm {Aff} (1,\mathbb {R} )} 10338:is a real Lie subgroup of the complex Lie group 10216:{\displaystyle {\mathfrak {gl}}(n,\mathbb {C} )} 9821:{\displaystyle {\mathfrak {so}}(n,\mathbb {C} )} 9649:{\displaystyle {\mathfrak {gl}}(n,\mathbb {R} )} 9349:{\displaystyle {\mathfrak {sl}}(n,\mathbb {C} )} 9247:{\displaystyle {\mathfrak {sl}}(n,\mathbb {R} )} 8714:is not connected.) Here the exponential mapping 5101:{\displaystyle {\mathfrak {z}}({\mathfrak {g}})} 4024:{\displaystyle {\mathfrak {gl}}(n,\mathbb {R} )} 3938:{\displaystyle {\mathfrak {gl}}(n,\mathbb {C} )} 3834:{\displaystyle {\mathfrak {gl}}(n,\mathbb {R} )} 1677:{\displaystyle {\mathfrak {g}}=\mathbb {R} ^{3}} 471:Representation theory of semisimple Lie algebras 22535: 22533: 20446:used differential graded Lie algebras over the 20240:. A real form need not be unique; for example, 19349:. Namely, every simple Lie algebra is of type A 15162: 6700:{\displaystyle {\mathfrak {g}}/{\mathfrak {i}}} 4615:{\displaystyle {\mathfrak {g}}/{\mathfrak {i}}} 1944:, with angular speed equal to the magnitude of 21980:{\displaystyle \circ (\mathrm {id} +\tau )=0,} 21910:{\displaystyle \colon A\otimes A\rightarrow A} 21534:{\displaystyle \tau :A\otimes A\to A\otimes A} 15173:The functor that takes an associative algebra 14843:corresponds to the commutator of linear maps. 12228:{\displaystyle \mathrm {H} _{3}(\mathbb {R} )} 10672:{\displaystyle \mathrm {GL} (2n,\mathbb {R} )} 10627:{\displaystyle \mathrm {Sp} (2n,\mathbb {R} )} 3381: 2808:and using the alternating property shows that 2049: 2030:in the 1870s, and independently discovered by 22829: 22611: 22500: 22461: 22449: 21587:{\displaystyle \tau (x\otimes y)=y\otimes x.} 19950:have isomorphic Lie algebras, but SU(2) is a 19942:. For instance, the special orthogonal group 11543:is an ideal in the 2-dimensional Lie algebra 11108:can be identified with the group of matrices 10373:{\displaystyle \mathrm {GL} (n,\mathbb {C} )} 10024:{\displaystyle \mathrm {GL} (n,\mathbb {C} )} 9910:{\displaystyle \mathrm {GL} (n,\mathbb {C} )} 9777:{\displaystyle \mathrm {SO} (n,\mathbb {C} )} 9612:, the subspace of skew-symmetric matrices in 9203:{\displaystyle \mathrm {GL} (n,\mathbb {R} )} 9157:{\displaystyle \mathrm {SL} (n,\mathbb {R} )} 9072:{\displaystyle \mathrm {SL} (n,\mathbb {R} )} 6941:. (The definition makes sense for a possibly 4672:holds for Lie algebras: for any homomorphism 3980:{\displaystyle \mathrm {GL} (n,\mathbb {C} )} 3879:{\displaystyle \mathrm {GL} (n,\mathbb {R} )} 1241: 617: 22859: 22722: 22718: 22716: 22530: 22413: 21467:Definition using category-theoretic notation 20048:, an infinite-dimensional representation of 18179:is 0. In characteristic zero, a Lie algebra 18029:if it is not abelian and the only ideals in 12483:. In the terminology below, it follows that 9868:{\displaystyle \mathrm {O} (n,\mathbb {C} )} 9735:{\displaystyle \mathrm {O} (n,\mathbb {C} )} 8527: 8428: 5233: 5173: 5031: 4974: 3945:is the Lie algebra of the complex Lie group 2764:Using bilinearity to expand the Lie bracket 1885:This is the Lie algebra of the Lie group of 845:{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} } 23223: 22683: 22671: 22635: 22623: 22425: 22389: 21920:that satisfies the two morphism equalities 20655:are related to Lie algebras over the field 16573:. The commutator subalgebra is an ideal in 10179:consists of the skew-hermitian matrices in 7562:determines its Lie algebra of derivations, 6619:, as a homomorphism of Lie algebras), then 4622:is defined, with a surjective homomorphism 4270:which is closed under the Lie bracket. An 3225:. (They are "infinitesimal generators" for 3196: 23148:. MacTutor History of Mathematics Archive. 23132:. MacTutor History of Mathematics Archive. 22484: 22482: 22179:Particle physics and representation theory 21455:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 20943:, that is, a chain of subgroups such that 20625:Lie rings are used in the study of finite 15058:{\displaystyle \operatorname {ad} (x)(y)=} 11680:{\displaystyle {\mathfrak {g}}/(F\cdot Y)} 9828:are given by the same formulas applied to 9305:{\displaystyle {\rm {SL}}(n,\mathbb {C} )} 7490:determines a homomorphism of Lie algebras 7312:Example: the Lie algebra of vector fields. 4356:{\displaystyle \subseteq {\mathfrak {i}}.} 1248: 1234: 624: 610: 509:Particle physics and representation theory 51: 22956: 22804:Lie Groups and Lie Algebras: Chapters 1-3 22770: 22713: 22551: 22377: 22308: 21448: 21435: 20697: 20664: 20600: 20457: 20311: 20267: 20202: 20195: 20034: 19973: 19844: 19766: 19712: 19705: 19671: 19621: 18474: 18390: 17923:of strictly upper-triangular matrices in 17732: 16333: 16301: 15285:. To construct this: given a Lie algebra 14911: 14433: 14392: 14363: 14328: 14250: 14209: 14202: 14110: 13969: 13913: 13594: 13591: 13562: 13309: 13268: 13074: 12576: 12218: 12175: 11278: 11187: 11043: 10789:There is a unique nonabelian Lie algebra 10748: 10692: 10662: 10617: 10461: 10434: 10426: 10363: 10289: 10267: 10206: 10040: 10014: 9930: 9900: 9858: 9811: 9767: 9725: 9639: 9402: 9339: 9295: 9237: 9193: 9147: 9098: 9062: 9006: 8982: 8938: 8765: 8741: 8657: 8493: 8471: 8364: 8294: 7435:of vector fields into a Lie algebra (see 7374: 7164:. Indeed, writing out the condition that 6294:of Lie algebras. Note that the copies of 6110: 4014: 3970: 3928: 3869: 3824: 2126: 2119: 2115: 2061: 1904: 1664: 1137:{\displaystyle \mathbb {Z} (p^{\infty })} 1114: 1077: 1040: 838: 825: 792: 23330: 22990: 22797: 22659: 22647: 22599: 22587: 22575: 22563: 22524: 22365: 22353: 22332: 22320: 22263: 21756:is the identity morphism. Equivalently, 20637:. The lower central factors of a finite 19938:, and more strongly, they have the same 19776: 19497:{\displaystyle {\mathfrak {so}}(2n+1,F)} 18986:contains few ideals: only 0, the center 18540:. (There are "exceptional isomorphisms" 17988: 15924:natural numbers. In particular, the map 12590:. A basis is given by the three matrices 11227:. Its Lie algebra is the Lie subalgebra 10031:that preserves the length of vectors in 8570:is given by the commutator of matrices, 8041:is defined as the quotient Lie algebra, 4910:{\displaystyle S\subset {\mathfrak {g}}} 4081:can be viewed as the Lie algebra of the 3205:of a Lie algebra over a field means its 23152: 23020: 22746: 22734: 22479: 20367:Given a semisimple complex Lie algebra 19440:{\displaystyle {\mathfrak {sl}}(n+1,F)} 19393:. Here the simple Lie algebra of type A 17757:of characteristic zero, the radical of 9499:{\displaystyle A^{\mathrm {T} }=A^{-1}} 8172:with Lie bracket zero, the Lie algebra 7084:{\displaystyle :=D_{1}D_{2}-D_{2}D_{1}} 5451:is an abelian Lie subalgebra. (It is a 3727:{\displaystyle {\mathfrak {gl}}_{n}(F)} 3349: 2042:in the 1930s; in older texts, the term 1630:near the identity. They even determine 476:Representations of classical Lie groups 14: 23342: 23253: 23091: 22695: 22488: 20415:is a Lie algebra (or more generally a 20407:Lie algebra with additional structures 20284:has two real forms up to isomorphism, 19599:{\displaystyle {\mathfrak {so}}(2n,F)} 19548:{\displaystyle {\mathfrak {sp}}(2n,F)} 19316:{\displaystyle K({\mathfrak {g}},)=0.} 16566:{\displaystyle x,y\in {\mathfrak {g}}} 15636:{\displaystyle X,Y\in {\mathfrak {g}}} 14349: 12516:{\displaystyle {\mathfrak {h}}_{3}(F)} 12363:{\displaystyle {\mathfrak {h}}_{3}(F)} 11757:{\displaystyle {\mathfrak {h}}_{3}(F)} 10064:). Equivalently, this is the group of 8254: 7888:{\displaystyle \mathrm {ad} _{x}(y):=} 4917:is the set of elements commuting with 4831:{\displaystyle x,y\in {\mathfrak {g}}} 4535:of homomorphisms. Given a Lie algebra 4136:The Lie bracket is not required to be 3587:with the above Lie bracket is denoted 3229:, so to speak.) In mathematics, a set 1559:allows one to study the structure and 1374:. In other words, a Lie algebra is an 1319:together with an operation called the 23193: 23058: 22869:Representation theory. A first course 22782: 22758: 22707: 22512: 22401: 20438:form a graded Lie algebra, using the 19077: 19067:{\displaystyle {\mathfrak {gl}}(n,F)} 19025:{\displaystyle {\mathfrak {sl}}(n,F)} 18979:{\displaystyle {\mathfrak {gl}}(n,F)} 18937:{\displaystyle {\mathfrak {sl}}(n,F)} 18895:{\displaystyle {\mathfrak {gl}}(n,F)} 18734:{\displaystyle {\mathfrak {gl}}(n,F)} 18305:{\displaystyle {\mathfrak {sl}}(n,F)} 17792:{\displaystyle {\mathfrak {gl}}(n,F)} 17615:{\displaystyle {\mathfrak {m}}_{j-1}} 14897:{\displaystyle {\mathfrak {gl}}(n,F)} 14862:is isomorphic to a Lie subalgebra of 14479:to the underlying vector space has a 9453:. Equivalently, this is the group of 7531:. (An example is illustrated below.) 7300:(where 1 denotes the identity map on 5618:, this follows from the calculation: 5444:{\displaystyle {\mathfrak {gl}}(n,F)} 4132:Subalgebras, ideals and homomorphisms 4074:{\displaystyle {\mathfrak {gl}}(n,F)} 3684:{\displaystyle {\mathfrak {gl}}(n,F)} 3142:{\displaystyle {\mathfrak {g,h,b,n}}} 1917:{\displaystyle v\in \mathbb {R} ^{3}} 23156:(1969), "Rational homotopy theory", 22913: 22539: 22473: 22437: 19773:Lie group–Lie algebra correspondence 19685:by considering its complexification 18125:.) A finite-dimensional Lie algebra 17749:For example, for a positive integer 13942:. Indeed, for any representation of 11887:{\displaystyle =Z,\quad =0,\quad =0} 11357:In these terms, the basis above for 8955:and the complex matrix exponential, 8141:. (This is exactly analogous to the 7797:{\displaystyle x\in {\mathfrak {g}}} 5308:is the largest subalgebra such that 1768:{\displaystyle x\times y=-y\times x} 1515:Lie algebras are closely related to 705:Free product of associative algebras 329:Lie group–Lie algebra correspondence 27:Algebraic structure used in analysis 21308:given by commutators in the group: 20577: 20567: 20557: 20499: 20376: 20357:{\displaystyle {\mathfrak {su}}(2)} 20340: 20337: 20296: 20293: 20252: 20249: 20225: 20178: 20153: 20131:{\displaystyle {\mathfrak {g}}_{0}} 20117: 20092: 19911: 19867: 19694: 19648: 19573: 19570: 19522: 19519: 19465: 19462: 19411: 19408: 19296: 19286: 19273: 19243: 19215: 19102: 19044: 19041: 19002: 18999: 18956: 18953: 18914: 18911: 18872: 18869: 18820: 18817: 18786: 18783: 18711: 18708: 18654: 18651: 18632: 18629: 18610: 18607: 18574: 18571: 18552: 18549: 18459:{\displaystyle {\mathfrak {so}}(n)} 18442: 18439: 18375:{\displaystyle {\mathfrak {su}}(n)} 18358: 18355: 18282: 18279: 18246: 18223: 18212: 18188: 18164: 18134: 18110: 18086: 18062: 18038: 18008: 17952:{\displaystyle {\mathfrak {gl}}(n)} 17935: 17932: 17916:{\displaystyle {\mathfrak {u}}_{n}} 17902: 17859:{\displaystyle {\mathfrak {gl}}(n)} 17842: 17839: 17823:{\displaystyle {\mathfrak {b}}_{n}} 17809: 17769: 17766: 17682: 17663: 17646:{\displaystyle {\mathfrak {m}}_{j}} 17632: 17595: 17564: 17548: 17525: 17508: 17474: 17432: 17422: 17406: 17396: 17374: 17364: 17348: 17338: 17313: 17303: 17287: 17277: 17258: 17248: 17235: 17198: 17124: 17114: 17069: 17021: 17008: 16972: 16953: 16922: 16906: 16883: 16866: 16832: 16808: 16772: 16759: 16746: 16736: 16714: 16701: 16691: 16672: 16662: 16649: 16613: 16582: 16558: 16487: 16477: 16450: 16277: 16241: 16205:Structure theory and classification 16194:{\displaystyle {\mathfrak {so}}(3)} 16177: 16174: 16120:{\displaystyle {\mathfrak {so}}(3)} 16103: 16100: 16060: 16027: 16011: 15983: 15949: 15933: 15917:{\displaystyle i_{1},\ldots ,i_{n}} 15796: 15762: 15746:{\displaystyle e_{1},\ldots ,e_{n}} 15677: 15658: 15628: 15539: 15473: 15449: 15409: 15399: 15389: 15373: 15363: 15350: 15331: 15294: 15263: 15247: 15131: 15107: 15074: 14985: 14975: 14972: 14962: 14925: 14874: 14871: 14828: 14800: 14741: 14738: 14728: 14691: 14617:{\displaystyle {\mathfrak {gl}}(V)} 14600: 14597: 14418: 14415: 14313: 14310: 14235: 14232: 14182: 14179: 14160:{\displaystyle {\mathfrak {so}}(3)} 14143: 14140: 14095: 14092: 13954: 13951: 13898: 13895: 13547: 13544: 13294: 13291: 13248:{\displaystyle {\mathfrak {so}}(3)} 13231: 13228: 13208:{\displaystyle {\mathfrak {so}}(3)} 13191: 13188: 13159:{\displaystyle {\mathfrak {so}}(3)} 13142: 13139: 13123:{\displaystyle {\mathfrak {so}}(3)} 13106: 13103: 12557:{\displaystyle {\mathfrak {so}}(3)} 12540: 12537: 12493: 12406: 12340: 12160: 11734: 11715: 11696: 11652: 11552: 11366: 11263: 11260: 11236: 11194:{\displaystyle a,b\in \mathbb {R} } 10994: 10826: 10798: 10730: 10727: 10446: 10443: 10191: 10188: 10155: 9796: 9793: 9624: 9621: 9605:{\displaystyle {\mathfrak {so}}(n)} 9588: 9585: 9324: 9321: 9222: 9219: 9118:to itself that preserve volume and 8892:, which converges for every matrix 8687: 8642: 8639: 8629: 8555: 8420: 8374:{\displaystyle M_{n}(\mathbb {R} )} 8324: 8239:{\displaystyle {\mathfrak {gl}}(V)} 8222: 8219: 8203:{\displaystyle {\text{Out}}_{F}(V)} 8123: 8093: 8065: 8019: 7977: 7935: 7910: 7789: 7653: 7643: 7613: 7586: 7543: 7499: 7272: 7122:{\displaystyle {\text{Der}}_{k}(A)} 6748: 6738: 6726: 6716: 6692: 6680: 6656: 6628: 6604: 6594: 6582: 6558: 6546: 6536: 6512: 6488: 6464: 6367: 6356: 6328: 6303: 6144: 6119: 6061: 6050: 6016: 5991: 5959: 5940:{\displaystyle {\mathfrak {t}}_{2}} 5926: 5559:{\displaystyle {\mathfrak {gl}}(n)} 5542: 5539: 5523:{\displaystyle {\mathfrak {t}}_{n}} 5509: 5484:{\displaystyle {\mathfrak {gl}}(n)} 5467: 5464: 5421: 5418: 5402:{\displaystyle {\mathfrak {t}}_{n}} 5388: 5345: 5338: 5283: 5276: 5184: 5155: 5148: 5090: 5080: 5053: 4985: 4956: 4949: 4902: 4823: 4765: 4741: 4697: 4687: 4653: 4641: 4631: 4607: 4595: 4568: 4544: 4499: 4405: 4395: 4345: 4332: 4322: 4292: 4282: 4255: 4245: 4051: 4048: 3999: 3996: 3913: 3910: 3809: 3806: 3704: 3701: 3661: 3658: 3616:{\displaystyle {\mathfrak {gl}}(V)} 3599: 3596: 3322: 3298: 3270: 3246: 3186:{\displaystyle {\mathfrak {su}}(n)} 3169: 3166: 3134: 3131: 3128: 3125: 3122: 3119: 3116: 3025: 2899: 2742: 2554: 2450: 2155: 2145: 2135: 2064: 1654: 1611: 1579: 1355: 1345: 1335: 1304: 24: 23023:p-Automorphisms of Finite p-Groups 22060: 22057: 22043: 22040: 21955: 21952: 21742: 21739: 21708: 21705: 21679: 21676: 20768:of a group, define the commutator 19606:. The other five are known as the 18771:, it is isomorphic to the product 16138: 16135: 16071:{\displaystyle U({\mathfrak {g}})} 15807:{\displaystyle U({\mathfrak {g}})} 15550:{\displaystyle T({\mathfrak {g}})} 14568: 14278: 14275: 12523:is nilpotent (though not abelian). 12204: 11167:under matrix multiplication, with 11029: 11026: 11023: 10867:for which the bracket is given by 10645: 10642: 10600: 10597: 10560: 10557: 10526: 10495: 10492: 10388: 10349: 10346: 10315: 10172:{\displaystyle {\mathfrak {u}}(n)} 10000: 9997: 9966: 9886: 9883: 9844: 9753: 9750: 9711: 9669: 9553: 9550: 9519: 9474: 9461:orthogonal matrices, meaning that 9430: 9370: 9280: 9277: 9179: 9176: 9133: 9130: 9048: 9045: 8948:{\displaystyle GL(n,\mathbb {C} )} 8280: 8277: 7848: 7845: 7816: 7813: 7330: 7304:) gives exactly the definition of 4095: 4092: 3956: 3953: 3855: 3852: 3213:of the Lie algebra of a Lie group 1126: 25: 23366: 23288: 19882:, there is a connected Lie group 19325: 19093:, the symmetric bilinear form on 15814:is given by all ordered products 14628:to itself, with bracket given by 13986:, the relations above imply that 13607:{\displaystyle \mathbb {CP} ^{1}} 12235:, that is, the group of matrices 10776: 10708:{\displaystyle \mathbb {R} ^{2n}} 8702:. (To be precise, this gives the 7829:{\displaystyle \mathrm {ad} _{x}} 6899:{\displaystyle D(xy)=D(x)y+xD(y)} 3344: 2072:{\displaystyle \,{\mathfrak {g}}} 1634:globally, up to covering spaces. 1193:Noncommutative algebraic geometry 23099:, vol. 5, pp. 91–141, 22189:Orthogonal symmetric Lie algebra 20710:{\displaystyle \mathbb {Z} _{p}} 20677:{\displaystyle \mathbb {Q} _{p}} 19932:Baker–Campbell–Hausdorff formula 17830:of upper-triangular matrices in 16346:{\displaystyle \mathbb {T} ^{n}} 16314:{\displaystyle \mathbb {R} ^{n}} 16213:Abelian, nilpotent, and solvable 16154:{\displaystyle \mathrm {SO} (3)} 16082:Representation theory in physics 15781:-vector space, then a basis for 14579: 14294:{\displaystyle \mathrm {SO} (3)} 13522: 13510: 13498: 13087:{\displaystyle \mathbb {R} ^{3}} 13065:The cross product of vectors in 10576:{\displaystyle \mathrm {su} (n)} 10511:{\displaystyle \mathrm {SU} (n)} 10053:{\displaystyle \mathbb {C} ^{n}} 9943:{\displaystyle \mathbb {C} ^{n}} 9836:complex matrices. Equivalently, 9569:{\displaystyle \mathrm {SO} (n)} 9528:{\displaystyle A^{\mathrm {T} }} 9415:{\displaystyle \mathbb {R} ^{n}} 9111:{\displaystyle \mathbb {R} ^{n}} 7463:{\displaystyle {\text{Vect}}(X)} 7428:{\displaystyle {\text{Vect}}(X)} 6340:{\displaystyle {\mathfrak {g}}'} 6080:consisting of all ordered pairs 6041:Lie algebra is the vector space 6028:{\displaystyle {\mathfrak {g'}}} 4111:{\displaystyle \mathrm {GL} (n)} 2054:A Lie algebra is a vector space 1684:with Lie bracket defined by the 1270: 1090:{\displaystyle \mathbb {Q} _{p}} 1053:{\displaystyle \mathbb {Z} _{p}} 23294: 23261:. Translated by J. J. Griffin. 23097:Collected Papers of John Milnor 22776: 22764: 22752: 22740: 22728: 22710:, section III.3, Problem III.5. 22701: 22689: 22677: 22665: 22653: 22641: 22629: 22617: 22605: 22593: 22581: 22569: 22557: 22545: 22518: 22506: 22494: 22467: 22455: 22443: 22431: 22419: 22407: 22395: 22383: 22371: 22123:Frobenius integrability theorem 20828:{\displaystyle =x^{-1}y^{-1}xy} 20507:{\displaystyle {\mathfrak {g}}} 20421:differential graded Lie algebra 20419:) with a compatible grading. A 20384:{\displaystyle {\mathfrak {g}}} 20233:{\displaystyle {\mathfrak {g}}} 20161:{\displaystyle {\mathfrak {g}}} 20100:{\displaystyle {\mathfrak {g}}} 19919:{\displaystyle {\mathfrak {g}}} 19875:{\displaystyle {\mathfrak {g}}} 19656:{\displaystyle {\mathfrak {g}}} 19251:{\displaystyle {\mathfrak {g}}} 19223:{\displaystyle {\mathfrak {g}}} 19110:{\displaystyle {\mathfrak {g}}} 18196:{\displaystyle {\mathfrak {g}}} 18172:{\displaystyle {\mathfrak {g}}} 18142:{\displaystyle {\mathfrak {g}}} 18118:{\displaystyle {\mathfrak {g}}} 18094:{\displaystyle {\mathfrak {g}}} 18070:{\displaystyle {\mathfrak {g}}} 18046:{\displaystyle {\mathfrak {g}}} 18016:{\displaystyle {\mathfrak {g}}} 17482:{\displaystyle {\mathfrak {g}}} 17206:{\displaystyle {\mathfrak {g}}} 17132: 17077:{\displaystyle {\mathfrak {g}}} 16840:{\displaystyle {\mathfrak {g}}} 16816:{\displaystyle {\mathfrak {g}}} 16621:{\displaystyle {\mathfrak {g}}} 16590:{\displaystyle {\mathfrak {g}}} 16458:{\displaystyle {\mathfrak {g}}} 16285:{\displaystyle {\mathfrak {g}}} 16249:{\displaystyle {\mathfrak {g}}} 15991:{\displaystyle {\mathfrak {g}}} 15770:{\displaystyle {\mathfrak {g}}} 15481:{\displaystyle {\mathfrak {g}}} 15457:{\displaystyle {\mathfrak {g}}} 15302:{\displaystyle {\mathfrak {g}}} 15139:{\displaystyle {\mathfrak {g}}} 15115:{\displaystyle {\mathfrak {g}}} 15082:{\displaystyle {\mathfrak {g}}} 15065:. (This is a representation of 14933:{\displaystyle {\mathfrak {g}}} 14846:A representation is said to be 14836:{\displaystyle {\mathfrak {g}}} 14808:{\displaystyle {\mathfrak {g}}} 14699:{\displaystyle {\mathfrak {g}}} 12854: 12768: 12685: 12133: 12057: 11984: 11862: 11837: 11704:{\displaystyle {\mathfrak {g}}} 11560:{\displaystyle {\mathfrak {g}}} 11435: 11374:{\displaystyle {\mathfrak {g}}} 11244:{\displaystyle {\mathfrak {g}}} 11002:{\displaystyle {\mathfrak {g}}} 10834:{\displaystyle {\mathfrak {g}}} 10806:{\displaystyle {\mathfrak {g}}} 10542:{\displaystyle \mathrm {U} (n)} 10404:{\displaystyle \mathrm {U} (1)} 10331:{\displaystyle \mathrm {U} (n)} 9982:{\displaystyle \mathrm {U} (n)} 9446:{\displaystyle \mathrm {O} (n)} 9386:{\displaystyle \mathrm {O} (n)} 9023:(defined by the same formula). 8695:{\displaystyle {\mathfrak {g}}} 8563:{\displaystyle {\mathfrak {g}}} 8332:{\displaystyle {\mathfrak {g}}} 8311:, where the group operation of 7621:{\displaystyle {\mathfrak {g}}} 7551:{\displaystyle {\mathfrak {g}}} 7265: 6664:{\displaystyle {\mathfrak {i}}} 6636:{\displaystyle {\mathfrak {g}}} 6573:splits (i.e., admits a section 6520:{\displaystyle {\mathfrak {g}}} 6496:{\displaystyle {\mathfrak {i}}} 6472:{\displaystyle {\mathfrak {g}}} 6311:{\displaystyle {\mathfrak {g}}} 5999:{\displaystyle {\mathfrak {g}}} 5967:{\displaystyle {\mathfrak {g}}} 5061:{\displaystyle {\mathfrak {g}}} 4749:{\displaystyle {\mathfrak {h}}} 4576:{\displaystyle {\mathfrak {i}}} 4552:{\displaystyle {\mathfrak {g}}} 4413: 3427:with multiplication written as 3330:{\displaystyle {\mathfrak {g}}} 3306:{\displaystyle {\mathfrak {g}}} 3278:{\displaystyle {\mathfrak {g}}} 3254:{\displaystyle {\mathfrak {g}}} 3033:{\displaystyle {\mathfrak {g}}} 2907:{\displaystyle {\mathfrak {g}}} 2750:{\displaystyle {\mathfrak {g}}} 2562:{\displaystyle {\mathfrak {g}}} 2458:{\displaystyle {\mathfrak {g}}} 1619:{\displaystyle {\mathfrak {g}}} 1587:{\displaystyle {\mathfrak {g}}} 1450:. A Lie algebra is typically a 1312:{\displaystyle {\mathfrak {g}}} 22359: 22347: 22338: 22326: 22314: 22302: 22290: 22278: 22241: 22083: 22053: 22047: 22033: 22021: 22018: 22012: 22000: 21965: 21948: 21942: 21930: 21901: 21886: 21874: 21807: 21789: 21712: 21695: 21689: 21672: 21628: 21566: 21554: 21519: 21379: 21367: 21361: 21317: 21252: 20976: 20950: 20787: 20775: 20725:'s construction of the finite 20572: 20549: 20537: 20351: 20345: 20315: 20301: 20271: 20257: 20076:Real form and complexification 20041:{\displaystyle G=\mathbb {R} } 19946:and the special unitary group 19593: 19578: 19542: 19527: 19491: 19470: 19434: 19416: 19304: 19301: 19281: 19268: 19187: 19184: 19178: 19169: 19163: 19154: 19142: 19130: 19061: 19049: 19019: 19007: 18973: 18961: 18931: 18919: 18889: 18877: 18837: 18825: 18803: 18791: 18728: 18716: 18665: 18659: 18643: 18637: 18621: 18615: 18585: 18579: 18563: 18557: 18453: 18447: 18369: 18363: 18299: 18287: 18155:if the only solvable ideal in 17946: 17940: 17853: 17847: 17786: 17774: 17443: 17440: 17437: 17417: 17411: 17391: 17388: 17382: 17379: 17359: 17353: 17333: 17330: 17327: 17321: 17318: 17298: 17292: 17272: 17269: 17263: 17243: 17189:More generally, a Lie algebra 17166: 17154: 17145: 17139: 17119: 17106: 17100: 16777: 16764: 16751: 16731: 16728: 16725: 16719: 16706: 16686: 16683: 16677: 16657: 16524: 16512: 16492: 16472: 16188: 16182: 16148: 16142: 16114: 16108: 16065: 16055: 16032: 16022: 16016: 15954: 15944: 15938: 15801: 15791: 15705:Poincaré–Birkhoff–Witt theorem 15682: 15672: 15663: 15653: 15594: 15582: 15544: 15534: 15414: 15384: 15378: 15358: 15336: 15326: 15268: 15258: 15252: 15204: 15192: 15093:Goals of representation theory 15052: 15040: 15034: 15028: 15025: 15019: 14990: 14980: 14967: 14891: 14879: 14752: 14746: 14733: 14710:is a Lie algebra homomorphism 14647: 14635: 14611: 14605: 14547: 14541: 14504: 14498: 14492: 14437: 14423: 14332: 14318: 14288: 14282: 14254: 14240: 14193: 14187: 14154: 14148: 14114: 14100: 14065: 14053: 14025: 14013: 13973: 13959: 13940:raising and lowering operators 13917: 13903: 13858: 13846: 13810: 13798: 13765: 13753: 13718: 13706: 13674: 13662: 13633: 13621: 13566: 13552: 13313: 13299: 13242: 13236: 13202: 13196: 13153: 13147: 13117: 13111: 13030: 13004: 12967: 12941: 12904: 12878: 12551: 12545: 12510: 12504: 12443: 12431: 12423: 12417: 12357: 12351: 12222: 12214: 12179: 12171: 11875: 11863: 11850: 11838: 11825: 11813: 11751: 11745: 11674: 11662: 11610:{\displaystyle =Y\in F\cdot Y} 11586: 11574: 11282: 11268: 11074: 11047: 11033: 10966: 10954: 10928: 10916: 10813:of dimension 2 over any field 10752: 10735: 10666: 10649: 10621: 10604: 10570: 10564: 10536: 10530: 10505: 10499: 10465: 10451: 10398: 10392: 10367: 10353: 10325: 10319: 10259:). This is a Lie algebra over 10210: 10196: 10166: 10160: 10146:of a matrix). Its Lie algebra 10060:(with respect to the standard 10018: 10004: 9976: 9970: 9904: 9890: 9862: 9848: 9815: 9801: 9771: 9757: 9729: 9715: 9687:{\displaystyle X^{\rm {T}}=-X} 9643: 9629: 9599: 9593: 9563: 9557: 9440: 9434: 9380: 9374: 9343: 9329: 9299: 9285: 9241: 9227: 9197: 9183: 9151: 9137: 9066: 9052: 9010: 9002: 8989: 8986: 8978: 8942: 8928: 8801: 8795: 8769: 8761: 8748: 8745: 8737: 8661: 8647: 8589: 8577: 8518: 8512: 8497: 8475: 8467: 8451: 8445: 8368: 8360: 8298: 8284: 8233: 8227: 8197: 8191: 8128: 8118: 8098: 8088: 8070: 8060: 8024: 8014: 7982: 7972: 7940: 7930: 7915: 7882: 7870: 7864: 7858: 7753: 7750: 7744: 7732: 7726: 7717: 7711: 7705: 7699: 7696: 7684: 7681: 7648: 7591: 7581: 7518: 7512: 7504: 7457: 7451: 7422: 7416: 7347:{\displaystyle C^{\infty }(X)} 7341: 7335: 7283: 7266: 7261: 7255: 7252: 7237: 7231: 7225: 7222: 7207: 7201: 7192: 7189: 7174: 7116: 7110: 7032: 7006: 6893: 6887: 6872: 6866: 6857: 6848: 6825:{\displaystyle D\colon A\to A} 6816: 6770: 6765:semidirect sum of Lie algebras 6599: 6541: 6434: 6431: 6414: 6408: 6396: 6393: 6271: 6268: 6246: 6240: 6228: 6225: 6219: 6216: 6199: 6193: 6176: 6173: 6104: 6087: 5978:Product and semidirect product 5883: 5871: 5861: 5849: 5553: 5547: 5478: 5472: 5438: 5426: 5357: 5351: 5295: 5289: 5204: 5192: 5167: 5161: 5095: 5085: 5005: 4993: 4968: 4962: 4861: 4849: 4786: 4780: 4712:of Lie algebras, the image of 4692: 4636: 4471: 4468: 4462: 4453: 4447: 4441: 4435: 4432: 4420: 4417: 4400: 4337: 4317: 4215: 4212: 4200: 4191: 4171: 4162: 4150: 4147: 4126: 4105: 4099: 4068: 4056: 4018: 4004: 3974: 3960: 3932: 3918: 3873: 3859: 3828: 3814: 3753: 3741: 3721: 3715: 3678: 3666: 3610: 3604: 3469: 3457: 3180: 3174: 3084: 3072: 3063: 3051: 2967: 2955: 2946: 2934: 2845: 2833: 2827: 2815: 2795: 2771: 2675: 2672: 2660: 2651: 2645: 2642: 2630: 2621: 2615: 2612: 2600: 2591: 2499: 2487: 2346: 2334: 2325: 2313: 2304: 2280: 2256: 2244: 2235: 2223: 2214: 2190: 2150: 2127: 2112: 1983: 1971: 1857: 1845: 1830: 1818: 1803: 1791: 1706: 1694: 1481: 1469: 1437: 1425: 1350: 1131: 1118: 524:Galilean group representations 519:Poincaré group representations 13: 1: 23146:"Wilhelm Karl Joseph Killing" 22873:Graduate Texts in Mathematics 22297:O'Connor & Robertson 2005 22285:O'Connor & Robertson 2000 22272: 22118:Automorphism of a Lie algebra 21749:{\displaystyle \mathrm {id} } 21173:{\displaystyle G_{i}/G_{i+1}} 20736: 20442:. In a related construction, 18270:For example, the Lie algebra 17866:; this is not nilpotent when 14510:{\displaystyle V\mapsto L(V)} 13744:The Lie bracket is given by: 11517:, the 1-dimensional subspace 11092:{\displaystyle x\mapsto ax+b} 10072:unitary matrices (satisfying 9703:The complex orthogonal group 3209:. In physics, a vector space 3040:. If the field does not have 2024:infinitesimal transformations 1734:This is skew-symmetric since 514:Lorentz group representations 481:Theorem of the highest weight 22835:Introduction to Lie Algebras 22674:, Theorems 2.7.5 and 3.15.1. 22258:-module with an alternating 21410:{\displaystyle :=G_{i+j+1}.} 20607:{\displaystyle \mathbb {Z} } 20464:{\displaystyle \mathbb {Q} } 19992:classification of Lie groups 19980:{\displaystyle \mathbb {R} } 19851:{\displaystyle \mathbb {R} } 19678:{\displaystyle \mathbb {R} } 19628:{\displaystyle \mathbb {R} } 18745:of characteristic zero: for 18481:{\displaystyle \mathbb {R} } 18397:{\displaystyle \mathbb {R} } 17959:; this is not abelian when 17739:{\displaystyle \mathbb {R} } 15283:universal enveloping algebra 15169:Universal enveloping algebra 15163:Universal enveloping algebra 14560:is infinite-dimensional for 14399:{\displaystyle \mathbb {C} } 14370:{\displaystyle \mathbb {R} } 13275:{\displaystyle \mathbb {C} } 12583:{\displaystyle \mathbb {R} } 12321:under matrix multiplication. 10679:that preserves the standard 10296:{\displaystyle \mathbb {C} } 10274:{\displaystyle \mathbb {R} } 10108:{\displaystyle A^{*}=A^{-1}} 9917:that preserves the standard 9168:of the general linear group 7437:Lie bracket of vector fields 7381:{\displaystyle \mathbb {R} } 5108:. Similarly, for a subspace 2007:{\displaystyle =x\times x=0} 799:{\displaystyle \mathbb {Z} } 32:Lie bracket of vector fields 7: 23319:Encyclopedia of Mathematics 23199:Lie Algebras and Lie Groups 22214:Quasi-Frobenius Lie algebra 22105: 21599:cyclic-permutation braiding 20478: 19258:is solvable if and only if 12370:is the 1-dimensional ideal 11617:. Both of the Lie algebras 11295:consisting of all matrices 8249: 7604:. That is, a derivation of 6290:This is the product in the 4842:if their bracket vanishes: 3382:The Lie algebra of matrices 3207:dimension as a vector space 2050:Definition of a Lie algebra 1727:{\displaystyle =x\times y.} 1543:, there is a corresponding 951:Unique factorization domain 10: 23371: 23331:McKenzie, Douglas (2015). 23225:Varadarajan, Veeravalli S. 23201:(2nd ed.). Springer. 23068:Princeton University Press 23027:Cambridge University Press 22791: 22235: 22159:Lie algebra representation 20641:-group are finite abelian 19770: 19340:algebraically closed field 17992: 16089:angular momentum operators 15557:generated by the elements 15166: 14904:for some positive integer 14575:Lie algebra representation 14572: 12456:is abelian, isomorphic to 12192:is the Lie algebra of the 10985:.) Over the real numbers, 10817:, up to isomorphism. Here 7470:is the Lie algebra of the 7144:is the Lie algebra of the 5373: 3841:is the Lie algebra of the 3387:On an associative algebra 2017: 711:Tensor product of algebras 466:Lie algebra representation 29: 22924:10.1007/978-3-319-13467-3 22881:10.1007/978-1-4612-0979-9 22612:Erdmann & Wildon 2006 22501:Erdmann & Wildon 2006 22462:Erdmann & Wildon 2006 22450:Erdmann & Wildon 2006 22428:, section 2.10, Remark 2. 21481:category of vector spaces 20688:as well as over the ring 19963:equivalence of categories 17084:the adjoint endomorphism 15089:by the Jacobi identity.) 11381:is given by the matrices 10715:. Its Lie algebra is the 10681:alternating bilinear form 9742:, its identity component 8037:, and the Lie algebra of 6945:.) Given two derivations 6386:commute with each other: 4670:first isomorphism theorem 2690:{\displaystyle ]+]+]=0\ } 23035:10.1017/CBO9780511526008 22723:Fulton & Harris 1991 22414:Fulton & Harris 1991 21180:), and with Lie bracket 20490:. Namely, a Lie algebra 20473:rational homotopy theory 20168:if the complexification 19608:exceptional Lie algebras 15501:{\displaystyle \otimes } 14564:of dimension at least 2. 12389:{\displaystyle F\cdot Z} 11636:{\displaystyle F\cdot Y} 11536:{\displaystyle F\cdot Y} 10252:{\displaystyle X^{*}=-X} 9541:special orthogonal group 8343:inside the linear space 8143:outer automorphism group 7439:). Informally speaking, 7404:.) This makes the space 7156:is the real numbers and 6934:{\displaystyle x,y\in A} 5916:(which is not always in 5409:of diagonal matrices in 3197:Generators and dimension 1547:Lie group, unique up to 1325:alternating bilinear map 989:Formal power series ring 939:Integrally closed domain 461:Lie group representation 23021:Khukhro, E. I. (1998), 22914:Hall, Brian C. (2015). 22833:; Wildon, Mark (2006). 22761:, Part II, section V.1. 22698:, Warnings 1.6 and 8.5. 22404:, Part I, section VI.3. 22129:Gelfand–Fuks cohomology 21769:{\displaystyle \sigma } 21496:interchange isomorphism 21494:is a vector space, the 21015:{\displaystyle G_{i+j}} 19954:double cover of SO(3). 19781:The tangent space of a 18764:{\displaystyle n\geq 2} 18533:{\displaystyle n\geq 5} 18423:{\displaystyle n\geq 2} 18331:{\displaystyle n\geq 2} 17978:{\displaystyle n\geq 3} 17885:{\displaystyle n\geq 2} 16419:{\displaystyle n\geq 0} 15228:{\displaystyle :=XY-YX} 14850:if its kernel is zero. 13052:{\displaystyle =F_{2}.} 12989:{\displaystyle =F_{1},} 12926:{\displaystyle =F_{3},} 12150:Over the real numbers, 11220:{\displaystyle a\neq 0} 10902:{\displaystyle \left=Y} 10062:Hermitian inner product 9919:symmetric bilinear form 9030:For a positive integer 8210:can be identified with 7804:is the adjoint mapping 7362:. Then a derivation of 6943:non-associative algebra 6527:. If the canonical map 5585:{\displaystyle n\geq 2} 4887:subalgebra of a subset 4732:is a Lie subalgebra of 3630:and a positive integer 3217:may be called a set of 2034:in the 1880s. The name 1602:near the identity give 1452:non-associative algebra 998:Algebraic number theory 691:Total ring of fractions 486:Borel–Weil–Bott theorem 22224:Restricted Lie algebra 22149:Lie algebra cohomology 22139:Index of a Lie algebra 22096: 21981: 21911: 21858: 21835: 21770: 21750: 21722: 21650: 21588: 21535: 21456: 21411: 21302: 21174: 21122: 21042: 21016: 20983: 20937: 20913: 20829: 20762: 20711: 20678: 20618:is sometimes called a 20608: 20586: 20508: 20465: 20434:of a simply connected 20385: 20358: 20322: 20278: 20234: 20210: 20162: 20132: 20101: 20070:Harish-Chandra modules 20062: 20042: 19981: 19920: 19896: 19876: 19852: 19826: 19819: 19799: 19767:Relation to Lie groups 19749: 19748:{\displaystyle p>3} 19720: 19679: 19657: 19629: 19600: 19549: 19498: 19441: 19317: 19252: 19224: 19197: 19111: 19068: 19026: 18980: 18938: 18896: 18860:denotes the center of 18847: 18765: 18735: 18672: 18592: 18534: 18508: 18482: 18460: 18424: 18398: 18376: 18332: 18306: 18261: 18197: 18173: 18143: 18119: 18095: 18071: 18047: 18017: 17995:Semisimple Lie algebra 17979: 17953: 17917: 17886: 17860: 17824: 17793: 17740: 17703: 17647: 17616: 17576: 17483: 17456: 17207: 17173: 17078: 17042: 16993: 16934: 16841: 16817: 16790: 16622: 16591: 16567: 16531: 16499: 16459: 16420: 16394: 16367: 16347: 16321:under addition or the 16315: 16286: 16250: 16195: 16155: 16127:of the rotation group 16121: 16072: 16039: 15992: 15961: 15918: 15872: 15808: 15771: 15747: 15697: 15637: 15601: 15600:{\displaystyle XY-YX-} 15551: 15502: 15482: 15458: 15427: 15303: 15275: 15229: 15157:Weyl character formula 15140: 15116: 15083: 15059: 14997: 14944:is the representation 14942:adjoint representation 14934: 14912:Adjoint representation 14898: 14837: 14809: 14791:sends each element of 14785: 14762: 14700: 14672: 14671:{\displaystyle =XY-YX} 14618: 14554: 14511: 14459:classical Lie algebras 14444: 14400: 14371: 14339: 14295: 14261: 14217: 14161: 14121: 14072: 14032: 14002:(for a complex number 13980: 13924: 13874: 13832: 13784: 13731: 13693: 13649: 13608: 13573: 13485: 13320: 13276: 13249: 13209: 13160: 13124: 13088: 13053: 12990: 12927: 12859: 12584: 12558: 12517: 12477: 12450: 12390: 12364: 12311: 12229: 12186: 12138: 11888: 11794: 11758: 11705: 11681: 11637: 11611: 11561: 11537: 11511: 11485: 11375: 11347: 11289: 11245: 11221: 11195: 11157: 11093: 11062:affine transformations 11054: 11003: 10979: 10941: 10903: 10861: 10835: 10807: 10785:for further examples. 10770:classical Lie algebras 10759: 10717:symplectic Lie algebra 10709: 10673: 10628: 10577: 10543: 10512: 10472: 10405: 10374: 10332: 10297: 10275: 10253: 10217: 10173: 10136: 10109: 10054: 10025: 9983: 9944: 9911: 9869: 9822: 9784:, and the Lie algebra 9778: 9736: 9688: 9650: 9606: 9570: 9529: 9500: 9447: 9416: 9387: 9350: 9306: 9248: 9204: 9158: 9112: 9073: 9017: 8949: 8906: 8886: 8776: 8696: 8668: 8620:. Given a Lie algebra 8614: 8613:{\displaystyle =XY-YX} 8564: 8537: 8402: 8375: 8333: 8305: 8240: 8204: 8166: 8147:semisimple Lie algebra 8135: 8031: 7989: 7947: 7889: 7830: 7798: 7760: 7662: 7622: 7598: 7552: 7525: 7464: 7429: 7382: 7348: 7291: 7129:of all derivations of 7123: 7085: 6993: 6966: 6935: 6900: 6826: 6757: 6701: 6665: 6637: 6613: 6567: 6521: 6497: 6473: 6447: 6380: 6341: 6312: 6281: 6157: 6074: 6029: 6000: 5968: 5941: 5914: 5907: 5612: 5586: 5560: 5524: 5485: 5445: 5403: 5364: 5322: 5302: 5260: 5240: 5131: 5102: 5062: 5038: 4932: 4911: 4874: 4832: 4793: 4756:that is isomorphic to 4750: 4726: 4706: 4662: 4616: 4577: 4553: 4511: 4370:correspond to ideals. 4357: 4301: 4264: 4222: 4178: 4112: 4075: 4025: 3981: 3939: 3880: 3835: 3778: 3777:{\displaystyle =XY-YX} 3728: 3685: 3617: 3581: 3561: 3534: 3514: 3494: 3493:{\displaystyle =xy-yx} 3444: 3421: 3401: 3368: 3331: 3307: 3279: 3255: 3187: 3143: 3094: 3034: 3010: 2980: 2908: 2884: 2858: 2802: 2751: 2727: 2691: 2563: 2539: 2515: 2459: 2435: 2403: 2383: 2353: 2266: 2164: 2096: 2073: 2008: 1958: 1938: 1918: 1876: 1769: 1728: 1678: 1642:and particle physics. 1620: 1588: 1506: 1505:{\displaystyle =xy-yx} 1444: 1412: 1392: 1364: 1313: 1155:Noncommutative algebra 1138: 1091: 1054: 1006:Algebraic number field 957:Principal ideal domain 846: 800: 738:Frobenius endomorphism 384:Semisimple Lie algebra 339:Adjoint representation 23159:Annals of Mathematics 22785:, Part I, Chapter II. 22515:, Part I, Chapter IV. 22491:, Chapters 17 and 20. 22154:Lie algebra extension 22097: 21982: 21912: 21859: 21836: 21771: 21751: 21723: 21651: 21589: 21536: 21488:braiding isomorphisms 21457: 21412: 21303: 21175: 21123: 21043: 21017: 20984: 20938: 20914: 20830: 20763: 20712: 20679: 20635:Lazard correspondence 20609: 20587: 20509: 20466: 20386: 20359: 20323: 20279: 20235: 20211: 20163: 20133: 20107:, a real Lie algebra 20102: 20063: 20043: 19996:representation theory 19982: 19921: 19897: 19877: 19853: 19820: 19800: 19780: 19750: 19721: 19680: 19658: 19630: 19601: 19550: 19499: 19442: 19318: 19253: 19225: 19198: 19112: 19069: 19027: 18981: 18939: 18897: 18848: 18766: 18736: 18673: 18593: 18535: 18509: 18483: 18461: 18425: 18399: 18377: 18333: 18307: 18262: 18198: 18174: 18144: 18120: 18096: 18072: 18048: 18018: 17989:Simple and semisimple 17980: 17954: 17918: 17887: 17861: 17825: 17794: 17741: 17704: 17648: 17617: 17577: 17484: 17457: 17208: 17174: 17079: 17043: 16994: 16935: 16842: 16818: 16791: 16623: 16592: 16568: 16532: 16500: 16460: 16435:commutator subalgebra 16421: 16395: 16393:{\displaystyle F^{n}} 16368: 16348: 16316: 16287: 16251: 16196: 16156: 16122: 16073: 16040: 15993: 15962: 15919: 15873: 15809: 15772: 15748: 15698: 15638: 15602: 15552: 15503: 15483: 15459: 15428: 15304: 15276: 15230: 15185:as a Lie algebra (by 15141: 15117: 15084: 15060: 14998: 14935: 14899: 14838: 14815:to a linear map from 14810: 14786: 14763: 14701: 14673: 14619: 14584:Given a vector space 14555: 14512: 14445: 14401: 14372: 14340: 14296: 14262: 14218: 14162: 14127:is isomorphic to the 14122: 14073: 14071:{\displaystyle (c-2)} 14046:-eigenspace into the 14033: 14031:{\displaystyle (c+2)} 13981: 13925: 13875: 13833: 13831:{\displaystyle =-2F,} 13785: 13732: 13694: 13650: 13609: 13574: 13486: 13321: 13277: 13250: 13210: 13166:is equivalent to the 13161: 13125: 13089: 13054: 12991: 12928: 12860: 12585: 12559: 12518: 12478: 12476:{\displaystyle F^{2}} 12451: 12391: 12365: 12312: 12230: 12187: 12139: 11889: 11795: 11793:{\displaystyle X,Y,Z} 11759: 11706: 11682: 11638: 11612: 11562: 11538: 11512: 11486: 11376: 11348: 11290: 11246: 11222: 11196: 11158: 11094: 11055: 11004: 10980: 10942: 10904: 10862: 10836: 10808: 10760: 10710: 10674: 10629: 10578: 10544: 10513: 10483:special unitary group 10473: 10406: 10375: 10333: 10298: 10276: 10254: 10218: 10174: 10137: 10135:{\displaystyle A^{*}} 10110: 10055: 10026: 9984: 9945: 9912: 9870: 9823: 9779: 9737: 9689: 9651: 9607: 9571: 9530: 9501: 9448: 9417: 9388: 9351: 9307: 9254:consists of all real 9249: 9205: 9159: 9113: 9079:consists of all real 9074: 9018: 8950: 8907: 8887: 8777: 8697: 8669: 8615: 8565: 8538: 8403: 8376: 8334: 8306: 8241: 8205: 8167: 8136: 8032: 7990: 7948: 7890: 7831: 7799: 7761: 7759:{\displaystyle D()=+} 7663: 7623: 7599: 7553: 7526: 7465: 7430: 7383: 7358:on a smooth manifold 7349: 7292: 7124: 7086: 6994: 6992:{\displaystyle D_{2}} 6967: 6965:{\displaystyle D_{1}} 6936: 6901: 6827: 6758: 6702: 6666: 6638: 6614: 6568: 6522: 6498: 6479:be a Lie algebra and 6474: 6448: 6381: 6342: 6313: 6282: 6280:{\displaystyle =(,).} 6158: 6075: 6030: 6001: 5982:For two Lie algebras 5969: 5942: 5908: 5620: 5613: 5587: 5561: 5525: 5486: 5446: 5404: 5365: 5323: 5303: 5266:is a Lie subalgebra, 5261: 5241: 5132: 5103: 5063: 5044:. The centralizer of 5039: 4933: 4912: 4875: 4833: 4794: 4751: 4727: 4725:{\displaystyle \phi } 4707: 4668:of Lie algebras. The 4663: 4617: 4578: 4554: 4524:of Lie algebras is a 4512: 4358: 4302: 4265: 4236:is a linear subspace 4223: 4184:need not be equal to 4179: 4113: 4076: 4026: 3987:. The Lie bracket on 3982: 3940: 3881: 3836: 3797:is the real numbers, 3779: 3729: 3686: 3618: 3582: 3562: 3535: 3515: 3500:. With this bracket, 3495: 3445: 3422: 3402: 3369: 3332: 3308: 3280: 3256: 3188: 3144: 3095: 3035: 3011: 2981: 2979:{\displaystyle =-,\ } 2909: 2885: 2859: 2803: 2752: 2728: 2726:{\displaystyle x,y,z} 2692: 2564: 2540: 2516: 2460: 2436: 2434:{\displaystyle x,y,z} 2404: 2384: 2354: 2267: 2265:{\displaystyle =a+b,} 2165: 2097: 2074: 2009: 1959: 1939: 1919: 1877: 1770: 1729: 1679: 1621: 1589: 1507: 1445: 1413: 1393: 1370:, that satisfies the 1365: 1314: 1139: 1092: 1055: 847: 801: 453:Representation theory 21997: 21927: 21871: 21848: 21783: 21760: 21735: 21663: 21604: 21548: 21501: 21431: 21314: 21184: 21136: 21062: 21026: 20993: 20947: 20927: 20839: 20772: 20746: 20692: 20659: 20629:(for a prime number 20596: 20534: 20526:with an alternating 20494: 20475:in algebraic terms. 20453: 20371: 20332: 20288: 20244: 20220: 20172: 20148: 20111: 20087: 20052: 20024: 19969: 19906: 19886: 19862: 19840: 19809: 19789: 19733: 19689: 19667: 19643: 19617: 19565: 19514: 19457: 19403: 19262: 19238: 19210: 19124: 19097: 19036: 18994: 18948: 18906: 18864: 18778: 18749: 18703: 18602: 18544: 18518: 18492: 18470: 18434: 18408: 18404:is simple for every 18386: 18350: 18316: 18312:is simple for every 18274: 18207: 18183: 18159: 18129: 18105: 18081: 18057: 18033: 18003: 17963: 17927: 17896: 17870: 17834: 17803: 17761: 17728: 17657: 17626: 17589: 17496: 17469: 17230: 17193: 17091: 17064: 17003: 16947: 16854: 16827: 16803: 16644: 16636:lower central series 16608: 16577: 16541: 16509: 16469: 16445: 16404: 16377: 16357: 16328: 16296: 16272: 16236: 16169: 16131: 16095: 16049: 16006: 15978: 15928: 15882: 15818: 15785: 15757: 15711: 15647: 15611: 15561: 15528: 15516:-vector spaces. Let 15492: 15468: 15444: 15320: 15289: 15242: 15189: 15126: 15102: 15069: 15010: 14951: 14920: 14916:For any Lie algebra 14866: 14823: 14795: 14784:{\displaystyle \pi } 14775: 14717: 14686: 14632: 14592: 14553:{\displaystyle L(V)} 14535: 14486: 14410: 14388: 14359: 14305: 14271: 14227: 14174: 14135: 14087: 14050: 14010: 13946: 13890: 13843: 13795: 13783:{\displaystyle =2E,} 13750: 13703: 13692:{\displaystyle =-2F} 13659: 13618: 13586: 13539: 13334: 13286: 13264: 13223: 13183: 13134: 13098: 13069: 13001: 12938: 12875: 12600: 12572: 12566:rotation group SO(3) 12532: 12487: 12460: 12400: 12374: 12334: 12241: 12199: 12154: 11909: 11810: 11772: 11728: 11691: 11647: 11621: 11571: 11547: 11521: 11501: 11387: 11361: 11301: 11255: 11231: 11205: 11171: 11114: 11068: 11013: 10989: 10951: 10913: 10871: 10845: 10821: 10793: 10722: 10687: 10638: 10593: 10553: 10522: 10488: 10419: 10384: 10342: 10311: 10285: 10263: 10227: 10183: 10150: 10119: 10076: 10035: 9993: 9962: 9925: 9879: 9840: 9788: 9746: 9707: 9660: 9616: 9580: 9546: 9510: 9465: 9426: 9397: 9366: 9316: 9312:and its Lie algebra 9272: 9214: 9172: 9126: 9093: 9041: 9036:special linear group 8959: 8919: 8896: 8786: 8718: 8682: 8624: 8574: 8550: 8415: 8392: 8347: 8319: 8267: 8214: 8176: 8156: 8045: 7999: 7957: 7899: 7840: 7808: 7778: 7675: 7632: 7608: 7566: 7538: 7494: 7472:diffeomorphism group 7443: 7408: 7370: 7322: 7308:being a derivation. 7171: 7137:into a Lie algebra. 7095: 7003: 6976: 6949: 6913: 6842: 6804: 6711: 6675: 6651: 6623: 6577: 6531: 6507: 6483: 6459: 6390: 6351: 6322: 6298: 6170: 6084: 6045: 6010: 5986: 5954: 5920: 5625: 5596: 5592:. For example, when 5570: 5534: 5503: 5459: 5413: 5382: 5332: 5312: 5270: 5250: 5142: 5121: 5075: 5048: 4943: 4922: 4891: 4846: 4806: 4760: 4736: 4716: 4676: 4626: 4590: 4585:quotient Lie algebra 4563: 4539: 4384: 4314: 4277: 4240: 4188: 4144: 4088: 4043: 3991: 3949: 3905: 3848: 3843:general linear group 3801: 3738: 3695: 3653: 3591: 3571: 3551: 3524: 3504: 3454: 3431: 3411: 3391: 3358: 3350:Abelian Lie algebras 3317: 3293: 3265: 3241: 3161: 3111: 3048: 3020: 2994: 2931: 2894: 2868: 2812: 2768: 2737: 2705: 2588: 2549: 2529: 2514:{\displaystyle =0\ } 2484: 2445: 2413: 2393: 2367: 2352:{\displaystyle =a+b} 2277: 2187: 2109: 2086: 2058: 1968: 1948: 1928: 1893: 1782: 1738: 1691: 1649: 1606: 1574: 1466: 1422: 1402: 1382: 1376:algebra over a field 1330: 1299: 1161:Noncommutative rings 1110: 1072: 1035: 879:Non-associative ring 815: 788: 745:Algebraic structures 23130:"Marius Sophus Lie" 22958:Humphreys, James E. 22737:, Corollary II.6.2. 22416:, Proposition D.40. 21041:{\displaystyle i,j} 20761:{\displaystyle x,y} 20733:over the integers. 20082:complex Lie algebra 19928:Lie's third theorem 19755:were classified by 18507:{\displaystyle n=3} 18346:). The Lie algebra 16599:commutator subgroup 16441:) of a Lie algebra 15974:Representations of 15867: 15842: 15703:. It satisfies the 14350:Infinite dimensions 14038:-eigenspace, while 13873:{\displaystyle =H.} 13648:{\displaystyle =2E} 12396:, and the quotient 10860:{\displaystyle X,Y} 10634:is the subgroup of 10144:conjugate transpose 9989:is the subgroup of 9875:is the subgroup of 9166:commutator subgroup 9122:. More abstractly, 8546:The Lie bracket of 8255:Matrix Lie algebras 8145:of a group.) For a 7388:is equivalent to a 6999:, their commutator 6832:that satisfies the 6446:{\displaystyle =0.} 6163:, with Lie bracket 5611:{\displaystyle n=2} 5530:is not an ideal in 5019: for all  4177:{\displaystyle ,z]} 3093:{\displaystyle =-.} 3009:{\displaystyle x,y} 2883:{\displaystyle x,y} 2857:{\displaystyle +=0} 2382:{\displaystyle a,b} 2044:infinitesimal group 1553:Lie's third theorem 1456:associative algebra 920:Commutative algebra 759:Associative algebra 641:Algebraic structure 598:Table of Lie groups 439:Compact Lie algebra 23195:Serre, Jean-Pierre 22335:, §1.2. Example 2. 22323:, §1.2. Example 1. 22113:Affine Lie algebra 22092: 21977: 21907: 21854: 21831: 21766: 21746: 21718: 21646: 21584: 21531: 21452: 21407: 21298: 21170: 21118: 21086: 21038: 21012: 20979: 20933: 20909: 20825: 20758: 20727:groups of Lie type 20707: 20674: 20604: 20582: 20504: 20461: 20413:graded Lie algebra 20381: 20354: 20318: 20274: 20230: 20206: 20158: 20128: 20097: 20058: 20038: 19977: 19936:locally isomorphic 19916: 19892: 19872: 19848: 19827: 19815: 19795: 19757:Richard Earl Block 19745: 19716: 19675: 19653: 19625: 19596: 19545: 19494: 19437: 19332:Levi decomposition 19313: 19248: 19220: 19193: 19107: 19083:Cartan's criterion 19078:Cartan's criterion 19064: 19022: 18976: 18934: 18892: 18843: 18761: 18731: 18668: 18588: 18530: 18504: 18478: 18456: 18430:. The Lie algebra 18420: 18394: 18372: 18328: 18302: 18257: 18193: 18169: 18139: 18115: 18091: 18067: 18043: 18013: 17975: 17949: 17913: 17882: 17856: 17820: 17789: 17736: 17722:Lie correspondence 17699: 17643: 17612: 17572: 17479: 17452: 17203: 17169: 17074: 17038: 16989: 16930: 16837: 16813: 16786: 16618: 16587: 16563: 16527: 16495: 16455: 16439:derived subalgebra 16416: 16390: 16363: 16343: 16311: 16282: 16246: 16191: 16151: 16117: 16068: 16035: 15998:are equivalent to 15988: 15957: 15914: 15868: 15846: 15821: 15804: 15767: 15743: 15693: 15633: 15597: 15547: 15498: 15478: 15454: 15423: 15299: 15271: 15225: 15136: 15112: 15079: 15055: 14993: 14930: 14894: 14833: 14805: 14781: 14758: 14696: 14668: 14614: 14550: 14523:on a vector space 14507: 14440: 14396: 14382:Kac–Moody algebras 14367: 14335: 14291: 14257: 14213: 14157: 14117: 14068: 14028: 13976: 13920: 13870: 13828: 13780: 13730:{\displaystyle =H} 13727: 13689: 13645: 13604: 13569: 13481: 13472: 13424: 13376: 13316: 13272: 13245: 13205: 13156: 13120: 13084: 13049: 12986: 12923: 12855: 12842: 12759: 12676: 12580: 12554: 12513: 12473: 12446: 12386: 12360: 12307: 12301: 12225: 12182: 12134: 12121: 12048: 11975: 11884: 11790: 11754: 11723:Heisenberg algebra 11701: 11677: 11633: 11607: 11557: 11533: 11507: 11481: 11472: 11426: 11371: 11343: 11334: 11285: 11241: 11217: 11191: 11153: 11147: 11089: 11064:of the real line, 11050: 10999: 10978:{\displaystyle =0} 10975: 10940:{\displaystyle =0} 10937: 10899: 10857: 10831: 10803: 10755: 10705: 10669: 10624: 10573: 10549:. Its Lie algebra 10539: 10508: 10468: 10401: 10370: 10328: 10293: 10271: 10249: 10213: 10169: 10132: 10105: 10050: 10021: 9979: 9940: 9907: 9865: 9818: 9774: 9732: 9684: 9646: 9602: 9566: 9525: 9496: 9443: 9412: 9383: 9346: 9302: 9244: 9210:. Its Lie algebra 9200: 9154: 9108: 9069: 9013: 8945: 8902: 8882: 8864: 8834: 8772: 8704:identity component 8692: 8676:matrix exponential 8664: 8610: 8560: 8533: 8483: smooth  8398: 8371: 8329: 8301: 8236: 8200: 8162: 8131: 8027: 7985: 7943: 7885: 7826: 7794: 7774:associated to any 7756: 7658: 7618: 7594: 7548: 7521: 7460: 7425: 7396:. (A vector field 7378: 7344: 7287: 7146:automorphism group 7119: 7081: 6989: 6962: 6931: 6896: 6822: 6753: 6697: 6661: 6645:semidirect product 6633: 6609: 6563: 6517: 6493: 6469: 6443: 6376: 6337: 6308: 6277: 6153: 6070: 6025: 5996: 5964: 5937: 5903: 5901: 5893: 5817: 5766: 5706: 5667: 5608: 5582: 5556: 5520: 5497:compact Lie groups 5481: 5441: 5399: 5360: 5318: 5298: 5256: 5236: 5127: 5098: 5058: 5034: 4928: 4907: 4873:{\displaystyle =0} 4870: 4828: 4789: 4746: 4722: 4702: 4658: 4612: 4573: 4549: 4507: 4353: 4297: 4260: 4218: 4174: 4108: 4071: 4021: 3977: 3935: 3876: 3831: 3774: 3724: 3681: 3613: 3577: 3557: 3530: 3510: 3490: 3443:{\displaystyle xy} 3440: 3417: 3397: 3364: 3327: 3303: 3275: 3261:means a subset of 3251: 3237:for a Lie algebra 3183: 3139: 3090: 3030: 3006: 2976: 2904: 2880: 2854: 2798: 2747: 2723: 2687: 2559: 2535: 2511: 2455: 2431: 2399: 2379: 2349: 2262: 2160: 2092: 2069: 2004: 1954: 1934: 1914: 1889:, and each vector 1887:rotations of space 1872: 1765: 1724: 1674: 1616: 1584: 1502: 1440: 1408: 1388: 1360: 1309: 1174:Semiprimitive ring 1134: 1087: 1050: 858:Related structures 842: 796: 732:Inner automorphism 718:Ring homomorphisms 370:Affine Lie algebra 360:Simple Lie algebra 101:Special orthogonal 23238:978-0-387-90969-1 23208:978-3-540-55008-2 23106:978-0-8218-4876-0 23060:Knapp, Anthony W. 23005:978-0-486-63832-4 22975:978-0-387-90053-7 22890:978-0-387-97495-8 22814:978-3-540-64242-8 22799:Bourbaki, Nicolas 22626:, Theorem 3.16.3. 22219:Quasi-Lie algebra 21857:{\displaystyle A} 21071: 20936:{\displaystyle G} 20653:p-adic Lie groups 20548: 20542: 20440:Whitehead product 20436:topological space 20430:For example, the 20216:is isomorphic to 20061:{\displaystyle G} 19902:with Lie algebra 19895:{\displaystyle G} 19818:{\displaystyle x} 19798:{\displaystyle x} 18741:is reductive for 17709:abelian for each 16373:is isomorphic to 16366:{\displaystyle F} 15520:be the two-sided 14682:of a Lie algebra 13435: 13387: 13172:quantum mechanics 12850: 12129: 11567:, by the formula 11510:{\displaystyle F} 11104:The affine group 8905:{\displaystyle X} 8863: 8833: 8508: 8484: 8401:{\displaystyle I} 8183: 8165:{\displaystyle V} 8110: 8080: 8052: 8039:outer derivations 8006: 7964: 7922: 7573: 7510: 7449: 7414: 7102: 6129: 5495:in the theory of 5491:, analogous to a 5453:Cartan subalgebra 5321:{\displaystyle S} 5259:{\displaystyle S} 5223: 5219: 5215: 5130:{\displaystyle S} 5020: 5016: 4931:{\displaystyle S} 4778: 4484: 4480: 4476: 4221:{\displaystyle ]} 3580:{\displaystyle V} 3560:{\displaystyle F} 3545:endomorphism ring 3533:{\displaystyle A} 3513:{\displaystyle A} 3420:{\displaystyle F} 3400:{\displaystyle A} 3367:{\displaystyle V} 3354:Any vector space 2975: 2919:Anticommutativity 2686: 2538:{\displaystyle x} 2510: 2409:and all elements 2402:{\displaystyle F} 2095:{\displaystyle F} 1957:{\displaystyle v} 1937:{\displaystyle v} 1868: 1862: 1838: 1811: 1640:quantum mechanics 1454:. However, every 1411:{\displaystyle y} 1391:{\displaystyle x} 1258: 1257: 1215:Geometric algebra 926:Commutative rings 777:Category of rings 634: 633: 434:Split Lie algebra 397:Cartan subalgebra 259: 258: 150:Simple Lie groups 16:(Redirected from 23362: 23336: 23327: 23309: 23304:. Archived from 23284: 23250: 23220: 23190: 23149: 23133: 23117: 23088: 23055: 23017: 22992:Jacobson, Nathan 22987: 22967: 22953: 22910: 22856: 22826: 22786: 22780: 22774: 22768: 22762: 22756: 22750: 22744: 22738: 22732: 22726: 22720: 22711: 22705: 22699: 22693: 22687: 22684:Varadarajan 1984 22681: 22675: 22672:Varadarajan 1984 22669: 22663: 22657: 22651: 22645: 22639: 22636:Varadarajan 1984 22633: 22627: 22624:Varadarajan 1984 22621: 22615: 22609: 22603: 22597: 22591: 22585: 22579: 22573: 22567: 22561: 22555: 22549: 22543: 22537: 22528: 22522: 22516: 22510: 22504: 22498: 22492: 22486: 22477: 22471: 22465: 22464:, section 3.2.1. 22459: 22453: 22447: 22441: 22435: 22429: 22426:Varadarajan 1984 22423: 22417: 22411: 22405: 22399: 22393: 22390:Varadarajan 1984 22387: 22381: 22375: 22369: 22368:, section I.1.1. 22363: 22357: 22351: 22345: 22342: 22336: 22330: 22324: 22318: 22312: 22306: 22300: 22294: 22288: 22282: 22267: 22249:commutative ring 22245: 22184:Lie superalgebra 22101: 22099: 22098: 22093: 22082: 22081: 22063: 22046: 21986: 21984: 21983: 21978: 21958: 21916: 21914: 21913: 21908: 21863: 21861: 21860: 21855: 21840: 21838: 21837: 21832: 21775: 21773: 21772: 21767: 21755: 21753: 21752: 21747: 21745: 21727: 21725: 21724: 21719: 21711: 21682: 21655: 21653: 21652: 21647: 21593: 21591: 21590: 21585: 21540: 21538: 21537: 21532: 21493: 21461: 21459: 21458: 21453: 21451: 21443: 21438: 21416: 21414: 21413: 21408: 21403: 21402: 21360: 21359: 21338: 21337: 21307: 21305: 21304: 21299: 21297: 21296: 21275: 21270: 21269: 21251: 21250: 21235: 21230: 21229: 21217: 21216: 21201: 21196: 21195: 21179: 21177: 21176: 21171: 21169: 21168: 21153: 21148: 21147: 21127: 21125: 21124: 21119: 21117: 21116: 21101: 21096: 21095: 21085: 21047: 21045: 21044: 21039: 21021: 21019: 21018: 21013: 21011: 21010: 20989:is contained in 20988: 20986: 20985: 20982:{\displaystyle } 20980: 20975: 20974: 20962: 20961: 20942: 20940: 20939: 20934: 20918: 20916: 20915: 20910: 20902: 20901: 20883: 20882: 20870: 20869: 20857: 20856: 20834: 20832: 20831: 20826: 20818: 20817: 20805: 20804: 20767: 20765: 20764: 20759: 20723:Claude Chevalley 20716: 20714: 20713: 20708: 20706: 20705: 20700: 20683: 20681: 20680: 20675: 20673: 20672: 20667: 20613: 20611: 20610: 20605: 20603: 20591: 20589: 20588: 20583: 20581: 20580: 20571: 20570: 20561: 20560: 20546: 20540: 20513: 20511: 20510: 20505: 20503: 20502: 20485:commutative ring 20470: 20468: 20467: 20462: 20460: 20448:rational numbers 20417:Lie superalgebra 20390: 20388: 20387: 20382: 20380: 20379: 20363: 20361: 20360: 20355: 20344: 20343: 20327: 20325: 20324: 20319: 20314: 20300: 20299: 20283: 20281: 20280: 20275: 20270: 20256: 20255: 20239: 20237: 20236: 20231: 20229: 20228: 20215: 20213: 20212: 20207: 20205: 20200: 20199: 20198: 20188: 20187: 20182: 20181: 20167: 20165: 20164: 20159: 20157: 20156: 20138:is said to be a 20137: 20135: 20134: 20129: 20127: 20126: 20121: 20120: 20106: 20104: 20103: 20098: 20096: 20095: 20067: 20065: 20064: 20059: 20047: 20045: 20044: 20039: 20037: 19986: 19984: 19983: 19978: 19976: 19959:simply connected 19952:simply connected 19925: 19923: 19922: 19917: 19915: 19914: 19901: 19899: 19898: 19893: 19881: 19879: 19878: 19873: 19871: 19870: 19857: 19855: 19854: 19849: 19847: 19824: 19822: 19821: 19816: 19804: 19802: 19801: 19796: 19754: 19752: 19751: 19746: 19725: 19723: 19722: 19717: 19715: 19710: 19709: 19708: 19698: 19697: 19684: 19682: 19681: 19676: 19674: 19662: 19660: 19659: 19654: 19652: 19651: 19637:simple Lie group 19634: 19632: 19631: 19626: 19624: 19605: 19603: 19602: 19597: 19577: 19576: 19554: 19552: 19551: 19546: 19526: 19525: 19503: 19501: 19500: 19495: 19469: 19468: 19446: 19444: 19443: 19438: 19415: 19414: 19322: 19320: 19319: 19314: 19300: 19299: 19290: 19289: 19277: 19276: 19257: 19255: 19254: 19249: 19247: 19246: 19234:. A Lie algebra 19229: 19227: 19226: 19221: 19219: 19218: 19202: 19200: 19199: 19194: 19116: 19114: 19113: 19108: 19106: 19105: 19073: 19071: 19070: 19065: 19048: 19047: 19031: 19029: 19028: 19023: 19006: 19005: 18985: 18983: 18982: 18977: 18960: 18959: 18943: 18941: 18940: 18935: 18918: 18917: 18901: 18899: 18898: 18893: 18876: 18875: 18852: 18850: 18849: 18844: 18824: 18823: 18790: 18789: 18770: 18768: 18767: 18762: 18740: 18738: 18737: 18732: 18715: 18714: 18677: 18675: 18674: 18669: 18658: 18657: 18636: 18635: 18614: 18613: 18597: 18595: 18594: 18589: 18578: 18577: 18556: 18555: 18539: 18537: 18536: 18531: 18513: 18511: 18510: 18505: 18487: 18485: 18484: 18479: 18477: 18465: 18463: 18462: 18457: 18446: 18445: 18429: 18427: 18426: 18421: 18403: 18401: 18400: 18395: 18393: 18381: 18379: 18378: 18373: 18362: 18361: 18338:and every field 18337: 18335: 18334: 18329: 18311: 18309: 18308: 18303: 18286: 18285: 18266: 18264: 18263: 18258: 18256: 18255: 18250: 18249: 18233: 18232: 18227: 18226: 18216: 18215: 18202: 18200: 18199: 18194: 18192: 18191: 18178: 18176: 18175: 18170: 18168: 18167: 18148: 18146: 18145: 18140: 18138: 18137: 18124: 18122: 18121: 18116: 18114: 18113: 18100: 18098: 18097: 18092: 18090: 18089: 18076: 18074: 18073: 18068: 18066: 18065: 18052: 18050: 18049: 18044: 18042: 18041: 18022: 18020: 18019: 18014: 18012: 18011: 17984: 17982: 17981: 17976: 17958: 17956: 17955: 17950: 17939: 17938: 17922: 17920: 17919: 17914: 17912: 17911: 17906: 17905: 17891: 17889: 17888: 17883: 17865: 17863: 17862: 17857: 17846: 17845: 17829: 17827: 17826: 17821: 17819: 17818: 17813: 17812: 17798: 17796: 17795: 17790: 17773: 17772: 17745: 17743: 17742: 17737: 17735: 17708: 17706: 17705: 17700: 17698: 17697: 17686: 17685: 17678: 17673: 17672: 17667: 17666: 17652: 17650: 17649: 17644: 17642: 17641: 17636: 17635: 17621: 17619: 17618: 17613: 17611: 17610: 17599: 17598: 17581: 17579: 17578: 17573: 17568: 17567: 17558: 17557: 17552: 17551: 17535: 17534: 17529: 17528: 17518: 17517: 17512: 17511: 17488: 17486: 17485: 17480: 17478: 17477: 17461: 17459: 17458: 17453: 17436: 17435: 17426: 17425: 17410: 17409: 17400: 17399: 17378: 17377: 17368: 17367: 17352: 17351: 17342: 17341: 17317: 17316: 17307: 17306: 17291: 17290: 17281: 17280: 17262: 17261: 17252: 17251: 17239: 17238: 17212: 17210: 17209: 17204: 17202: 17201: 17178: 17176: 17175: 17170: 17128: 17127: 17118: 17117: 17083: 17081: 17080: 17075: 17073: 17072: 17047: 17045: 17044: 17039: 17037: 17036: 17025: 17024: 17017: 17012: 17011: 16998: 16996: 16995: 16990: 16988: 16987: 16976: 16975: 16968: 16963: 16962: 16957: 16956: 16939: 16937: 16936: 16931: 16926: 16925: 16916: 16915: 16910: 16909: 16893: 16892: 16887: 16886: 16876: 16875: 16870: 16869: 16846: 16844: 16843: 16838: 16836: 16835: 16822: 16820: 16819: 16814: 16812: 16811: 16795: 16793: 16792: 16787: 16776: 16775: 16763: 16762: 16750: 16749: 16740: 16739: 16718: 16717: 16705: 16704: 16695: 16694: 16676: 16675: 16666: 16665: 16653: 16652: 16627: 16625: 16624: 16619: 16617: 16616: 16596: 16594: 16593: 16588: 16586: 16585: 16572: 16570: 16569: 16564: 16562: 16561: 16536: 16534: 16533: 16530:{\displaystyle } 16528: 16504: 16502: 16501: 16498:{\displaystyle } 16496: 16491: 16490: 16481: 16480: 16464: 16462: 16461: 16456: 16454: 16453: 16425: 16423: 16422: 16417: 16399: 16397: 16396: 16391: 16389: 16388: 16372: 16370: 16369: 16364: 16352: 16350: 16349: 16344: 16342: 16341: 16336: 16320: 16318: 16317: 16312: 16310: 16309: 16304: 16291: 16289: 16288: 16283: 16281: 16280: 16255: 16253: 16252: 16247: 16245: 16244: 16200: 16198: 16197: 16192: 16181: 16180: 16160: 16158: 16157: 16152: 16141: 16126: 16124: 16123: 16118: 16107: 16106: 16077: 16075: 16074: 16069: 16064: 16063: 16044: 16042: 16041: 16036: 16031: 16030: 16015: 16014: 15997: 15995: 15994: 15989: 15987: 15986: 15966: 15964: 15963: 15958: 15953: 15952: 15937: 15936: 15923: 15921: 15920: 15915: 15913: 15912: 15894: 15893: 15877: 15875: 15874: 15869: 15866: 15865: 15864: 15854: 15841: 15840: 15839: 15829: 15813: 15811: 15810: 15805: 15800: 15799: 15776: 15774: 15773: 15768: 15766: 15765: 15752: 15750: 15749: 15744: 15742: 15741: 15723: 15722: 15702: 15700: 15699: 15694: 15689: 15681: 15680: 15662: 15661: 15642: 15640: 15639: 15634: 15632: 15631: 15606: 15604: 15603: 15598: 15556: 15554: 15553: 15548: 15543: 15542: 15507: 15505: 15504: 15499: 15487: 15485: 15484: 15479: 15477: 15476: 15463: 15461: 15460: 15455: 15453: 15452: 15432: 15430: 15429: 15424: 15413: 15412: 15403: 15402: 15393: 15392: 15377: 15376: 15367: 15366: 15354: 15353: 15335: 15334: 15308: 15306: 15305: 15300: 15298: 15297: 15280: 15278: 15277: 15272: 15267: 15266: 15251: 15250: 15234: 15232: 15231: 15226: 15145: 15143: 15142: 15137: 15135: 15134: 15121: 15119: 15118: 15113: 15111: 15110: 15088: 15086: 15085: 15080: 15078: 15077: 15064: 15062: 15061: 15056: 15002: 15000: 14999: 14994: 14989: 14988: 14979: 14978: 14966: 14965: 14939: 14937: 14936: 14931: 14929: 14928: 14903: 14901: 14900: 14895: 14878: 14877: 14856:Kenkichi Iwasawa 14842: 14840: 14839: 14834: 14832: 14831: 14814: 14812: 14811: 14806: 14804: 14803: 14790: 14788: 14787: 14782: 14767: 14765: 14764: 14759: 14745: 14744: 14732: 14731: 14705: 14703: 14702: 14697: 14695: 14694: 14677: 14675: 14674: 14669: 14623: 14621: 14620: 14615: 14604: 14603: 14559: 14557: 14556: 14551: 14520:free Lie algebra 14516: 14514: 14513: 14508: 14468:is important in 14466:Virasoro algebra 14449: 14447: 14446: 14441: 14436: 14422: 14421: 14405: 14403: 14402: 14397: 14395: 14376: 14374: 14373: 14368: 14366: 14344: 14342: 14341: 14336: 14331: 14317: 14316: 14300: 14298: 14297: 14292: 14281: 14266: 14264: 14263: 14258: 14253: 14239: 14238: 14222: 14220: 14219: 14214: 14212: 14207: 14206: 14205: 14186: 14185: 14166: 14164: 14163: 14158: 14147: 14146: 14129:complexification 14126: 14124: 14123: 14118: 14113: 14099: 14098: 14083:The Lie algebra 14077: 14075: 14074: 14069: 14037: 14035: 14034: 14029: 13985: 13983: 13982: 13977: 13972: 13958: 13957: 13929: 13927: 13926: 13921: 13916: 13902: 13901: 13879: 13877: 13876: 13871: 13837: 13835: 13834: 13829: 13789: 13787: 13786: 13781: 13736: 13734: 13733: 13728: 13698: 13696: 13695: 13690: 13654: 13652: 13651: 13646: 13613: 13611: 13610: 13605: 13603: 13602: 13597: 13578: 13576: 13575: 13570: 13565: 13551: 13550: 13526: 13514: 13502: 13490: 13488: 13487: 13482: 13477: 13473: 13433: 13429: 13425: 13385: 13381: 13377: 13325: 13323: 13322: 13317: 13312: 13298: 13297: 13281: 13279: 13278: 13273: 13271: 13254: 13252: 13251: 13246: 13235: 13234: 13214: 13212: 13211: 13206: 13195: 13194: 13179:The Lie algebra 13165: 13163: 13162: 13157: 13146: 13145: 13129: 13127: 13126: 13121: 13110: 13109: 13093: 13091: 13090: 13085: 13083: 13082: 13077: 13058: 13056: 13055: 13050: 13045: 13044: 13029: 13028: 13016: 13015: 12995: 12993: 12992: 12987: 12982: 12981: 12966: 12965: 12953: 12952: 12932: 12930: 12929: 12924: 12919: 12918: 12903: 12902: 12890: 12889: 12864: 12862: 12861: 12856: 12848: 12847: 12843: 12778: 12777: 12764: 12760: 12695: 12694: 12681: 12677: 12612: 12611: 12589: 12587: 12586: 12581: 12579: 12563: 12561: 12560: 12555: 12544: 12543: 12528:The Lie algebra 12522: 12520: 12519: 12514: 12503: 12502: 12497: 12496: 12482: 12480: 12479: 12474: 12472: 12471: 12455: 12453: 12452: 12447: 12430: 12416: 12415: 12410: 12409: 12395: 12393: 12392: 12387: 12369: 12367: 12366: 12361: 12350: 12349: 12344: 12343: 12330:, the center of 12316: 12314: 12313: 12308: 12306: 12302: 12234: 12232: 12231: 12226: 12221: 12213: 12212: 12207: 12194:Heisenberg group 12191: 12189: 12188: 12183: 12178: 12170: 12169: 12164: 12163: 12143: 12141: 12140: 12135: 12127: 12126: 12122: 12053: 12049: 11980: 11976: 11901:upper-triangular 11893: 11891: 11890: 11885: 11799: 11797: 11796: 11791: 11763: 11761: 11760: 11755: 11744: 11743: 11738: 11737: 11716:Three dimensions 11710: 11708: 11707: 11702: 11700: 11699: 11686: 11684: 11683: 11678: 11661: 11656: 11655: 11642: 11640: 11639: 11634: 11616: 11614: 11613: 11608: 11566: 11564: 11563: 11558: 11556: 11555: 11542: 11540: 11539: 11534: 11516: 11514: 11513: 11508: 11490: 11488: 11487: 11482: 11477: 11473: 11431: 11427: 11380: 11378: 11377: 11372: 11370: 11369: 11352: 11350: 11349: 11344: 11339: 11335: 11294: 11292: 11291: 11286: 11281: 11267: 11266: 11250: 11248: 11247: 11242: 11240: 11239: 11226: 11224: 11223: 11218: 11200: 11198: 11197: 11192: 11190: 11162: 11160: 11159: 11154: 11152: 11148: 11098: 11096: 11095: 11090: 11059: 11057: 11056: 11051: 11046: 11032: 11008: 11006: 11005: 11000: 10998: 10997: 10984: 10982: 10981: 10976: 10946: 10944: 10943: 10938: 10908: 10906: 10905: 10900: 10892: 10888: 10866: 10864: 10863: 10858: 10840: 10838: 10837: 10832: 10830: 10829: 10812: 10810: 10809: 10804: 10802: 10801: 10764: 10762: 10761: 10756: 10751: 10734: 10733: 10714: 10712: 10711: 10706: 10704: 10703: 10695: 10678: 10676: 10675: 10670: 10665: 10648: 10633: 10631: 10630: 10625: 10620: 10603: 10588:symplectic group 10582: 10580: 10579: 10574: 10563: 10548: 10546: 10545: 10540: 10529: 10517: 10515: 10514: 10509: 10498: 10477: 10475: 10474: 10469: 10464: 10450: 10449: 10437: 10429: 10410: 10408: 10407: 10402: 10391: 10379: 10377: 10376: 10371: 10366: 10352: 10337: 10335: 10334: 10329: 10318: 10302: 10300: 10299: 10294: 10292: 10280: 10278: 10277: 10272: 10270: 10258: 10256: 10255: 10250: 10239: 10238: 10222: 10220: 10219: 10214: 10209: 10195: 10194: 10178: 10176: 10175: 10170: 10159: 10158: 10141: 10139: 10138: 10133: 10131: 10130: 10114: 10112: 10111: 10106: 10104: 10103: 10088: 10087: 10059: 10057: 10056: 10051: 10049: 10048: 10043: 10030: 10028: 10027: 10022: 10017: 10003: 9988: 9986: 9985: 9980: 9969: 9949: 9947: 9946: 9941: 9939: 9938: 9933: 9916: 9914: 9913: 9908: 9903: 9889: 9874: 9872: 9871: 9866: 9861: 9847: 9827: 9825: 9824: 9819: 9814: 9800: 9799: 9783: 9781: 9780: 9775: 9770: 9756: 9741: 9739: 9738: 9733: 9728: 9714: 9693: 9691: 9690: 9685: 9674: 9673: 9672: 9655: 9653: 9652: 9647: 9642: 9628: 9627: 9611: 9609: 9608: 9603: 9592: 9591: 9575: 9573: 9572: 9567: 9556: 9534: 9532: 9531: 9526: 9524: 9523: 9522: 9505: 9503: 9502: 9497: 9495: 9494: 9479: 9478: 9477: 9452: 9450: 9449: 9444: 9433: 9421: 9419: 9418: 9413: 9411: 9410: 9405: 9392: 9390: 9389: 9384: 9373: 9361:orthogonal group 9355: 9353: 9352: 9347: 9342: 9328: 9327: 9311: 9309: 9308: 9303: 9298: 9284: 9283: 9263: 9253: 9251: 9250: 9245: 9240: 9226: 9225: 9209: 9207: 9206: 9201: 9196: 9182: 9163: 9161: 9160: 9155: 9150: 9136: 9117: 9115: 9114: 9109: 9107: 9106: 9101: 9088: 9078: 9076: 9075: 9070: 9065: 9051: 9022: 9020: 9019: 9014: 9009: 9001: 9000: 8985: 8977: 8976: 8954: 8952: 8951: 8946: 8941: 8911: 8909: 8908: 8903: 8891: 8889: 8888: 8883: 8875: 8874: 8865: 8862: 8851: 8845: 8844: 8835: 8832: 8821: 8781: 8779: 8778: 8773: 8768: 8760: 8759: 8744: 8736: 8735: 8701: 8699: 8698: 8693: 8691: 8690: 8673: 8671: 8670: 8665: 8660: 8646: 8645: 8633: 8632: 8619: 8617: 8616: 8611: 8569: 8567: 8566: 8561: 8559: 8558: 8542: 8540: 8539: 8534: 8506: 8496: 8485: 8482: 8474: 8466: 8465: 8444: 8424: 8423: 8407: 8405: 8404: 8399: 8380: 8378: 8377: 8372: 8367: 8359: 8358: 8338: 8336: 8335: 8330: 8328: 8327: 8310: 8308: 8307: 8302: 8297: 8283: 8245: 8243: 8242: 8237: 8226: 8225: 8209: 8207: 8206: 8201: 8190: 8189: 8184: 8181: 8171: 8169: 8168: 8163: 8140: 8138: 8137: 8132: 8127: 8126: 8117: 8116: 8111: 8108: 8105: 8097: 8096: 8087: 8086: 8081: 8078: 8069: 8068: 8059: 8058: 8053: 8050: 8036: 8034: 8033: 8028: 8023: 8022: 8013: 8012: 8007: 8004: 7994: 7992: 7991: 7986: 7981: 7980: 7971: 7970: 7965: 7962: 7952: 7950: 7949: 7944: 7939: 7938: 7929: 7928: 7923: 7920: 7914: 7913: 7894: 7892: 7891: 7886: 7857: 7856: 7851: 7835: 7833: 7832: 7827: 7825: 7824: 7819: 7803: 7801: 7800: 7795: 7793: 7792: 7772:inner derivation 7765: 7763: 7762: 7757: 7667: 7665: 7664: 7659: 7657: 7656: 7647: 7646: 7628:is a linear map 7627: 7625: 7624: 7619: 7617: 7616: 7603: 7601: 7600: 7595: 7590: 7589: 7580: 7579: 7574: 7571: 7557: 7555: 7554: 7549: 7547: 7546: 7530: 7528: 7527: 7522: 7511: 7508: 7503: 7502: 7469: 7467: 7466: 7461: 7450: 7447: 7434: 7432: 7431: 7426: 7415: 7412: 7387: 7385: 7384: 7379: 7377: 7356:smooth functions 7353: 7351: 7350: 7345: 7334: 7333: 7296: 7294: 7293: 7288: 7286: 7282: 7281: 7128: 7126: 7125: 7120: 7109: 7108: 7103: 7100: 7090: 7088: 7087: 7082: 7080: 7079: 7070: 7069: 7057: 7056: 7047: 7046: 7031: 7030: 7018: 7017: 6998: 6996: 6995: 6990: 6988: 6987: 6971: 6969: 6968: 6963: 6961: 6960: 6940: 6938: 6937: 6932: 6905: 6903: 6902: 6897: 6831: 6829: 6828: 6823: 6800:is a linear map 6762: 6760: 6759: 6754: 6752: 6751: 6742: 6741: 6735: 6730: 6729: 6720: 6719: 6706: 6704: 6703: 6698: 6696: 6695: 6689: 6684: 6683: 6670: 6668: 6667: 6662: 6660: 6659: 6643:is said to be a 6642: 6640: 6639: 6634: 6632: 6631: 6618: 6616: 6615: 6610: 6608: 6607: 6598: 6597: 6591: 6586: 6585: 6572: 6570: 6569: 6564: 6562: 6561: 6555: 6550: 6549: 6540: 6539: 6526: 6524: 6523: 6518: 6516: 6515: 6502: 6500: 6499: 6494: 6492: 6491: 6478: 6476: 6475: 6470: 6468: 6467: 6452: 6450: 6449: 6444: 6430: 6385: 6383: 6382: 6377: 6375: 6374: 6373: 6360: 6359: 6346: 6344: 6343: 6338: 6336: 6332: 6331: 6317: 6315: 6314: 6309: 6307: 6306: 6286: 6284: 6283: 6278: 6267: 6256: 6215: 6192: 6162: 6160: 6159: 6154: 6152: 6151: 6150: 6137: 6127: 6123: 6122: 6103: 6079: 6077: 6076: 6071: 6069: 6068: 6067: 6054: 6053: 6034: 6032: 6031: 6026: 6024: 6023: 6022: 6005: 6003: 6002: 5997: 5995: 5994: 5973: 5971: 5970: 5965: 5963: 5962: 5946: 5944: 5943: 5938: 5936: 5935: 5930: 5929: 5912: 5910: 5909: 5904: 5902: 5898: 5897: 5826: 5822: 5821: 5771: 5770: 5716: 5712: 5711: 5710: 5672: 5671: 5617: 5615: 5614: 5609: 5591: 5589: 5588: 5583: 5565: 5563: 5562: 5557: 5546: 5545: 5529: 5527: 5526: 5521: 5519: 5518: 5513: 5512: 5490: 5488: 5487: 5482: 5471: 5470: 5450: 5448: 5447: 5442: 5425: 5424: 5408: 5406: 5405: 5400: 5398: 5397: 5392: 5391: 5369: 5367: 5366: 5361: 5350: 5349: 5348: 5342: 5341: 5327: 5325: 5324: 5319: 5307: 5305: 5304: 5299: 5288: 5287: 5286: 5280: 5279: 5265: 5263: 5262: 5257: 5245: 5243: 5242: 5237: 5221: 5220: 5217: 5213: 5188: 5187: 5160: 5159: 5158: 5152: 5151: 5136: 5134: 5133: 5128: 5107: 5105: 5104: 5099: 5094: 5093: 5084: 5083: 5067: 5065: 5064: 5059: 5057: 5056: 5043: 5041: 5040: 5035: 5021: 5018: 5014: 4989: 4988: 4961: 4960: 4959: 4953: 4952: 4937: 4935: 4934: 4929: 4916: 4914: 4913: 4908: 4906: 4905: 4879: 4877: 4876: 4871: 4837: 4835: 4834: 4829: 4827: 4826: 4798: 4796: 4795: 4790: 4779: 4776: 4774: 4769: 4768: 4755: 4753: 4752: 4747: 4745: 4744: 4731: 4729: 4728: 4723: 4711: 4709: 4708: 4703: 4701: 4700: 4691: 4690: 4667: 4665: 4664: 4659: 4657: 4656: 4650: 4645: 4644: 4635: 4634: 4621: 4619: 4618: 4613: 4611: 4610: 4604: 4599: 4598: 4582: 4580: 4579: 4574: 4572: 4571: 4558: 4556: 4555: 4550: 4548: 4547: 4516: 4514: 4513: 4508: 4503: 4502: 4482: 4481: 4478: 4474: 4409: 4408: 4399: 4398: 4368:normal subgroups 4362: 4360: 4359: 4354: 4349: 4348: 4336: 4335: 4326: 4325: 4306: 4304: 4303: 4298: 4296: 4295: 4286: 4285: 4269: 4267: 4266: 4261: 4259: 4258: 4249: 4248: 4227: 4225: 4224: 4219: 4183: 4181: 4180: 4175: 4117: 4115: 4114: 4109: 4098: 4080: 4078: 4077: 4072: 4055: 4054: 4035:. For any field 4030: 4028: 4027: 4022: 4017: 4003: 4002: 3986: 3984: 3983: 3978: 3973: 3959: 3944: 3942: 3941: 3936: 3931: 3917: 3916: 3885: 3883: 3882: 3877: 3872: 3858: 3840: 3838: 3837: 3832: 3827: 3813: 3812: 3783: 3781: 3780: 3775: 3733: 3731: 3730: 3725: 3714: 3713: 3708: 3707: 3690: 3688: 3687: 3682: 3665: 3664: 3622: 3620: 3619: 3614: 3603: 3602: 3586: 3584: 3583: 3578: 3566: 3564: 3563: 3558: 3539: 3537: 3536: 3531: 3519: 3517: 3516: 3511: 3499: 3497: 3496: 3491: 3449: 3447: 3446: 3441: 3426: 3424: 3423: 3418: 3406: 3404: 3403: 3398: 3373: 3371: 3370: 3365: 3336: 3334: 3333: 3328: 3326: 3325: 3313:. Equivalently, 3312: 3310: 3309: 3304: 3302: 3301: 3284: 3282: 3281: 3276: 3274: 3273: 3260: 3258: 3257: 3252: 3250: 3249: 3192: 3190: 3189: 3184: 3173: 3172: 3148: 3146: 3145: 3140: 3138: 3137: 3099: 3097: 3096: 3091: 3039: 3037: 3036: 3031: 3029: 3028: 3015: 3013: 3012: 3007: 2985: 2983: 2982: 2977: 2973: 2913: 2911: 2910: 2905: 2903: 2902: 2889: 2887: 2886: 2881: 2863: 2861: 2860: 2855: 2807: 2805: 2804: 2801:{\displaystyle } 2799: 2756: 2754: 2753: 2748: 2746: 2745: 2732: 2730: 2729: 2724: 2696: 2694: 2693: 2688: 2684: 2568: 2566: 2565: 2560: 2558: 2557: 2544: 2542: 2541: 2536: 2520: 2518: 2517: 2512: 2508: 2464: 2462: 2461: 2456: 2454: 2453: 2440: 2438: 2437: 2432: 2408: 2406: 2405: 2400: 2388: 2386: 2385: 2380: 2363:for all scalars 2358: 2356: 2355: 2350: 2271: 2269: 2268: 2263: 2169: 2167: 2166: 2161: 2159: 2158: 2149: 2148: 2139: 2138: 2104:binary operation 2102:together with a 2101: 2099: 2098: 2093: 2078: 2076: 2075: 2070: 2068: 2067: 2013: 2011: 2010: 2005: 1963: 1961: 1960: 1955: 1943: 1941: 1940: 1935: 1923: 1921: 1920: 1915: 1913: 1912: 1907: 1881: 1879: 1878: 1873: 1866: 1860: 1836: 1809: 1774: 1772: 1771: 1766: 1733: 1731: 1730: 1725: 1683: 1681: 1680: 1675: 1673: 1672: 1667: 1658: 1657: 1625: 1623: 1622: 1617: 1615: 1614: 1593: 1591: 1590: 1585: 1583: 1582: 1525:smooth manifolds 1511: 1509: 1508: 1503: 1449: 1447: 1446: 1443:{\displaystyle } 1441: 1417: 1415: 1414: 1409: 1397: 1395: 1394: 1389: 1369: 1367: 1366: 1361: 1359: 1358: 1349: 1348: 1339: 1338: 1318: 1316: 1315: 1310: 1308: 1307: 1289: 1284: 1283: 1280: 1279: 1276: 1250: 1243: 1236: 1221:Operator algebra 1207:Clifford algebra 1143: 1141: 1140: 1135: 1130: 1129: 1117: 1096: 1094: 1093: 1088: 1086: 1085: 1080: 1059: 1057: 1056: 1051: 1049: 1048: 1043: 1021:Ring of integers 1015: 1012:Integers modulo 963:Euclidean domain 851: 849: 848: 843: 841: 833: 828: 805: 803: 802: 797: 795: 699:Product of rings 685:Fractional ideal 644: 636: 635: 626: 619: 612: 569:Claude Chevalley 426:Complexification 269:Other Lie groups 155: 154: 63:Classical groups 55: 37: 36: 21: 23370: 23369: 23365: 23364: 23363: 23361: 23360: 23359: 23340: 23339: 23312: 23291: 23273: 23239: 23209: 23172:10.2307/1970725 23154:Quillen, Daniel 23142:Robertson, E.F. 23126:Robertson, E.F. 23107: 23078: 23045: 23006: 22976: 22934: 22891: 22861:Fulton, William 22845: 22815: 22794: 22789: 22781: 22777: 22769: 22765: 22757: 22753: 22745: 22741: 22733: 22729: 22721: 22714: 22706: 22702: 22694: 22690: 22682: 22678: 22670: 22666: 22662:, section IV.6. 22658: 22654: 22650:, Ch. III, § 9. 22646: 22642: 22634: 22630: 22622: 22618: 22614:, Theorem 12.1. 22610: 22606: 22602:, Ch. III, § 5. 22598: 22594: 22586: 22582: 22574: 22570: 22566:, section II.3. 22562: 22558: 22554:, section 17.3. 22550: 22546: 22542:, Theorem 10.9. 22538: 22531: 22523: 22519: 22511: 22507: 22499: 22495: 22487: 22480: 22476:, Example 3.27. 22472: 22468: 22460: 22456: 22448: 22444: 22436: 22432: 22424: 22420: 22412: 22408: 22400: 22396: 22388: 22384: 22376: 22372: 22364: 22360: 22352: 22348: 22343: 22339: 22331: 22327: 22319: 22315: 22307: 22303: 22295: 22291: 22283: 22279: 22275: 22270: 22246: 22242: 22238: 22233: 22229:Serre relations 22199:Pre-Lie algebra 22194:Poisson algebra 22144:Leibniz algebra 22108: 22077: 22073: 22056: 22039: 21998: 21995: 21994: 21951: 21928: 21925: 21924: 21872: 21869: 21868: 21849: 21846: 21845: 21784: 21781: 21780: 21761: 21758: 21757: 21738: 21736: 21733: 21732: 21704: 21675: 21664: 21661: 21660: 21605: 21602: 21601: 21549: 21546: 21545: 21502: 21499: 21498: 21491: 21490:are needed. If 21473:category theory 21469: 21447: 21439: 21434: 21432: 21429: 21428: 21386: 21382: 21349: 21345: 21327: 21323: 21315: 21312: 21311: 21280: 21276: 21271: 21259: 21255: 21240: 21236: 21231: 21225: 21221: 21206: 21202: 21197: 21191: 21187: 21185: 21182: 21181: 21158: 21154: 21149: 21143: 21139: 21137: 21134: 21133: 21106: 21102: 21097: 21091: 21087: 21075: 21063: 21060: 21059: 21027: 21024: 21023: 21000: 20996: 20994: 20991: 20990: 20970: 20966: 20957: 20953: 20948: 20945: 20944: 20928: 20925: 20924: 20897: 20893: 20878: 20874: 20865: 20861: 20852: 20848: 20840: 20837: 20836: 20810: 20806: 20797: 20793: 20773: 20770: 20769: 20747: 20744: 20743: 20739: 20719:p-adic integers 20701: 20696: 20695: 20693: 20690: 20689: 20668: 20663: 20662: 20660: 20657: 20656: 20599: 20597: 20594: 20593: 20576: 20575: 20566: 20565: 20556: 20555: 20535: 20532: 20531: 20498: 20497: 20495: 20492: 20491: 20481: 20456: 20454: 20451: 20450: 20432:homotopy groups 20409: 20375: 20374: 20372: 20369: 20368: 20336: 20335: 20333: 20330: 20329: 20310: 20292: 20291: 20289: 20286: 20285: 20266: 20248: 20247: 20245: 20242: 20241: 20224: 20223: 20221: 20218: 20217: 20201: 20194: 20193: 20189: 20183: 20177: 20176: 20175: 20173: 20170: 20169: 20152: 20151: 20149: 20146: 20145: 20122: 20116: 20115: 20114: 20112: 20109: 20108: 20091: 20090: 20088: 20085: 20084: 20078: 20053: 20050: 20049: 20033: 20025: 20022: 20021: 19972: 19970: 19967: 19966: 19940:universal cover 19910: 19909: 19907: 19904: 19903: 19887: 19884: 19883: 19866: 19865: 19863: 19860: 19859: 19843: 19841: 19838: 19837: 19810: 19807: 19806: 19790: 19787: 19786: 19775: 19769: 19734: 19731: 19730: 19711: 19704: 19703: 19699: 19693: 19692: 19690: 19687: 19686: 19670: 19668: 19665: 19664: 19647: 19646: 19644: 19641: 19640: 19620: 19618: 19615: 19614: 19569: 19568: 19566: 19563: 19562: 19560: 19518: 19517: 19515: 19512: 19511: 19509: 19461: 19460: 19458: 19455: 19454: 19452: 19407: 19406: 19404: 19401: 19400: 19398: 19392: 19388: 19384: 19380: 19376: 19372: 19366: 19360: 19354: 19328: 19295: 19294: 19285: 19284: 19272: 19271: 19263: 19260: 19259: 19242: 19241: 19239: 19236: 19235: 19214: 19213: 19211: 19208: 19207: 19125: 19122: 19121: 19101: 19100: 19098: 19095: 19094: 19080: 19040: 19039: 19037: 19034: 19033: 18998: 18997: 18995: 18992: 18991: 18952: 18951: 18949: 18946: 18945: 18910: 18909: 18907: 18904: 18903: 18868: 18867: 18865: 18862: 18861: 18816: 18815: 18782: 18781: 18779: 18776: 18775: 18750: 18747: 18746: 18707: 18706: 18704: 18701: 18700: 18650: 18649: 18628: 18627: 18606: 18605: 18603: 18600: 18599: 18570: 18569: 18548: 18547: 18545: 18542: 18541: 18519: 18516: 18515: 18493: 18490: 18489: 18473: 18471: 18468: 18467: 18438: 18437: 18435: 18432: 18431: 18409: 18406: 18405: 18389: 18387: 18384: 18383: 18354: 18353: 18351: 18348: 18347: 18317: 18314: 18313: 18278: 18277: 18275: 18272: 18271: 18251: 18245: 18244: 18243: 18228: 18222: 18221: 18220: 18211: 18210: 18208: 18205: 18204: 18187: 18186: 18184: 18181: 18180: 18163: 18162: 18160: 18157: 18156: 18133: 18132: 18130: 18127: 18126: 18109: 18108: 18106: 18103: 18102: 18085: 18084: 18082: 18079: 18078: 18061: 18060: 18058: 18055: 18054: 18037: 18036: 18034: 18031: 18030: 18007: 18006: 18004: 18001: 18000: 17997: 17991: 17964: 17961: 17960: 17931: 17930: 17928: 17925: 17924: 17907: 17901: 17900: 17899: 17897: 17894: 17893: 17871: 17868: 17867: 17838: 17837: 17835: 17832: 17831: 17814: 17808: 17807: 17806: 17804: 17801: 17800: 17765: 17764: 17762: 17759: 17758: 17731: 17729: 17726: 17725: 17687: 17681: 17680: 17679: 17674: 17668: 17662: 17661: 17660: 17658: 17655: 17654: 17637: 17631: 17630: 17629: 17627: 17624: 17623: 17622:is an ideal in 17600: 17594: 17593: 17592: 17590: 17587: 17586: 17563: 17562: 17553: 17547: 17546: 17545: 17530: 17524: 17523: 17522: 17513: 17507: 17506: 17505: 17497: 17494: 17493: 17473: 17472: 17470: 17467: 17466: 17431: 17430: 17421: 17420: 17405: 17404: 17395: 17394: 17373: 17372: 17363: 17362: 17347: 17346: 17337: 17336: 17312: 17311: 17302: 17301: 17286: 17285: 17276: 17275: 17257: 17256: 17247: 17246: 17234: 17233: 17231: 17228: 17227: 17197: 17196: 17194: 17191: 17190: 17123: 17122: 17113: 17112: 17092: 17089: 17088: 17068: 17067: 17065: 17062: 17061: 17054:Engel's theorem 17026: 17020: 17019: 17018: 17013: 17007: 17006: 17004: 17001: 17000: 16977: 16971: 16970: 16969: 16964: 16958: 16952: 16951: 16950: 16948: 16945: 16944: 16921: 16920: 16911: 16905: 16904: 16903: 16888: 16882: 16881: 16880: 16871: 16865: 16864: 16863: 16855: 16852: 16851: 16831: 16830: 16828: 16825: 16824: 16807: 16806: 16804: 16801: 16800: 16771: 16770: 16758: 16757: 16745: 16744: 16735: 16734: 16713: 16712: 16700: 16699: 16690: 16689: 16671: 16670: 16661: 16660: 16648: 16647: 16645: 16642: 16641: 16612: 16611: 16609: 16606: 16605: 16581: 16580: 16578: 16575: 16574: 16557: 16556: 16542: 16539: 16538: 16510: 16507: 16506: 16486: 16485: 16476: 16475: 16470: 16467: 16466: 16449: 16448: 16446: 16443: 16442: 16405: 16402: 16401: 16384: 16380: 16378: 16375: 16374: 16358: 16355: 16354: 16337: 16332: 16331: 16329: 16326: 16325: 16305: 16300: 16299: 16297: 16294: 16293: 16276: 16275: 16273: 16270: 16269: 16240: 16239: 16237: 16234: 16233: 16227:solvable groups 16217:Analogously to 16215: 16207: 16173: 16172: 16170: 16167: 16166: 16134: 16132: 16129: 16128: 16099: 16098: 16096: 16093: 16092: 16084: 16059: 16058: 16050: 16047: 16046: 16026: 16025: 16010: 16009: 16007: 16004: 16003: 15982: 15981: 15979: 15976: 15975: 15948: 15947: 15932: 15931: 15929: 15926: 15925: 15908: 15904: 15889: 15885: 15883: 15880: 15879: 15860: 15856: 15855: 15850: 15835: 15831: 15830: 15825: 15819: 15816: 15815: 15795: 15794: 15786: 15783: 15782: 15761: 15760: 15758: 15755: 15754: 15753:is a basis for 15737: 15733: 15718: 15714: 15712: 15709: 15708: 15685: 15676: 15675: 15657: 15656: 15648: 15645: 15644: 15627: 15626: 15612: 15609: 15608: 15562: 15559: 15558: 15538: 15537: 15529: 15526: 15525: 15493: 15490: 15489: 15472: 15471: 15469: 15466: 15465: 15448: 15447: 15445: 15442: 15441: 15408: 15407: 15398: 15397: 15388: 15387: 15372: 15371: 15362: 15361: 15349: 15348: 15330: 15329: 15321: 15318: 15317: 15293: 15292: 15290: 15287: 15286: 15262: 15261: 15246: 15245: 15243: 15240: 15239: 15190: 15187: 15186: 15171: 15165: 15130: 15129: 15127: 15124: 15123: 15106: 15105: 15103: 15100: 15099: 15095: 15073: 15072: 15070: 15067: 15066: 15011: 15008: 15007: 14984: 14983: 14971: 14970: 14961: 14960: 14952: 14949: 14948: 14924: 14923: 14921: 14918: 14917: 14914: 14870: 14869: 14867: 14864: 14863: 14827: 14826: 14824: 14821: 14820: 14799: 14798: 14796: 14793: 14792: 14776: 14773: 14772: 14737: 14736: 14727: 14726: 14718: 14715: 14714: 14690: 14689: 14687: 14684: 14683: 14633: 14630: 14629: 14596: 14595: 14593: 14590: 14589: 14582: 14577: 14571: 14569:Representations 14536: 14533: 14532: 14487: 14484: 14483: 14461:as subalgebras. 14432: 14414: 14413: 14411: 14408: 14407: 14391: 14389: 14386: 14385: 14362: 14360: 14357: 14356: 14352: 14327: 14309: 14308: 14306: 14303: 14302: 14274: 14272: 14269: 14268: 14249: 14231: 14230: 14228: 14225: 14224: 14208: 14201: 14200: 14196: 14178: 14177: 14175: 14172: 14171: 14139: 14138: 14136: 14133: 14132: 14109: 14091: 14090: 14088: 14085: 14084: 14051: 14048: 14047: 14011: 14008: 14007: 13968: 13950: 13949: 13947: 13944: 13943: 13912: 13894: 13893: 13891: 13888: 13887: 13844: 13841: 13840: 13796: 13793: 13792: 13751: 13748: 13747: 13741: 13740: 13739: 13738: 13704: 13701: 13700: 13660: 13657: 13656: 13619: 13616: 13615: 13598: 13590: 13589: 13587: 13584: 13583: 13561: 13543: 13542: 13540: 13537: 13536: 13532: 13531: 13530: 13527: 13519: 13518: 13515: 13507: 13506: 13503: 13471: 13470: 13465: 13459: 13458: 13453: 13446: 13442: 13423: 13422: 13417: 13411: 13410: 13405: 13398: 13394: 13375: 13374: 13366: 13360: 13359: 13354: 13347: 13343: 13335: 13332: 13331: 13308: 13290: 13289: 13287: 13284: 13283: 13282:, is the space 13267: 13265: 13262: 13261: 13227: 13226: 13224: 13221: 13220: 13187: 13186: 13184: 13181: 13180: 13138: 13137: 13135: 13132: 13131: 13102: 13101: 13099: 13096: 13095: 13078: 13073: 13072: 13070: 13067: 13066: 13040: 13036: 13024: 13020: 13011: 13007: 13002: 12999: 12998: 12977: 12973: 12961: 12957: 12948: 12944: 12939: 12936: 12935: 12914: 12910: 12898: 12894: 12885: 12881: 12876: 12873: 12872: 12841: 12840: 12835: 12830: 12824: 12823: 12818: 12813: 12807: 12806: 12801: 12793: 12786: 12782: 12773: 12769: 12758: 12757: 12752: 12747: 12738: 12737: 12732: 12727: 12721: 12720: 12715: 12710: 12703: 12699: 12690: 12686: 12675: 12674: 12669: 12664: 12658: 12657: 12649: 12644: 12638: 12637: 12632: 12627: 12620: 12616: 12607: 12603: 12601: 12598: 12597: 12575: 12573: 12570: 12569: 12536: 12535: 12533: 12530: 12529: 12498: 12492: 12491: 12490: 12488: 12485: 12484: 12467: 12463: 12461: 12458: 12457: 12426: 12411: 12405: 12404: 12403: 12401: 12398: 12397: 12375: 12372: 12371: 12345: 12339: 12338: 12337: 12335: 12332: 12331: 12300: 12299: 12294: 12289: 12283: 12282: 12277: 12272: 12266: 12265: 12260: 12255: 12248: 12244: 12242: 12239: 12238: 12217: 12208: 12203: 12202: 12200: 12197: 12196: 12174: 12165: 12159: 12158: 12157: 12155: 12152: 12151: 12120: 12119: 12114: 12109: 12103: 12102: 12097: 12092: 12086: 12085: 12080: 12075: 12068: 12064: 12047: 12046: 12041: 12036: 12030: 12029: 12024: 12019: 12013: 12012: 12007: 12002: 11995: 11991: 11974: 11973: 11968: 11963: 11957: 11956: 11951: 11946: 11940: 11939: 11934: 11929: 11922: 11918: 11910: 11907: 11906: 11811: 11808: 11807: 11773: 11770: 11769: 11739: 11733: 11732: 11731: 11729: 11726: 11725: 11718: 11695: 11694: 11692: 11689: 11688: 11657: 11651: 11650: 11648: 11645: 11644: 11622: 11619: 11618: 11572: 11569: 11568: 11551: 11550: 11548: 11545: 11544: 11522: 11519: 11518: 11502: 11499: 11498: 11471: 11470: 11465: 11459: 11458: 11453: 11446: 11442: 11425: 11424: 11419: 11413: 11412: 11407: 11400: 11396: 11388: 11385: 11384: 11365: 11364: 11362: 11359: 11358: 11333: 11332: 11327: 11321: 11320: 11315: 11308: 11304: 11302: 11299: 11298: 11277: 11259: 11258: 11256: 11253: 11252: 11235: 11234: 11232: 11229: 11228: 11206: 11203: 11202: 11186: 11172: 11169: 11168: 11146: 11145: 11140: 11134: 11133: 11128: 11121: 11117: 11115: 11112: 11111: 11069: 11066: 11065: 11042: 11022: 11014: 11011: 11010: 10993: 10992: 10990: 10987: 10986: 10952: 10949: 10948: 10914: 10911: 10910: 10878: 10874: 10872: 10869: 10868: 10846: 10843: 10842: 10825: 10824: 10822: 10819: 10818: 10797: 10796: 10794: 10791: 10790: 10779: 10747: 10726: 10725: 10723: 10720: 10719: 10696: 10691: 10690: 10688: 10685: 10684: 10661: 10641: 10639: 10636: 10635: 10616: 10596: 10594: 10591: 10590: 10556: 10554: 10551: 10550: 10525: 10523: 10520: 10519: 10491: 10489: 10486: 10485: 10460: 10442: 10441: 10433: 10425: 10420: 10417: 10416: 10387: 10385: 10382: 10381: 10380:. For example, 10362: 10345: 10343: 10340: 10339: 10314: 10312: 10309: 10308: 10288: 10286: 10283: 10282: 10266: 10264: 10261: 10260: 10234: 10230: 10228: 10225: 10224: 10205: 10187: 10186: 10184: 10181: 10180: 10154: 10153: 10151: 10148: 10147: 10126: 10122: 10120: 10117: 10116: 10096: 10092: 10083: 10079: 10077: 10074: 10073: 10044: 10039: 10038: 10036: 10033: 10032: 10013: 9996: 9994: 9991: 9990: 9965: 9963: 9960: 9959: 9934: 9929: 9928: 9926: 9923: 9922: 9899: 9882: 9880: 9877: 9876: 9857: 9843: 9841: 9838: 9837: 9810: 9792: 9791: 9789: 9786: 9785: 9766: 9749: 9747: 9744: 9743: 9724: 9710: 9708: 9705: 9704: 9668: 9667: 9663: 9661: 9658: 9657: 9638: 9620: 9619: 9617: 9614: 9613: 9584: 9583: 9581: 9578: 9577: 9549: 9547: 9544: 9543: 9518: 9517: 9513: 9511: 9508: 9507: 9487: 9483: 9473: 9472: 9468: 9466: 9463: 9462: 9429: 9427: 9424: 9423: 9406: 9401: 9400: 9398: 9395: 9394: 9369: 9367: 9364: 9363: 9338: 9320: 9319: 9317: 9314: 9313: 9294: 9276: 9275: 9273: 9270: 9269: 9255: 9236: 9218: 9217: 9215: 9212: 9211: 9192: 9175: 9173: 9170: 9169: 9146: 9129: 9127: 9124: 9123: 9102: 9097: 9096: 9094: 9091: 9090: 9080: 9061: 9044: 9042: 9039: 9038: 9005: 8996: 8992: 8981: 8972: 8968: 8960: 8957: 8956: 8937: 8920: 8917: 8916: 8897: 8894: 8893: 8870: 8866: 8855: 8849: 8840: 8836: 8825: 8819: 8787: 8784: 8783: 8764: 8755: 8751: 8740: 8731: 8727: 8719: 8716: 8715: 8686: 8685: 8683: 8680: 8679: 8678:of elements of 8656: 8638: 8637: 8628: 8627: 8625: 8622: 8621: 8575: 8572: 8571: 8554: 8553: 8551: 8548: 8547: 8492: 8481: 8470: 8461: 8457: 8437: 8419: 8418: 8416: 8413: 8412: 8393: 8390: 8389: 8387:identity matrix 8363: 8354: 8350: 8348: 8345: 8344: 8323: 8322: 8320: 8317: 8316: 8293: 8276: 8268: 8265: 8264: 8257: 8252: 8218: 8217: 8215: 8212: 8211: 8185: 8180: 8179: 8177: 8174: 8173: 8157: 8154: 8153: 8122: 8121: 8112: 8107: 8106: 8101: 8092: 8091: 8082: 8077: 8076: 8064: 8063: 8054: 8049: 8048: 8046: 8043: 8042: 8018: 8017: 8008: 8003: 8002: 8000: 7997: 7996: 7995:is an ideal in 7976: 7975: 7966: 7961: 7960: 7958: 7955: 7954: 7934: 7933: 7924: 7919: 7918: 7909: 7908: 7900: 7897: 7896: 7852: 7844: 7843: 7841: 7838: 7837: 7820: 7812: 7811: 7809: 7806: 7805: 7788: 7787: 7779: 7776: 7775: 7676: 7673: 7672: 7652: 7651: 7642: 7641: 7633: 7630: 7629: 7612: 7611: 7609: 7606: 7605: 7585: 7584: 7575: 7570: 7569: 7567: 7564: 7563: 7542: 7541: 7539: 7536: 7535: 7507: 7498: 7497: 7495: 7492: 7491: 7482:of a Lie group 7446: 7444: 7441: 7440: 7411: 7409: 7406: 7405: 7373: 7371: 7368: 7367: 7329: 7325: 7323: 7320: 7319: 7277: 7273: 7264: 7172: 7169: 7168: 7104: 7099: 7098: 7096: 7093: 7092: 7075: 7071: 7065: 7061: 7052: 7048: 7042: 7038: 7026: 7022: 7013: 7009: 7004: 7001: 7000: 6983: 6979: 6977: 6974: 6973: 6956: 6952: 6950: 6947: 6946: 6914: 6911: 6910: 6843: 6840: 6839: 6805: 6802: 6801: 6773: 6747: 6746: 6737: 6736: 6731: 6725: 6724: 6715: 6714: 6712: 6709: 6708: 6691: 6690: 6685: 6679: 6678: 6676: 6673: 6672: 6655: 6654: 6652: 6649: 6648: 6627: 6626: 6624: 6621: 6620: 6603: 6602: 6593: 6592: 6587: 6581: 6580: 6578: 6575: 6574: 6557: 6556: 6551: 6545: 6544: 6535: 6534: 6532: 6529: 6528: 6511: 6510: 6508: 6505: 6504: 6487: 6486: 6484: 6481: 6480: 6463: 6462: 6460: 6457: 6456: 6423: 6391: 6388: 6387: 6366: 6365: 6364: 6355: 6354: 6352: 6349: 6348: 6327: 6326: 6325: 6323: 6320: 6319: 6302: 6301: 6299: 6296: 6295: 6260: 6249: 6208: 6185: 6171: 6168: 6167: 6143: 6142: 6141: 6130: 6118: 6117: 6096: 6085: 6082: 6081: 6060: 6059: 6058: 6049: 6048: 6046: 6043: 6042: 6015: 6014: 6013: 6011: 6008: 6007: 5990: 5989: 5987: 5984: 5983: 5980: 5958: 5957: 5955: 5952: 5951: 5931: 5925: 5924: 5923: 5921: 5918: 5917: 5900: 5899: 5892: 5891: 5886: 5865: 5864: 5844: 5834: 5833: 5824: 5823: 5816: 5815: 5807: 5798: 5797: 5789: 5776: 5775: 5765: 5764: 5756: 5747: 5746: 5738: 5725: 5724: 5717: 5705: 5704: 5699: 5693: 5692: 5687: 5677: 5676: 5666: 5665: 5660: 5654: 5653: 5648: 5638: 5637: 5636: 5632: 5628: 5626: 5623: 5622: 5597: 5594: 5593: 5571: 5568: 5567: 5538: 5537: 5535: 5532: 5531: 5514: 5508: 5507: 5506: 5504: 5501: 5500: 5463: 5462: 5460: 5457: 5456: 5417: 5416: 5414: 5411: 5410: 5393: 5387: 5386: 5385: 5383: 5380: 5379: 5376: 5344: 5343: 5337: 5336: 5335: 5333: 5330: 5329: 5328:is an ideal of 5313: 5310: 5309: 5282: 5281: 5275: 5274: 5273: 5271: 5268: 5267: 5251: 5248: 5247: 5216: 5183: 5182: 5154: 5153: 5147: 5146: 5145: 5143: 5140: 5139: 5122: 5119: 5118: 5089: 5088: 5079: 5078: 5076: 5073: 5072: 5052: 5051: 5049: 5046: 5045: 5017: 4984: 4983: 4955: 4954: 4948: 4947: 4946: 4944: 4941: 4940: 4923: 4920: 4919: 4901: 4900: 4892: 4889: 4888: 4847: 4844: 4843: 4822: 4821: 4807: 4804: 4803: 4775: 4770: 4764: 4763: 4761: 4758: 4757: 4740: 4739: 4737: 4734: 4733: 4717: 4714: 4713: 4696: 4695: 4686: 4685: 4677: 4674: 4673: 4652: 4651: 4646: 4640: 4639: 4630: 4629: 4627: 4624: 4623: 4606: 4605: 4600: 4594: 4593: 4591: 4588: 4587: 4567: 4566: 4564: 4561: 4560: 4543: 4542: 4540: 4537: 4536: 4498: 4497: 4477: 4404: 4403: 4394: 4393: 4385: 4382: 4381: 4344: 4343: 4331: 4330: 4321: 4320: 4315: 4312: 4311: 4291: 4290: 4281: 4280: 4278: 4275: 4274: 4254: 4253: 4244: 4243: 4241: 4238: 4237: 4189: 4186: 4185: 4145: 4142: 4141: 4140:, meaning that 4134: 4129: 4091: 4089: 4086: 4085: 4083:algebraic group 4047: 4046: 4044: 4041: 4040: 4013: 3995: 3994: 3992: 3989: 3988: 3969: 3952: 3950: 3947: 3946: 3927: 3909: 3908: 3906: 3903: 3902: 3886:, the group of 3868: 3851: 3849: 3846: 3845: 3823: 3805: 3804: 3802: 3799: 3798: 3739: 3736: 3735: 3709: 3700: 3699: 3698: 3696: 3693: 3692: 3657: 3656: 3654: 3651: 3650: 3634:, the space of 3595: 3594: 3592: 3589: 3588: 3572: 3569: 3568: 3552: 3549: 3548: 3525: 3522: 3521: 3505: 3502: 3501: 3455: 3452: 3451: 3432: 3429: 3428: 3412: 3409: 3408: 3392: 3389: 3388: 3384: 3359: 3356: 3355: 3352: 3347: 3321: 3320: 3318: 3315: 3314: 3297: 3296: 3294: 3291: 3290: 3289:must be all of 3269: 3268: 3266: 3263: 3262: 3245: 3244: 3242: 3239: 3238: 3199: 3165: 3164: 3162: 3159: 3158: 3115: 3114: 3112: 3109: 3108: 3107:letter such as 3049: 3046: 3045: 3024: 3023: 3021: 3018: 3017: 2995: 2992: 2991: 2932: 2929: 2928: 2898: 2897: 2895: 2892: 2891: 2869: 2866: 2865: 2813: 2810: 2809: 2769: 2766: 2765: 2741: 2740: 2738: 2735: 2734: 2706: 2703: 2702: 2589: 2586: 2585: 2576:Jacobi identity 2553: 2552: 2550: 2547: 2546: 2530: 2527: 2526: 2485: 2482: 2481: 2449: 2448: 2446: 2443: 2442: 2414: 2411: 2410: 2394: 2391: 2390: 2368: 2365: 2364: 2278: 2275: 2274: 2188: 2185: 2184: 2154: 2153: 2144: 2143: 2134: 2133: 2110: 2107: 2106: 2087: 2084: 2083: 2063: 2062: 2059: 2056: 2055: 2052: 2032:Wilhelm Killing 2020: 1969: 1966: 1965: 1949: 1946: 1945: 1929: 1926: 1925: 1908: 1903: 1902: 1894: 1891: 1890: 1783: 1780: 1779: 1739: 1736: 1735: 1692: 1689: 1688: 1668: 1663: 1662: 1653: 1652: 1650: 1647: 1646: 1610: 1609: 1607: 1604: 1603: 1578: 1577: 1575: 1572: 1571: 1549:covering spaces 1541:complex numbers 1467: 1464: 1463: 1423: 1420: 1419: 1403: 1400: 1399: 1383: 1380: 1379: 1372:Jacobi identity 1354: 1353: 1344: 1343: 1334: 1333: 1331: 1328: 1327: 1303: 1302: 1300: 1297: 1296: 1287: 1273: 1269: 1254: 1225: 1224: 1157: 1147: 1146: 1125: 1121: 1113: 1111: 1108: 1107: 1081: 1076: 1075: 1073: 1070: 1069: 1044: 1039: 1038: 1036: 1033: 1032: 1013: 983:Polynomial ring 933:Integral domain 922: 912: 911: 837: 829: 824: 816: 813: 812: 791: 789: 786: 785: 771:Involutive ring 656: 645: 639: 630: 585: 584: 583: 554:Wilhelm Killing 538: 530: 529: 528: 503: 492: 491: 490: 455: 445: 444: 443: 430: 414: 392:Dynkin diagrams 386: 376: 375: 374: 356: 334:Exponential map 323: 313: 312: 311: 292:Conformal group 271: 261: 260: 252: 244: 236: 228: 220: 201: 191: 181: 171: 152: 142: 141: 140: 121:Special unitary 65: 35: 28: 23: 22: 15: 12: 11: 5: 23368: 23358: 23357: 23352: 23338: 23337: 23328: 23310: 23308:on 2010-04-20. 23298:; et al. 23296:Kac, Victor G. 23290: 23289:External links 23287: 23286: 23285: 23272:978-0127505503 23271: 23263:Academic Press 23255:Wigner, Eugene 23251: 23237: 23221: 23207: 23191: 23166:(2): 205–295, 23150: 23134: 23118: 23105: 23089: 23076: 23056: 23043: 23018: 23004: 22988: 22974: 22954: 22933:978-3319134666 22932: 22911: 22889: 22857: 22843: 22831:Erdmann, Karin 22827: 22813: 22793: 22790: 22788: 22787: 22775: 22771:Humphreys 1978 22763: 22751: 22739: 22727: 22712: 22700: 22688: 22686:, section 2.6. 22676: 22664: 22652: 22640: 22638:, section 3.9. 22628: 22616: 22604: 22592: 22580: 22578:, section I.7. 22568: 22556: 22552:Humphreys 1978 22544: 22529: 22517: 22505: 22493: 22478: 22466: 22454: 22452:, Theorem 3.1. 22442: 22430: 22418: 22406: 22394: 22382: 22378:Humphreys 1978 22370: 22358: 22346: 22337: 22325: 22313: 22309:Humphreys 1978 22301: 22289: 22276: 22274: 22271: 22269: 22268: 22266:, Section 2)). 22264:Bourbaki (1989 22239: 22237: 22234: 22232: 22231: 22226: 22221: 22216: 22211: 22206: 22204:Quantum groups 22201: 22196: 22191: 22186: 22181: 22176: 22171: 22166: 22161: 22156: 22151: 22146: 22141: 22136: 22131: 22126: 22120: 22115: 22109: 22107: 22104: 22103: 22102: 22091: 22088: 22085: 22080: 22076: 22072: 22069: 22066: 22062: 22059: 22055: 22052: 22049: 22045: 22042: 22038: 22035: 22032: 22029: 22026: 22023: 22020: 22017: 22014: 22011: 22008: 22005: 22002: 21988: 21987: 21976: 21973: 21970: 21967: 21964: 21961: 21957: 21954: 21950: 21947: 21944: 21941: 21938: 21935: 21932: 21918: 21917: 21906: 21903: 21900: 21897: 21894: 21891: 21888: 21885: 21882: 21879: 21876: 21853: 21842: 21841: 21830: 21827: 21824: 21821: 21818: 21815: 21812: 21809: 21806: 21803: 21800: 21797: 21794: 21791: 21788: 21776:is defined by 21765: 21744: 21741: 21729: 21728: 21717: 21714: 21710: 21707: 21703: 21700: 21697: 21694: 21691: 21688: 21685: 21681: 21678: 21674: 21671: 21668: 21656:is defined as 21645: 21642: 21639: 21636: 21633: 21630: 21627: 21624: 21621: 21618: 21615: 21612: 21609: 21595: 21594: 21583: 21580: 21577: 21574: 21571: 21568: 21565: 21562: 21559: 21556: 21553: 21541:is defined by 21530: 21527: 21524: 21521: 21518: 21515: 21512: 21509: 21506: 21468: 21465: 21464: 21463: 21450: 21446: 21442: 21437: 21425:dihedral group 21420: 21419: 21418: 21417: 21406: 21401: 21398: 21395: 21392: 21389: 21385: 21381: 21378: 21375: 21372: 21369: 21366: 21363: 21358: 21355: 21352: 21348: 21344: 21341: 21336: 21333: 21330: 21326: 21322: 21319: 21295: 21292: 21289: 21286: 21283: 21279: 21274: 21268: 21265: 21262: 21258: 21254: 21249: 21246: 21243: 21239: 21234: 21228: 21224: 21220: 21215: 21212: 21209: 21205: 21200: 21194: 21190: 21167: 21164: 21161: 21157: 21152: 21146: 21142: 21130: 21129: 21128: 21115: 21112: 21109: 21105: 21100: 21094: 21090: 21084: 21081: 21078: 21074: 21070: 21067: 21054: 21053: 21037: 21034: 21031: 21009: 21006: 21003: 20999: 20978: 20973: 20969: 20965: 20960: 20956: 20952: 20932: 20908: 20905: 20900: 20896: 20892: 20889: 20886: 20881: 20877: 20873: 20868: 20864: 20860: 20855: 20851: 20847: 20844: 20824: 20821: 20816: 20813: 20809: 20803: 20800: 20796: 20792: 20789: 20786: 20783: 20780: 20777: 20757: 20754: 20751: 20738: 20735: 20704: 20699: 20686:p-adic numbers 20671: 20666: 20633:) through the 20602: 20579: 20574: 20569: 20564: 20559: 20554: 20551: 20545: 20539: 20530:-bilinear map 20501: 20480: 20477: 20459: 20444:Daniel Quillen 20408: 20405: 20378: 20353: 20350: 20347: 20342: 20339: 20317: 20313: 20309: 20306: 20303: 20298: 20295: 20273: 20269: 20265: 20262: 20259: 20254: 20251: 20227: 20204: 20197: 20192: 20186: 20180: 20155: 20125: 20119: 20094: 20077: 20074: 20057: 20036: 20032: 20029: 19975: 19913: 19891: 19869: 19846: 19814: 19794: 19771:Main article: 19768: 19765: 19744: 19741: 19738: 19714: 19707: 19702: 19696: 19673: 19650: 19623: 19595: 19592: 19589: 19586: 19583: 19580: 19575: 19572: 19556: 19544: 19541: 19538: 19535: 19532: 19529: 19524: 19521: 19505: 19493: 19490: 19487: 19484: 19481: 19478: 19475: 19472: 19467: 19464: 19448: 19436: 19433: 19430: 19427: 19424: 19421: 19418: 19413: 19410: 19394: 19390: 19386: 19382: 19378: 19374: 19368: 19362: 19356: 19350: 19327: 19326:Classification 19324: 19312: 19309: 19306: 19303: 19298: 19293: 19288: 19283: 19280: 19275: 19270: 19267: 19245: 19217: 19204: 19203: 19192: 19189: 19186: 19183: 19180: 19177: 19174: 19171: 19168: 19165: 19162: 19159: 19156: 19153: 19150: 19147: 19144: 19141: 19138: 19135: 19132: 19129: 19104: 19079: 19076: 19063: 19060: 19057: 19054: 19051: 19046: 19043: 19021: 19018: 19015: 19012: 19009: 19004: 19001: 18975: 18972: 18969: 18966: 18963: 18958: 18955: 18933: 18930: 18927: 18924: 18921: 18916: 18913: 18891: 18888: 18885: 18882: 18879: 18874: 18871: 18854: 18853: 18842: 18839: 18836: 18833: 18830: 18827: 18822: 18819: 18814: 18811: 18808: 18805: 18802: 18799: 18796: 18793: 18788: 18785: 18760: 18757: 18754: 18730: 18727: 18724: 18721: 18718: 18713: 18710: 18667: 18664: 18661: 18656: 18653: 18648: 18645: 18642: 18639: 18634: 18631: 18626: 18623: 18620: 18617: 18612: 18609: 18587: 18584: 18581: 18576: 18573: 18568: 18565: 18562: 18559: 18554: 18551: 18529: 18526: 18523: 18503: 18500: 18497: 18476: 18455: 18452: 18449: 18444: 18441: 18419: 18416: 18413: 18392: 18371: 18368: 18365: 18360: 18357: 18327: 18324: 18321: 18301: 18298: 18295: 18292: 18289: 18284: 18281: 18254: 18248: 18242: 18239: 18236: 18231: 18225: 18219: 18214: 18190: 18166: 18136: 18112: 18088: 18064: 18040: 18010: 17999:A Lie algebra 17993:Main article: 17990: 17987: 17974: 17971: 17968: 17948: 17945: 17942: 17937: 17934: 17910: 17904: 17881: 17878: 17875: 17855: 17852: 17849: 17844: 17841: 17817: 17811: 17788: 17785: 17782: 17779: 17776: 17771: 17768: 17734: 17696: 17693: 17690: 17684: 17677: 17671: 17665: 17640: 17634: 17609: 17606: 17603: 17597: 17583: 17582: 17571: 17566: 17561: 17556: 17550: 17544: 17541: 17538: 17533: 17527: 17521: 17516: 17510: 17504: 17501: 17476: 17463: 17462: 17451: 17448: 17445: 17442: 17439: 17434: 17429: 17424: 17419: 17416: 17413: 17408: 17403: 17398: 17393: 17390: 17387: 17384: 17381: 17376: 17371: 17366: 17361: 17358: 17355: 17350: 17345: 17340: 17335: 17332: 17329: 17326: 17323: 17320: 17315: 17310: 17305: 17300: 17297: 17294: 17289: 17284: 17279: 17274: 17271: 17268: 17265: 17260: 17255: 17250: 17245: 17242: 17237: 17221:derived series 17213:is said to be 17200: 17180: 17179: 17168: 17165: 17162: 17159: 17156: 17153: 17150: 17147: 17144: 17141: 17138: 17135: 17131: 17126: 17121: 17116: 17111: 17108: 17105: 17102: 17099: 17096: 17071: 17035: 17032: 17029: 17023: 17016: 17010: 16999:is central in 16986: 16983: 16980: 16974: 16967: 16961: 16955: 16941: 16940: 16929: 16924: 16919: 16914: 16908: 16902: 16899: 16896: 16891: 16885: 16879: 16874: 16868: 16862: 16859: 16834: 16810: 16797: 16796: 16785: 16782: 16779: 16774: 16769: 16766: 16761: 16756: 16753: 16748: 16743: 16738: 16733: 16730: 16727: 16724: 16721: 16716: 16711: 16708: 16703: 16698: 16693: 16688: 16685: 16682: 16679: 16674: 16669: 16664: 16659: 16656: 16651: 16615: 16604:A Lie algebra 16584: 16560: 16555: 16552: 16549: 16546: 16526: 16523: 16520: 16517: 16514: 16494: 16489: 16484: 16479: 16474: 16452: 16415: 16412: 16409: 16387: 16383: 16362: 16340: 16335: 16308: 16303: 16279: 16243: 16232:A Lie algebra 16214: 16211: 16206: 16203: 16190: 16187: 16184: 16179: 16176: 16150: 16147: 16144: 16140: 16137: 16116: 16113: 16110: 16105: 16102: 16083: 16080: 16067: 16062: 16057: 16054: 16034: 16029: 16024: 16021: 16018: 16013: 15985: 15956: 15951: 15946: 15943: 15940: 15935: 15911: 15907: 15903: 15900: 15897: 15892: 15888: 15863: 15859: 15853: 15849: 15845: 15838: 15834: 15828: 15824: 15803: 15798: 15793: 15790: 15764: 15740: 15736: 15732: 15729: 15726: 15721: 15717: 15692: 15688: 15684: 15679: 15674: 15671: 15668: 15665: 15660: 15655: 15652: 15630: 15625: 15622: 15619: 15616: 15596: 15593: 15590: 15587: 15584: 15581: 15578: 15575: 15572: 15569: 15566: 15546: 15541: 15536: 15533: 15510:tensor product 15497: 15475: 15451: 15438:tensor algebra 15434: 15433: 15422: 15419: 15416: 15411: 15406: 15401: 15396: 15391: 15386: 15383: 15380: 15375: 15370: 15365: 15360: 15357: 15352: 15347: 15344: 15341: 15338: 15333: 15328: 15325: 15296: 15270: 15265: 15260: 15257: 15254: 15249: 15224: 15221: 15218: 15215: 15212: 15209: 15206: 15203: 15200: 15197: 15194: 15167:Main article: 15164: 15161: 15148:Weyl's theorem 15133: 15109: 15094: 15091: 15076: 15054: 15051: 15048: 15045: 15042: 15039: 15036: 15033: 15030: 15027: 15024: 15021: 15018: 15015: 15004: 15003: 14992: 14987: 14982: 14977: 14974: 14969: 14964: 14959: 14956: 14927: 14913: 14910: 14893: 14890: 14887: 14884: 14881: 14876: 14873: 14830: 14802: 14780: 14769: 14768: 14757: 14754: 14751: 14748: 14743: 14740: 14735: 14730: 14725: 14722: 14693: 14680:representation 14667: 14664: 14661: 14658: 14655: 14652: 14649: 14646: 14643: 14640: 14637: 14613: 14610: 14607: 14602: 14599: 14581: 14578: 14573:Main article: 14570: 14567: 14566: 14565: 14549: 14546: 14543: 14540: 14506: 14503: 14500: 14497: 14494: 14491: 14473: 14462: 14451: 14439: 14435: 14431: 14428: 14425: 14420: 14417: 14394: 14378: 14365: 14351: 14348: 14347: 14346: 14334: 14330: 14326: 14323: 14320: 14315: 14312: 14290: 14287: 14284: 14280: 14277: 14256: 14252: 14248: 14245: 14242: 14237: 14234: 14211: 14204: 14199: 14195: 14192: 14189: 14184: 14181: 14169:tensor product 14167:, meaning the 14156: 14153: 14150: 14145: 14142: 14116: 14112: 14108: 14105: 14102: 14097: 14094: 14080: 14079: 14067: 14064: 14061: 14058: 14055: 14027: 14024: 14021: 14018: 14015: 13975: 13971: 13967: 13964: 13961: 13956: 13953: 13919: 13915: 13911: 13908: 13905: 13900: 13897: 13883: 13882: 13881: 13880: 13869: 13866: 13863: 13860: 13857: 13854: 13851: 13848: 13838: 13827: 13824: 13821: 13818: 13815: 13812: 13809: 13806: 13803: 13800: 13790: 13779: 13776: 13773: 13770: 13767: 13764: 13761: 13758: 13755: 13726: 13723: 13720: 13717: 13714: 13711: 13708: 13688: 13685: 13682: 13679: 13676: 13673: 13670: 13667: 13664: 13644: 13641: 13638: 13635: 13632: 13629: 13626: 13623: 13601: 13596: 13593: 13581:Riemann sphere 13568: 13564: 13560: 13557: 13554: 13549: 13546: 13535:The action of 13534: 13533: 13528: 13521: 13520: 13516: 13509: 13508: 13504: 13497: 13496: 13495: 13494: 13493: 13492: 13491: 13480: 13476: 13469: 13466: 13464: 13461: 13460: 13457: 13454: 13452: 13449: 13448: 13445: 13441: 13438: 13432: 13428: 13421: 13418: 13416: 13413: 13412: 13409: 13406: 13404: 13401: 13400: 13397: 13393: 13390: 13384: 13380: 13373: 13370: 13367: 13365: 13362: 13361: 13358: 13355: 13353: 13350: 13349: 13346: 13342: 13339: 13328: 13327: 13315: 13311: 13307: 13304: 13301: 13296: 13293: 13270: 13257: 13256: 13244: 13241: 13238: 13233: 13230: 13204: 13201: 13198: 13193: 13190: 13176: 13175: 13168:Spin (physics) 13155: 13152: 13149: 13144: 13141: 13119: 13116: 13113: 13108: 13105: 13081: 13076: 13062: 13061: 13060: 13059: 13048: 13043: 13039: 13035: 13032: 13027: 13023: 13019: 13014: 13010: 13006: 12996: 12985: 12980: 12976: 12972: 12969: 12964: 12960: 12956: 12951: 12947: 12943: 12933: 12922: 12917: 12913: 12909: 12906: 12901: 12897: 12893: 12888: 12884: 12880: 12867: 12866: 12865: 12853: 12846: 12839: 12836: 12834: 12831: 12829: 12826: 12825: 12822: 12819: 12817: 12814: 12812: 12809: 12808: 12805: 12802: 12800: 12797: 12794: 12792: 12789: 12788: 12785: 12781: 12776: 12772: 12767: 12763: 12756: 12753: 12751: 12748: 12746: 12743: 12740: 12739: 12736: 12733: 12731: 12728: 12726: 12723: 12722: 12719: 12716: 12714: 12711: 12709: 12706: 12705: 12702: 12698: 12693: 12689: 12684: 12680: 12673: 12670: 12668: 12665: 12663: 12660: 12659: 12656: 12653: 12650: 12648: 12645: 12643: 12640: 12639: 12636: 12633: 12631: 12628: 12626: 12623: 12622: 12619: 12615: 12610: 12606: 12592: 12591: 12578: 12553: 12550: 12547: 12542: 12539: 12525: 12524: 12512: 12509: 12506: 12501: 12495: 12470: 12466: 12445: 12442: 12439: 12436: 12433: 12429: 12425: 12422: 12419: 12414: 12408: 12385: 12382: 12379: 12359: 12356: 12353: 12348: 12342: 12326:For any field 12323: 12322: 12319: 12318: 12317: 12305: 12298: 12295: 12293: 12290: 12288: 12285: 12284: 12281: 12278: 12276: 12273: 12271: 12268: 12267: 12264: 12261: 12259: 12256: 12254: 12251: 12250: 12247: 12224: 12220: 12216: 12211: 12206: 12181: 12177: 12173: 12168: 12162: 12147: 12146: 12145: 12144: 12132: 12125: 12118: 12115: 12113: 12110: 12108: 12105: 12104: 12101: 12098: 12096: 12093: 12091: 12088: 12087: 12084: 12081: 12079: 12076: 12074: 12071: 12070: 12067: 12063: 12060: 12056: 12052: 12045: 12042: 12040: 12037: 12035: 12032: 12031: 12028: 12025: 12023: 12020: 12018: 12015: 12014: 12011: 12008: 12006: 12003: 12001: 11998: 11997: 11994: 11990: 11987: 11983: 11979: 11972: 11969: 11967: 11964: 11962: 11959: 11958: 11955: 11952: 11950: 11947: 11945: 11942: 11941: 11938: 11935: 11933: 11930: 11928: 11925: 11924: 11921: 11917: 11914: 11897: 11896: 11895: 11883: 11880: 11877: 11874: 11871: 11868: 11865: 11861: 11858: 11855: 11852: 11849: 11846: 11843: 11840: 11836: 11833: 11830: 11827: 11824: 11821: 11818: 11815: 11802: 11801: 11789: 11786: 11783: 11780: 11777: 11753: 11750: 11747: 11742: 11736: 11717: 11714: 11713: 11712: 11698: 11676: 11673: 11670: 11667: 11664: 11660: 11654: 11632: 11629: 11626: 11606: 11603: 11600: 11597: 11594: 11591: 11588: 11585: 11582: 11579: 11576: 11554: 11532: 11529: 11526: 11506: 11497:For any field 11494: 11493: 11492: 11491: 11480: 11476: 11469: 11466: 11464: 11461: 11460: 11457: 11454: 11452: 11449: 11448: 11445: 11441: 11438: 11434: 11430: 11423: 11420: 11418: 11415: 11414: 11411: 11408: 11406: 11403: 11402: 11399: 11395: 11392: 11368: 11355: 11354: 11353: 11342: 11338: 11331: 11328: 11326: 11323: 11322: 11319: 11316: 11314: 11311: 11310: 11307: 11284: 11280: 11276: 11273: 11270: 11265: 11262: 11238: 11216: 11213: 11210: 11189: 11185: 11182: 11179: 11176: 11165: 11164: 11163: 11151: 11144: 11141: 11139: 11136: 11135: 11132: 11129: 11127: 11124: 11123: 11120: 11101: 11100: 11088: 11085: 11082: 11079: 11076: 11073: 11049: 11045: 11041: 11038: 11035: 11031: 11028: 11025: 11021: 11018: 10996: 10974: 10971: 10968: 10965: 10962: 10959: 10956: 10936: 10933: 10930: 10927: 10924: 10921: 10918: 10898: 10895: 10891: 10887: 10884: 10881: 10877: 10856: 10853: 10850: 10828: 10800: 10778: 10777:Two dimensions 10775: 10774: 10773: 10766: 10754: 10750: 10746: 10743: 10740: 10737: 10732: 10729: 10702: 10699: 10694: 10668: 10664: 10660: 10657: 10654: 10651: 10647: 10644: 10623: 10619: 10615: 10612: 10609: 10606: 10602: 10599: 10584: 10572: 10569: 10566: 10562: 10559: 10538: 10535: 10532: 10528: 10507: 10504: 10501: 10497: 10494: 10479: 10467: 10463: 10459: 10456: 10453: 10448: 10445: 10440: 10436: 10432: 10428: 10424: 10400: 10397: 10394: 10390: 10369: 10365: 10361: 10358: 10355: 10351: 10348: 10327: 10324: 10321: 10317: 10291: 10269: 10248: 10245: 10242: 10237: 10233: 10212: 10208: 10204: 10201: 10198: 10193: 10190: 10168: 10165: 10162: 10157: 10129: 10125: 10102: 10099: 10095: 10091: 10086: 10082: 10047: 10042: 10020: 10016: 10012: 10009: 10006: 10002: 9999: 9978: 9975: 9972: 9968: 9952: 9951: 9937: 9932: 9906: 9902: 9898: 9895: 9892: 9888: 9885: 9864: 9860: 9856: 9853: 9850: 9846: 9817: 9813: 9809: 9806: 9803: 9798: 9795: 9773: 9769: 9765: 9762: 9759: 9755: 9752: 9731: 9727: 9723: 9720: 9717: 9713: 9700: 9699: 9683: 9680: 9677: 9671: 9666: 9645: 9641: 9637: 9634: 9631: 9626: 9623: 9601: 9598: 9595: 9590: 9587: 9565: 9562: 9559: 9555: 9552: 9521: 9516: 9493: 9490: 9486: 9482: 9476: 9471: 9442: 9439: 9436: 9432: 9409: 9404: 9382: 9379: 9376: 9372: 9357: 9345: 9341: 9337: 9334: 9331: 9326: 9323: 9301: 9297: 9293: 9290: 9287: 9282: 9279: 9264:matrices with 9243: 9239: 9235: 9232: 9229: 9224: 9221: 9199: 9195: 9191: 9188: 9185: 9181: 9178: 9153: 9149: 9145: 9142: 9139: 9135: 9132: 9105: 9100: 9068: 9064: 9060: 9057: 9054: 9050: 9047: 9012: 9008: 9004: 8999: 8995: 8991: 8988: 8984: 8980: 8975: 8971: 8967: 8964: 8944: 8940: 8936: 8933: 8930: 8927: 8924: 8901: 8881: 8878: 8873: 8869: 8861: 8858: 8854: 8848: 8843: 8839: 8831: 8828: 8824: 8818: 8815: 8812: 8809: 8806: 8803: 8800: 8797: 8794: 8791: 8782:is defined by 8771: 8767: 8763: 8758: 8754: 8750: 8747: 8743: 8739: 8734: 8730: 8726: 8723: 8689: 8663: 8659: 8655: 8652: 8649: 8644: 8641: 8636: 8631: 8609: 8606: 8603: 8600: 8597: 8594: 8591: 8588: 8585: 8582: 8579: 8557: 8544: 8543: 8532: 8529: 8526: 8523: 8520: 8517: 8514: 8511: 8505: 8502: 8499: 8495: 8491: 8488: 8480: 8477: 8473: 8469: 8464: 8460: 8456: 8453: 8450: 8447: 8443: 8440: 8436: 8433: 8430: 8427: 8422: 8397: 8370: 8366: 8362: 8357: 8353: 8326: 8300: 8296: 8292: 8289: 8286: 8282: 8279: 8275: 8272: 8256: 8253: 8251: 8248: 8235: 8232: 8229: 8224: 8221: 8199: 8196: 8193: 8188: 8161: 8130: 8125: 8120: 8115: 8104: 8100: 8095: 8090: 8085: 8075: 8072: 8067: 8062: 8057: 8026: 8021: 8016: 8011: 7984: 7979: 7974: 7969: 7942: 7937: 7932: 7927: 7917: 7912: 7907: 7904: 7884: 7881: 7878: 7875: 7872: 7869: 7866: 7863: 7860: 7855: 7850: 7847: 7823: 7818: 7815: 7791: 7786: 7783: 7768: 7767: 7755: 7752: 7749: 7746: 7743: 7740: 7737: 7734: 7731: 7728: 7725: 7722: 7719: 7716: 7713: 7710: 7707: 7704: 7701: 7698: 7695: 7692: 7689: 7686: 7683: 7680: 7655: 7650: 7645: 7640: 7637: 7615: 7593: 7588: 7583: 7578: 7545: 7520: 7517: 7514: 7506: 7501: 7486:on a manifold 7459: 7456: 7453: 7424: 7421: 7418: 7376: 7343: 7340: 7337: 7332: 7328: 7298: 7297: 7285: 7280: 7276: 7271: 7268: 7263: 7260: 7257: 7254: 7251: 7248: 7245: 7242: 7239: 7236: 7233: 7230: 7227: 7224: 7221: 7218: 7215: 7212: 7209: 7206: 7203: 7200: 7197: 7194: 7191: 7188: 7185: 7182: 7179: 7176: 7118: 7115: 7112: 7107: 7078: 7074: 7068: 7064: 7060: 7055: 7051: 7045: 7041: 7037: 7034: 7029: 7025: 7021: 7016: 7012: 7008: 6986: 6982: 6959: 6955: 6930: 6927: 6924: 6921: 6918: 6907: 6906: 6895: 6892: 6889: 6886: 6883: 6880: 6877: 6874: 6871: 6868: 6865: 6862: 6859: 6856: 6853: 6850: 6847: 6821: 6818: 6815: 6812: 6809: 6772: 6769: 6750: 6745: 6740: 6734: 6728: 6723: 6718: 6694: 6688: 6682: 6658: 6630: 6606: 6601: 6596: 6590: 6584: 6560: 6554: 6548: 6543: 6538: 6514: 6490: 6466: 6442: 6439: 6436: 6433: 6429: 6426: 6422: 6419: 6416: 6413: 6410: 6407: 6404: 6401: 6398: 6395: 6372: 6369: 6363: 6358: 6335: 6330: 6305: 6288: 6287: 6276: 6273: 6270: 6266: 6263: 6259: 6255: 6252: 6248: 6245: 6242: 6239: 6236: 6233: 6230: 6227: 6224: 6221: 6218: 6214: 6211: 6207: 6204: 6201: 6198: 6195: 6191: 6188: 6184: 6181: 6178: 6175: 6149: 6146: 6140: 6136: 6133: 6126: 6121: 6116: 6113: 6109: 6106: 6102: 6099: 6095: 6092: 6089: 6066: 6063: 6057: 6052: 6021: 6018: 5993: 5979: 5976: 5961: 5934: 5928: 5896: 5890: 5887: 5885: 5882: 5879: 5876: 5873: 5870: 5867: 5866: 5863: 5860: 5857: 5854: 5851: 5848: 5845: 5843: 5840: 5839: 5837: 5832: 5829: 5827: 5825: 5820: 5814: 5811: 5808: 5806: 5803: 5800: 5799: 5796: 5793: 5790: 5788: 5785: 5782: 5781: 5779: 5774: 5769: 5763: 5760: 5757: 5755: 5752: 5749: 5748: 5745: 5742: 5739: 5737: 5734: 5731: 5730: 5728: 5723: 5720: 5718: 5715: 5709: 5703: 5700: 5698: 5695: 5694: 5691: 5688: 5686: 5683: 5682: 5680: 5675: 5670: 5664: 5661: 5659: 5656: 5655: 5652: 5649: 5647: 5644: 5643: 5641: 5635: 5631: 5630: 5607: 5604: 5601: 5581: 5578: 5575: 5555: 5552: 5549: 5544: 5541: 5517: 5511: 5480: 5477: 5474: 5469: 5466: 5440: 5437: 5434: 5431: 5428: 5423: 5420: 5396: 5390: 5375: 5372: 5359: 5356: 5353: 5347: 5340: 5317: 5297: 5294: 5291: 5285: 5278: 5255: 5235: 5232: 5229: 5226: 5212: 5209: 5206: 5203: 5200: 5197: 5194: 5191: 5186: 5181: 5178: 5175: 5172: 5169: 5166: 5163: 5157: 5150: 5126: 5116:subalgebra of 5097: 5092: 5087: 5082: 5068:itself is the 5055: 5033: 5030: 5027: 5024: 5013: 5010: 5007: 5004: 5001: 4998: 4995: 4992: 4987: 4982: 4979: 4976: 4973: 4970: 4967: 4964: 4958: 4951: 4927: 4904: 4899: 4896: 4869: 4866: 4863: 4860: 4857: 4854: 4851: 4825: 4820: 4817: 4814: 4811: 4788: 4785: 4782: 4773: 4767: 4743: 4721: 4699: 4694: 4689: 4684: 4681: 4655: 4649: 4643: 4638: 4633: 4609: 4603: 4597: 4570: 4546: 4528:homomorphism. 4518: 4517: 4506: 4501: 4496: 4493: 4490: 4487: 4473: 4470: 4467: 4464: 4461: 4458: 4455: 4452: 4449: 4446: 4443: 4440: 4437: 4434: 4431: 4428: 4425: 4422: 4419: 4416: 4412: 4407: 4402: 4397: 4392: 4389: 4373:A Lie algebra 4364: 4363: 4352: 4347: 4342: 4339: 4334: 4329: 4324: 4319: 4294: 4289: 4284: 4257: 4252: 4247: 4234:Lie subalgebra 4217: 4214: 4211: 4208: 4205: 4202: 4199: 4196: 4193: 4173: 4170: 4167: 4164: 4161: 4158: 4155: 4152: 4149: 4133: 4130: 4128: 4125: 4124: 4123: 4107: 4104: 4101: 4097: 4094: 4070: 4067: 4064: 4061: 4058: 4053: 4050: 4020: 4016: 4012: 4009: 4006: 4001: 3998: 3976: 3972: 3968: 3965: 3962: 3958: 3955: 3934: 3930: 3926: 3923: 3920: 3915: 3912: 3875: 3871: 3867: 3864: 3861: 3857: 3854: 3830: 3826: 3822: 3819: 3816: 3811: 3808: 3790: 3789: 3786:general linear 3773: 3770: 3767: 3764: 3761: 3758: 3755: 3752: 3749: 3746: 3743: 3723: 3720: 3717: 3712: 3706: 3703: 3680: 3677: 3674: 3671: 3668: 3663: 3660: 3624: 3612: 3609: 3606: 3601: 3598: 3576: 3567:-vector space 3556: 3541: 3529: 3509: 3489: 3486: 3483: 3480: 3477: 3474: 3471: 3468: 3465: 3462: 3459: 3439: 3436: 3416: 3396: 3383: 3380: 3363: 3351: 3348: 3346: 3345:Basic examples 3343: 3324: 3300: 3272: 3248: 3198: 3195: 3182: 3179: 3176: 3171: 3168: 3136: 3133: 3130: 3127: 3124: 3121: 3118: 3101: 3100: 3089: 3086: 3083: 3080: 3077: 3074: 3071: 3068: 3065: 3062: 3059: 3056: 3053: 3042:characteristic 3027: 3005: 3002: 2999: 2988: 2987: 2986: 2972: 2969: 2966: 2963: 2960: 2957: 2954: 2951: 2948: 2945: 2942: 2939: 2936: 2923: 2922: 2901: 2879: 2876: 2873: 2853: 2850: 2847: 2844: 2841: 2838: 2835: 2832: 2829: 2826: 2823: 2820: 2817: 2797: 2794: 2791: 2788: 2785: 2782: 2779: 2776: 2773: 2759: 2758: 2744: 2722: 2719: 2716: 2713: 2710: 2699: 2698: 2697: 2683: 2680: 2677: 2674: 2671: 2668: 2665: 2662: 2659: 2656: 2653: 2650: 2647: 2644: 2641: 2638: 2635: 2632: 2629: 2626: 2623: 2620: 2617: 2614: 2611: 2608: 2605: 2602: 2599: 2596: 2593: 2580: 2579: 2571: 2570: 2556: 2534: 2523: 2522: 2521: 2507: 2504: 2501: 2498: 2495: 2492: 2489: 2476: 2475: 2467: 2466: 2452: 2430: 2427: 2424: 2421: 2418: 2398: 2378: 2375: 2372: 2361: 2360: 2359: 2348: 2345: 2342: 2339: 2336: 2333: 2330: 2327: 2324: 2321: 2318: 2315: 2312: 2309: 2306: 2303: 2300: 2297: 2294: 2291: 2288: 2285: 2282: 2272: 2261: 2258: 2255: 2252: 2249: 2246: 2243: 2240: 2237: 2234: 2231: 2228: 2225: 2222: 2219: 2216: 2213: 2210: 2207: 2204: 2201: 2198: 2195: 2192: 2179: 2178: 2157: 2152: 2147: 2142: 2137: 2132: 2129: 2125: 2122: 2118: 2114: 2091: 2066: 2051: 2048: 2019: 2016: 2003: 2000: 1997: 1994: 1991: 1988: 1985: 1982: 1979: 1976: 1973: 1953: 1933: 1911: 1906: 1901: 1898: 1883: 1882: 1871: 1865: 1859: 1856: 1853: 1850: 1847: 1844: 1841: 1835: 1832: 1829: 1826: 1823: 1820: 1817: 1814: 1808: 1805: 1802: 1799: 1796: 1793: 1790: 1787: 1764: 1761: 1758: 1755: 1752: 1749: 1746: 1743: 1723: 1720: 1717: 1714: 1711: 1708: 1705: 1702: 1699: 1696: 1671: 1666: 1661: 1656: 1613: 1581: 1561:classification 1557:correspondence 1523:that are also 1501: 1498: 1495: 1492: 1489: 1486: 1483: 1480: 1477: 1474: 1471: 1439: 1436: 1433: 1430: 1427: 1407: 1387: 1357: 1352: 1347: 1342: 1337: 1306: 1256: 1255: 1253: 1252: 1245: 1238: 1230: 1227: 1226: 1218: 1217: 1189: 1188: 1182: 1176: 1170: 1158: 1153: 1152: 1149: 1148: 1145: 1144: 1133: 1128: 1124: 1120: 1116: 1097: 1084: 1079: 1060: 1047: 1042: 1030:-adic integers 1023: 1017: 1008: 994: 993: 992: 991: 985: 979: 978: 977: 965: 959: 953: 947: 941: 923: 918: 917: 914: 913: 910: 909: 908: 907: 895: 894: 893: 887: 875: 874: 873: 855: 854: 853: 852: 840: 836: 832: 827: 823: 820: 806: 794: 773: 767: 761: 755: 741: 740: 734: 728: 714: 713: 707: 701: 695: 694: 693: 687: 675: 669: 657: 655:Basic concepts 654: 653: 650: 649: 632: 631: 629: 628: 621: 614: 606: 603: 602: 601: 600: 595: 587: 586: 582: 581: 576: 574:Harish-Chandra 571: 566: 561: 556: 551: 549:Henri Poincaré 546: 540: 539: 536: 535: 532: 531: 527: 526: 521: 516: 511: 505: 504: 499:Lie groups in 498: 497: 494: 493: 489: 488: 483: 478: 473: 468: 463: 457: 456: 451: 450: 447: 446: 442: 441: 436: 431: 429: 428: 423: 417: 415: 413: 412: 407: 401: 399: 394: 388: 387: 382: 381: 378: 377: 373: 372: 367: 362: 357: 355: 354: 349: 343: 341: 336: 331: 325: 324: 319: 318: 315: 314: 310: 309: 304: 299: 297:Diffeomorphism 294: 289: 284: 279: 273: 272: 267: 266: 263: 262: 257: 256: 255: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 211: 210: 206: 205: 204: 203: 197: 193: 187: 183: 177: 173: 167: 160: 159: 153: 148: 147: 144: 143: 139: 138: 128: 118: 108: 98: 88: 81:Special linear 78: 71:General linear 67: 66: 61: 60: 57: 56: 48: 47: 26: 9: 6: 4: 3: 2: 23367: 23356: 23353: 23351: 23348: 23347: 23345: 23334: 23329: 23325: 23321: 23320: 23315: 23314:"Lie algebra" 23311: 23307: 23303: 23302: 23297: 23293: 23292: 23282: 23278: 23274: 23268: 23264: 23260: 23256: 23252: 23248: 23244: 23240: 23234: 23230: 23226: 23222: 23218: 23214: 23210: 23204: 23200: 23196: 23192: 23189: 23185: 23181: 23177: 23173: 23169: 23165: 23161: 23160: 23155: 23151: 23147: 23143: 23139: 23138:O'Connor, J.J 23135: 23131: 23127: 23123: 23122:O'Connor, J.J 23119: 23116: 23112: 23108: 23102: 23098: 23094: 23090: 23087: 23083: 23079: 23077:0-691-09089-0 23073: 23069: 23065: 23061: 23057: 23054: 23050: 23046: 23044:0-521-59717-X 23040: 23036: 23032: 23028: 23024: 23019: 23015: 23011: 23007: 23001: 22997: 22993: 22989: 22985: 22981: 22977: 22971: 22966: 22965: 22959: 22955: 22951: 22947: 22943: 22939: 22935: 22929: 22925: 22921: 22917: 22912: 22908: 22904: 22900: 22896: 22892: 22886: 22882: 22878: 22874: 22870: 22866: 22862: 22858: 22854: 22850: 22846: 22844:1-84628-040-0 22840: 22836: 22832: 22828: 22824: 22820: 22816: 22810: 22806: 22805: 22800: 22796: 22795: 22784: 22779: 22773:, section 25. 22772: 22767: 22760: 22755: 22748: 22743: 22736: 22731: 22724: 22719: 22717: 22709: 22704: 22697: 22692: 22685: 22680: 22673: 22668: 22661: 22660:Jacobson 1979 22656: 22649: 22648:Jacobson 1979 22644: 22637: 22632: 22625: 22620: 22613: 22608: 22601: 22600:Jacobson 1979 22596: 22590:, p. 24. 22589: 22588:Jacobson 1979 22584: 22577: 22576:Jacobson 1979 22572: 22565: 22564:Jacobson 1979 22560: 22553: 22548: 22541: 22536: 22534: 22526: 22525:Jacobson 1979 22521: 22514: 22509: 22502: 22497: 22490: 22485: 22483: 22475: 22470: 22463: 22458: 22451: 22446: 22439: 22434: 22427: 22422: 22415: 22410: 22403: 22398: 22392:, p. 49. 22391: 22386: 22379: 22374: 22367: 22366:Bourbaki 1989 22362: 22356:, p. 28. 22355: 22354:Jacobson 1979 22350: 22341: 22334: 22333:Bourbaki 1989 22329: 22322: 22321:Bourbaki 1989 22317: 22310: 22305: 22298: 22293: 22286: 22281: 22277: 22265: 22261: 22257: 22253: 22250: 22244: 22240: 22230: 22227: 22225: 22222: 22220: 22217: 22215: 22212: 22210: 22209:Moyal algebra 22207: 22205: 22202: 22200: 22197: 22195: 22192: 22190: 22187: 22185: 22182: 22180: 22177: 22175: 22172: 22170: 22169:Lie coalgebra 22167: 22165: 22164:Lie bialgebra 22162: 22160: 22157: 22155: 22152: 22150: 22147: 22145: 22142: 22140: 22137: 22135: 22132: 22130: 22127: 22124: 22121: 22119: 22116: 22114: 22111: 22110: 22089: 22086: 22078: 22074: 22070: 22067: 22064: 22050: 22036: 22030: 22027: 22024: 22015: 22009: 22006: 22003: 21993: 21992: 21991: 21974: 21971: 21968: 21962: 21959: 21945: 21939: 21936: 21933: 21923: 21922: 21921: 21904: 21898: 21895: 21892: 21889: 21883: 21880: 21877: 21867: 21866: 21865: 21851: 21828: 21825: 21822: 21819: 21816: 21813: 21810: 21804: 21801: 21798: 21795: 21792: 21786: 21779: 21778: 21777: 21763: 21715: 21701: 21698: 21692: 21686: 21683: 21669: 21666: 21659: 21658: 21657: 21643: 21640: 21637: 21634: 21631: 21625: 21622: 21619: 21616: 21613: 21610: 21607: 21600: 21581: 21578: 21575: 21572: 21569: 21563: 21560: 21557: 21551: 21544: 21543: 21542: 21528: 21525: 21522: 21516: 21513: 21510: 21507: 21504: 21497: 21489: 21484: 21482: 21478: 21474: 21444: 21440: 21426: 21422: 21421: 21404: 21399: 21396: 21393: 21390: 21387: 21383: 21376: 21373: 21370: 21364: 21356: 21353: 21350: 21346: 21342: 21339: 21334: 21331: 21328: 21324: 21320: 21310: 21309: 21293: 21290: 21287: 21284: 21281: 21277: 21272: 21266: 21263: 21260: 21256: 21247: 21244: 21241: 21237: 21232: 21226: 21222: 21218: 21213: 21210: 21207: 21203: 21198: 21192: 21188: 21165: 21162: 21159: 21155: 21150: 21144: 21140: 21131: 21113: 21110: 21107: 21103: 21098: 21092: 21088: 21082: 21079: 21076: 21072: 21068: 21065: 21058: 21057: 21056: 21055: 21051: 21035: 21032: 21029: 21007: 21004: 21001: 20997: 20971: 20967: 20963: 20958: 20954: 20930: 20922: 20906: 20903: 20898: 20894: 20890: 20887: 20884: 20879: 20875: 20871: 20866: 20862: 20858: 20853: 20849: 20845: 20842: 20822: 20819: 20814: 20811: 20807: 20801: 20798: 20794: 20790: 20784: 20781: 20778: 20755: 20752: 20749: 20741: 20740: 20734: 20732: 20728: 20724: 20720: 20702: 20687: 20669: 20654: 20650: 20648: 20644: 20640: 20636: 20632: 20628: 20623: 20621: 20617: 20562: 20552: 20543: 20529: 20525: 20521: 20517: 20489: 20486: 20476: 20474: 20449: 20445: 20441: 20437: 20433: 20428: 20426: 20425:chain complex 20422: 20418: 20414: 20404: 20402: 20401: 20396: 20395: 20365: 20348: 20307: 20304: 20263: 20260: 20190: 20184: 20143: 20142: 20123: 20083: 20073: 20071: 20055: 20030: 20027: 20018: 20016: 20015:homeomorphism 20011: 20009: 20005: 20000: 19997: 19993: 19988: 19964: 19960: 19955: 19953: 19949: 19945: 19941: 19937: 19933: 19929: 19889: 19834: 19832: 19812: 19792: 19784: 19779: 19774: 19764: 19762: 19758: 19742: 19739: 19736: 19727: 19700: 19638: 19611: 19609: 19590: 19587: 19584: 19581: 19559: 19539: 19536: 19533: 19530: 19508: 19488: 19485: 19482: 19479: 19476: 19473: 19451: 19431: 19428: 19425: 19422: 19419: 19397: 19371: 19365: 19359: 19353: 19348: 19344: 19341: 19336: 19333: 19323: 19310: 19307: 19291: 19278: 19265: 19233: 19232:nondegenerate 19190: 19181: 19175: 19172: 19166: 19160: 19157: 19151: 19148: 19145: 19139: 19136: 19133: 19127: 19120: 19119: 19118: 19092: 19088: 19084: 19075: 19058: 19055: 19052: 19032:, and all of 19016: 19013: 19010: 18989: 18970: 18967: 18964: 18928: 18925: 18922: 18886: 18883: 18880: 18859: 18840: 18834: 18831: 18828: 18812: 18809: 18806: 18800: 18797: 18794: 18774: 18773: 18772: 18758: 18755: 18752: 18744: 18725: 18722: 18719: 18699:For example, 18697: 18695: 18690: 18688: 18684: 18679: 18662: 18646: 18640: 18624: 18618: 18582: 18566: 18560: 18527: 18524: 18521: 18501: 18498: 18495: 18488:is simple if 18450: 18417: 18414: 18411: 18366: 18345: 18341: 18325: 18322: 18319: 18296: 18293: 18290: 18268: 18252: 18240: 18237: 18234: 18229: 18217: 18154: 18153: 18028: 18027: 17996: 17986: 17972: 17969: 17966: 17943: 17908: 17879: 17876: 17873: 17850: 17815: 17783: 17780: 17777: 17756: 17752: 17747: 17723: 17719: 17714: 17712: 17694: 17691: 17688: 17675: 17669: 17638: 17607: 17604: 17601: 17569: 17559: 17554: 17542: 17539: 17536: 17531: 17519: 17514: 17502: 17499: 17492: 17491: 17490: 17449: 17446: 17427: 17414: 17401: 17385: 17369: 17356: 17343: 17324: 17308: 17295: 17282: 17266: 17253: 17240: 17226: 17225: 17224: 17222: 17218: 17217: 17187: 17185: 17163: 17160: 17157: 17151: 17148: 17142: 17136: 17133: 17129: 17109: 17103: 17097: 17094: 17087: 17086: 17085: 17059: 17055: 17051: 17033: 17030: 17027: 17014: 16984: 16981: 16978: 16965: 16959: 16927: 16917: 16912: 16900: 16897: 16894: 16889: 16877: 16872: 16860: 16857: 16850: 16849: 16848: 16783: 16780: 16767: 16754: 16741: 16722: 16709: 16696: 16680: 16667: 16654: 16640: 16639: 16638: 16637: 16633: 16632: 16602: 16600: 16553: 16550: 16547: 16544: 16521: 16518: 16515: 16482: 16440: 16436: 16431: 16429: 16426:, meaning an 16413: 16410: 16407: 16385: 16381: 16360: 16338: 16324: 16306: 16267: 16263: 16259: 16230: 16228: 16224: 16220: 16210: 16202: 16185: 16164: 16163:hydrogen atom 16145: 16111: 16090: 16079: 16052: 16019: 16001: 15972: 15970: 15941: 15909: 15905: 15901: 15898: 15895: 15890: 15886: 15861: 15857: 15851: 15847: 15843: 15836: 15832: 15826: 15822: 15788: 15780: 15738: 15734: 15730: 15727: 15724: 15719: 15715: 15706: 15690: 15686: 15669: 15666: 15650: 15623: 15620: 15617: 15614: 15591: 15588: 15585: 15579: 15576: 15573: 15570: 15567: 15564: 15531: 15523: 15519: 15515: 15511: 15495: 15439: 15420: 15417: 15404: 15394: 15381: 15368: 15355: 15345: 15342: 15339: 15323: 15316: 15315: 15314: 15312: 15284: 15281:, called the 15255: 15238: 15222: 15219: 15216: 15213: 15210: 15207: 15201: 15198: 15195: 15184: 15180: 15177:over a field 15176: 15170: 15160: 15158: 15154: 15149: 15090: 15049: 15046: 15043: 15037: 15031: 15022: 15016: 15013: 14957: 14954: 14947: 14946: 14945: 14943: 14909: 14907: 14888: 14885: 14882: 14861: 14857: 14853: 14852:Ado's theorem 14849: 14844: 14818: 14778: 14755: 14749: 14723: 14720: 14713: 14712: 14711: 14709: 14681: 14665: 14662: 14659: 14656: 14653: 14650: 14644: 14641: 14638: 14627: 14608: 14587: 14576: 14563: 14544: 14538: 14530: 14526: 14522: 14521: 14517:, called the 14501: 14495: 14489: 14482: 14478: 14474: 14471: 14470:string theory 14467: 14463: 14460: 14456: 14455:Moyal algebra 14452: 14429: 14426: 14383: 14379: 14354: 14353: 14324: 14321: 14285: 14246: 14243: 14197: 14190: 14170: 14151: 14130: 14106: 14103: 14082: 14081: 14062: 14059: 14056: 14045: 14041: 14022: 14019: 14016: 14005: 14001: 13997: 13993: 13989: 13965: 13962: 13941: 13937: 13933: 13909: 13906: 13885: 13884: 13867: 13864: 13861: 13855: 13852: 13849: 13839: 13825: 13822: 13819: 13816: 13813: 13807: 13804: 13801: 13791: 13777: 13774: 13771: 13768: 13762: 13759: 13756: 13746: 13745: 13743: 13742: 13724: 13721: 13715: 13712: 13709: 13686: 13683: 13680: 13677: 13671: 13668: 13665: 13642: 13639: 13636: 13630: 13627: 13624: 13599: 13582: 13558: 13555: 13525: 13513: 13501: 13478: 13474: 13467: 13462: 13455: 13450: 13443: 13439: 13436: 13430: 13426: 13419: 13414: 13407: 13402: 13395: 13391: 13388: 13382: 13378: 13371: 13368: 13363: 13356: 13351: 13344: 13340: 13337: 13330: 13329: 13305: 13302: 13259: 13258: 13239: 13218: 13199: 13178: 13177: 13173: 13169: 13150: 13114: 13079: 13064: 13063: 13046: 13041: 13037: 13033: 13025: 13021: 13017: 13012: 13008: 12997: 12983: 12978: 12974: 12970: 12962: 12958: 12954: 12949: 12945: 12934: 12920: 12915: 12911: 12907: 12899: 12895: 12891: 12886: 12882: 12871: 12870: 12868: 12851: 12844: 12837: 12832: 12827: 12820: 12815: 12810: 12803: 12798: 12795: 12790: 12783: 12779: 12774: 12770: 12765: 12761: 12754: 12749: 12744: 12741: 12734: 12729: 12724: 12717: 12712: 12707: 12700: 12696: 12691: 12687: 12682: 12678: 12671: 12666: 12661: 12654: 12651: 12646: 12641: 12634: 12629: 12624: 12617: 12613: 12608: 12604: 12596: 12595: 12594: 12593: 12567: 12548: 12527: 12526: 12507: 12499: 12468: 12464: 12440: 12437: 12434: 12427: 12420: 12412: 12383: 12380: 12377: 12354: 12346: 12329: 12325: 12324: 12320: 12303: 12296: 12291: 12286: 12279: 12274: 12269: 12262: 12257: 12252: 12245: 12237: 12236: 12209: 12195: 12166: 12149: 12148: 12130: 12123: 12116: 12111: 12106: 12099: 12094: 12089: 12082: 12077: 12072: 12065: 12061: 12058: 12054: 12050: 12043: 12038: 12033: 12026: 12021: 12016: 12009: 12004: 11999: 11992: 11988: 11985: 11981: 11977: 11970: 11965: 11960: 11953: 11948: 11943: 11936: 11931: 11926: 11919: 11915: 11912: 11905: 11904: 11902: 11898: 11881: 11878: 11872: 11869: 11866: 11859: 11856: 11853: 11847: 11844: 11841: 11834: 11831: 11828: 11822: 11819: 11816: 11806: 11805: 11804: 11803: 11787: 11784: 11781: 11778: 11775: 11767: 11764:over a field 11748: 11740: 11724: 11720: 11719: 11671: 11668: 11665: 11658: 11630: 11627: 11624: 11604: 11601: 11598: 11595: 11592: 11589: 11583: 11580: 11577: 11530: 11527: 11524: 11504: 11496: 11495: 11478: 11474: 11467: 11462: 11455: 11450: 11443: 11439: 11436: 11432: 11428: 11421: 11416: 11409: 11404: 11397: 11393: 11390: 11383: 11382: 11356: 11340: 11336: 11329: 11324: 11317: 11312: 11305: 11297: 11296: 11274: 11271: 11214: 11211: 11208: 11183: 11180: 11177: 11174: 11166: 11149: 11142: 11137: 11130: 11125: 11118: 11110: 11109: 11107: 11103: 11102: 11086: 11083: 11080: 11077: 11071: 11063: 11039: 11036: 11019: 11016: 10972: 10969: 10963: 10960: 10957: 10934: 10931: 10925: 10922: 10919: 10896: 10893: 10889: 10885: 10882: 10879: 10875: 10854: 10851: 10848: 10816: 10788: 10787: 10786: 10784: 10771: 10767: 10744: 10741: 10738: 10718: 10700: 10697: 10682: 10658: 10655: 10652: 10613: 10610: 10607: 10589: 10585: 10567: 10533: 10502: 10484: 10480: 10457: 10454: 10438: 10430: 10422: 10414: 10395: 10359: 10356: 10322: 10306: 10246: 10243: 10240: 10235: 10231: 10202: 10199: 10163: 10145: 10127: 10123: 10100: 10097: 10093: 10089: 10084: 10080: 10071: 10068: ×  10067: 10063: 10045: 10010: 10007: 9973: 9958: 9957:unitary group 9954: 9953: 9935: 9920: 9896: 9893: 9854: 9851: 9835: 9831: 9807: 9804: 9763: 9760: 9721: 9718: 9702: 9701: 9697: 9681: 9678: 9675: 9664: 9635: 9632: 9596: 9560: 9542: 9538: 9514: 9491: 9488: 9484: 9480: 9469: 9460: 9456: 9437: 9407: 9377: 9362: 9358: 9335: 9332: 9291: 9288: 9267: 9262: 9259: ×  9258: 9233: 9230: 9189: 9186: 9167: 9143: 9140: 9121: 9103: 9087: 9084: ×  9083: 9058: 9055: 9037: 9033: 9029: 9028: 9027: 9024: 8997: 8993: 8973: 8969: 8965: 8962: 8934: 8931: 8925: 8922: 8913: 8899: 8879: 8876: 8871: 8867: 8859: 8856: 8852: 8846: 8841: 8837: 8829: 8826: 8822: 8816: 8813: 8810: 8807: 8804: 8798: 8792: 8789: 8756: 8752: 8732: 8728: 8724: 8721: 8713: 8709: 8705: 8677: 8653: 8650: 8634: 8607: 8604: 8601: 8598: 8595: 8592: 8586: 8583: 8580: 8530: 8524: 8521: 8515: 8509: 8503: 8500: 8489: 8486: 8478: 8462: 8458: 8454: 8448: 8441: 8438: 8434: 8431: 8425: 8411: 8410: 8409: 8395: 8388: 8384: 8355: 8351: 8342: 8314: 8290: 8287: 8273: 8270: 8262: 8247: 8230: 8194: 8186: 8159: 8150: 8148: 8144: 8113: 8102: 8083: 8073: 8055: 8040: 8009: 7967: 7925: 7905: 7902: 7879: 7876: 7873: 7867: 7861: 7853: 7821: 7784: 7781: 7773: 7747: 7741: 7738: 7735: 7729: 7723: 7720: 7714: 7708: 7702: 7693: 7690: 7687: 7678: 7671: 7670: 7669: 7638: 7635: 7576: 7561: 7558:over a field 7532: 7515: 7489: 7485: 7481: 7477: 7473: 7454: 7438: 7419: 7403: 7399: 7395: 7391: 7365: 7361: 7357: 7338: 7326: 7317: 7313: 7309: 7307: 7303: 7278: 7274: 7269: 7258: 7249: 7246: 7243: 7240: 7234: 7228: 7219: 7216: 7213: 7210: 7204: 7198: 7195: 7186: 7183: 7180: 7177: 7167: 7166: 7165: 7163: 7159: 7155: 7151: 7147: 7143: 7138: 7136: 7132: 7113: 7105: 7076: 7072: 7066: 7062: 7058: 7053: 7049: 7043: 7039: 7035: 7027: 7023: 7019: 7014: 7010: 6984: 6980: 6957: 6953: 6944: 6928: 6925: 6922: 6919: 6916: 6890: 6884: 6881: 6878: 6875: 6869: 6863: 6860: 6854: 6851: 6845: 6838: 6837: 6836: 6835: 6819: 6813: 6810: 6807: 6799: 6795: 6791: 6790: 6785: 6782:over a field 6781: 6778: 6768: 6766: 6743: 6732: 6721: 6686: 6646: 6588: 6552: 6453: 6440: 6437: 6427: 6424: 6420: 6417: 6411: 6405: 6402: 6399: 6370: 6361: 6333: 6293: 6274: 6264: 6261: 6257: 6253: 6250: 6243: 6237: 6234: 6231: 6222: 6212: 6209: 6205: 6202: 6196: 6189: 6186: 6182: 6179: 6166: 6165: 6164: 6147: 6138: 6134: 6131: 6124: 6114: 6111: 6107: 6100: 6097: 6093: 6090: 6064: 6055: 6040: 6039: 6019: 5975: 5948: 5932: 5913: 5894: 5888: 5880: 5877: 5874: 5868: 5858: 5855: 5852: 5846: 5841: 5835: 5830: 5828: 5818: 5812: 5809: 5804: 5801: 5794: 5791: 5786: 5783: 5777: 5772: 5767: 5761: 5758: 5753: 5750: 5743: 5740: 5735: 5732: 5726: 5721: 5719: 5713: 5707: 5701: 5696: 5689: 5684: 5678: 5673: 5668: 5662: 5657: 5650: 5645: 5639: 5633: 5619: 5605: 5602: 5599: 5579: 5576: 5573: 5550: 5515: 5498: 5494: 5493:maximal torus 5475: 5454: 5435: 5432: 5429: 5394: 5378:The subspace 5371: 5354: 5315: 5292: 5253: 5230: 5227: 5224: 5218: for all 5210: 5207: 5201: 5198: 5195: 5189: 5179: 5176: 5170: 5164: 5137: 5124: 5115: 5111: 5071: 5028: 5025: 5022: 5011: 5008: 5002: 4999: 4996: 4990: 4980: 4977: 4971: 4965: 4938: 4925: 4897: 4894: 4886: 4881: 4867: 4864: 4858: 4855: 4852: 4841: 4818: 4815: 4812: 4809: 4800: 4783: 4771: 4719: 4682: 4679: 4671: 4647: 4601: 4586: 4559:and an ideal 4534: 4529: 4527: 4523: 4504: 4494: 4491: 4488: 4485: 4465: 4459: 4456: 4450: 4444: 4438: 4429: 4426: 4423: 4414: 4410: 4390: 4387: 4380: 4379: 4378: 4376: 4371: 4369: 4350: 4340: 4327: 4310: 4309: 4308: 4287: 4273: 4250: 4235: 4231: 4209: 4206: 4203: 4197: 4194: 4168: 4165: 4159: 4156: 4153: 4139: 4121: 4102: 4084: 4065: 4062: 4059: 4038: 4034: 4010: 4007: 3966: 3963: 3924: 3921: 3900: 3896: 3892: 3889: 3865: 3862: 3844: 3820: 3817: 3796: 3792: 3791: 3787: 3771: 3768: 3765: 3762: 3759: 3756: 3750: 3747: 3744: 3718: 3710: 3675: 3672: 3669: 3648: 3644: 3641: 3637: 3633: 3629: 3625: 3607: 3574: 3554: 3546: 3542: 3527: 3507: 3487: 3484: 3481: 3478: 3475: 3472: 3466: 3463: 3460: 3437: 3434: 3414: 3407:over a field 3394: 3386: 3385: 3379: 3377: 3361: 3342: 3340: 3288: 3236: 3232: 3228: 3224: 3220: 3216: 3212: 3208: 3204: 3194: 3177: 3156: 3154: 3106: 3087: 3081: 3078: 3075: 3069: 3066: 3060: 3057: 3054: 3043: 3003: 3000: 2997: 2989: 2970: 2964: 2961: 2958: 2952: 2949: 2943: 2940: 2937: 2927: 2926: 2925: 2924: 2920: 2917: 2916: 2915: 2877: 2874: 2871: 2851: 2848: 2842: 2839: 2836: 2830: 2824: 2821: 2818: 2792: 2789: 2786: 2783: 2780: 2777: 2774: 2762: 2720: 2717: 2714: 2711: 2708: 2700: 2681: 2678: 2669: 2666: 2663: 2657: 2654: 2648: 2639: 2636: 2633: 2627: 2624: 2618: 2609: 2606: 2603: 2597: 2594: 2584: 2583: 2582: 2581: 2577: 2573: 2572: 2532: 2524: 2505: 2502: 2496: 2493: 2490: 2480: 2479: 2478: 2477: 2473: 2469: 2468: 2428: 2425: 2422: 2419: 2416: 2396: 2376: 2373: 2370: 2362: 2343: 2340: 2337: 2331: 2328: 2322: 2319: 2316: 2310: 2307: 2301: 2298: 2295: 2292: 2289: 2286: 2283: 2273: 2259: 2253: 2250: 2247: 2241: 2238: 2232: 2229: 2226: 2220: 2217: 2211: 2208: 2205: 2202: 2199: 2196: 2193: 2183: 2182: 2181: 2180: 2176: 2173: 2172: 2171: 2140: 2130: 2123: 2120: 2116: 2105: 2089: 2082: 2047: 2045: 2041: 2038:was given by 2037: 2033: 2029: 2025: 2015: 2001: 1998: 1995: 1992: 1989: 1986: 1980: 1977: 1974: 1951: 1931: 1909: 1899: 1896: 1888: 1869: 1863: 1854: 1851: 1848: 1842: 1839: 1833: 1827: 1824: 1821: 1815: 1812: 1806: 1800: 1797: 1794: 1788: 1785: 1778: 1777: 1776: 1762: 1759: 1756: 1753: 1750: 1747: 1744: 1741: 1721: 1718: 1715: 1712: 1709: 1703: 1700: 1697: 1687: 1686:cross product 1669: 1659: 1643: 1641: 1635: 1633: 1629: 1601: 1597: 1569: 1564: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1533:commutativity 1530: 1529:tangent space 1526: 1522: 1518: 1513: 1499: 1496: 1493: 1490: 1487: 1484: 1478: 1475: 1472: 1462:Lie bracket, 1461: 1457: 1453: 1434: 1431: 1428: 1405: 1385: 1377: 1373: 1340: 1326: 1322: 1295: 1291: 1290: 1282: 1267: 1263: 1251: 1246: 1244: 1239: 1237: 1232: 1231: 1229: 1228: 1223: 1222: 1216: 1212: 1211: 1210: 1209: 1208: 1203: 1202: 1201: 1196: 1195: 1194: 1187: 1183: 1181: 1177: 1175: 1171: 1169: 1168:Division ring 1165: 1164: 1163: 1162: 1156: 1151: 1150: 1122: 1106: 1104: 1098: 1082: 1068: 1067:-adic numbers 1066: 1061: 1045: 1031: 1029: 1024: 1022: 1018: 1016: 1009: 1007: 1003: 1002: 1001: 1000: 999: 990: 986: 984: 980: 976: 972: 971: 970: 966: 964: 960: 958: 954: 952: 948: 946: 942: 940: 936: 935: 934: 930: 929: 928: 927: 921: 916: 915: 906: 902: 901: 900: 896: 892: 888: 886: 882: 881: 880: 876: 872: 868: 867: 866: 862: 861: 860: 859: 834: 830: 821: 818: 811: 810:Terminal ring 807: 784: 780: 779: 778: 774: 772: 768: 766: 762: 760: 756: 754: 750: 749: 748: 747: 746: 739: 735: 733: 729: 727: 723: 722: 721: 720: 719: 712: 708: 706: 702: 700: 696: 692: 688: 686: 682: 681: 680: 679:Quotient ring 676: 674: 670: 668: 664: 663: 662: 661: 652: 651: 648: 643:→ Ring theory 642: 638: 637: 627: 622: 620: 615: 613: 608: 607: 605: 604: 599: 596: 594: 591: 590: 589: 588: 580: 577: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 541: 534: 533: 525: 522: 520: 517: 515: 512: 510: 507: 506: 502: 496: 495: 487: 484: 482: 479: 477: 474: 472: 469: 467: 464: 462: 459: 458: 454: 449: 448: 440: 437: 435: 432: 427: 424: 422: 419: 418: 416: 411: 408: 406: 403: 402: 400: 398: 395: 393: 390: 389: 385: 380: 379: 371: 368: 366: 363: 361: 358: 353: 350: 348: 345: 344: 342: 340: 337: 335: 332: 330: 327: 326: 322: 317: 316: 308: 305: 303: 300: 298: 295: 293: 290: 288: 285: 283: 280: 278: 275: 274: 270: 265: 264: 253: 247: 245: 239: 237: 231: 229: 223: 221: 215: 214: 213: 212: 208: 207: 202: 200: 194: 192: 190: 184: 182: 180: 174: 172: 170: 164: 163: 162: 161: 157: 156: 151: 146: 145: 136: 132: 129: 126: 122: 119: 116: 112: 109: 106: 102: 99: 96: 92: 89: 86: 82: 79: 76: 72: 69: 68: 64: 59: 58: 54: 50: 49: 46: 42: 39: 38: 33: 19: 23355:Lie algebras 23317: 23306:the original 23300: 23258: 23231:. Springer. 23228: 23198: 23163: 23157: 23096: 23093:Milnor, John 23063: 23022: 22996:Lie Algebras 22995: 22963: 22915: 22868: 22837:. Springer. 22834: 22807:. Springer. 22803: 22778: 22766: 22754: 22747:Khukhro 1998 22742: 22735:Quillen 1969 22730: 22703: 22691: 22679: 22667: 22655: 22643: 22631: 22619: 22607: 22595: 22583: 22571: 22559: 22547: 22520: 22508: 22503:, Chapter 8. 22496: 22469: 22457: 22445: 22433: 22421: 22409: 22397: 22385: 22380:, p. 4. 22373: 22361: 22349: 22340: 22328: 22316: 22311:, p. 1. 22304: 22292: 22280: 22259: 22255: 22251: 22243: 22134:Hopf algebra 21989: 21919: 21843: 21730: 21598: 21596: 21495: 21485: 21470: 21049: 20920: 20731:group scheme 20651: 20642: 20638: 20634: 20630: 20624: 20619: 20527: 20519: 20515: 20487: 20482: 20471:to describe 20429: 20410: 20400:compact form 20398: 20392: 20366: 20139: 20079: 20019: 20012: 20001: 19989: 19958: 19956: 19935: 19835: 19828: 19728: 19612: 19557: 19506: 19449: 19395: 19369: 19363: 19357: 19351: 19347:root systems 19342: 19337: 19329: 19205: 19091:Killing form 19081: 18987: 18857: 18855: 18742: 18698: 18691: 18682: 18680: 18343: 18339: 18269: 18150: 18024: 17998: 17754: 17753:and a field 17750: 17748: 17720:. Under the 17715: 17710: 17584: 17464: 17214: 17188: 17181: 17057: 17049: 16942: 16798: 16629: 16603: 16601:of a group. 16438: 16434: 16432: 16427: 16265: 16261: 16257: 16231: 16216: 16208: 16085: 15973: 15778: 15517: 15513: 15508:denotes the 15435: 15310: 15282: 15237:left adjoint 15182: 15178: 15174: 15172: 15096: 15005: 14915: 14905: 14859: 14847: 14845: 14816: 14770: 14707: 14679: 14625: 14585: 14583: 14561: 14528: 14524: 14518: 14481:left adjoint 14476: 14078:-eigenspace. 14043: 14039: 14003: 13999: 13991: 13987: 13935: 13931: 13216: 12327: 11765: 11105: 10841:has a basis 10814: 10780: 10413:circle group 10304: 10142:denotes the 10069: 10065: 9833: 9829: 9694:). See also 9540: 9535:denotes the 9458: 9454: 9260: 9256: 9085: 9081: 9031: 9025: 8914: 8711: 8707: 8545: 8382: 8340: 8312: 8261:matrix group 8258: 8151: 8038: 7953:. The image 7771: 7769: 7559: 7533: 7487: 7483: 7475: 7401: 7397: 7393: 7390:vector field 7363: 7359: 7318:be the ring 7315: 7311: 7310: 7305: 7301: 7299: 7161: 7157: 7153: 7149: 7141: 7139: 7134: 7130: 6908: 6834:Leibniz rule 6797: 6793: 6788: 6783: 6779: 6774: 6503:an ideal of 6454: 6289: 6036: 5981: 5949: 5915: 5621: 5377: 5117: 5109: 5069: 4918: 4882: 4839: 4838:are said to 4801: 4584: 4530: 4521: 4519: 4375:homomorphism 4374: 4372: 4365: 4271: 4233: 4135: 4119: 4036: 3894: 3890: 3794: 3788:Lie algebra. 3785: 3646: 3639: 3635: 3631: 3627: 3626:For a field 3375: 3353: 3338: 3286: 3234: 3230: 3226: 3222: 3218: 3214: 3202: 3200: 3152: 3102: 2763: 2760: 2575: 2471: 2174: 2053: 2043: 2040:Hermann Weyl 2035: 2021: 1884: 1644: 1636: 1631: 1627: 1599: 1595: 1567: 1565: 1519:, which are 1514: 1320: 1294:vector space 1268:(pronounced 1265: 1259: 1219: 1205: 1204: 1200:Free algebra 1198: 1197: 1191: 1190: 1159: 1102: 1064: 1027: 996: 995: 975:Finite field 924: 871:Finite field 857: 856: 783:Initial ring 743: 742: 716: 715: 658: 579:Armand Borel 564:Hermann Weyl 365:Loop algebra 347:Killing form 321:Lie algebras 320: 198: 188: 178: 168: 134: 124: 114: 104: 94: 84: 74: 45:Lie algebras 44: 18:Lie algebras 22865:Harris, Joe 22696:Milnor 2010 22489:Wigner 1959 20923:of a group 19785:at a point 19117:defined by 19087:Élie Cartan 18944:is simple, 16323:torus group 14580:Definitions 14006:) into the 10303:. (Indeed, 10281:, not over 9120:orientation 7836:defined by 6771:Derivations 6763:. See also 4939:: that is, 4885:centralizer 4583:in it, the 4522:isomorphism 4138:associative 4127:Definitions 4033:linear maps 3899:determinant 2472:Alternating 2175:Bilinearity 2036:Lie algebra 1418:is denoted 1321:Lie bracket 1266:Lie algebra 1262:mathematics 1180:Simple ring 891:Jordan ring 765:Graded ring 647:Ring theory 559:Élie Cartan 405:Root system 209:Exceptional 23350:Lie groups 23344:Categories 22783:Serre 2006 22759:Serre 2006 22708:Knapp 2001 22513:Serre 2006 22402:Serre 2006 22273:References 22174:Lie operad 20921:filtration 20721:. Part of 20647:commutator 20394:split form 19930:; see the 19926:. This is 19831:Lie groups 18687:semisimple 18152:semisimple 18149:is called 18053:are 0 and 18023:is called 17585:such that 16943:such that 13996:eigenspace 7668:such that 6789:derivation 5114:normalizer 3888:invertible 3649:, denoted 3235:generators 3219:generators 2046:was used. 2028:Sophus Lie 1517:Lie groups 1460:commutator 1186:Commutator 945:GCD domain 544:Sophus Lie 537:Scientists 410:Weyl group 131:Symplectic 91:Orthogonal 41:Lie groups 23324:EMS Press 23227:(1984) . 23062:(2001) , 22998:. Dover. 22994:(1979) . 22942:0072-5285 22907:246650103 22540:Hall 2015 22527:, Ch. VI. 22474:Hall 2015 22438:Hall 2015 22075:σ 22068:σ 22051:∘ 22037:⊗ 22031:⋅ 22025:⋅ 22016:∘ 22010:⋅ 22004:⋅ 21963:τ 21946:∘ 21940:⋅ 21934:⋅ 21902:→ 21896:⊗ 21890:: 21884:⋅ 21878:⋅ 21823:⊗ 21817:⊗ 21802:⊗ 21796:⊗ 21787:σ 21764:σ 21702:⊗ 21699:τ 21693:∘ 21687:τ 21684:⊗ 21667:σ 21641:⊗ 21635:⊗ 21629:→ 21623:⊗ 21617:⊗ 21608:σ 21576:⊗ 21561:⊗ 21552:τ 21526:⊗ 21520:→ 21514:⊗ 21505:τ 21477:morphisms 21253:→ 21219:× 21080:≥ 21073:⨁ 20907:⋯ 20904:⊇ 20891:⊇ 20888:⋯ 20885:⊇ 20872:⊇ 20859:⊇ 20812:− 20799:− 20573:→ 20563:× 20553:: 20191:⊗ 20141:real form 19701:⊗ 19176:⁡ 19161:⁡ 19152:⁡ 18813:× 18807:≅ 18756:≥ 18694:reductive 18647:× 18625:≅ 18567:≅ 18525:≥ 18415:≥ 18323:≥ 18241:× 18238:⋯ 18235:× 18218:≅ 17970:≥ 17877:≥ 17692:− 17605:− 17543:⊆ 17540:⋯ 17537:⊆ 17520:⊆ 17450:⋯ 17447:⊇ 17325:⊇ 17267:⊇ 17241:⊇ 17184:nilpotent 17137:⁡ 17120:→ 17098:⁡ 17048:for each 17031:− 16982:− 16901:⊆ 16898:⋯ 16895:⊆ 16878:⊆ 16784:⋯ 16781:⊇ 16723:⊇ 16681:⊇ 16655:⊇ 16631:nilpotent 16554:∈ 16411:≥ 16400:for some 16223:nilpotent 16017:→ 15969:injective 15939:→ 15899:… 15844:⋯ 15728:… 15624:∈ 15580:− 15571:− 15496:⊗ 15421:⋯ 15418:⊕ 15405:⊗ 15395:⊗ 15382:⊕ 15369:⊗ 15356:⊕ 15346:⊕ 15253:↦ 15217:− 15017:⁡ 15006:given by 14968:→ 14958:: 14779:π 14771:That is, 14734:→ 14724:: 14721:π 14660:− 14493:↦ 14198:⊗ 14060:− 14042:maps the 13990:maps the 13817:− 13681:− 13369:− 12796:− 12742:− 12652:− 12438:⋅ 12381:⋅ 11800:such that 11669:⋅ 11628:⋅ 11602:⋅ 11596:∈ 11528:⋅ 11212:≠ 11184:∈ 11075:↦ 10431:⊂ 10244:− 10236:∗ 10128:∗ 10098:− 10085:∗ 9679:− 9537:transpose 9489:− 8990:→ 8880:⋯ 8793:⁡ 8749:→ 8635:⊂ 8602:− 8498:→ 8455:∈ 8274:⊂ 7916:→ 7906:: 7785:∈ 7649:→ 7639:: 7505:→ 7331:∞ 7275:ϵ 7247:ϵ 7235:⋅ 7217:ϵ 7205:≡ 7184:ϵ 7059:− 6926:∈ 6817:→ 6811:: 6744:⋉ 6600:→ 6542:→ 6362:× 6139:∈ 6115:∈ 6056:× 5878:− 5856:− 5773:− 5577:≥ 5228:∈ 5208:∈ 5180:∈ 5026:∈ 4981:∈ 4898:⊂ 4819:∈ 4784:ϕ 4720:ϕ 4693:→ 4683:: 4680:ϕ 4637:→ 4526:bijective 4495:∈ 4460:ϕ 4445:ϕ 4415:ϕ 4401:→ 4391:: 4388:ϕ 4341:⊆ 4288:⊆ 4251:⊆ 3766:− 3482:− 3203:dimension 3070:− 2953:− 2474:property, 2151:→ 2141:× 2124:⋅ 2117:⋅ 1993:× 1900:∈ 1852:× 1843:× 1825:× 1816:× 1798:× 1789:× 1760:× 1754:− 1745:× 1716:× 1545:connected 1494:− 1351:→ 1341:× 1127:∞ 905:Semifield 421:Real form 307:Euclidean 158:Classical 23257:(1959). 23197:(2006). 23144:(2005). 23128:(2000). 22960:(1978). 22867:(1991). 22801:(1989). 22749:, Ch. 6. 22725:, §26.1. 22106:See also 21022:for all 20737:Examples 20627:p-groups 20620:Lie ring 20616:integers 20479:Lie ring 20080:Given a 20004:discrete 19994:and the 17216:solvable 15235:) has a 15155:and the 14848:faithful 13130:. Also, 10115:, where 9506:, where 8442:′ 8250:Examples 6909:for all 6428:′ 6371:′ 6334:′ 6292:category 6265:′ 6254:′ 6213:′ 6190:′ 6148:′ 6135:′ 6101:′ 6065:′ 6020:′ 5499:.) Here 3643:matrices 2990:for all 2864:for all 2701:for all 2525:for all 1555:). This 899:Semiring 885:Lie ring 667:Subrings 593:Glossary 287:Poincaré 23326:, 2001 23281:0106711 23247:0746308 23217:2179691 23188:0258031 23180:1970725 23115:0830252 23086:1880691 23053:1615819 23014:0559927 22984:0499562 22950:3331229 22899:1153249 22853:2218355 22823:1728312 22792:Sources 22440:, §3.4. 22236:Remarks 21479:in the 21052:.) Then 19555:, and D 17718:radical 17219:if the 16634:if the 16258:abelian 16219:abelian 16000:modules 15488:. Here 15436:be the 13579:on the 12564:of the 10411:is the 9164:is the 8385:at the 6777:algebra 6775:For an 6038:product 5374:Example 4840:commute 4533:kernels 4479:for all 3376:abelian 3105:fraktur 2079:over a 2018:History 1292:) is a 1101:Prüfer 703:•  501:physics 282:Lorentz 111:Unitary 23279:  23269:  23245:  23235:  23215:  23205:  23186:  23178:  23113:  23103:  23084:  23074:  23051:  23041:  23012:  23002:  22982:  22972:  22948:  22940:  22930:  22905:  22897:  22887:  22851:  22841:  22821:  22811:  21731:where 20835:. Let 20547:  20541:  20524:module 20518:is an 20008:center 19783:sphere 19389:, or G 18856:where 18026:simple 16225:, and 15777:as an 15313:, let 14940:, the 14588:, let 13434:  13386:  13217:simple 12849:  12128:  9034:, the 8507:  7480:action 6128:  6035:, the 5222:  5214:  5112:, the 5070:center 5015:  4483:  4475:  3547:of an 2974:  2685:  2509:  1867:  1861:  1837:  1810:  1521:groups 753:Module 726:Kernel 277:Circle 23176:JSTOR 22254:: an 20919:be a 20514:over 19948:SU(2) 19944:SO(3) 19805:. If 19663:over 18466:over 18382:over 17653:with 17052:. By 16537:with 15878:with 15707:: if 15522:ideal 15309:over 9266:trace 8710:, if 7366:over 7133:over 6796:over 5246:. If 4272:ideal 4230:rings 4118:over 3793:When 3645:over 3211:basis 2081:field 1323:, an 1105:-ring 969:Field 865:Field 673:Ideal 660:Rings 352:Index 23267:ISBN 23233:ISBN 23203:ISBN 23101:ISBN 23072:ISBN 23039:ISBN 23000:ISBN 22970:ISBN 22938:ISSN 22928:ISBN 22903:OCLC 22885:ISBN 22839:ISBN 22809:ISBN 21990:and 21597:The 20391:, a 20328:and 19957:For 19740:> 19367:, D 19355:, B 19330:The 19085:(by 18598:and 16437:(or 16264:and 15607:for 14678:. A 14464:The 14453:The 14380:The 13934:and 11721:The 11643:and 10947:and 10768:The 10586:The 10481:The 9955:The 9359:The 7770:The 7509:Vect 7448:Vect 7413:Vect 7314:Let 6972:and 6786:, a 6671:and 6455:Let 6318:and 6006:and 5566:for 4883:The 3543:The 3221:for 3201:The 2574:The 2470:The 1537:real 1398:and 1264:, a 302:Loop 43:and 23168:doi 23031:doi 22920:doi 22877:doi 20717:of 20684:of 20614:of 20144:of 19561:is 19510:is 19504:, C 19453:is 19447:, B 19399:is 19385:, F 19381:, E 19377:, E 19373:, E 19361:, C 18678:.) 18514:or 17182:is 17060:in 16628:is 16465:is 16268:in 16256:is 15967:is 15524:in 15512:of 15440:on 15181:to 14706:on 14131:of 13998:of 13938:as 11251:of 11060:of 10683:on 9921:on 8963:exp 8790:exp 8722:exp 8706:of 8182:Out 8109:Inn 8079:Der 8051:Out 8005:Der 7963:Inn 7921:Der 7572:Der 7474:of 7392:on 7354:of 7270:mod 7148:of 7101:Der 6792:of 6647:of 6347:in 5947:). 5455:of 5138:is 4777:ker 4520:An 3691:or 3540:.) 3233:of 3157:is 3151:SU( 3016:in 2890:in 2733:in 2545:in 2441:in 2389:in 2026:by 1594:to 1539:or 1288:LEE 1260:In 133:Sp( 123:SU( 103:SO( 83:SL( 73:GL( 23346:: 23322:, 23316:, 23277:MR 23275:. 23265:. 23243:MR 23241:. 23213:MR 23211:. 23184:MR 23182:, 23174:, 23164:90 23162:, 23140:; 23124:; 23111:MR 23109:, 23082:MR 23080:, 23070:, 23066:, 23049:MR 23047:, 23037:, 23029:, 23025:, 23010:MR 23008:. 22980:MR 22978:. 22946:MR 22944:. 22936:. 22926:. 22901:. 22895:MR 22893:. 22883:. 22871:. 22863:; 22849:MR 22847:. 22819:MR 22817:. 22715:^ 22532:^ 22481:^ 22090:0. 21365::= 20427:. 20364:. 19987:. 19833:. 19726:. 19610:. 19311:0. 19173:ad 19158:ad 19149:tr 19074:. 18990:, 18267:. 17985:. 17746:. 17713:. 17223:: 17186:. 17134:ad 17095:ad 16847:, 16221:, 16201:. 15971:. 15208::= 15159:. 15014:ad 14955:ad 14908:. 14450:). 13699:, 13655:, 11201:, 9832:x 9457:x 8912:. 8408:: 8259:A 8246:. 7903:ad 7868::= 7036::= 6767:. 6707:, 6441:0. 5370:. 4880:. 4799:. 4039:, 3893:x 3638:× 3341:. 3193:. 2014:. 1870:0. 1512:. 1278:iː 1213:• 1184:• 1178:• 1172:• 1166:• 1099:• 1062:• 1025:• 1019:• 1010:• 1004:• 987:• 981:• 973:• 967:• 961:• 955:• 949:• 943:• 937:• 931:• 903:• 897:• 889:• 883:• 877:• 869:• 863:• 808:• 781:• 775:• 769:• 763:• 757:• 751:• 736:• 730:• 724:• 709:• 697:• 689:• 683:• 677:• 671:• 665:• 113:U( 93:O( 23335:. 23283:. 23249:. 23219:. 23170:: 23033:: 23016:. 22986:. 22952:. 22922:: 22909:. 22879:: 22855:. 22825:. 22299:. 22287:. 22260:R 22256:R 22252:R 22087:= 22084:) 22079:2 22071:+ 22065:+ 22061:d 22058:i 22054:( 22048:) 22044:d 22041:i 22034:] 22028:, 22022:[ 22019:( 22013:] 22007:, 22001:[ 21975:, 21972:0 21969:= 21966:) 21960:+ 21956:d 21953:i 21949:( 21943:] 21937:, 21931:[ 21905:A 21899:A 21893:A 21887:] 21881:, 21875:[ 21852:A 21829:. 21826:x 21820:z 21814:y 21811:= 21808:) 21805:z 21799:y 21793:x 21790:( 21743:d 21740:i 21716:, 21713:) 21709:d 21706:i 21696:( 21690:) 21680:d 21677:i 21673:( 21670:= 21644:A 21638:A 21632:A 21626:A 21620:A 21614:A 21611:: 21582:. 21579:x 21573:y 21570:= 21567:) 21564:y 21558:x 21555:( 21529:A 21523:A 21517:A 21511:A 21508:: 21492:A 21462:. 21449:Z 21445:2 21441:/ 21436:Z 21405:. 21400:1 21397:+ 21394:j 21391:+ 21388:i 21384:G 21380:] 21377:y 21374:, 21371:x 21368:[ 21362:] 21357:1 21354:+ 21351:j 21347:G 21343:y 21340:, 21335:1 21332:+ 21329:i 21325:G 21321:x 21318:[ 21294:1 21291:+ 21288:j 21285:+ 21282:i 21278:G 21273:/ 21267:j 21264:+ 21261:i 21257:G 21248:1 21245:+ 21242:j 21238:G 21233:/ 21227:j 21223:G 21214:1 21211:+ 21208:i 21204:G 21199:/ 21193:i 21189:G 21166:1 21163:+ 21160:i 21156:G 21151:/ 21145:i 21141:G 21114:1 21111:+ 21108:i 21104:G 21099:/ 21093:i 21089:G 21083:1 21077:i 21069:= 21066:L 21050:G 21036:j 21033:, 21030:i 21008:j 21005:+ 21002:i 20998:G 20977:] 20972:j 20968:G 20964:, 20959:i 20955:G 20951:[ 20931:G 20899:n 20895:G 20880:3 20876:G 20867:2 20863:G 20854:1 20850:G 20846:= 20843:G 20823:y 20820:x 20815:1 20808:y 20802:1 20795:x 20791:= 20788:] 20785:y 20782:, 20779:x 20776:[ 20756:y 20753:, 20750:x 20703:p 20698:Z 20670:p 20665:Q 20643:p 20639:p 20631:p 20601:Z 20578:g 20568:g 20558:g 20550:] 20544:, 20538:[ 20528:R 20522:- 20520:R 20516:R 20500:g 20488:R 20458:Q 20377:g 20352:) 20349:2 20346:( 20341:u 20338:s 20316:) 20312:R 20308:, 20305:2 20302:( 20297:l 20294:s 20272:) 20268:C 20264:, 20261:2 20258:( 20253:l 20250:s 20226:g 20203:C 20196:R 20185:0 20179:g 20154:g 20124:0 20118:g 20093:g 20056:G 20035:R 20031:= 20028:G 19974:R 19912:g 19890:G 19868:g 19845:R 19813:x 19793:x 19743:3 19737:p 19713:C 19706:R 19695:g 19672:R 19649:g 19622:R 19594:) 19591:F 19588:, 19585:n 19582:2 19579:( 19574:o 19571:s 19558:n 19543:) 19540:F 19537:, 19534:n 19531:2 19528:( 19523:p 19520:s 19507:n 19492:) 19489:F 19486:, 19483:1 19480:+ 19477:n 19474:2 19471:( 19466:o 19463:s 19450:n 19435:) 19432:F 19429:, 19426:1 19423:+ 19420:n 19417:( 19412:l 19409:s 19396:n 19391:2 19387:4 19383:8 19379:7 19375:6 19370:n 19364:n 19358:n 19352:n 19343:F 19308:= 19305:) 19302:] 19297:g 19292:, 19287:g 19282:[ 19279:, 19274:g 19269:( 19266:K 19244:g 19216:g 19191:, 19188:) 19185:) 19182:v 19179:( 19170:) 19167:u 19164:( 19155:( 19146:= 19143:) 19140:v 19137:, 19134:u 19131:( 19128:K 19103:g 19062:) 19059:F 19056:, 19053:n 19050:( 19045:l 19042:g 19020:) 19017:F 19014:, 19011:n 19008:( 19003:l 19000:s 18988:F 18974:) 18971:F 18968:, 18965:n 18962:( 18957:l 18954:g 18932:) 18929:F 18926:, 18923:n 18920:( 18915:l 18912:s 18890:) 18887:F 18884:, 18881:n 18878:( 18873:l 18870:g 18858:F 18841:, 18838:) 18835:F 18832:, 18829:n 18826:( 18821:l 18818:s 18810:F 18804:) 18801:F 18798:, 18795:n 18792:( 18787:l 18784:g 18759:2 18753:n 18743:F 18729:) 18726:F 18723:, 18720:n 18717:( 18712:l 18709:g 18683:F 18666:) 18663:2 18660:( 18655:u 18652:s 18644:) 18641:2 18638:( 18633:u 18630:s 18622:) 18619:4 18616:( 18611:o 18608:s 18586:) 18583:2 18580:( 18575:u 18572:s 18564:) 18561:3 18558:( 18553:o 18550:s 18528:5 18522:n 18502:3 18499:= 18496:n 18475:R 18454:) 18451:n 18448:( 18443:o 18440:s 18418:2 18412:n 18391:R 18370:) 18367:n 18364:( 18359:u 18356:s 18344:n 18340:F 18326:2 18320:n 18300:) 18297:F 18294:, 18291:n 18288:( 18283:l 18280:s 18253:r 18247:g 18230:1 18224:g 18213:g 18189:g 18165:g 18135:g 18111:g 18087:g 18063:g 18039:g 18009:g 17973:3 17967:n 17947:) 17944:n 17941:( 17936:l 17933:g 17909:n 17903:u 17880:2 17874:n 17854:) 17851:n 17848:( 17843:l 17840:g 17816:n 17810:b 17787:) 17784:F 17781:, 17778:n 17775:( 17770:l 17767:g 17755:F 17751:n 17733:R 17711:j 17695:1 17689:j 17683:m 17676:/ 17670:j 17664:m 17639:j 17633:m 17608:1 17602:j 17596:m 17570:, 17565:g 17560:= 17555:r 17549:m 17532:1 17526:m 17515:0 17509:m 17503:= 17500:0 17475:g 17444:] 17441:] 17438:] 17433:g 17428:, 17423:g 17418:[ 17415:, 17412:] 17407:g 17402:, 17397:g 17392:[ 17389:[ 17386:, 17383:] 17380:] 17375:g 17370:, 17365:g 17360:[ 17357:, 17354:] 17349:g 17344:, 17339:g 17334:[ 17331:[ 17328:[ 17322:] 17319:] 17314:g 17309:, 17304:g 17299:[ 17296:, 17293:] 17288:g 17283:, 17278:g 17273:[ 17270:[ 17264:] 17259:g 17254:, 17249:g 17244:[ 17236:g 17199:g 17167:] 17164:v 17161:, 17158:u 17155:[ 17152:= 17149:v 17146:) 17143:u 17140:( 17130:, 17125:g 17115:g 17110:: 17107:) 17104:u 17101:( 17070:g 17058:u 17050:j 17034:1 17028:j 17022:a 17015:/ 17009:g 16985:1 16979:j 16973:a 16966:/ 16960:j 16954:a 16928:, 16923:g 16918:= 16913:r 16907:a 16890:1 16884:a 16873:0 16867:a 16861:= 16858:0 16833:g 16809:g 16778:] 16773:g 16768:, 16765:] 16760:g 16755:, 16752:] 16747:g 16742:, 16737:g 16732:[ 16729:[ 16726:[ 16720:] 16715:g 16710:, 16707:] 16702:g 16697:, 16692:g 16687:[ 16684:[ 16678:] 16673:g 16668:, 16663:g 16658:[ 16650:g 16614:g 16583:g 16559:g 16551:y 16548:, 16545:x 16525:] 16522:y 16519:, 16516:x 16513:[ 16493:] 16488:g 16483:, 16478:g 16473:[ 16451:g 16428:n 16414:0 16408:n 16386:n 16382:F 16361:F 16339:n 16334:T 16307:n 16302:R 16278:g 16266:y 16262:x 16242:g 16189:) 16186:3 16183:( 16178:o 16175:s 16149:) 16146:3 16143:( 16139:O 16136:S 16115:) 16112:3 16109:( 16104:o 16101:s 16066:) 16061:g 16056:( 16053:U 16033:) 16028:g 16023:( 16020:U 16012:g 15984:g 15955:) 15950:g 15945:( 15942:U 15934:g 15910:n 15906:i 15902:, 15896:, 15891:1 15887:i 15862:n 15858:i 15852:n 15848:e 15837:1 15833:i 15827:1 15823:e 15802:) 15797:g 15792:( 15789:U 15779:F 15763:g 15739:n 15735:e 15731:, 15725:, 15720:1 15716:e 15691:I 15687:/ 15683:) 15678:g 15673:( 15670:T 15667:= 15664:) 15659:g 15654:( 15651:U 15629:g 15621:Y 15618:, 15615:X 15595:] 15592:Y 15589:, 15586:X 15583:[ 15577:X 15574:Y 15568:Y 15565:X 15545:) 15540:g 15535:( 15532:T 15518:I 15514:F 15474:g 15450:g 15415:) 15410:g 15400:g 15390:g 15385:( 15379:) 15374:g 15364:g 15359:( 15351:g 15343:F 15340:= 15337:) 15332:g 15327:( 15324:T 15311:F 15295:g 15269:) 15264:g 15259:( 15256:U 15248:g 15223:X 15220:Y 15214:Y 15211:X 15205:] 15202:Y 15199:, 15196:X 15193:[ 15183:A 15179:F 15175:A 15132:g 15108:g 15075:g 15053:] 15050:y 15047:, 15044:x 15041:[ 15038:= 15035:) 15032:y 15029:( 15026:) 15023:x 15020:( 14991:) 14986:g 14981:( 14976:l 14973:g 14963:g 14926:g 14906:n 14892:) 14889:F 14886:, 14883:n 14880:( 14875:l 14872:g 14860:F 14829:g 14817:V 14801:g 14756:. 14753:) 14750:V 14747:( 14742:l 14739:g 14729:g 14708:V 14692:g 14666:X 14663:Y 14657:Y 14654:X 14651:= 14648:] 14645:Y 14642:, 14639:X 14636:[ 14626:V 14612:) 14609:V 14606:( 14601:l 14598:g 14586:V 14562:V 14548:) 14545:V 14542:( 14539:L 14529:V 14525:V 14505:) 14502:V 14499:( 14496:L 14490:V 14477:F 14472:. 14438:) 14434:C 14430:, 14427:n 14424:( 14419:l 14416:s 14393:C 14377:. 14364:R 14345:. 14333:) 14329:C 14325:, 14322:2 14319:( 14314:l 14311:s 14289:) 14286:3 14283:( 14279:O 14276:S 14255:) 14251:C 14247:, 14244:2 14241:( 14236:l 14233:s 14210:C 14203:R 14194:) 14191:3 14188:( 14183:o 14180:s 14155:) 14152:3 14149:( 14144:o 14141:s 14115:) 14111:C 14107:, 14104:2 14101:( 14096:l 14093:s 14066:) 14063:2 14057:c 14054:( 14044:c 14040:F 14026:) 14023:2 14020:+ 14017:c 14014:( 14004:c 14000:H 13994:- 13992:c 13988:E 13974:) 13970:C 13966:, 13963:2 13960:( 13955:l 13952:s 13936:F 13932:E 13918:) 13914:C 13910:, 13907:2 13904:( 13899:l 13896:s 13868:. 13865:H 13862:= 13859:] 13856:F 13853:, 13850:E 13847:[ 13826:, 13823:F 13820:2 13814:= 13811:] 13808:F 13805:, 13802:H 13799:[ 13778:, 13775:E 13772:2 13769:= 13766:] 13763:E 13760:, 13757:H 13754:[ 13737:. 13725:H 13722:= 13719:] 13716:F 13713:, 13710:E 13707:[ 13687:F 13684:2 13678:= 13675:] 13672:F 13669:, 13666:H 13663:[ 13643:E 13640:2 13637:= 13634:] 13631:E 13628:, 13625:H 13622:[ 13600:1 13595:P 13592:C 13567:) 13563:C 13559:, 13556:2 13553:( 13548:l 13545:s 13529:F 13517:E 13505:H 13479:. 13475:) 13468:0 13463:1 13456:0 13451:0 13444:( 13440:= 13437:F 13431:, 13427:) 13420:0 13415:0 13408:1 13403:0 13396:( 13392:= 13389:E 13383:, 13379:) 13372:1 13364:0 13357:0 13352:1 13345:( 13341:= 13338:H 13314:) 13310:C 13306:, 13303:2 13300:( 13295:l 13292:s 13269:C 13255:. 13243:) 13240:3 13237:( 13232:o 13229:s 13203:) 13200:3 13197:( 13192:o 13189:s 13174:. 13154:) 13151:3 13148:( 13143:o 13140:s 13118:) 13115:3 13112:( 13107:o 13104:s 13080:3 13075:R 13047:. 13042:2 13038:F 13034:= 13031:] 13026:1 13022:F 13018:, 13013:3 13009:F 13005:[ 12984:, 12979:1 12975:F 12971:= 12968:] 12963:3 12959:F 12955:, 12950:2 12946:F 12942:[ 12921:, 12916:3 12912:F 12908:= 12905:] 12900:2 12896:F 12892:, 12887:1 12883:F 12879:[ 12852:. 12845:) 12838:0 12833:0 12828:0 12821:0 12816:0 12811:1 12804:0 12799:1 12791:0 12784:( 12780:= 12775:3 12771:F 12766:, 12762:) 12755:0 12750:0 12745:1 12735:0 12730:0 12725:0 12718:1 12713:0 12708:0 12701:( 12697:= 12692:2 12688:F 12683:, 12679:) 12672:0 12667:1 12662:0 12655:1 12647:0 12642:0 12635:0 12630:0 12625:0 12618:( 12614:= 12609:1 12605:F 12577:R 12552:) 12549:3 12546:( 12541:o 12538:s 12511:) 12508:F 12505:( 12500:3 12494:h 12469:2 12465:F 12444:) 12441:Z 12435:F 12432:( 12428:/ 12424:) 12421:F 12418:( 12413:3 12407:h 12384:Z 12378:F 12358:) 12355:F 12352:( 12347:3 12341:h 12328:F 12304:) 12297:1 12292:0 12287:0 12280:b 12275:1 12270:0 12263:c 12258:a 12253:1 12246:( 12223:) 12219:R 12215:( 12210:3 12205:H 12180:) 12176:R 12172:( 12167:3 12161:h 12131:. 12124:) 12117:0 12112:0 12107:0 12100:0 12095:0 12090:0 12083:1 12078:0 12073:0 12066:( 12062:= 12059:Z 12055:, 12051:) 12044:0 12039:0 12034:0 12027:1 12022:0 12017:0 12010:0 12005:0 12000:0 11993:( 11989:= 11986:Y 11982:, 11978:) 11971:0 11966:0 11961:0 11954:0 11949:0 11944:0 11937:0 11932:1 11927:0 11920:( 11916:= 11913:X 11894:. 11882:0 11879:= 11876:] 11873:Z 11870:, 11867:Y 11864:[ 11860:, 11857:0 11854:= 11851:] 11848:Z 11845:, 11842:X 11839:[ 11835:, 11832:Z 11829:= 11826:] 11823:Y 11820:, 11817:X 11814:[ 11788:Z 11785:, 11782:Y 11779:, 11776:X 11766:F 11752:) 11749:F 11746:( 11741:3 11735:h 11697:g 11675:) 11672:Y 11666:F 11663:( 11659:/ 11653:g 11631:Y 11625:F 11605:Y 11599:F 11593:Y 11590:= 11587:] 11584:Y 11581:, 11578:X 11575:[ 11553:g 11531:Y 11525:F 11505:F 11479:. 11475:) 11468:0 11463:0 11456:1 11451:0 11444:( 11440:= 11437:Y 11433:, 11429:) 11422:0 11417:0 11410:0 11405:1 11398:( 11394:= 11391:X 11367:g 11341:. 11337:) 11330:0 11325:0 11318:d 11313:c 11306:( 11283:) 11279:R 11275:, 11272:2 11269:( 11264:l 11261:g 11237:g 11215:0 11209:a 11188:R 11181:b 11178:, 11175:a 11150:) 11143:1 11138:0 11131:b 11126:a 11119:( 11106:G 11099:. 11087:b 11084:+ 11081:x 11078:a 11072:x 11048:) 11044:R 11040:, 11037:1 11034:( 11030:f 11027:f 11024:A 11020:= 11017:G 10995:g 10973:0 10970:= 10967:] 10964:Y 10961:, 10958:Y 10955:[ 10935:0 10932:= 10929:] 10926:X 10923:, 10920:X 10917:[ 10897:Y 10894:= 10890:] 10886:Y 10883:, 10880:X 10876:[ 10855:Y 10852:, 10849:X 10827:g 10815:F 10799:g 10765:. 10753:) 10749:R 10745:, 10742:n 10739:2 10736:( 10731:p 10728:s 10701:n 10698:2 10693:R 10667:) 10663:R 10659:, 10656:n 10653:2 10650:( 10646:L 10643:G 10622:) 10618:R 10614:, 10611:n 10608:2 10605:( 10601:p 10598:S 10571:) 10568:n 10565:( 10561:u 10558:s 10537:) 10534:n 10531:( 10527:U 10506:) 10503:n 10500:( 10496:U 10493:S 10478:. 10466:) 10462:C 10458:, 10455:1 10452:( 10447:l 10444:g 10439:= 10435:C 10427:R 10423:i 10399:) 10396:1 10393:( 10389:U 10368:) 10364:C 10360:, 10357:n 10354:( 10350:L 10347:G 10326:) 10323:n 10320:( 10316:U 10305:i 10290:C 10268:R 10247:X 10241:= 10232:X 10223:( 10211:) 10207:C 10203:, 10200:n 10197:( 10192:l 10189:g 10167:) 10164:n 10161:( 10156:u 10124:A 10101:1 10094:A 10090:= 10081:A 10070:n 10066:n 10046:n 10041:C 10019:) 10015:C 10011:, 10008:n 10005:( 10001:L 9998:G 9977:) 9974:n 9971:( 9967:U 9950:. 9936:n 9931:C 9905:) 9901:C 9897:, 9894:n 9891:( 9887:L 9884:G 9863:) 9859:C 9855:, 9852:n 9849:( 9845:O 9834:n 9830:n 9816:) 9812:C 9808:, 9805:n 9802:( 9797:o 9794:s 9772:) 9768:C 9764:, 9761:n 9758:( 9754:O 9751:S 9730:) 9726:C 9722:, 9719:n 9716:( 9712:O 9698:. 9682:X 9676:= 9670:T 9665:X 9656:( 9644:) 9640:R 9636:, 9633:n 9630:( 9625:l 9622:g 9600:) 9597:n 9594:( 9589:o 9586:s 9564:) 9561:n 9558:( 9554:O 9551:S 9520:T 9515:A 9492:1 9485:A 9481:= 9475:T 9470:A 9459:n 9455:n 9441:) 9438:n 9435:( 9431:O 9408:n 9403:R 9381:) 9378:n 9375:( 9371:O 9356:. 9344:) 9340:C 9336:, 9333:n 9330:( 9325:l 9322:s 9300:) 9296:C 9292:, 9289:n 9286:( 9281:L 9278:S 9261:n 9257:n 9242:) 9238:R 9234:, 9231:n 9228:( 9223:l 9220:s 9198:) 9194:R 9190:, 9187:n 9184:( 9180:L 9177:G 9152:) 9148:R 9144:, 9141:n 9138:( 9134:L 9131:S 9104:n 9099:R 9086:n 9082:n 9067:) 9063:R 9059:, 9056:n 9053:( 9049:L 9046:S 9032:n 9011:) 9007:C 9003:( 8998:n 8994:M 8987:) 8983:C 8979:( 8974:n 8970:M 8966:: 8943:) 8939:C 8935:, 8932:n 8929:( 8926:L 8923:G 8900:X 8877:+ 8872:3 8868:X 8860:! 8857:3 8853:1 8847:+ 8842:2 8838:X 8830:! 8827:2 8823:1 8817:+ 8814:X 8811:+ 8808:I 8805:= 8802:) 8799:X 8796:( 8770:) 8766:R 8762:( 8757:n 8753:M 8746:) 8742:R 8738:( 8733:n 8729:M 8725:: 8712:G 8708:G 8688:g 8662:) 8658:R 8654:, 8651:n 8648:( 8643:l 8640:g 8630:g 8608:X 8605:Y 8599:Y 8596:X 8593:= 8590:] 8587:Y 8584:, 8581:X 8578:[ 8556:g 8531:. 8528:} 8525:I 8522:= 8519:) 8516:0 8513:( 8510:c 8504:, 8501:G 8494:R 8490:: 8487:c 8479:: 8476:) 8472:R 8468:( 8463:n 8459:M 8452:) 8449:0 8446:( 8439:c 8435:= 8432:X 8429:{ 8426:= 8421:g 8396:I 8383:G 8369:) 8365:R 8361:( 8356:n 8352:M 8341:G 8325:g 8313:G 8299:) 8295:R 8291:, 8288:n 8285:( 8281:L 8278:G 8271:G 8234:) 8231:V 8228:( 8223:l 8220:g 8198:) 8195:V 8192:( 8187:F 8160:V 8129:) 8124:g 8119:( 8114:F 8103:/ 8099:) 8094:g 8089:( 8084:F 8074:= 8071:) 8066:g 8061:( 8056:F 8025:) 8020:g 8015:( 8010:F 7983:) 7978:g 7973:( 7968:F 7941:) 7936:g 7931:( 7926:F 7911:g 7883:] 7880:y 7877:, 7874:x 7871:[ 7865:) 7862:y 7859:( 7854:x 7849:d 7846:a 7822:x 7817:d 7814:a 7790:g 7782:x 7766:. 7754:] 7751:) 7748:y 7745:( 7742:D 7739:, 7736:x 7733:[ 7730:+ 7727:] 7724:y 7721:, 7718:) 7715:x 7712:( 7709:D 7706:[ 7703:= 7700:) 7697:] 7694:y 7691:, 7688:x 7685:[ 7682:( 7679:D 7654:g 7644:g 7636:D 7614:g 7592:) 7587:g 7582:( 7577:F 7560:F 7544:g 7519:) 7516:X 7513:( 7500:g 7488:X 7484:G 7476:X 7458:) 7455:X 7452:( 7423:) 7420:X 7417:( 7402:v 7398:v 7394:X 7375:R 7364:A 7360:X 7342:) 7339:X 7336:( 7327:C 7316:A 7306:D 7302:A 7284:) 7279:2 7267:( 7262:) 7259:y 7256:( 7253:) 7250:D 7244:+ 7241:1 7238:( 7232:) 7229:x 7226:( 7223:) 7220:D 7214:+ 7211:1 7208:( 7202:) 7199:y 7196:x 7193:( 7190:) 7187:D 7181:+ 7178:1 7175:( 7162:A 7158:A 7154:F 7150:A 7142:A 7135:F 7131:A 7117:) 7114:A 7111:( 7106:k 7077:1 7073:D 7067:2 7063:D 7054:2 7050:D 7044:1 7040:D 7033:] 7028:2 7024:D 7020:, 7015:1 7011:D 7007:[ 6985:2 6981:D 6958:1 6954:D 6929:A 6923:y 6920:, 6917:x 6894:) 6891:y 6888:( 6885:D 6882:x 6879:+ 6876:y 6873:) 6870:x 6867:( 6864:D 6861:= 6858:) 6855:y 6852:x 6849:( 6846:D 6820:A 6814:A 6808:D 6798:F 6794:A 6784:F 6780:A 6749:i 6739:i 6733:/ 6727:g 6722:= 6717:g 6693:i 6687:/ 6681:g 6657:i 6629:g 6605:g 6595:i 6589:/ 6583:g 6559:i 6553:/ 6547:g 6537:g 6513:g 6489:i 6465:g 6438:= 6435:] 6432:) 6425:x 6421:, 6418:0 6415:( 6412:, 6409:) 6406:0 6403:, 6400:x 6397:( 6394:[ 6368:g 6357:g 6329:g 6304:g 6275:. 6272:) 6269:] 6262:y 6258:, 6251:x 6247:[ 6244:, 6241:] 6238:y 6235:, 6232:x 6229:[ 6226:( 6223:= 6220:] 6217:) 6210:y 6206:, 6203:y 6200:( 6197:, 6194:) 6187:x 6183:, 6180:x 6177:( 6174:[ 6145:g 6132:x 6125:, 6120:g 6112:x 6108:, 6105:) 6098:x 6094:, 6091:x 6088:( 6062:g 6051:g 6017:g 5992:g 5960:g 5933:2 5927:t 5895:] 5889:0 5884:) 5881:y 5875:x 5872:( 5869:c 5862:) 5859:x 5853:y 5850:( 5847:b 5842:0 5836:[ 5831:= 5819:] 5813:y 5810:d 5805:y 5802:c 5795:x 5792:b 5787:x 5784:a 5778:[ 5768:] 5762:y 5759:d 5754:x 5751:c 5744:y 5741:b 5736:x 5733:a 5727:[ 5722:= 5714:] 5708:] 5702:y 5697:0 5690:0 5685:x 5679:[ 5674:, 5669:] 5663:d 5658:c 5651:b 5646:a 5640:[ 5634:[ 5606:2 5603:= 5600:n 5580:2 5574:n 5554:) 5551:n 5548:( 5543:l 5540:g 5516:n 5510:t 5479:) 5476:n 5473:( 5468:l 5465:g 5439:) 5436:F 5433:, 5430:n 5427:( 5422:l 5419:g 5395:n 5389:t 5358:) 5355:S 5352:( 5346:g 5339:n 5316:S 5296:) 5293:S 5290:( 5284:g 5277:n 5254:S 5234:} 5231:S 5225:s 5211:S 5205:] 5202:s 5199:, 5196:x 5193:[ 5190:: 5185:g 5177:x 5174:{ 5171:= 5168:) 5165:S 5162:( 5156:g 5149:n 5125:S 5110:S 5096:) 5091:g 5086:( 5081:z 5054:g 5032:} 5029:S 5023:s 5012:0 5009:= 5006:] 5003:s 5000:, 4997:x 4994:[ 4991:: 4986:g 4978:x 4975:{ 4972:= 4969:) 4966:S 4963:( 4957:g 4950:z 4926:S 4903:g 4895:S 4868:0 4865:= 4862:] 4859:y 4856:, 4853:x 4850:[ 4824:g 4816:y 4813:, 4810:x 4787:) 4781:( 4772:/ 4766:g 4742:h 4698:h 4688:g 4654:i 4648:/ 4642:g 4632:g 4608:i 4602:/ 4596:g 4569:i 4545:g 4505:. 4500:g 4492:y 4489:, 4486:x 4472:] 4469:) 4466:y 4463:( 4457:, 4454:) 4451:x 4448:( 4442:[ 4439:= 4436:) 4433:] 4430:y 4427:, 4424:x 4421:[ 4418:( 4411:, 4406:h 4396:g 4351:. 4346:i 4338:] 4333:i 4328:, 4323:g 4318:[ 4293:g 4283:i 4256:g 4246:h 4216:] 4213:] 4210:z 4207:, 4204:y 4201:[ 4198:, 4195:x 4192:[ 4172:] 4169:z 4166:, 4163:] 4160:y 4157:, 4154:x 4151:[ 4148:[ 4122:. 4120:F 4106:) 4103:n 4100:( 4096:L 4093:G 4069:) 4066:F 4063:, 4060:n 4057:( 4052:l 4049:g 4037:F 4019:) 4015:R 4011:, 4008:n 4005:( 4000:l 3997:g 3975:) 3971:C 3967:, 3964:n 3961:( 3957:L 3954:G 3933:) 3929:C 3925:, 3922:n 3919:( 3914:l 3911:g 3895:n 3891:n 3874:) 3870:R 3866:, 3863:n 3860:( 3856:L 3853:G 3829:) 3825:R 3821:, 3818:n 3815:( 3810:l 3807:g 3795:F 3772:X 3769:Y 3763:Y 3760:X 3757:= 3754:] 3751:Y 3748:, 3745:X 3742:[ 3722:) 3719:F 3716:( 3711:n 3705:l 3702:g 3679:) 3676:F 3673:, 3670:n 3667:( 3662:l 3659:g 3647:F 3640:n 3636:n 3632:n 3628:F 3623:. 3611:) 3608:V 3605:( 3600:l 3597:g 3575:V 3555:F 3528:A 3508:A 3488:x 3485:y 3479:y 3476:x 3473:= 3470:] 3467:y 3464:, 3461:x 3458:[ 3438:y 3435:x 3415:F 3395:A 3362:V 3339:S 3323:g 3299:g 3287:S 3271:g 3247:g 3231:S 3227:G 3223:G 3215:G 3181:) 3178:n 3175:( 3170:u 3167:s 3155:) 3153:n 3135:n 3132:, 3129:b 3126:, 3123:h 3120:, 3117:g 3088:. 3085:] 3082:x 3079:, 3076:x 3073:[ 3067:= 3064:] 3061:x 3058:, 3055:x 3052:[ 3026:g 3004:y 3001:, 2998:x 2971:, 2968:] 2965:x 2962:, 2959:y 2956:[ 2950:= 2947:] 2944:y 2941:, 2938:x 2935:[ 2921:, 2900:g 2878:y 2875:, 2872:x 2852:0 2849:= 2846:] 2843:x 2840:, 2837:y 2834:[ 2831:+ 2828:] 2825:y 2822:, 2819:x 2816:[ 2796:] 2793:y 2790:+ 2787:x 2784:, 2781:y 2778:+ 2775:x 2772:[ 2757:. 2743:g 2721:z 2718:, 2715:y 2712:, 2709:x 2682:0 2679:= 2676:] 2673:] 2670:y 2667:, 2664:x 2661:[ 2658:, 2655:z 2652:[ 2649:+ 2646:] 2643:] 2640:x 2637:, 2634:z 2631:[ 2628:, 2625:y 2622:[ 2619:+ 2616:] 2613:] 2610:z 2607:, 2604:y 2601:[ 2598:, 2595:x 2592:[ 2578:, 2569:. 2555:g 2533:x 2506:0 2503:= 2500:] 2497:x 2494:, 2491:x 2488:[ 2465:. 2451:g 2429:z 2426:, 2423:y 2420:, 2417:x 2397:F 2377:b 2374:, 2371:a 2347:] 2344:y 2341:, 2338:z 2335:[ 2332:b 2329:+ 2326:] 2323:x 2320:, 2317:z 2314:[ 2311:a 2308:= 2305:] 2302:y 2299:b 2296:+ 2293:x 2290:a 2287:, 2284:z 2281:[ 2260:, 2257:] 2254:z 2251:, 2248:y 2245:[ 2242:b 2239:+ 2236:] 2233:z 2230:, 2227:x 2224:[ 2221:a 2218:= 2215:] 2212:z 2209:, 2206:y 2203:b 2200:+ 2197:x 2194:a 2191:[ 2177:, 2156:g 2146:g 2136:g 2131:: 2128:] 2121:, 2113:[ 2090:F 2065:g 2002:0 1999:= 1996:x 1990:x 1987:= 1984:] 1981:x 1978:, 1975:x 1972:[ 1952:v 1932:v 1910:3 1905:R 1897:v 1864:= 1858:) 1855:y 1849:x 1846:( 1840:z 1834:+ 1831:) 1828:x 1822:z 1819:( 1813:y 1807:+ 1804:) 1801:z 1795:y 1792:( 1786:x 1763:x 1757:y 1751:= 1748:y 1742:x 1722:. 1719:y 1713:x 1710:= 1707:] 1704:y 1701:, 1698:x 1695:[ 1670:3 1665:R 1660:= 1655:g 1632:G 1628:G 1612:g 1600:G 1596:G 1580:g 1568:G 1551:( 1500:x 1497:y 1491:y 1488:x 1485:= 1482:] 1479:y 1476:, 1473:x 1470:[ 1438:] 1435:y 1432:, 1429:x 1426:[ 1406:y 1386:x 1356:g 1346:g 1336:g 1305:g 1281:/ 1275:l 1272:/ 1249:e 1242:t 1235:v 1132:) 1123:p 1119:( 1115:Z 1103:p 1083:p 1078:Q 1065:p 1046:p 1041:Z 1028:p 1014:n 839:Z 835:1 831:/ 826:Z 822:= 819:0 793:Z 625:e 618:t 611:v 251:8 249:E 243:7 241:E 235:6 233:E 227:4 225:F 219:2 217:G 199:n 196:D 189:n 186:C 179:n 176:B 169:n 166:A 137:) 135:n 127:) 125:n 117:) 115:n 107:) 105:n 97:) 95:n 87:) 85:n 77:) 75:n 34:. 20:)

Index

Lie algebras
Lie bracket of vector fields
Lie groups
Lie algebras

Classical groups
General linear
Special linear
Orthogonal
Special orthogonal
Unitary
Special unitary
Symplectic
Simple Lie groups
An
Bn
Cn
Dn
G2
F4
E6
E7
E8
Other Lie groups
Circle
Lorentz
Poincaré
Conformal group
Diffeomorphism
Loop

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.