Knowledge

Linear algebraic group

Source 📝

41: 1454: 1337: 6563:
is less well understood. In this situation, a representation need not be a direct sum of irreducible representations. And although irreducible representations are indexed by dominant weights, the dimensions and characters of the irreducible representations are known only in some cases. Andersen,
2229:
of trivial representations, not a direct sum (unless the representation is trivial). The structure theory of linear algebraic groups analyzes any linear algebraic group in terms of these two basic groups and their generalizations, tori and unipotent groups, as discussed below.
2725:(2), as mentioned above. As a result, one can think of linear algebraic groups either as matrix groups or, more abstractly, as smooth affine group schemes over a field. (Some authors use "linear algebraic group" to mean any affine group scheme of finite type over a field.) 1342: 1225: 5610: 5519: 5901:. (Some authors call this property "almost simple".) This differs slightly from the terminology for abstract groups, in that a simple algebraic group may have nontrivial center (although the center must be finite). For example, for any integer 3754: 1009:
in the 1880s and 1890s. At that time, no special use was made of the fact that the group structure can be defined by polynomials, that is, that these are algebraic groups. The founders of the theory of algebraic groups include
4534: 2062: 5697: 2663: 6273: 6392:
One reason for the importance of reductive groups comes from representation theory. Every irreducible representation of a unipotent group is trivial. More generally, for any linear algebraic group
3799: 5866:, which is a complex reductive algebraic group. In fact, this construction gives a one-to-one correspondence between compact connected Lie groups and complex reductive groups, up to isomorphism. 3110: 3346:
Over an algebraically closed field, there is a stronger result about algebraic groups as algebraic varieties: every connected linear algebraic group over an algebraically closed field is a
1828: 3341: 3498: 2223: 2192: 2100: 1909: 1768: 5011: 1449:{\displaystyle \left({\begin{array}{cccc}*&*&\dots &*\\0&*&\ddots &\vdots \\\vdots &\ddots &\ddots &*\\0&\dots &0&*\end{array}}\right)} 1332:{\displaystyle \left({\begin{array}{cccc}1&*&\dots &*\\0&1&\ddots &\vdots \\\vdots &\ddots &\ddots &*\\0&\dots &0&1\end{array}}\right)} 6318:
reductive groups is the same over any field. By contrast, the classification of arbitrary reductive groups can be hard, depending on the base field. For example, every nondegenerate
1214: 6003: 6441: 3015: 6650: 4929: 4629: 5818: 5290: 5258: 4815: 4783: 4359: 2863: 5524: 2003: 1731: 1694: 1657: 1580: 5436: 5222: 4399: 3823: 3696: 3624: 3383: 2894: 6790: 2141: 3863:) provides examples). For these reasons, although the Lie algebra of an algebraic group is important, the structure theory of algebraic groups requires more global tools. 902: 486: 461: 424: 6050: 1147: 844: 2672:
which satisfy the usual axioms for the multiplication and inverse maps in a group (associativity, identity, inverses). A linear algebraic group is also smooth and of
1855: 1542: 1101: 929: 2161: 1969: 1949: 1929: 1875: 1788: 1620: 1600: 1502: 1478: 1167: 1121: 1066: 953: 6512:. This is the same as what happens in the representation theory of compact connected Lie groups, or the finite-dimensional representation theory of complex 3708: 6108:). On the other hand, the definition of reductive groups is quite "negative", and it is not clear that one can expect to say much about them. Remarkably, 6185:
Every reductive group over a field is the quotient by a finite central subgroup scheme of the product of a torus and some simple groups. For example,
6997:
which are not affine behave very differently. In particular, a smooth connected group scheme which is a projective variety over a field is called an
7039:. In fact, tannakian categories with a "fiber functor" over a field are equivalent to affine group schemes. (Every affine group scheme over a field 7001:. In contrast to linear algebraic groups, every abelian variety is commutative. Nonetheless, abelian varieties have a rich theory. Even the case of 6462:. This focuses attention on the representation theory of reductive groups. (To be clear, the representations considered here are representations of 2067:
These two basic examples of commutative linear algebraic groups, the multiplicative and additive groups, behave very differently in terms of their
788: 6659:. As in other types of group theory, it is important to study group actions, since groups arise naturally as symmetries of geometric objects. 6486: 4440: 3127:
can be identified with an abstract finite group.) Because of this, the study of algebraic groups mostly focuses on connected groups.
2011: 7201: 7144: 2728:
For a full understanding of linear algebraic groups, one has to consider more general (non-smooth) group schemes. For example, let
5638: 2604: 6958:.) By contrast, there are simply connected solvable Lie groups that cannot be viewed as real algebraic groups. For example, the 6520:
of characteristic zero, all these theories are essentially equivalent. In particular, every representation of a reductive group
5049:(for example, an algebraically closed field) has a composition series with all quotient groups isomorphic to the additive group 7170: 6171: 346: 7611: 7514: 6191: 5034:). More generally, every connected solvable linear algebraic group is a semidirect product of a torus with a unipotent group, 7619: 3134:
can be extended to linear algebraic groups. It is straightforward to define what it means for a linear algebraic group to be
4288: 3770: 2810:
th roots of unity. This issue does not arise in characteristic zero. Indeed, every group scheme of finite type over a field
2673: 296: 2798: 7787: 7723:(1948), "Algebraic matric groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations", 7186: 3872: 781: 291: 2272:, which allows an elementary definition of a linear algebraic group. First, define a function from the abstract group 7816: 7703: 7660: 7579: 7549: 5780:
is trivial. (Some authors do not require reductive groups to be connected.) A semisimple group is reductive. A group
3061: 7773: 1793: 7867: 3308: 6112:
gave a complete classification of the reductive groups over an algebraically closed field: they are determined by
5390:; conversely, every subgroup containing a Borel subgroup is parabolic. So one can list all parabolic subgroups of 2558: 5312: 3457: 2197: 2166: 2074: 1883: 1742: 7678: 4960: 3041: 707: 7850: 3627: 3412: 1175: 774: 7840: 5964: 6402: 5862: 7122: 2985: 7845: 7769: 7640: 7157: 5605:{\displaystyle \left\{{\begin{bmatrix}*&*&*\\*&*&*\\0&0&*\end{bmatrix}}\right\}.} 391: 205: 6760:
Linear algebraic groups admit variants in several directions. Dropping the existence of the inverse map
6616: 6559:
The representation theory of reductive groups (other than tori) over a field of positive characteristic
5514:{\displaystyle \left\{{\begin{bmatrix}*&*&*\\0&*&*\\0&*&*\end{bmatrix}}\right\}} 4898: 4598: 7779: 7196: 7182: 7067:
can be read from its category of representations. For example, over a field of characteristic zero, Rep
6663: 6656: 5791: 5263: 5231: 4788: 4756: 4332: 3651: 2836: 2239: 2107: 123: 6855:
There are several reasons why a Lie group may not have the structure of a linear algebraic group over
1974: 1702: 1665: 1628: 1551: 6722: 5200: 5120: 4377: 3804: 3677: 3605: 3364: 3146:, by analogy with the definitions in abstract group theory. For example, a linear algebraic group is 2947: 2872: 6938:
showed that every simply connected nilpotent Lie group can be viewed as a unipotent algebraic group
6863:
A Lie group with an infinite group of components G/G cannot be realized as a linear algebraic group.
6763: 2113: 7149: 7102: 7010: 5617: 2831: 2733: 589: 323: 200: 88: 864: 469: 444: 407: 7174: 5159: 5097: 2693: 6029: 5072:
are important for the structure theory of linear algebraic groups. For a linear algebraic group
1351: 1234: 7491: 7191: 7140: 7131: 7056: 6537: 6533: 6513: 6338: 3699: 2554: 1126: 823: 529: 6504:
Chevalley showed that the irreducible representations of a split reductive group over a field
7725: 7166: 6129: 6066:
Reductive groups include the most important linear algebraic groups in practice, such as the
3932: 3390: 2068: 850: 613: 2785:
is not a regular function). In the language of group schemes, there is a clearer reason why
7826: 7797: 7762: 7713: 7670: 7629: 7589: 7559: 7530: 7495: 7106: 7060: 6730: 6675: 6524:
over a field of characteristic zero is a direct sum of irreducible representations, and if
4084:). (These properties are in fact independent of the choice of a faithful representation of 2367: 1833: 1735: 1660: 1515: 1074: 1069: 990: 907: 846: 553: 541: 159: 93: 4250:
that is not contained in any bigger torus. For example, the group of diagonal matrices in
8: 7600: 7178: 7126: 7094:
are the finite simple groups constructed from simple algebraic groups over finite fields.
7074: 6594: 5386:
algebraically closed, the Borel subgroups are exactly the minimal parabolic subgroups of
3846:. In positive characteristic, there can be many different connected subgroups of a group 3545:, left invariance of a derivation is defined as an analogous equality of two linear maps 3049: 2430: 1545: 963: 814: 128: 23: 6748:. In particular, the theory defines open subsets of "stable" and "semistable" points in 7750: 7691: 7030: 6721:-algebra (and so Spec of the ring is a scheme but not a variety), a negative answer to 6703: 6699: 6540:
gives a geometric construction of the irreducible representations of a reductive group
6014: 5351: 5084:
means a maximal smooth connected solvable subgroup. For example, one Borel subgroup of
4952: 3998: 3154:
of linear algebraic subgroups such that the quotient groups are commutative. Also, the
3151: 3034: 2972: 2912: 2497: 2226: 2146: 1954: 1934: 1914: 1860: 1773: 1605: 1585: 1487: 1463: 1152: 1106: 1051: 938: 113: 85: 4024:) is said to be semisimple if it becomes diagonalizable over the algebraic closure of 7812: 7783: 7742: 7699: 7656: 7615: 7575: 7545: 7518: 7153: 7097: 7091: 6920: 6899: 6849: 5840:
is semisimple, whereas a nontrivial torus is reductive but not semisimple. Likewise,
4219: 3749:{\displaystyle \operatorname {Ad} \colon G\to \operatorname {Aut} ({\mathfrak {g}}).} 3264:
The assumption of connectedness cannot be omitted in these results. For example, let
3159: 2897: 2489: 2246: 975: 818: 518: 361: 255: 7063:
are constructed using this formalism. Certain properties of a (pro-)algebraic group
6485:
is given by regular functions. It is an important but different problem to classify
684: 7734: 6883: 6852:. Much of the theory of algebraic groups was developed by analogy with Lie groups. 6714: 6545: 6529: 6109: 6098: 6087: 5717: 5323: 3347: 2794: 2410: 1046: 1015: 987: 858: 669: 661: 653: 645: 637: 625: 565: 505: 495: 337: 279: 154: 6124:. It is striking that this classification is independent of the characteristic of 5103:
A basic result of the theory is that any two Borel subgroups of a connected group
2557:. In particular, this defines what it means for two linear algebraic groups to be 7822: 7793: 7758: 7709: 7666: 7652: 7625: 7585: 7571: 7555: 7526: 7118: 6998: 6994: 6959: 6935: 6829: 6509: 6067: 6061: 5889:) if it is semisimple, nontrivial, and every smooth connected normal subgroup of 5772: 5749: 5725: 4196: 4176: 3279: 3139: 3053: 3045: 1034: 1002: 753: 746: 732: 689: 577: 500: 330: 244: 184: 64: 3185:
One may ask to what extent the properties of a connected linear algebraic group
7804: 7636: 7135: 7026: 7002: 6577: 6569: 6319: 6121: 5128: 5068: 3902: 3143: 2866: 2269: 1509: 1505: 971: 760: 696: 386: 366: 303: 268: 189: 179: 164: 149: 103: 80: 6740:
Geometric invariant theory involves further subtleties when a reductive group
1006: 7861: 7746: 7720: 7522: 7048: 7006: 6824:, essentially because real polynomials, which describe the multiplication on 6734: 6725:. In the positive direction, the ring of invariants is finitely generated if 6120:
are classified (up to quotients by finite central subgroup schemes) by their
3242: 3206: 3135: 2681: 2386: 1019: 1011: 679: 601: 435: 308: 174: 7644: 6375:
algebraically closed, and they are understood for some other fields such as
7596: 7537: 6951: 6752:, with the quotient morphism only defined on the set of semistable points. 6376: 4564: 3671: 3131: 2939: 2574: 1027: 534: 233: 222: 169: 144: 139: 98: 69: 32: 7390:
Bröcker & tom Dieck (1985), section III.8; Conrad (2014), section D.3.
4539:
with group structure given by the formula for multiplying complex numbers
2958:. For example, the Hopf algebra corresponding to the multiplicative group 2163:.) By contrast, the only irreducible representation of the additive group 7775:
Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field
6363:
essentially includes the problem of classifying all quadratic forms over
3359: 3222: 3163: 2309: 967: 802: 6924:, is a Lie group that cannot be viewed as a linear algebraic group over 5382:. That is, Borel subgroups are parabolic subgroups. More precisely, for 4279:). A basic result of the theory is that any two maximal tori in a group 2425:, and these functions must have the property that for every commutative 2071:(as algebraic groups). Every representation of the multiplicative group 7754: 7114: 6717:
showed that the ring of invariants need not be finitely generated as a
3924: 3155: 2103: 1951:, can also be expressed as a matrix group, for example as the subgroup 1030:
constructed much of the theory of algebraic groups as it exists today.
986:-anisotropic and reductive), as can many noncompact groups such as the 854: 701: 429: 6686:
as an algebraic variety. Various complications arise. For example, if
4884:
is nilpotent. As a result, every unipotent group scheme is nilpotent.
6821: 6166:
can be defined in any characteristic (and even as group schemes over
6113: 3916: 3907: 2110:. (Its irreducible representations all have dimension 1, of the form 1481: 959: 932: 522: 7738: 4175:
commute with each other. This reduces the problem of describing the
810: 59: 6116:. In particular, simple groups over an algebraically closed field 4529:{\displaystyle T=\{(x,y)\in A_{\mathbf {R} }^{2}:x^{2}+y^{2}=1\},} 4072:
to be semisimple or unipotent if it is semisimple or unipotent in
7110: 6359:). As a result, the problem of classifying reductive groups over 5170:) is conjugate to a subgroup of the upper-triangular subgroup in 4595:
is a connected linear algebraic group such that every element of
401: 315: 5406:
that contain a fixed Borel subgroup. For example, the subgroups
2355:) is defined by the vanishing of some set of regular functions. 2225:(such as the 2-dimensional representation above) is an iterated 7162: 6793: 6587: 5766:
is trivial. More generally, a connected linear algebraic group
4825:
have the same dimension, although they need not be isomorphic.
2057:{\displaystyle {\begin{pmatrix}1&*\\0&1\end{pmatrix}}.} 40: 6890:(2) is simply connected over any field, whereas the Lie group 7021:
The finite-dimensional representations of an algebraic group
6565: 7504:
th Root of Unity and of Semisimple Groups in Characteristic
5857:
is a nontrivial smooth connected solvable normal subgroup).
5692:{\displaystyle 0\subset V_{1}\subset V_{2}\subset A_{k}^{3}} 6874:
may be connected as an algebraic group while the Lie group
2658:{\displaystyle m\colon G\times _{k}G\to G,\;i\colon G\to G} 6379:, but for arbitrary fields there are many open questions. 6174:
says that most finite simple groups arise as the group of
3759:
Over a field of characteristic zero, a connected subgroup
3201:). A useful result in this direction is that if the field 3182:, then they are linear algebraic groups as defined above. 2292:
if it can be written as a polynomial in the entries of an
2194:
is the trivial representation. So every representation of
4092:
is perfect, then the semisimple and unipotent parts of a
6268:{\displaystyle GL(n)\cong (G_{m}\times SL(n))/\mu _{n}.} 6178:-points of a simple algebraic group over a finite field 5045:
A smooth connected unipotent group over a perfect field
4430:. An example of a non-split torus over the real numbers 3353: 6012:
has characteristic zero, then one has the more precise
5942:
is (in a unique way) an extension of a reductive group
5776:
if every smooth connected unipotent normal subgroup of
4567:, which is not isomorphic even as an abstract group to 4032:
is perfect, then the semisimple and unipotent parts of
2488:; this is the philosophy of describing a scheme by its 1033:
One of the first uses for the theory was to define the
7490: 5848:) is reductive but not semisimple (because its center 5762:
if every smooth connected solvable normal subgroup of
5537: 5449: 3794:{\displaystyle {\mathfrak {h}}\subset {\mathfrak {g}}} 3569:). The Lie bracket of two derivations is defined by = 3253:
is commutative, nilpotent, or solvable if and only if
2020: 6766: 6619: 6405: 6194: 6055: 6032: 5967: 5794: 5641: 5527: 5439: 5266: 5234: 5203: 4963: 4901: 4791: 4759: 4601: 4443: 4380: 4335: 3807: 3773: 3711: 3680: 3608: 3460: 3367: 3311: 3064: 2988: 2950:(reversing arrows) between affine group schemes over 2875: 2839: 2684:(as a scheme). Conversely, every affine group scheme 2607: 2564:
In the language of schemes, a linear algebraic group
2200: 2169: 2149: 2116: 2077: 2014: 1977: 1957: 1937: 1917: 1886: 1863: 1836: 1796: 1776: 1745: 1705: 1668: 1631: 1608: 1588: 1554: 1518: 1490: 1466: 1345: 1228: 1178: 1155: 1129: 1109: 1077: 1054: 941: 910: 867: 826: 472: 447: 410: 6690:
is an affine variety, then one can try to construct
6532:
of the irreducible representations are given by the
5402:)) by listing all the linear algebraic subgroups of 4555:. It is not split, because its group of real points 3866: 2942:(coming from the multiplication and inverse maps on 2712:. An example is the embedding of the additive group 6298:which remains maximal over an algebraic closure of 5820:is semisimple or reductive. For example, the group 4862:if it is isomorphic to a closed subgroup scheme of 3174:are naturally viewed as closed subgroup schemes of 2781:is not an isomorphism of algebraic groups (because 6981:cannot be viewed as a linear algebraic group over 6932:has no faithful finite-dimensional representation. 6784: 6644: 6435: 6267: 6044: 5997: 5812: 5743: 5691: 5604: 5513: 5284: 5252: 5216: 5005: 4923: 4858:(for example, a linear algebraic group) is called 4809: 4777: 4623: 4528: 4393: 4353: 3817: 3793: 3748: 3690: 3618: 3492: 3389:can be defined in several equivalent ways: as the 3377: 3335: 3104: 3009: 2888: 2857: 2657: 2217: 2186: 2155: 2135: 2094: 2056: 1997: 1963: 1943: 1923: 1903: 1869: 1849: 1822: 1782: 1762: 1725: 1688: 1651: 1614: 1594: 1574: 1536: 1496: 1472: 1448: 1331: 1208: 1161: 1141: 1115: 1095: 1060: 962:can be viewed as linear algebraic groups over the 947: 923: 896: 838: 480: 455: 418: 7005:(abelian varieties of dimension 1) is central to 6544:in characteristic zero, as spaces of sections of 4850:) with diagonal entries equal to 1, over a field 978:can be regarded as a linear algebraic group over 7859: 7565: 6977:, which is not a linear algebraic group, and so 6508:are finite-dimensional, and they are indexed by 4875:. It is straightforward to check that the group 3249:. For example, under the assumptions mentioned, 1931:-points are isomorphic to the additive group of 1602:. Any unipotent subgroup can be conjugated into 16:Subgroup of the group of invertible n×n matrices 7651:, Lecture Notes in Mathematics, vol. 900, 6792:, one obtains the notion of a linear algebraic 6454:reductive, every irreducible representation of 5921:is simple, and its center is the group scheme μ 4730:as the dimension of any maximal split torus in 3105:{\displaystyle 1\to G^{\circ }\to G\to F\to 1,} 2922:) of regular functions, an affine group scheme 2818:. A group scheme of finite type over any field 7246:Borel (1991), Theorem 18.2 and Corollary 18.4. 6314:. Chevalley showed that the classification of 5162:: every smooth connected solvable subgroup of 4662:). For example, both the multiplicative group 2549:. This makes the linear algebraic groups over 2501:of linear algebraic groups. For example, when 1823:{\displaystyle \mathbf {G} _{\mathrm {m} }(k)} 7469:Deligne & Milne (1982), Corollary II.2.7. 6666:, which aims to construct a quotient variety 6182:, or as minor variants of that construction. 5770:over an algebraically closed field is called 5758:over an algebraically closed field is called 4895:is unipotent if and only if every element of 4842:be the group of upper-triangular matrices in 4711:). As a result, it makes sense to define the 3336:{\displaystyle G({\overline {\mathbf {Q} }})} 2505:is algebraically closed, a homomorphism from 782: 7649:Hodge Cycles, Motives, and Shimura Varieties 7635: 7051:of affine group schemes of finite type over 6588:Group actions and geometric invariant theory 6310:) is a split reductive group over any field 5362:). An important property of Borel subgroups 4520: 4450: 3850:with the same Lie algebra (again, the torus 2495:In either language, one has the notion of a 1001:.) The simple Lie groups were classified by 7566:Bröcker, Theodor; tom Dieck, Tammo (1985), 7544:(2nd ed.), New York: Springer-Verlag, 7478:Deligne & Milne (1982), Remark II.2.28. 7009:, with applications including the proof of 6052:of a reductive group by a unipotent group. 5836:matrices with determinant 1 over any field 5100:(all entries below the diagonal are zero). 4048:). Finally, for any linear algebraic group 3493:{\displaystyle D\lambda _{x}=\lambda _{x}D} 2545:) which is defined by regular functions on 2409:is defined by the vanishing of some set of 2218:{\displaystyle \mathbf {G} _{\mathrm {a} }} 2187:{\displaystyle \mathbf {G} _{\mathrm {a} }} 2095:{\displaystyle \mathbf {G} _{\mathrm {m} }} 1904:{\displaystyle \mathbf {G} _{\mathrm {a} }} 1763:{\displaystyle \mathbf {G} _{\mathrm {m} }} 1219:consisting of matrices of the form, resp., 1149:matrices, is a linear algebraic group over 6584:, there is not even a precise conjecture. 6501:, or similar problems over other fields.) 6290:if it contains a split maximal torus over 5296:may or may not have a Borel subgroup over 4817:. It follows that any two maximal tori in 4683:. However, it is always true that any two 4307:means the dimension of any maximal torus. 3829:, as one sees in the example of the torus 3767:is uniquely determined by its Lie algebra 2769:induces an isomorphism of abstract groups 2639: 789: 775: 7690: 7077:if and only if the identity component of 6886:groups. For example, the algebraic group 6832:. Likewise, for a linear algebraic group 6018:: every connected linear algebraic group 5006:{\displaystyle B_{n}=T_{n}\ltimes U_{n},} 4187:) to the semisimple and unipotent cases. 2472:), but rather the whole family of groups 474: 449: 412: 7803: 7676: 7399:Conrad (2014), after Proposition 5.1.17. 7202:Distribution on a linear algebraic group 6387: 5860:Every compact connected Lie group has a 4703:torus) are conjugate by some element of 4646:, one cannot expect all maximal tori in 4226:copies of the multiplicative group over 3935:for matrices implies that every element 3825:corresponds to an algebraic subgroup of 1548:that any connected solvable subgroup of 7719: 7500:Representations of Quantum Groups at a 7016: 6662:Part of the theory of group actions is 6572:'s conjecture) when the characteristic 6568:) determined these characters (proving 5934:Every connected linear algebraic group 5150:.) The conjugacy of Borel subgroups in 4120:) can be written uniquely as a product 3951:) can be written uniquely as a product 3537:) is induced by left multiplication by 3209:(for example, of characteristic zero), 2529:) is a homomorphism of abstract groups 1209:{\displaystyle U\subset B\subset GL(n)} 1023: 7860: 7811:(2nd ed.), New York: Birkhäuser, 7680:Linear Algebraic Groups (course notes) 7595: 7444: 6576:is sufficiently large compared to the 6172:classification of finite simple groups 5998:{\displaystyle 1\to U\to G\to R\to 1.} 5946:by a smooth connected unipotent group 3419:is algebraically closed, a derivation 3217:is reductive (as defined below), then 2814:of characteristic zero is smooth over 2444:) is a subgroup of the abstract group 347:Classification of finite simple groups 7768: 7568:Representations of Compact Lie Groups 7536: 7363:Milne (2017), Theorems 7.18 and 8.43. 7145:Weil's conjecture on Tamagawa numbers 6882:) is not connected, and likewise for 6436:{\displaystyle 1\to U\to G\to R\to 1} 5788:is called semisimple or reductive if 5197:such that, over an algebraic closure 3411:), or as the space of left-invariant 3354:The Lie algebra of an algebraic group 3193:are determined by the abstract group 2793:is surjective, but it has nontrivial 6989: 6367:or all central simple algebras over 5430:(3), and the intermediate subgroups 5374:is a projective variety, called the 4587:Every point of a torus over a field 4325:means a linear algebraic group over 3278:(1) of cube roots of unity over the 3010:{\displaystyle x\mapsto x\otimes x.} 2732:be an algebraically closed field of 6733:, proved in characteristic zero by 5754:A connected linear algebraic group 5134:over an algebraically closed field 5107:over an algebraically closed field 5076:over an algebraically closed field 4828: 4699:that are not contained in a bigger 4283:over an algebraically closed field 4205:over an algebraically closed field 3810: 3786: 3776: 3735: 3683: 3611: 3370: 2954:and commutative Hopf algebras over 2319:over an algebraically closed field 13: 7417:Springer (1998), 9.6.2 and 10.1.1. 7237:Milne (2017), Proposition 1.26(b). 6755: 6645:{\displaystyle G\times _{k}X\to X} 6481:-vector spaces, and the action of 6056:Classification of reductive groups 5632:of all chains of linear subspaces 5061: 4924:{\displaystyle G({\overline {k}})} 4624:{\displaystyle G({\overline {k}})} 3877:For an algebraically closed field 3801:. But not every Lie subalgebra of 3261:) has the corresponding property. 3119:is a finite algebraic group. (For 2209: 2178: 2086: 1982: 1979: 1895: 1805: 1754: 1710: 1707: 1673: 1670: 1636: 1633: 1559: 1556: 1484:linear algebraic group, the group 14: 7879: 7833: 7408:Conrad (2014), Proposition 5.4.1. 5813:{\displaystyle G_{\overline {k}}} 5422:of upper-triangular matrices are 5285:{\displaystyle G_{\overline {k}}} 5253:{\displaystyle B_{\overline {k}}} 5193:is defined to be a subgroup over 5123:: for a connected solvable group 5111:are conjugate by some element of 4810:{\displaystyle G_{\overline {k}}} 4778:{\displaystyle T_{\overline {k}}} 4354:{\displaystyle T_{\overline {k}}} 3867:Semisimple and unipotent elements 3289:is a linear algebraic group over 2979:, with comultiplication given by 2858:{\displaystyle G_{\overline {k}}} 2366:are defined as a special case of 1857:of nonzero elements of the field 7345:Borel (1991), Theorem 15.4(iii). 7309:Springer (1998), Theorem 15.2.6. 6946:in a unique way. (As a variety, 5732:; and the dual projective space 5618:projective homogeneous varieties 5418:that contain the Borel subgroup 5146:which is fixed by the action of 4943:of upper-triangular matrices in 4477: 3321: 3020: 2203: 2172: 2080: 1998:{\displaystyle \mathrm {GL} (2)} 1889: 1799: 1748: 1726:{\displaystyle \mathrm {GL} (1)} 1696:of matrices with determinant 1. 1689:{\displaystyle \mathrm {SL} (n)} 1652:{\displaystyle \mathrm {GL} (n)} 1575:{\displaystyle \mathrm {GL} (n)} 39: 7472: 7463: 7454: 7438: 7429: 7420: 7411: 7402: 7393: 7384: 7375: 7366: 7357: 7348: 7339: 7330: 7321: 7312: 7303: 7294: 6655:that satisfies the axioms of a 6580:of the group. For small primes 6382: 5744:Semisimple and reductive groups 5217:{\displaystyle {\overline {k}}} 4675:above occur as maximal tori in 4654:to be conjugate by elements of 4551:is a torus of dimension 1 over 4394:{\displaystyle {\overline {k}}} 4234:. For a linear algebraic group 3818:{\displaystyle {\mathfrak {g}}} 3691:{\displaystyle {\mathfrak {g}}} 3619:{\displaystyle {\mathfrak {g}}} 3378:{\displaystyle {\mathfrak {g}}} 2889:{\displaystyle {\overline {k}}} 2464:is not just the abstract group 1123:, consisting of all invertible 7612:Société Mathématique de France 7515:Société Mathématique de France 7381:Milne (2017), Definition 6.46. 7327:Milne (2017), Corollary 14.12. 7285: 7276: 7267: 7258: 7249: 7240: 7231: 7222: 7213: 6785:{\displaystyle i\colon G\to G} 6776: 6636: 6427: 6421: 6415: 6409: 6371:. These problems are easy for 6244: 6241: 6235: 6213: 6207: 6201: 5989: 5983: 5977: 5971: 5358:(or equivalently, proper over 5119:). (A standard proof uses the 4918: 4905: 4854:. A group scheme over a field 4618: 4605: 4591:is semisimple. Conversely, if 4465: 4453: 3873:Jordan–Chevalley decomposition 3740: 3730: 3721: 3403:) at the identity element 1 ∈ 3330: 3315: 3301:) = 1 is not Zariski dense in 3093: 3087: 3081: 3068: 2992: 2739:> 0. Then the homomorphism 2649: 2630: 2245:, much of the structure of an 2233: 2136:{\displaystyle x\mapsto x^{n}} 2120: 1992: 1986: 1817: 1811: 1720: 1714: 1683: 1677: 1646: 1640: 1625:Another algebraic subgroup of 1569: 1563: 1531: 1525: 1203: 1197: 1090: 1084: 974:numbers. (For example, every 708:Infinite dimensional Lie group 1: 7608:Autour des schémas en groupes 7513:, Astérisque, vol. 220, 7484: 7372:Borel (1991), Corollary 11.2. 7300:Milne (2017), Corollary 17.25 7291:Borel (1991), Corollary 11.3. 7228:Milne (2017), Corollary 8.39. 7219:Milne (2017), Corollary 4.10. 6804:For a linear algebraic group 6799: 6744:acts on a projective variety 6497:) for a real reductive group 6477:, the representations are on 6348:determines a reductive group 6329:determines a reductive group 5303:For a closed subgroup scheme 4638:For a linear algebraic group 4413:means a group isomorphic to ( 4209:means a group isomorphic to ( 3044:containing the point 1) is a 3025:For a linear algebraic group 1544:. It is a consequence of the 1169:. It contains the subgroups 857:equations. An example is the 7460:Milne (2017), Theorem 14.37. 6678:of a linear algebraic group 6598:of a linear algebraic group 5804: 5276: 5244: 5209: 4913: 4801: 4769: 4745:in a linear algebraic group 4613: 4386: 4361:to the algebraic closure of 4345: 3763:of a linear algebraic group 3325: 3229:. Therefore, if in addition 3170:of a linear algebraic group 2881: 2849: 2688:of finite type over a field 2456:). (Thus an algebraic group 1830:is the multiplicative group 897:{\displaystyle M^{T}M=I_{n}} 481:{\displaystyle \mathbb {Z} } 456:{\displaystyle \mathbb {Z} } 419:{\displaystyle \mathbb {Z} } 7: 7846:Encyclopedia of Mathematics 7435:Milne (2017), Theorem 22.2. 7354:Borel (1991), Theorem 11.1. 7336:Borel (1991), Theorem 10.6. 7282:Milne (2017), Theorem 9.18. 7264:Milne (2017), section 10.e. 7255:Borel (1991), Remark 14.14. 7158:geometric Langlands program 7084: 7047:in the sense that it is an 7029:of representations, form a 6902:isomorphic to the integers 6812:, the group of real points 6294:(that is, a split torus in 4753:, Grothendieck showed that 2362:, algebraic varieties over 2108:irreducible representations 1508:algebraic group called the 1040: 206:List of group theory topics 10: 7884: 7780:Cambridge University Press 7426:Milne (2017), Lemma 19.16. 7273:Borel (1991), section 7.1. 7197:Differential Galois theory 6965:of the semidirect product 6664:geometric invariant theory 6564:Jantzen and Soergel ( 6487:continuous representations 6059: 6045:{\displaystyle R\ltimes U} 5747: 4401:, for some natural number 4230:, for some natural number 4194: 3870: 3443:of the coordinate ring of 3178:. If they are smooth over 2938:) with its structure of a 2930:is determined by the ring 2389:closed subgroup scheme of 2343:) for some natural number 2240:algebraically closed field 861:, defined by the relation 7601:"Reductive group schemes" 6973:has center isomorphic to 6602:on a variety (or scheme) 5905:at least 2 and any field 5869:A linear algebraic group 5121:Borel fixed-point theorem 5098:upper-triangular matrices 4887:A linear algebraic group 3642:), the derivative at 1 ∈ 3541:. For an arbitrary field 2948:equivalence of categories 1142:{\displaystyle n\times n} 839:{\displaystyle n\times n} 7841:"Linear algebraic group" 7447:Linear Algebraic Monoids 7207: 7150:Langlands classification 7103:Generalized flag variety 6674:, describing the set of 6396:written as an extension 6026:is a semidirect product 5784:over an arbitrary field 5724:of lines (1-dimensional 5628:are (respectively): the 5426:itself, the whole group 2582:, meaning a scheme over 2401:for some natural number 2331:) of the abstract group 324:Elementary abelian group 201:Glossary of group theory 7868:Linear algebraic groups 7809:Linear Algebraic Groups 7696:Linear Algebraic Groups 7542:Linear Algebraic Groups 7175:cohomological invariant 6954:of some dimension over 6548:over the flag manifold 6514:semisimple Lie algebras 6278:For an arbitrary field 5897:is trivial or equal to 5260:is a Borel subgroup of 5181:For an arbitrary field 5025:is the diagonal torus ( 4695:(meaning split tori in 4310:For an arbitrary field 4190: 3343:is a group of order 3. 3233:is infinite, the group 2907:Since an affine scheme 2789:is not an isomorphism: 2694:faithful representation 2358:For an arbitrary field 7677:De Medts, Tom (2019), 7645:"Tannakian categories" 7610:, vol. 1, Paris: 7498:; Soergel, W. (1994), 7318:Borel (1991), 18.2(i). 7192:Pseudo-reductive group 7183:Kneser–Tits conjecture 7141:Adelic algebraic group 7132:Real form (Lie theory) 6808:over the real numbers 6786: 6723:Hilbert's 14th problem 6646: 6534:Weyl character formula 6437: 6339:central simple algebra 6269: 6130:exceptional Lie groups 6046: 5999: 5814: 5693: 5606: 5515: 5394:(up to conjugation by 5286: 5254: 5218: 5080:, a Borel subgroup of 5007: 4925: 4811: 4785:is a maximal torus in 4779: 4741:For any maximal torus 4625: 4530: 4395: 4355: 4262:is a maximal torus in 3819: 3795: 3750: 3700:adjoint representation 3692: 3620: 3494: 3385:of an algebraic group 3379: 3337: 3123:algebraically closed, 3106: 3011: 2890: 2859: 2659: 2376:linear algebraic group 2374:. In that language, a 2314:linear algebraic group 2256:is encoded in its set 2219: 2188: 2157: 2137: 2096: 2069:linear representations 2058: 1999: 1965: 1945: 1925: 1905: 1871: 1851: 1824: 1784: 1764: 1727: 1690: 1653: 1616: 1596: 1576: 1538: 1498: 1474: 1450: 1333: 1210: 1163: 1143: 1117: 1097: 1062: 949: 925: 898: 840: 807:linear algebraic group 740:Linear algebraic group 482: 457: 420: 7726:Annals of Mathematics 7187:Serre's conjecture II 7167:nonabelian cohomology 7123:group of adjoint type 7011:Fermat's Last Theorem 6787: 6647: 6467:as an algebraic group 6438: 6388:Representation theory 6270: 6047: 6000: 5938:over a perfect field 5815: 5694: 5607: 5516: 5334:of a connected group 5287: 5255: 5219: 5008: 4926: 4812: 4780: 4671:and the circle group 4642:over a general field 4626: 4531: 4396: 4356: 4100:are automatically in 3933:Jordan canonical form 3820: 3796: 3751: 3693: 3626:is thus a process of 3621: 3495: 3380: 3338: 3166:of a closed subgroup 3132:abstract group theory 3130:Various notions from 3107: 3012: 2911:is determined by its 2891: 2860: 2828:geometrically reduced 2826:if and only if it is 2660: 2220: 2189: 2158: 2138: 2097: 2059: 2000: 1966: 1946: 1926: 1906: 1872: 1852: 1850:{\displaystyle k^{*}} 1825: 1785: 1765: 1739:, usually denoted by 1728: 1691: 1654: 1617: 1597: 1577: 1539: 1537:{\displaystyle GL(n)} 1499: 1475: 1451: 1334: 1211: 1164: 1144: 1118: 1098: 1096:{\displaystyle GL(n)} 1063: 950: 926: 924:{\displaystyle M^{T}} 899: 853:) that is defined by 851:matrix multiplication 841: 483: 458: 421: 7655:, pp. 101–228, 7445:Renner, Lex (2006), 7107:Bruhat decomposition 7061:motivic Galois group 7055:.) For example, the 7025:, together with the 7017:Tannakian categories 6764: 6617: 6469:. Thus, for a group 6403: 6282:, a reductive group 6192: 6030: 5965: 5792: 5639: 5525: 5437: 5330:. A smooth subgroup 5264: 5232: 5201: 4961: 4899: 4789: 4757: 4631:is semisimple, then 4599: 4441: 4378: 4333: 4106:Jordan decomposition 3931:are equal to 1. The 3923:is unipotent if all 3805: 3771: 3709: 3678: 3606: 3458: 3365: 3309: 3062: 2986: 2873: 2837: 2605: 2308:), where det is the 2198: 2167: 2147: 2114: 2075: 2012: 1975: 1955: 1935: 1915: 1884: 1861: 1834: 1794: 1774: 1743: 1736:multiplicative group 1703: 1666: 1661:special linear group 1629: 1606: 1586: 1552: 1516: 1488: 1464: 1343: 1226: 1176: 1153: 1127: 1107: 1075: 1070:general linear group 1052: 939: 908: 865: 824: 470: 445: 408: 7692:Humphreys, James E. 7614:, pp. 93–444, 7179:essential dimension 7127:parabolic induction 7075:semisimple category 6906:. The double cover 6866:An algebraic group 6128:. For example, the 5931:th roots of unity. 5688: 5185:, a Borel subgroup 5160:Lie–Kolchin theorem 4487: 4291:by some element of 3042:connected component 2830:, meaning that the 2572:is in particular a 1582:is conjugated into 1546:Lie-Kolchin theorem 1504:is an example of a 1480:is an example of a 114:Group homomorphisms 24:Algebraic structure 7805:Springer, Tonny A. 7686:, Ghent University 7508:: Independence of 7092:groups of Lie type 7081:is pro-reductive. 7057:Mumford–Tate group 7031:tannakian category 6782: 6704:ring of invariants 6642: 6538:Borel–Weil theorem 6433: 6265: 6042: 6015:Levi decomposition 5995: 5810: 5689: 5674: 5615:The corresponding 5602: 5589: 5511: 5501: 5282: 5250: 5214: 5092:) is the subgroup 5003: 4953:semidirect product 4921: 4807: 4775: 4685:maximal split tori 4621: 4526: 4471: 4391: 4365:is isomorphic to ( 4351: 4329:whose base change 4270:), isomorphic to ( 4159:is unipotent, and 3982:is unipotent, and 3815: 3791: 3746: 3688: 3616: 3490: 3375: 3333: 3152:composition series 3102: 3035:identity component 3007: 2973:Laurent polynomial 2886: 2855: 2655: 2480:) for commutative 2215: 2184: 2153: 2133: 2092: 2054: 2045: 1995: 1961: 1941: 1921: 1901: 1867: 1847: 1820: 1780: 1760: 1723: 1686: 1649: 1612: 1592: 1572: 1534: 1494: 1470: 1446: 1440: 1329: 1323: 1206: 1159: 1139: 1113: 1093: 1058: 945: 921: 894: 836: 590:Special orthogonal 478: 453: 416: 297:Lagrange's theorem 7729:, Second Series, 7621:978-2-85629-794-0 7154:Langlands program 6990:Abelian varieties 6950:is isomorphic to 6928:. More strongly, 6921:metaplectic group 6900:fundamental group 6850:complex Lie group 6731:Haboush's theorem 6729:is reductive, by 6099:symplectic groups 6088:orthogonal groups 5952:unipotent radical 5807: 5279: 5247: 5212: 5158:) amounts to the 4916: 4804: 4772: 4616: 4389: 4348: 4246:means a torus in 4177:conjugacy classes 4108:): every element 4001:with each other. 3630:. For an element 3598:The passage from 3328: 2946:). This gives an 2898:algebraic closure 2884: 2852: 2598:) and morphisms 2490:functor of points 2411:regular functions 2405:. In particular, 2247:algebraic variety 2156:{\displaystyle n} 1964:{\displaystyle U} 1944:{\displaystyle k} 1924:{\displaystyle k} 1870:{\displaystyle k} 1783:{\displaystyle k} 1615:{\displaystyle U} 1595:{\displaystyle B} 1497:{\displaystyle B} 1473:{\displaystyle U} 1162:{\displaystyle k} 1116:{\displaystyle k} 1061:{\displaystyle n} 1026:). In the 1950s, 976:compact Lie group 948:{\displaystyle M} 799: 798: 374: 373: 256:Alternating group 213: 212: 7875: 7854: 7829: 7800: 7765: 7716: 7687: 7685: 7673: 7632: 7605: 7592: 7562: 7533: 7479: 7476: 7470: 7467: 7461: 7458: 7452: 7450: 7442: 7436: 7433: 7427: 7424: 7418: 7415: 7409: 7406: 7400: 7397: 7391: 7388: 7382: 7379: 7373: 7370: 7364: 7361: 7355: 7352: 7346: 7343: 7337: 7334: 7328: 7325: 7319: 7316: 7310: 7307: 7301: 7298: 7292: 7289: 7283: 7280: 7274: 7271: 7265: 7262: 7256: 7253: 7247: 7244: 7238: 7235: 7229: 7226: 7220: 7217: 6995:Algebraic groups 6918:), known as the 6884:simply connected 6830:smooth functions 6791: 6789: 6788: 6783: 6715:Masayoshi Nagata 6651: 6649: 6648: 6643: 6632: 6631: 6510:dominant weights 6458:factors through 6442: 6440: 6439: 6434: 6302:). For example, 6274: 6272: 6271: 6266: 6261: 6260: 6251: 6225: 6224: 6110:Claude Chevalley 6068:classical groups 6051: 6049: 6048: 6043: 6004: 6002: 6001: 5996: 5863:complexification 5819: 5817: 5816: 5811: 5809: 5808: 5800: 5726:linear subspaces 5718:projective space 5698: 5696: 5695: 5690: 5687: 5682: 5670: 5669: 5657: 5656: 5611: 5609: 5608: 5603: 5598: 5594: 5593: 5520: 5518: 5517: 5512: 5510: 5506: 5505: 5324:quasi-projective 5291: 5289: 5288: 5283: 5281: 5280: 5272: 5259: 5257: 5256: 5251: 5249: 5248: 5240: 5223: 5221: 5220: 5215: 5213: 5205: 5012: 5010: 5009: 5004: 4999: 4998: 4986: 4985: 4973: 4972: 4930: 4928: 4927: 4922: 4917: 4909: 4829:Unipotent groups 4816: 4814: 4813: 4808: 4806: 4805: 4797: 4784: 4782: 4781: 4776: 4774: 4773: 4765: 4630: 4628: 4627: 4622: 4617: 4609: 4535: 4533: 4532: 4527: 4513: 4512: 4500: 4499: 4486: 4481: 4480: 4400: 4398: 4397: 4392: 4390: 4382: 4360: 4358: 4357: 4352: 4350: 4349: 4341: 4088:.) If the field 3919:. Equivalently, 3824: 3822: 3821: 3816: 3814: 3813: 3800: 3798: 3797: 3792: 3790: 3789: 3780: 3779: 3755: 3753: 3752: 3747: 3739: 3738: 3697: 3695: 3694: 3689: 3687: 3686: 3625: 3623: 3622: 3617: 3615: 3614: 3499: 3497: 3496: 3491: 3486: 3485: 3473: 3472: 3384: 3382: 3381: 3376: 3374: 3373: 3348:rational variety 3342: 3340: 3339: 3334: 3329: 3324: 3319: 3280:rational numbers 3111: 3109: 3108: 3103: 3080: 3079: 3052:. So there is a 3016: 3014: 3013: 3008: 2895: 2893: 2892: 2887: 2885: 2877: 2864: 2862: 2861: 2856: 2854: 2853: 2845: 2664: 2662: 2661: 2656: 2626: 2625: 2586:together with a 2224: 2222: 2221: 2216: 2214: 2213: 2212: 2206: 2193: 2191: 2190: 2185: 2183: 2182: 2181: 2175: 2162: 2160: 2159: 2154: 2142: 2140: 2139: 2134: 2132: 2131: 2101: 2099: 2098: 2093: 2091: 2090: 2089: 2083: 2063: 2061: 2060: 2055: 2050: 2049: 2004: 2002: 2001: 1996: 1985: 1970: 1968: 1967: 1962: 1950: 1948: 1947: 1942: 1930: 1928: 1927: 1922: 1910: 1908: 1907: 1902: 1900: 1899: 1898: 1892: 1876: 1874: 1873: 1868: 1856: 1854: 1853: 1848: 1846: 1845: 1829: 1827: 1826: 1821: 1810: 1809: 1808: 1802: 1789: 1787: 1786: 1781: 1769: 1767: 1766: 1761: 1759: 1758: 1757: 1751: 1732: 1730: 1729: 1724: 1713: 1695: 1693: 1692: 1687: 1676: 1658: 1656: 1655: 1650: 1639: 1621: 1619: 1618: 1613: 1601: 1599: 1598: 1593: 1581: 1579: 1578: 1573: 1562: 1543: 1541: 1540: 1535: 1503: 1501: 1500: 1495: 1479: 1477: 1476: 1471: 1455: 1453: 1452: 1447: 1445: 1441: 1338: 1336: 1335: 1330: 1328: 1324: 1215: 1213: 1212: 1207: 1168: 1166: 1165: 1160: 1148: 1146: 1145: 1140: 1122: 1120: 1119: 1114: 1102: 1100: 1099: 1094: 1067: 1065: 1064: 1059: 1047:positive integer 1035:Chevalley groups 988:simple Lie group 954: 952: 951: 946: 930: 928: 927: 922: 920: 919: 903: 901: 900: 895: 893: 892: 877: 876: 859:orthogonal group 845: 843: 842: 837: 791: 784: 777: 733:Algebraic groups 506:Hyperbolic group 496:Arithmetic group 487: 485: 484: 479: 477: 462: 460: 459: 454: 452: 425: 423: 422: 417: 415: 338:Schur multiplier 292:Cauchy's theorem 280:Quaternion group 228: 227: 54: 53: 43: 30: 19: 18: 7883: 7882: 7878: 7877: 7876: 7874: 7873: 7872: 7858: 7857: 7839: 7836: 7819: 7790: 7739:10.2307/1969111 7706: 7683: 7663: 7653:Springer Nature 7637:Deligne, Pierre 7622: 7603: 7582: 7572:Springer Nature 7552: 7492:Andersen, H. H. 7487: 7482: 7477: 7473: 7468: 7464: 7459: 7455: 7443: 7439: 7434: 7430: 7425: 7421: 7416: 7412: 7407: 7403: 7398: 7394: 7389: 7385: 7380: 7376: 7371: 7367: 7362: 7358: 7353: 7349: 7344: 7340: 7335: 7331: 7326: 7322: 7317: 7313: 7308: 7304: 7299: 7295: 7290: 7286: 7281: 7277: 7272: 7268: 7263: 7259: 7254: 7250: 7245: 7241: 7236: 7232: 7227: 7223: 7218: 7214: 7210: 7119:Cartan subgroup 7087: 7072: 7038: 7019: 7003:elliptic curves 6999:abelian variety 6992: 6960:universal cover 6936:Anatoly Maltsev 6802: 6765: 6762: 6761: 6758: 6756:Related notions 6627: 6623: 6618: 6615: 6614: 6590: 6404: 6401: 6400: 6390: 6385: 6354: 6256: 6252: 6247: 6220: 6216: 6193: 6190: 6189: 6165: 6158: 6151: 6144: 6137: 6122:Dynkin diagrams 6064: 6062:Reductive group 6058: 6031: 6028: 6027: 5966: 5963: 5962: 5926: 5856: 5799: 5795: 5793: 5790: 5789: 5752: 5750:Reductive group 5746: 5715:; a point; the 5710: 5683: 5678: 5665: 5661: 5652: 5648: 5640: 5637: 5636: 5588: 5587: 5582: 5577: 5571: 5570: 5565: 5560: 5554: 5553: 5548: 5543: 5533: 5532: 5528: 5526: 5523: 5522: 5500: 5499: 5494: 5489: 5483: 5482: 5477: 5472: 5466: 5465: 5460: 5455: 5445: 5444: 5440: 5438: 5435: 5434: 5271: 5267: 5265: 5262: 5261: 5239: 5235: 5233: 5230: 5229: 5204: 5202: 5199: 5198: 5069:Borel subgroups 5064: 5062:Borel subgroups 5057: 5033: 5024: 4994: 4990: 4981: 4977: 4968: 4964: 4962: 4959: 4958: 4942: 4908: 4900: 4897: 4896: 4883: 4870: 4841: 4831: 4796: 4792: 4790: 4787: 4786: 4764: 4760: 4758: 4755: 4754: 4670: 4608: 4600: 4597: 4596: 4575: 4508: 4504: 4495: 4491: 4482: 4476: 4475: 4442: 4439: 4438: 4421: 4381: 4379: 4376: 4375: 4373: 4340: 4336: 4334: 4331: 4330: 4278: 4217: 4199: 4197:Algebraic torus 4193: 4174: 4167: 4158: 4152:is semisimple, 4151: 4136: 4130: 4104:. That is (the 4060:) over a field 4028:. If the field 3997: 3990: 3981: 3975:is semisimple, 3974: 3967: 3961: 3875: 3869: 3862: 3841: 3809: 3808: 3806: 3803: 3802: 3785: 3784: 3775: 3774: 3772: 3769: 3768: 3734: 3733: 3710: 3707: 3706: 3682: 3681: 3679: 3676: 3675: 3628:differentiation 3610: 3609: 3607: 3604: 3603: 3594: 3588: 3581: 3575: 3520: 3481: 3477: 3468: 3464: 3459: 3456: 3455: 3398: 3369: 3368: 3366: 3363: 3362: 3356: 3320: 3318: 3310: 3307: 3306: 3273: 3075: 3071: 3063: 3060: 3059: 3054:group extension 3046:normal subgroup 3023: 2987: 2984: 2983: 2966: 2876: 2874: 2871: 2870: 2844: 2840: 2838: 2835: 2834: 2822:is smooth over 2804: 2760: 2751: 2720: 2621: 2617: 2606: 2603: 2602: 2270:rational points 2236: 2208: 2207: 2202: 2201: 2199: 2196: 2195: 2177: 2176: 2171: 2170: 2168: 2165: 2164: 2148: 2145: 2144: 2143:for an integer 2127: 2123: 2115: 2112: 2111: 2085: 2084: 2079: 2078: 2076: 2073: 2072: 2044: 2043: 2038: 2032: 2031: 2026: 2016: 2015: 2013: 2010: 2009: 1978: 1976: 1973: 1972: 1956: 1953: 1952: 1936: 1933: 1932: 1916: 1913: 1912: 1894: 1893: 1888: 1887: 1885: 1882: 1881: 1862: 1859: 1858: 1841: 1837: 1835: 1832: 1831: 1804: 1803: 1798: 1797: 1795: 1792: 1791: 1775: 1772: 1771: 1770:. The group of 1753: 1752: 1747: 1746: 1744: 1741: 1740: 1706: 1704: 1701: 1700: 1669: 1667: 1664: 1663: 1632: 1630: 1627: 1626: 1607: 1604: 1603: 1587: 1584: 1583: 1555: 1553: 1550: 1549: 1517: 1514: 1513: 1489: 1486: 1485: 1465: 1462: 1461: 1439: 1438: 1433: 1428: 1423: 1417: 1416: 1411: 1406: 1401: 1395: 1394: 1389: 1384: 1379: 1373: 1372: 1367: 1362: 1357: 1350: 1346: 1344: 1341: 1340: 1322: 1321: 1316: 1311: 1306: 1300: 1299: 1294: 1289: 1284: 1278: 1277: 1272: 1267: 1262: 1256: 1255: 1250: 1245: 1240: 1233: 1229: 1227: 1224: 1223: 1177: 1174: 1173: 1154: 1151: 1150: 1128: 1125: 1124: 1108: 1105: 1104: 1076: 1073: 1072: 1053: 1050: 1049: 1043: 1003:Wilhelm Killing 940: 937: 936: 915: 911: 909: 906: 905: 888: 884: 872: 868: 866: 863: 862: 825: 822: 821: 795: 766: 765: 754:Abelian variety 747:Reductive group 735: 725: 724: 723: 722: 673: 665: 657: 649: 641: 614:Special unitary 525: 511: 510: 492: 491: 473: 471: 468: 467: 448: 446: 443: 442: 411: 409: 406: 405: 397: 396: 387:Discrete groups 376: 375: 331:Frobenius group 276: 263: 252: 245:Symmetric group 241: 225: 215: 214: 65:Normal subgroup 51: 31: 22: 17: 12: 11: 5: 7881: 7871: 7870: 7856: 7855: 7835: 7834:External links 7832: 7831: 7830: 7817: 7801: 7789:978-1107167483 7788: 7766: 7721:Kolchin, E. R. 7717: 7704: 7688: 7674: 7661: 7633: 7620: 7593: 7580: 7563: 7550: 7534: 7496:Jantzen, J. C. 7486: 7483: 7481: 7480: 7471: 7462: 7453: 7437: 7428: 7419: 7410: 7401: 7392: 7383: 7374: 7365: 7356: 7347: 7338: 7329: 7320: 7311: 7302: 7293: 7284: 7275: 7266: 7257: 7248: 7239: 7230: 7221: 7211: 7209: 7206: 7205: 7204: 7199: 7194: 7189: 7160: 7147: 7138: 7136:Satake diagram 7129: 7100: 7098:Lang's theorem 7095: 7086: 7083: 7068: 7034: 7027:tensor product 7018: 7015: 6991: 6988: 6987: 6986: 6933: 6864: 6801: 6798: 6781: 6778: 6775: 6772: 6769: 6757: 6754: 6653: 6652: 6641: 6638: 6635: 6630: 6626: 6622: 6610:is a morphism 6589: 6586: 6578:Coxeter number 6528:is split, the 6450:unipotent and 6444: 6443: 6432: 6429: 6426: 6423: 6420: 6417: 6414: 6411: 6408: 6389: 6386: 6384: 6381: 6352: 6320:quadratic form 6276: 6275: 6264: 6259: 6255: 6250: 6246: 6243: 6240: 6237: 6234: 6231: 6228: 6223: 6219: 6215: 6212: 6209: 6206: 6203: 6200: 6197: 6163: 6156: 6149: 6142: 6135: 6060:Main article: 6057: 6054: 6041: 6038: 6035: 6006: 6005: 5994: 5991: 5988: 5985: 5982: 5979: 5976: 5973: 5970: 5922: 5852: 5806: 5803: 5798: 5748:Main article: 5745: 5742: 5706: 5700: 5699: 5686: 5681: 5677: 5673: 5668: 5664: 5660: 5655: 5651: 5647: 5644: 5613: 5612: 5601: 5597: 5592: 5586: 5583: 5581: 5578: 5576: 5573: 5572: 5569: 5566: 5564: 5561: 5559: 5556: 5555: 5552: 5549: 5547: 5544: 5542: 5539: 5538: 5536: 5531: 5509: 5504: 5498: 5495: 5493: 5490: 5488: 5485: 5484: 5481: 5478: 5476: 5473: 5471: 5468: 5467: 5464: 5461: 5459: 5456: 5454: 5451: 5450: 5448: 5443: 5313:quotient space 5278: 5275: 5270: 5246: 5243: 5238: 5211: 5208: 5129:proper variety 5063: 5060: 5053: 5029: 5020: 5014: 5013: 5002: 4997: 4993: 4989: 4984: 4980: 4976: 4971: 4967: 4938: 4931:is unipotent. 4920: 4915: 4912: 4907: 4904: 4879: 4866: 4837: 4830: 4827: 4803: 4800: 4795: 4771: 4768: 4763: 4666: 4620: 4615: 4612: 4607: 4604: 4571: 4537: 4536: 4525: 4522: 4519: 4516: 4511: 4507: 4503: 4498: 4494: 4490: 4485: 4479: 4474: 4470: 4467: 4464: 4461: 4458: 4455: 4452: 4449: 4446: 4417: 4388: 4385: 4369: 4347: 4344: 4339: 4274: 4213: 4195:Main article: 4192: 4189: 4172: 4163: 4156: 4149: 4134: 4128: 4004:For any field 3995: 3986: 3979: 3972: 3965: 3959: 3911:if the matrix 3903:diagonalizable 3871:Main article: 3868: 3865: 3858: 3837: 3812: 3788: 3783: 3778: 3757: 3756: 3745: 3742: 3737: 3732: 3729: 3726: 3723: 3720: 3717: 3714: 3685: 3613: 3592: 3586: 3579: 3573: 3516: 3501: 3500: 3489: 3484: 3480: 3476: 3471: 3467: 3463: 3449:left-invariant 3396: 3372: 3355: 3352: 3332: 3327: 3323: 3317: 3314: 3269: 3268:be the group μ 3113: 3112: 3101: 3098: 3095: 3092: 3089: 3086: 3083: 3078: 3074: 3070: 3067: 3022: 3019: 3018: 3017: 3006: 3003: 3000: 2997: 2994: 2991: 2962: 2883: 2880: 2851: 2848: 2843: 2800: 2799:group scheme μ 2756: 2747: 2734:characteristic 2716: 2666: 2665: 2654: 2651: 2648: 2645: 2642: 2638: 2635: 2632: 2629: 2624: 2620: 2616: 2613: 2610: 2323:is a subgroup 2235: 2232: 2211: 2205: 2180: 2174: 2152: 2130: 2126: 2122: 2119: 2088: 2082: 2065: 2064: 2053: 2048: 2042: 2039: 2037: 2034: 2033: 2030: 2027: 2025: 2022: 2021: 2019: 1994: 1991: 1988: 1984: 1981: 1960: 1940: 1920: 1897: 1891: 1879:additive group 1866: 1844: 1840: 1819: 1816: 1813: 1807: 1801: 1779: 1756: 1750: 1733:is called the 1722: 1719: 1716: 1712: 1709: 1685: 1682: 1679: 1675: 1672: 1648: 1645: 1642: 1638: 1635: 1611: 1591: 1571: 1568: 1565: 1561: 1558: 1533: 1530: 1527: 1524: 1521: 1510:Borel subgroup 1493: 1469: 1458: 1457: 1444: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1418: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1397: 1396: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1374: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1352: 1349: 1327: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1301: 1298: 1295: 1293: 1290: 1288: 1285: 1283: 1280: 1279: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1257: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1235: 1232: 1217: 1216: 1205: 1202: 1199: 1196: 1193: 1190: 1187: 1184: 1181: 1158: 1138: 1135: 1132: 1112: 1092: 1089: 1086: 1083: 1080: 1057: 1042: 1039: 944: 918: 914: 891: 887: 883: 880: 875: 871: 835: 832: 829: 797: 796: 794: 793: 786: 779: 771: 768: 767: 764: 763: 761:Elliptic curve 757: 756: 750: 749: 743: 742: 736: 731: 730: 727: 726: 721: 720: 717: 714: 710: 706: 705: 704: 699: 697:Diffeomorphism 693: 692: 687: 682: 676: 675: 671: 667: 663: 659: 655: 651: 647: 643: 639: 634: 633: 622: 621: 610: 609: 598: 597: 586: 585: 574: 573: 562: 561: 554:Special linear 550: 549: 542:General linear 538: 537: 532: 526: 517: 516: 513: 512: 509: 508: 503: 498: 490: 489: 476: 464: 451: 438: 436:Modular groups 434: 433: 432: 427: 414: 398: 395: 394: 389: 383: 382: 381: 378: 377: 372: 371: 370: 369: 364: 359: 356: 350: 349: 343: 342: 341: 340: 334: 333: 327: 326: 321: 312: 311: 309:Hall's theorem 306: 304:Sylow theorems 300: 299: 294: 286: 285: 284: 283: 277: 272: 269:Dihedral group 265: 264: 259: 253: 248: 242: 237: 226: 221: 220: 217: 216: 211: 210: 209: 208: 203: 195: 194: 193: 192: 187: 182: 177: 172: 167: 162: 160:multiplicative 157: 152: 147: 142: 134: 133: 132: 131: 126: 118: 117: 109: 108: 107: 106: 104:Wreath product 101: 96: 91: 89:direct product 83: 81:Quotient group 75: 74: 73: 72: 67: 62: 52: 49: 48: 45: 44: 36: 35: 15: 9: 6: 4: 3: 2: 7880: 7869: 7866: 7865: 7863: 7852: 7848: 7847: 7842: 7838: 7837: 7828: 7824: 7820: 7818:0-8176-4021-5 7814: 7810: 7806: 7802: 7799: 7795: 7791: 7785: 7781: 7777: 7776: 7771: 7767: 7764: 7760: 7756: 7752: 7748: 7744: 7740: 7736: 7732: 7728: 7727: 7722: 7718: 7715: 7711: 7707: 7705:0-387-90108-6 7701: 7697: 7693: 7689: 7682: 7681: 7675: 7672: 7668: 7664: 7662:3-540-11174-3 7658: 7654: 7650: 7646: 7642: 7638: 7634: 7631: 7627: 7623: 7617: 7613: 7609: 7602: 7598: 7597:Conrad, Brian 7594: 7591: 7587: 7583: 7581:0-387-13678-9 7577: 7573: 7569: 7564: 7561: 7557: 7553: 7551:0-387-97370-2 7547: 7543: 7539: 7538:Borel, Armand 7535: 7532: 7528: 7524: 7520: 7516: 7512: 7509: 7505: 7501: 7497: 7493: 7489: 7488: 7475: 7466: 7457: 7448: 7441: 7432: 7423: 7414: 7405: 7396: 7387: 7378: 7369: 7360: 7351: 7342: 7333: 7324: 7315: 7306: 7297: 7288: 7279: 7270: 7261: 7252: 7243: 7234: 7225: 7216: 7212: 7203: 7200: 7198: 7195: 7193: 7190: 7188: 7184: 7180: 7176: 7172: 7171:special group 7168: 7164: 7161: 7159: 7155: 7151: 7148: 7146: 7142: 7139: 7137: 7133: 7130: 7128: 7124: 7120: 7116: 7112: 7108: 7104: 7101: 7099: 7096: 7093: 7089: 7088: 7082: 7080: 7076: 7071: 7066: 7062: 7058: 7054: 7050: 7049:inverse limit 7046: 7045:pro-algebraic 7042: 7037: 7032: 7028: 7024: 7014: 7012: 7008: 7007:number theory 7004: 7000: 6996: 6984: 6980: 6976: 6972: 6968: 6964: 6961: 6957: 6953: 6949: 6945: 6941: 6937: 6934: 6931: 6927: 6923: 6922: 6917: 6913: 6909: 6905: 6901: 6897: 6893: 6889: 6885: 6881: 6877: 6873: 6869: 6865: 6862: 6861: 6860: 6858: 6853: 6851: 6847: 6843: 6839: 6835: 6831: 6827: 6823: 6819: 6815: 6811: 6807: 6797: 6795: 6779: 6773: 6770: 6767: 6753: 6751: 6747: 6743: 6738: 6736: 6732: 6728: 6724: 6720: 6716: 6712: 6708: 6705: 6701: 6697: 6693: 6689: 6685: 6681: 6677: 6673: 6669: 6665: 6660: 6658: 6639: 6633: 6628: 6624: 6620: 6613: 6612: 6611: 6609: 6606:over a field 6605: 6601: 6597: 6596: 6585: 6583: 6579: 6575: 6571: 6567: 6562: 6557: 6555: 6551: 6547: 6543: 6539: 6535: 6531: 6527: 6523: 6519: 6515: 6511: 6507: 6502: 6500: 6496: 6492: 6489:of the group 6488: 6484: 6480: 6476: 6473:over a field 6472: 6468: 6465: 6461: 6457: 6453: 6449: 6430: 6424: 6418: 6412: 6406: 6399: 6398: 6397: 6395: 6380: 6378: 6377:number fields 6374: 6370: 6366: 6362: 6358: 6351: 6347: 6343: 6340: 6337:), and every 6336: 6332: 6328: 6325:over a field 6324: 6321: 6317: 6313: 6309: 6305: 6301: 6297: 6293: 6289: 6285: 6281: 6262: 6257: 6253: 6248: 6238: 6232: 6229: 6226: 6221: 6217: 6210: 6204: 6198: 6195: 6188: 6187: 6186: 6183: 6181: 6177: 6173: 6169: 6162: 6155: 6148: 6141: 6134: 6131: 6127: 6123: 6119: 6115: 6111: 6107: 6103: 6100: 6096: 6092: 6089: 6085: 6081: 6077: 6073: 6069: 6063: 6053: 6039: 6036: 6033: 6025: 6021: 6017: 6016: 6011: 5992: 5986: 5980: 5974: 5968: 5961: 5960: 5959: 5957: 5953: 5950:, called the 5949: 5945: 5941: 5937: 5932: 5930: 5925: 5920: 5916: 5912: 5908: 5904: 5900: 5896: 5892: 5888: 5884: 5880: 5876: 5873:over a field 5872: 5867: 5865: 5864: 5858: 5855: 5851: 5847: 5843: 5839: 5835: 5831: 5827: 5823: 5801: 5796: 5787: 5783: 5779: 5775: 5774: 5769: 5765: 5761: 5757: 5751: 5741: 5739: 5736:of planes in 5735: 5731: 5727: 5723: 5720: 5719: 5714: 5711:of dimension 5709: 5705: 5684: 5679: 5675: 5671: 5666: 5662: 5658: 5653: 5649: 5645: 5642: 5635: 5634: 5633: 5631: 5630:flag manifold 5627: 5623: 5620: 5619: 5599: 5595: 5590: 5584: 5579: 5574: 5567: 5562: 5557: 5550: 5545: 5540: 5534: 5529: 5507: 5502: 5496: 5491: 5486: 5479: 5474: 5469: 5462: 5457: 5452: 5446: 5441: 5433: 5432: 5431: 5429: 5425: 5421: 5417: 5413: 5409: 5405: 5401: 5397: 5393: 5389: 5385: 5381: 5377: 5373: 5369: 5365: 5361: 5357: 5353: 5349: 5345: 5341: 5337: 5333: 5329: 5325: 5321: 5317: 5314: 5310: 5306: 5301: 5299: 5295: 5273: 5268: 5241: 5236: 5227: 5206: 5196: 5192: 5188: 5184: 5179: 5177: 5173: 5169: 5165: 5161: 5157: 5153: 5149: 5145: 5141: 5138:, there is a 5137: 5133: 5130: 5126: 5122: 5118: 5114: 5110: 5106: 5101: 5099: 5095: 5091: 5087: 5083: 5079: 5075: 5071: 5070: 5059: 5056: 5052: 5048: 5043: 5041: 5037: 5032: 5028: 5023: 5019: 5000: 4995: 4991: 4987: 4982: 4978: 4974: 4969: 4965: 4957: 4956: 4955: 4954: 4950: 4946: 4941: 4937: 4932: 4910: 4902: 4894: 4891:over a field 4890: 4885: 4882: 4878: 4874: 4869: 4865: 4861: 4857: 4853: 4849: 4845: 4840: 4836: 4826: 4824: 4821:over a field 4820: 4798: 4793: 4766: 4761: 4752: 4749:over a field 4748: 4744: 4739: 4737: 4733: 4729: 4725: 4721: 4717: 4715: 4710: 4706: 4702: 4698: 4694: 4690: 4686: 4682: 4678: 4674: 4669: 4665: 4661: 4657: 4653: 4649: 4645: 4641: 4636: 4634: 4610: 4602: 4594: 4590: 4585: 4583: 4579: 4574: 4570: 4566: 4562: 4558: 4554: 4550: 4546: 4542: 4523: 4517: 4514: 4509: 4505: 4501: 4496: 4492: 4488: 4483: 4472: 4468: 4462: 4459: 4456: 4447: 4444: 4437: 4436: 4435: 4433: 4429: 4425: 4420: 4416: 4412: 4408: 4404: 4383: 4372: 4368: 4364: 4342: 4337: 4328: 4324: 4320: 4317: 4313: 4308: 4306: 4302: 4298: 4294: 4290: 4286: 4282: 4277: 4273: 4269: 4265: 4261: 4257: 4253: 4249: 4245: 4241: 4240:maximal torus 4237: 4233: 4229: 4225: 4221: 4216: 4212: 4208: 4204: 4198: 4188: 4186: 4182: 4178: 4171: 4166: 4162: 4155: 4148: 4144: 4140: 4133: 4127: 4123: 4119: 4115: 4111: 4107: 4103: 4099: 4095: 4091: 4087: 4083: 4079: 4075: 4071: 4067: 4063: 4059: 4055: 4051: 4047: 4043: 4039: 4035: 4031: 4027: 4023: 4019: 4015: 4011: 4008:, an element 4007: 4002: 4000: 3994: 3989: 3985: 3978: 3971: 3964: 3958: 3954: 3950: 3946: 3942: 3938: 3934: 3930: 3926: 3922: 3918: 3914: 3910: 3909: 3904: 3900: 3896: 3892: 3888: 3884: 3880: 3874: 3864: 3861: 3857: 3853: 3849: 3845: 3840: 3836: 3832: 3828: 3781: 3766: 3762: 3743: 3727: 3724: 3718: 3715: 3712: 3705: 3704: 3703: 3701: 3698:, giving the 3673: 3669: 3665: 3661: 3657: 3653: 3649: 3645: 3641: 3637: 3633: 3629: 3601: 3596: 3591: 3585: 3578: 3572: 3568: 3564: 3560: 3556: 3552: 3548: 3544: 3540: 3536: 3532: 3528: 3524: 3519: 3514: 3510: 3506: 3487: 3482: 3478: 3474: 3469: 3465: 3461: 3454: 3453: 3452: 3450: 3446: 3442: 3438: 3434: 3430: 3426: 3422: 3418: 3414: 3410: 3406: 3402: 3395: 3392: 3391:tangent space 3388: 3361: 3351: 3349: 3344: 3312: 3304: 3300: 3296: 3292: 3288: 3284: 3281: 3277: 3272: 3267: 3262: 3260: 3256: 3252: 3248: 3244: 3243:Zariski dense 3240: 3236: 3232: 3228: 3224: 3220: 3216: 3212: 3208: 3204: 3200: 3196: 3192: 3189:over a field 3188: 3183: 3181: 3177: 3173: 3169: 3165: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3133: 3128: 3126: 3122: 3118: 3099: 3096: 3090: 3084: 3076: 3072: 3065: 3058: 3057: 3056: 3055: 3051: 3047: 3043: 3039: 3036: 3032: 3029:over a field 3028: 3021:Basic notions 3004: 3001: 2998: 2995: 2989: 2982: 2981: 2980: 2978: 2974: 2970: 2965: 2961: 2957: 2953: 2949: 2945: 2941: 2937: 2933: 2929: 2926:over a field 2925: 2921: 2917: 2914: 2910: 2905: 2903: 2899: 2878: 2868: 2846: 2841: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2803: 2797:, namely the 2796: 2792: 2788: 2784: 2780: 2776: 2772: 2768: 2764: 2759: 2755: 2750: 2746: 2742: 2738: 2735: 2731: 2726: 2724: 2719: 2715: 2711: 2707: 2703: 2699: 2695: 2691: 2687: 2683: 2679: 2675: 2671: 2652: 2646: 2643: 2640: 2636: 2633: 2627: 2622: 2618: 2614: 2611: 2608: 2601: 2600: 2599: 2597: 2593: 2589: 2585: 2581: 2577: 2576: 2571: 2568:over a field 2567: 2562: 2560: 2556: 2552: 2548: 2544: 2540: 2536: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2504: 2500: 2499: 2493: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2435: 2432: 2428: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2384: 2381:over a field 2380: 2377: 2373: 2369: 2365: 2361: 2356: 2354: 2350: 2346: 2342: 2338: 2334: 2330: 2326: 2322: 2318: 2315: 2311: 2307: 2304:and in 1/det( 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2259: 2255: 2251: 2248: 2244: 2241: 2231: 2228: 2150: 2128: 2124: 2117: 2109: 2105: 2070: 2051: 2046: 2040: 2035: 2028: 2023: 2017: 2008: 2007: 2006: 1989: 1958: 1938: 1918: 1880: 1864: 1842: 1838: 1814: 1777: 1738: 1737: 1717: 1697: 1680: 1662: 1643: 1623: 1609: 1589: 1566: 1547: 1528: 1522: 1519: 1511: 1507: 1491: 1483: 1467: 1442: 1435: 1430: 1425: 1420: 1413: 1408: 1403: 1398: 1391: 1386: 1381: 1376: 1369: 1364: 1359: 1354: 1347: 1325: 1318: 1313: 1308: 1303: 1296: 1291: 1286: 1281: 1274: 1269: 1264: 1259: 1252: 1247: 1242: 1237: 1230: 1222: 1221: 1220: 1200: 1194: 1191: 1188: 1185: 1182: 1179: 1172: 1171: 1170: 1156: 1136: 1133: 1130: 1110: 1103:over a field 1087: 1081: 1078: 1071: 1055: 1048: 1038: 1036: 1031: 1029: 1025: 1021: 1017: 1013: 1008: 1004: 1000: 998: 994: 989: 985: 982:(necessarily 981: 977: 973: 969: 965: 961: 956: 942: 934: 916: 912: 889: 885: 881: 878: 873: 869: 860: 856: 852: 848: 833: 830: 827: 820: 816: 812: 808: 804: 792: 787: 785: 780: 778: 773: 772: 770: 769: 762: 759: 758: 755: 752: 751: 748: 745: 744: 741: 738: 737: 734: 729: 728: 718: 715: 712: 711: 709: 703: 700: 698: 695: 694: 691: 688: 686: 683: 681: 678: 677: 674: 668: 666: 660: 658: 652: 650: 644: 642: 636: 635: 631: 627: 624: 623: 619: 615: 612: 611: 607: 603: 600: 599: 595: 591: 588: 587: 583: 579: 576: 575: 571: 567: 564: 563: 559: 555: 552: 551: 547: 543: 540: 539: 536: 533: 531: 528: 527: 524: 520: 515: 514: 507: 504: 502: 499: 497: 494: 493: 465: 440: 439: 437: 431: 428: 403: 400: 399: 393: 390: 388: 385: 384: 380: 379: 368: 365: 363: 360: 357: 354: 353: 352: 351: 348: 345: 344: 339: 336: 335: 332: 329: 328: 325: 322: 320: 318: 314: 313: 310: 307: 305: 302: 301: 298: 295: 293: 290: 289: 288: 287: 281: 278: 275: 270: 267: 266: 262: 257: 254: 251: 246: 243: 240: 235: 232: 231: 230: 229: 224: 223:Finite groups 219: 218: 207: 204: 202: 199: 198: 197: 196: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 137: 136: 135: 130: 127: 125: 122: 121: 120: 119: 116: 115: 111: 110: 105: 102: 100: 97: 95: 92: 90: 87: 84: 82: 79: 78: 77: 76: 71: 68: 66: 63: 61: 58: 57: 56: 55: 50:Basic notions 47: 46: 42: 38: 37: 34: 29: 25: 21: 20: 7844: 7808: 7774: 7770:Milne, J. S. 7730: 7724: 7698:, Springer, 7695: 7679: 7648: 7641:Milne, J. S. 7607: 7567: 7541: 7511: 7507: 7503: 7499: 7474: 7465: 7456: 7446: 7440: 7431: 7422: 7413: 7404: 7395: 7386: 7377: 7368: 7359: 7350: 7341: 7332: 7323: 7314: 7305: 7296: 7287: 7278: 7269: 7260: 7251: 7242: 7233: 7224: 7215: 7078: 7069: 7064: 7052: 7044: 7040: 7035: 7022: 7020: 6993: 6982: 6978: 6974: 6970: 6966: 6962: 6955: 6952:affine space 6947: 6943: 6939: 6929: 6925: 6919: 6915: 6911: 6907: 6903: 6895: 6891: 6887: 6879: 6875: 6871: 6867: 6856: 6854: 6845: 6841: 6837: 6833: 6825: 6817: 6813: 6809: 6805: 6803: 6759: 6749: 6745: 6741: 6739: 6737:and Nagata. 6726: 6718: 6713:). However, 6710: 6706: 6695: 6691: 6687: 6683: 6679: 6671: 6667: 6661: 6657:group action 6654: 6607: 6603: 6599: 6593: 6591: 6581: 6573: 6560: 6558: 6553: 6549: 6546:line bundles 6541: 6525: 6521: 6517: 6505: 6503: 6498: 6494: 6490: 6482: 6478: 6474: 6470: 6466: 6463: 6459: 6455: 6451: 6447: 6445: 6393: 6391: 6383:Applications 6372: 6368: 6364: 6360: 6356: 6349: 6345: 6341: 6334: 6330: 6326: 6322: 6315: 6311: 6307: 6303: 6299: 6295: 6291: 6287: 6283: 6279: 6277: 6184: 6179: 6175: 6167: 6160: 6153: 6146: 6139: 6132: 6125: 6117: 6105: 6101: 6094: 6090: 6083: 6079: 6075: 6071: 6065: 6023: 6019: 6013: 6009: 6007: 5955: 5951: 5947: 5943: 5939: 5935: 5933: 5928: 5923: 5918: 5914: 5910: 5909:, the group 5906: 5902: 5898: 5894: 5890: 5886: 5882: 5878: 5874: 5870: 5868: 5861: 5859: 5853: 5849: 5845: 5841: 5837: 5833: 5829: 5825: 5821: 5785: 5781: 5777: 5771: 5767: 5763: 5759: 5755: 5753: 5737: 5733: 5729: 5721: 5716: 5712: 5707: 5703: 5701: 5629: 5625: 5621: 5616: 5614: 5427: 5423: 5419: 5415: 5411: 5407: 5403: 5399: 5395: 5391: 5387: 5383: 5379: 5376:flag variety 5375: 5371: 5367: 5363: 5359: 5355: 5347: 5343: 5339: 5335: 5331: 5327: 5326:scheme over 5322:is a smooth 5319: 5315: 5308: 5304: 5302: 5297: 5293: 5225: 5194: 5190: 5186: 5182: 5180: 5175: 5171: 5167: 5163: 5155: 5151: 5147: 5143: 5139: 5135: 5131: 5127:acting on a 5124: 5116: 5112: 5108: 5104: 5102: 5093: 5089: 5085: 5081: 5077: 5073: 5067: 5065: 5054: 5050: 5046: 5044: 5039: 5035: 5030: 5026: 5021: 5017: 5015: 4948: 4944: 4939: 4935: 4933: 4892: 4888: 4886: 4880: 4876: 4872: 4867: 4863: 4859: 4855: 4851: 4847: 4843: 4838: 4834: 4832: 4822: 4818: 4750: 4746: 4742: 4740: 4735: 4731: 4727: 4723: 4719: 4713: 4712: 4708: 4704: 4700: 4696: 4692: 4688: 4684: 4680: 4676: 4672: 4667: 4663: 4659: 4655: 4651: 4647: 4643: 4639: 4637: 4635:is a torus. 4632: 4592: 4588: 4586: 4581: 4577: 4572: 4568: 4565:circle group 4560: 4556: 4552: 4548: 4544: 4540: 4538: 4431: 4427: 4423: 4418: 4414: 4410: 4406: 4402: 4370: 4366: 4362: 4326: 4322: 4318: 4315: 4311: 4309: 4304: 4300: 4296: 4292: 4284: 4280: 4275: 4271: 4267: 4263: 4259: 4255: 4251: 4247: 4243: 4239: 4235: 4231: 4227: 4223: 4214: 4210: 4206: 4202: 4200: 4184: 4180: 4169: 4164: 4160: 4153: 4146: 4145:) such that 4142: 4138: 4131: 4125: 4121: 4117: 4113: 4109: 4105: 4101: 4097: 4093: 4089: 4085: 4081: 4077: 4073: 4069: 4065: 4061: 4057: 4053: 4049: 4045: 4041: 4037: 4036:also lie in 4033: 4029: 4025: 4021: 4017: 4013: 4009: 4005: 4003: 3992: 3987: 3983: 3976: 3969: 3962: 3956: 3952: 3948: 3944: 3940: 3936: 3928: 3920: 3912: 3906: 3898: 3897:) is called 3894: 3890: 3886: 3882: 3878: 3876: 3859: 3855: 3851: 3847: 3843: 3838: 3834: 3830: 3826: 3764: 3760: 3758: 3672:automorphism 3667: 3663: 3659: 3655: 3647: 3643: 3639: 3635: 3631: 3599: 3597: 3589: 3583: 3576: 3570: 3566: 3562: 3558: 3554: 3550: 3546: 3542: 3538: 3534: 3530: 3526: 3522: 3517: 3512: 3508: 3504: 3502: 3448: 3444: 3440: 3436: 3432: 3428: 3424: 3420: 3416: 3408: 3404: 3400: 3393: 3386: 3357: 3345: 3302: 3298: 3294: 3290: 3286: 3282: 3275: 3270: 3265: 3263: 3258: 3254: 3250: 3246: 3238: 3234: 3230: 3226: 3218: 3214: 3210: 3202: 3198: 3194: 3190: 3186: 3184: 3179: 3175: 3171: 3167: 3150:if it has a 3147: 3129: 3124: 3120: 3116: 3114: 3037: 3030: 3026: 3024: 2976: 2968: 2963: 2959: 2955: 2951: 2943: 2940:Hopf algebra 2935: 2931: 2927: 2923: 2919: 2915: 2908: 2906: 2901: 2827: 2823: 2819: 2815: 2811: 2807: 2801: 2790: 2786: 2782: 2778: 2774: 2770: 2766: 2762: 2757: 2753: 2748: 2744: 2740: 2736: 2729: 2727: 2722: 2717: 2713: 2709: 2705: 2701: 2697: 2689: 2685: 2680:, and it is 2677: 2669: 2667: 2595: 2591: 2587: 2583: 2579: 2575:group scheme 2573: 2569: 2565: 2563: 2550: 2546: 2542: 2538: 2534: 2530: 2526: 2522: 2518: 2514: 2510: 2506: 2502: 2498:homomorphism 2496: 2494: 2485: 2481: 2477: 2473: 2469: 2465: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2426: 2422: 2418: 2414: 2406: 2402: 2398: 2394: 2390: 2382: 2378: 2375: 2371: 2363: 2359: 2357: 2352: 2348: 2344: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2313: 2305: 2301: 2297: 2293: 2289: 2285: 2281: 2277: 2273: 2265: 2261: 2257: 2253: 2249: 2242: 2237: 2066: 1878: 1734: 1698: 1624: 1459: 1218: 1044: 1032: 1028:Armand Borel 996: 992: 983: 979: 957: 806: 800: 739: 629: 617: 605: 593: 581: 569: 557: 545: 316: 273: 260: 249: 238: 234:Cyclic group 112: 99:Free product 70:Group action 33:Group theory 28:Group theory 27: 7733:(1): 1–42, 4722:of a group 4407:split torus 4064:, define a 3925:eigenvalues 3881:, a matrix 3652:conjugation 3413:derivations 3360:Lie algebra 3223:unirational 3164:centralizer 3136:commutative 2971:(1) is the 2832:base change 2761:defined by 2674:finite type 2590:-point 1 ∈ 2310:determinant 2234:Definitions 1007:Élie Cartan 803:mathematics 519:Topological 358:alternating 7485:References 7449:, Springer 7115:Weyl group 6800:Lie groups 6530:characters 6286:is called 6097:) and the 5877:is called 5760:semisimple 5352:projective 5338:is called 5142:-point in 4934:The group 4720:split rank 4096:-point of 4068:-point of 3968:such that 3899:semisimple 3515:), where λ 3503:for every 3305:, because 3293:for which 3162:, and the 3156:normalizer 3048:of finite 2559:isomorphic 2484:-algebras 2347:such that 2104:direct sum 1699:The group 1460:The group 960:Lie groups 855:polynomial 819:invertible 626:Symplectic 566:Orthogonal 523:Lie groups 430:Free group 155:continuous 94:Direct sum 7851:EMS Press 7807:(1998) , 7747:0003-486X 7540:(1991) , 7523:0303-1179 6822:Lie group 6777:→ 6771:: 6637:→ 6625:× 6428:→ 6422:→ 6416:→ 6410:→ 6254:μ 6227:× 6211:≅ 6114:root data 6037:⋉ 5990:→ 5984:→ 5978:→ 5972:→ 5805:¯ 5773:reductive 5672:⊂ 5659:⊂ 5646:⊂ 5585:∗ 5568:∗ 5563:∗ 5558:∗ 5551:∗ 5546:∗ 5541:∗ 5497:∗ 5492:∗ 5480:∗ 5475:∗ 5463:∗ 5458:∗ 5453:∗ 5414:(3) over 5340:parabolic 5277:¯ 5245:¯ 5210:¯ 4988:⋉ 4914:¯ 4871:for some 4860:unipotent 4802:¯ 4770:¯ 4679:(2) over 4614:¯ 4563:) is the 4469:∈ 4426:for some 4387:¯ 4346:¯ 4289:conjugate 3917:nilpotent 3908:unipotent 3901:if it is 3782:⊂ 3728:⁡ 3722:→ 3716:: 3650:) of the 3479:λ 3466:λ 3326:¯ 3140:nilpotent 3094:→ 3088:→ 3082:→ 3077:∘ 3069:→ 2999:⊗ 2993:↦ 2882:¯ 2850:¯ 2708:for some 2650:→ 2644:: 2631:→ 2619:× 2612:: 2312:. Then a 2227:extension 2121:↦ 2029:∗ 2005: : 1843:∗ 1482:unipotent 1436:∗ 1426:… 1414:∗ 1409:⋱ 1404:⋱ 1399:⋮ 1392:⋮ 1387:⋱ 1382:∗ 1370:∗ 1365:… 1360:∗ 1355:∗ 1309:… 1297:∗ 1292:⋱ 1287:⋱ 1282:⋮ 1275:⋮ 1270:⋱ 1253:∗ 1248:… 1243:∗ 1189:⊂ 1183:⊂ 1134:× 1016:Chevalley 933:transpose 831:× 690:Conformal 578:Euclidean 185:nilpotent 7862:Category 7772:(2017), 7694:(1975), 7643:(1982), 7599:(2014), 7085:See also 7059:and the 5366:is that 3670:, is an 3148:solvable 3144:solvable 2869:, where 2555:category 1911:, whose 1790:-points 1506:solvable 1041:Examples 847:matrices 811:subgroup 685:Poincaré 530:Solenoid 402:Integers 392:Lattices 367:sporadic 362:Lie type 190:solvable 180:dihedral 165:additive 150:infinite 60:Subgroup 7853:, 2001 7827:1642713 7798:3729270 7763:0024884 7755:1969111 7714:0396773 7671:0654325 7630:3309122 7590:0781344 7560:1102012 7531:1272539 7111:BN pair 6848:) is a 6820:) is a 6735:Hilbert 6702:of the 6570:Lusztig 6170:). The 6086:), the 5917:) over 5292:. Thus 4951:) is a 4547:. Here 4422:) over 4374:) over 4299:). The 4258:) over 4220:product 4218:), the 3999:commute 3915:− 1 is 3842:) over 3439:) over 3285:. Then 3207:perfect 2867:reduced 2777:*, but 2704:) over 2553:into a 2431:algebra 2421:) over 2397:) over 2368:schemes 2300:matrix 2290:regular 2238:For an 1659:is the 1022: ( 1020:Kolchin 972:complex 931:is the 849:(under 813:of the 680:Lorentz 602:Unitary 501:Lattice 441:PSL(2, 175:abelian 86:(Semi-) 7825:  7815:  7796:  7786:  7761:  7753:  7745:  7712:  7702:  7669:  7659:  7628:  7618:  7588:  7578:  7558:  7548:  7529:  7521:  7163:Torsor 6898:) has 6828:, are 6794:monoid 6676:orbits 6595:action 6536:. The 6516:. For 6159:, and 5887:simple 5879:simple 5311:, the 5016:where 3905:, and 3160:center 3158:, the 3115:where 3033:, the 2896:is an 2795:kernel 2692:has a 2682:affine 2387:smooth 2288:to be 1877:. The 1068:, the 1045:For a 1018:, and 1012:Maurer 904:where 535:Circle 466:SL(2, 355:cyclic 319:-group 170:cyclic 145:finite 140:simple 124:kernel 7751:JSTOR 7684:(PDF) 7604:(PDF) 7208:Notes 7073:is a 6942:over 6870:over 6836:over 6446:with 6344:over 6316:split 6288:split 6022:over 5893:over 5828:) of 5728:) in 5702:with 5354:over 4734:over 4726:over 4716:-rank 4701:split 4691:over 4650:over 4409:over 4321:over 4316:torus 4203:torus 3415:. If 3241:) is 3225:over 3142:, or 3050:index 3040:(the 2975:ring 2721:into 2696:into 2676:over 2668:over 2578:over 2517:) to 2460:over 2385:is a 2370:over 2284:) to 2264:) of 2252:over 2102:is a 964:field 958:Many 815:group 809:is a 719:Sp(∞) 716:SU(∞) 129:image 7813:ISBN 7784:ISBN 7743:ISSN 7700:ISBN 7657:ISBN 7616:ISBN 7576:ISBN 7546:ISBN 7519:ISSN 7090:The 6700:Spec 6566:1994 5881:(or 5624:(3)/ 5521:and 5066:The 4833:Let 4580:) = 4405:. A 4314:, a 4301:rank 4287:are 4238:, a 4191:Tori 4168:and 3991:and 3654:map 3553:) → 3529:) → 3431:) → 3358:The 2913:ring 2773:* → 2537:) → 1339:and 1024:1948 1005:and 968:real 805:, a 713:O(∞) 702:Loop 521:and 7735:doi 7043:is 7033:Rep 6914:(2, 6910:of 6894:(2, 6698:as 6682:on 6592:An 6078:), 6008:If 5954:of 5927:of 5378:of 5350:is 5342:if 5307:of 5224:of 5189:of 5178:). 5096:of 4718:or 4687:in 4584:*. 4434:is 4303:of 4242:in 4222:of 4179:in 4137:in 4112:of 4012:of 3939:of 3927:of 3885:in 3854:= ( 3833:= ( 3725:Aut 3674:of 3668:xgx 3602:to 3561:) ⊗ 3507:in 3451:if 3447:is 3245:in 3221:is 3213:if 3205:is 2900:of 2865:is 2806:of 2492:.) 2413:on 2106:of 1971:in 1512:of 991:SL( 970:or 966:of 935:of 817:of 801:In 628:Sp( 616:SU( 592:SO( 556:SL( 544:GL( 7864:: 7849:, 7843:, 7823:MR 7821:, 7794:MR 7792:, 7782:, 7778:, 7759:MR 7757:, 7749:, 7741:, 7731:49 7710:MR 7708:, 7667:MR 7665:, 7647:, 7639:; 7626:MR 7624:, 7606:, 7586:MR 7584:, 7574:, 7570:, 7556:MR 7554:, 7527:MR 7525:, 7517:, 7494:; 7185:, 7181:, 7177:, 7173:, 7169:, 7165:, 7156:, 7152:, 7143:, 7134:, 7125:, 7121:, 7117:, 7113:, 7109:, 7105:, 7013:. 6969:⋉ 6912:SL 6892:SL 6888:SL 6859:. 6840:, 6796:. 6556:. 6350:SL 6331:SO 6304:GL 6152:, 6145:, 6138:, 6104:(2 6102:Sp 6091:SO 6080:SL 6072:GL 6070:: 5993:1. 5958:: 5911:SL 5842:GL 5832:× 5822:SL 5740:. 5622:GL 5428:GL 5412:GL 5410:⊂ 5300:. 5228:, 5172:GL 5164:GL 5152:GL 5086:GL 5058:. 5042:. 5038:⋉ 4945:GL 4844:GL 4738:. 4677:SL 4545:iy 4264:GL 4252:GL 4201:A 4165:ss 4150:ss 4129:ss 4124:= 4074:GL 4054:GL 4052:⊂ 4038:GL 4014:GL 3988:ss 3973:ss 3960:ss 3955:= 3941:GL 3887:GL 3713:Ad 3702:: 3666:↦ 3662:, 3658:→ 3634:∈ 3595:. 3582:− 3521:: 3423:: 3350:. 3276:GL 3274:⊂ 3211:or 3138:, 2969:GL 2967:= 2904:. 2765:↦ 2752:→ 2743:: 2723:GL 2698:GL 2561:. 2523:GL 2521:⊂ 2511:GL 2509:⊂ 2446:GL 2436:, 2415:GL 2391:GL 2333:GL 2274:GL 1622:. 1037:. 1014:, 955:. 604:U( 580:E( 568:O( 26:→ 7737:: 7510:p 7506:p 7502:p 7451:. 7079:G 7070:G 7065:G 7053:k 7041:k 7036:G 7023:G 6985:. 6983:R 6979:H 6975:Z 6971:R 6967:S 6963:H 6956:R 6948:G 6944:R 6940:G 6930:H 6926:R 6916:R 6908:H 6904:Z 6896:R 6880:R 6878:( 6876:G 6872:R 6868:G 6857:R 6846:C 6844:( 6842:G 6838:C 6834:G 6826:G 6818:R 6816:( 6814:G 6810:R 6806:G 6780:G 6774:G 6768:i 6750:X 6746:X 6742:G 6727:G 6719:k 6711:X 6709:( 6707:O 6696:G 6694:/ 6692:X 6688:X 6684:X 6680:G 6672:G 6670:/ 6668:X 6640:X 6634:X 6629:k 6621:G 6608:k 6604:X 6600:G 6582:p 6574:p 6561:p 6554:B 6552:/ 6550:G 6542:G 6526:G 6522:G 6518:k 6506:k 6499:G 6495:R 6493:( 6491:G 6483:G 6479:k 6475:k 6471:G 6464:G 6460:R 6456:G 6452:R 6448:U 6431:1 6425:R 6419:G 6413:U 6407:1 6394:G 6373:k 6369:k 6365:k 6361:k 6357:A 6355:( 6353:1 6346:k 6342:A 6335:q 6333:( 6327:k 6323:q 6312:k 6308:n 6306:( 6300:k 6296:G 6292:k 6284:G 6280:k 6263:. 6258:n 6249:/ 6245:) 6242:) 6239:n 6236:( 6233:L 6230:S 6222:m 6218:G 6214:( 6208:) 6205:n 6202:( 6199:L 6196:G 6180:k 6176:k 6168:Z 6164:8 6161:E 6157:7 6154:E 6150:6 6147:E 6143:4 6140:F 6136:2 6133:G 6126:k 6118:k 6106:n 6095:n 6093:( 6084:n 6082:( 6076:n 6074:( 6040:U 6034:R 6024:k 6020:G 6010:k 5987:R 5981:G 5975:U 5969:1 5956:G 5948:U 5944:R 5940:k 5936:G 5929:n 5924:n 5919:k 5915:n 5913:( 5907:k 5903:n 5899:G 5895:k 5891:G 5885:- 5883:k 5875:k 5871:G 5854:m 5850:G 5846:n 5844:( 5838:k 5834:n 5830:n 5826:n 5824:( 5802:k 5797:G 5786:k 5782:G 5778:G 5768:G 5764:G 5756:G 5738:A 5734:P 5730:A 5722:P 5713:i 5708:i 5704:V 5685:3 5680:k 5676:A 5667:2 5663:V 5654:1 5650:V 5643:0 5626:P 5600:. 5596:} 5591:] 5580:0 5575:0 5535:[ 5530:{ 5508:} 5503:] 5487:0 5470:0 5447:[ 5442:{ 5424:B 5420:B 5416:k 5408:P 5404:G 5400:k 5398:( 5396:G 5392:G 5388:G 5384:k 5380:G 5372:B 5370:/ 5368:G 5364:B 5360:k 5356:k 5348:P 5346:/ 5344:G 5336:G 5332:P 5328:k 5320:H 5318:/ 5316:G 5309:G 5305:H 5298:k 5294:G 5274:k 5269:G 5242:k 5237:B 5226:k 5207:k 5195:k 5191:G 5187:B 5183:k 5176:n 5174:( 5168:n 5166:( 5156:n 5154:( 5148:G 5144:X 5140:k 5136:k 5132:X 5125:G 5117:k 5115:( 5113:G 5109:k 5105:G 5094:B 5090:n 5088:( 5082:G 5078:k 5074:G 5055:a 5051:G 5047:k 5040:U 5036:T 5031:m 5027:G 5022:n 5018:T 5001:, 4996:n 4992:U 4983:n 4979:T 4975:= 4970:n 4966:B 4949:n 4947:( 4940:n 4936:B 4919:) 4911:k 4906:( 4903:G 4893:k 4889:G 4881:n 4877:U 4873:n 4868:n 4864:U 4856:k 4852:k 4848:n 4846:( 4839:n 4835:U 4823:k 4819:G 4799:k 4794:G 4767:k 4762:T 4751:k 4747:G 4743:T 4736:k 4732:G 4728:k 4724:G 4714:k 4709:k 4707:( 4705:G 4697:G 4693:k 4689:G 4681:R 4673:T 4668:m 4664:G 4660:k 4658:( 4656:G 4652:k 4648:G 4644:k 4640:G 4633:G 4619:) 4611:k 4606:( 4603:G 4593:G 4589:k 4582:R 4578:R 4576:( 4573:m 4569:G 4561:R 4559:( 4557:T 4553:R 4549:T 4543:+ 4541:x 4524:, 4521:} 4518:1 4515:= 4510:2 4506:y 4502:+ 4497:2 4493:x 4489:: 4484:2 4478:R 4473:A 4466:) 4463:y 4460:, 4457:x 4454:( 4451:{ 4448:= 4445:T 4432:R 4428:n 4424:k 4419:m 4415:G 4411:k 4403:n 4384:k 4371:m 4367:G 4363:k 4343:k 4338:T 4327:k 4323:k 4319:T 4312:k 4305:G 4297:k 4295:( 4293:G 4285:k 4281:G 4276:m 4272:G 4268:n 4266:( 4260:k 4256:n 4254:( 4248:G 4244:G 4236:G 4232:n 4228:k 4224:n 4215:m 4211:G 4207:k 4185:k 4183:( 4181:G 4173:u 4170:g 4161:g 4157:u 4154:g 4147:g 4143:k 4141:( 4139:G 4135:u 4132:g 4126:g 4122:g 4118:k 4116:( 4114:G 4110:g 4102:G 4098:G 4094:k 4090:k 4086:G 4082:k 4080:, 4078:n 4076:( 4070:G 4066:k 4062:k 4058:n 4056:( 4050:G 4046:k 4044:, 4042:n 4040:( 4034:g 4030:k 4026:k 4022:k 4020:, 4018:n 4016:( 4010:g 4006:k 3996:u 3993:g 3984:g 3980:u 3977:g 3970:g 3966:u 3963:g 3957:g 3953:g 3949:k 3947:, 3945:n 3943:( 3937:g 3929:g 3921:g 3913:g 3895:k 3893:, 3891:n 3889:( 3883:g 3879:k 3860:m 3856:G 3852:G 3848:G 3844:C 3839:m 3835:G 3831:G 3827:G 3811:g 3787:g 3777:h 3765:G 3761:H 3744:. 3741:) 3736:g 3731:( 3719:G 3684:g 3664:g 3660:G 3656:G 3648:k 3646:( 3644:G 3640:k 3638:( 3636:G 3632:x 3612:g 3600:G 3593:1 3590:D 3587:2 3584:D 3580:2 3577:D 3574:1 3571:D 3567:G 3565:( 3563:O 3559:G 3557:( 3555:O 3551:G 3549:( 3547:O 3543:k 3539:x 3535:G 3533:( 3531:O 3527:G 3525:( 3523:O 3518:x 3513:k 3511:( 3509:G 3505:x 3488:D 3483:x 3475:= 3470:x 3462:D 3445:G 3441:k 3437:G 3435:( 3433:O 3429:G 3427:( 3425:O 3421:D 3417:k 3409:k 3407:( 3405:G 3401:G 3399:( 3397:1 3394:T 3387:G 3371:g 3331:) 3322:Q 3316:( 3313:G 3303:G 3299:Q 3297:( 3295:G 3291:Q 3287:G 3283:Q 3271:3 3266:G 3259:k 3257:( 3255:G 3251:G 3247:G 3239:k 3237:( 3235:G 3231:k 3227:k 3219:G 3215:G 3203:k 3199:k 3197:( 3195:G 3191:k 3187:G 3180:k 3176:G 3172:G 3168:H 3125:F 3121:k 3117:F 3100:, 3097:1 3091:F 3085:G 3073:G 3066:1 3038:G 3031:k 3027:G 3005:. 3002:x 2996:x 2990:x 2977:k 2964:m 2960:G 2956:k 2952:k 2944:G 2936:G 2934:( 2932:O 2928:k 2924:G 2920:X 2918:( 2916:O 2909:X 2902:k 2879:k 2847:k 2842:G 2824:k 2820:k 2816:k 2812:k 2808:p 2802:p 2791:f 2787:f 2783:x 2779:f 2775:k 2771:k 2767:x 2763:x 2758:m 2754:G 2749:m 2745:G 2741:f 2737:p 2730:k 2718:a 2714:G 2710:n 2706:k 2702:n 2700:( 2690:k 2686:G 2678:k 2670:k 2653:G 2647:G 2641:i 2637:, 2634:G 2628:G 2623:k 2615:G 2609:m 2596:k 2594:( 2592:G 2588:k 2584:k 2580:k 2570:k 2566:G 2551:k 2547:G 2543:k 2541:( 2539:H 2535:k 2533:( 2531:G 2527:n 2525:( 2519:H 2515:m 2513:( 2507:G 2503:k 2486:R 2482:k 2478:R 2476:( 2474:G 2470:k 2468:( 2466:G 2462:k 2458:G 2454:R 2452:, 2450:n 2448:( 2442:R 2440:( 2438:G 2434:R 2429:- 2427:k 2423:k 2419:n 2417:( 2407:G 2403:n 2399:k 2395:n 2393:( 2383:k 2379:G 2372:k 2364:k 2360:k 2353:k 2351:( 2349:G 2345:n 2341:k 2339:, 2337:n 2335:( 2329:k 2327:( 2325:G 2321:k 2317:G 2306:A 2302:A 2298:n 2296:× 2294:n 2286:k 2282:k 2280:, 2278:n 2276:( 2268:- 2266:k 2262:k 2260:( 2258:X 2254:k 2250:X 2243:k 2210:a 2204:G 2179:a 2173:G 2151:n 2129:n 2125:x 2118:x 2087:m 2081:G 2052:. 2047:) 2041:1 2036:0 2024:1 2018:( 1993:) 1990:2 1987:( 1983:L 1980:G 1959:U 1939:k 1919:k 1896:a 1890:G 1865:k 1839:k 1818:) 1815:k 1812:( 1806:m 1800:G 1778:k 1755:m 1749:G 1721:) 1718:1 1715:( 1711:L 1708:G 1684:) 1681:n 1678:( 1674:L 1671:S 1647:) 1644:n 1641:( 1637:L 1634:G 1610:U 1590:B 1570:) 1567:n 1564:( 1560:L 1557:G 1532:) 1529:n 1526:( 1523:L 1520:G 1492:B 1468:U 1456:. 1443:) 1431:0 1421:0 1377:0 1348:( 1326:) 1319:1 1314:0 1304:0 1265:1 1260:0 1238:1 1231:( 1204:) 1201:n 1198:( 1195:L 1192:G 1186:B 1180:U 1157:k 1137:n 1131:n 1111:k 1091:) 1088:n 1085:( 1082:L 1079:G 1056:n 999:) 997:R 995:, 993:n 984:R 980:R 943:M 917:T 913:M 890:n 886:I 882:= 879:M 874:T 870:M 834:n 828:n 790:e 783:t 776:v 672:8 670:E 664:7 662:E 656:6 654:E 648:4 646:F 640:2 638:G 632:) 630:n 620:) 618:n 608:) 606:n 596:) 594:n 584:) 582:n 572:) 570:n 560:) 558:n 548:) 546:n 488:) 475:Z 463:) 450:Z 426:) 413:Z 404:( 317:p 282:Q 274:n 271:D 261:n 258:A 250:n 247:S 239:n 236:Z

Index

Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups
Cyclic group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.