Knowledge

Matroid representation

Source đź“ť

744: 732: 963:
If the characteristic set of a matroid is infinite, it contains zero; and if it contains zero then it contains all but finitely many primes. Hence the only possible characteristic sets are finite sets not containing zero, and cofinite sets containing zero. Indeed, all such sets do occur.
1147:
of mechanical linkages formed by rigid bars connected at their ends by flexible hinges. A linkage of this type may be described as a graph, with an edge for each bar and a vertex for each hinge, and for one-dimensional linkages the rigidity matroids are exactly the graphic matroids.
890:-linear matroids can be characterized by a finite set of forbidden minors, similar to the characterizations described above for the binary and regular matroids. As of 2012, it has been proven only for fields of four or fewer elements. For infinite fields (such as the field of the 1255:. Every linear matroid is algebraic, and for fields of characteristic zero (such as the real numbers) linear and algebraic matroids coincide, but for other fields there may exist algebraic matroids that are not linear. 759:
is one of the smallest matroids that is unrepresentable over all fields. If a matroid is linear, it may be representable over some but not all fields. For instance, the nine-element rank-three matroid defined by the
707:, with one column per matroid element and with a set of elements being independent in the matroid if and only if the corresponding set of matrix columns is linearly independent. The 207:, called the independent sets of the matroid. It is required to satisfy the properties that every subset of an independent set is itself independent, and that if one independent set 480: 444: 405: 135: 277: 349: 185: 1176: 1007: 862: 820: 612: 1238: 641: 1211: 1091: 1071: 1047: 1027: 693: 661: 580: 560: 540: 520: 500: 369: 325: 297: 245: 225: 205: 158: 699:
if and only if the underlying matroid is simple (having no two-element dependent sets). Matroid representations may also be described more concretely using
1361: 52:; both types of representation provide abstract algebraic structures (matroids and groups respectively) with concrete descriptions in terms of 1569: 1622: 1731:
Oxley, James; Semple, Charles; Vertigan, Dirk; Whittle, Geoff (2002), "Infinite antichains of matroids with characteristic set {
830:
are the matroids that can be represented over all fields; they can be characterized as the matroids that have none of
299:
to form a larger independent set. One of the key motivating examples in the formulation of matroids was the notion of
1708: 1676: 1311: 1283: 1577: 1528: 1486: 1144: 17: 1418: 1913:, Contemporary Mathematics, vol. 197, Providence, RI: American Mathematical Society, pp. 171–311, 872:
of the Fano plane as minors. Alternatively, a matroid is regular if and only if it can be represented by a
1523: 449: 413: 374: 104: 1664: 250: 873: 330: 166: 942: 716: 1159: 2005: 978: 833: 791: 1668: 1658: 1252: 1073:-dimensional vector space. The field of representation must be large enough for there to exist 903: 1602: 712: 643:
is linearly independent. A matroid with a representation is called a linear matroid, and if
585: 1986: 1963: 1928: 1892: 1801: 1766: 1643: 1598: 1551: 1509: 1470: 1444: 1382: 1216: 1125: 879: 761: 748: 700: 49: 1809: 1718: 1686: 960:
of prime numbers there exists a matroid whose characteristic set is the given finite set.
617: 48:
relation is the same as that of a given matroid. Matroid representations are analogous to
8: 1278:, Oxford Graduate Texts in Mathematics, vol. 3, Oxford University Press, p. 8, 300: 72: 45: 1196: 1076: 1056: 1032: 1012: 678: 646: 565: 545: 525: 505: 485: 354: 310: 282: 230: 210: 190: 143: 1748: 1704: 1672: 1542: 1500: 1307: 1279: 1244: 1102: 1193:, are linear over every sufficiently large field. More specifically, a gammoid with 952:
there exist infinitely many matroids whose characteristic set is the singleton set {
1951: 1914: 1880: 1805: 1789: 1752: 1744: 1714: 1682: 1631: 1586: 1537: 1495: 1430: 1370: 1153: 1140: 1121: 1050: 1124:
by defining a set of edges to be independent if and only if it does not contain a
756: 736: 1982: 1959: 1924: 1906: 1888: 1797: 1762: 1639: 1594: 1547: 1505: 1466: 1458: 1440: 1378: 1248: 1117: 973: 827: 786: 769: 90:
studies the existence of representations and the properties of linear matroids.
1919: 1793: 1635: 1484:
Bixby, Robert E. (1979), "On Reid's characterization of the ternary matroids",
1190: 775: 161: 53: 1942:
Lindström, Bernt (1973), "On the vector representations of induced matroids",
1999: 1699:
Ingleton, A.W. (1971), "Representation of matroids", in Welsh, D.J.A. (ed.),
1663:, Encyclopedia of Mathematics and its Applications, vol. 29, Cambridge: 1299: 823: 671:-linear matroid. Thus, the linear matroids are exactly the matroids that are 1590: 1186: 1049:
of the elements. Uniform matroids may be represented by sets of vectors in
946: 907: 869: 779: 708: 304: 79: 41: 1979:
Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969)
1955: 1701:
Combinatorial mathematics and its applications. Proceedings, Oxford, 1969
1435: 1093:
vectors in general position in this vector space, so uniform matroids are
1620:
Vámos, P. (1978), "The missing axiom of matroid theory is lost forever",
1356: 1271: 1149: 891: 765: 720: 672: 1105:, the direct sums of the uniform matroids, as the direct sum of any two 675:
to the matroids defined from sets or multisets of vectors. The function
1757: 1565: 957: 865: 743: 138: 1463:
Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 3
1148:
Higher-dimensional rigidity matroids may be defined using matrices of
696: 1884: 1374: 1029:
elements, and its independent sets consist of all subsets of up to
1182: 99: 33: 731: 1213:
elements may be represented over every field that has at least
782: 921:
is the minimal subfield of its algebraic closure over which
1730: 1909:(1996), "Some matroids from discrete applied geometry", 1423:
Journal of Research of the National Bureau of Standards
1977:
Ingleton, A. W. (1971), "Representation of matroids",
1780:
Kahn, Jeff (1982), "Characteristic sets of matroids",
1570:"The excluded minors for GF(4)-representable matroids" 726: 715:
of submatrices of this matrix, or equivalently by the
1219: 1199: 1162: 1079: 1059: 1035: 1015: 981: 836: 794: 785:; they are exactly the matroids that do not have the 681: 649: 620: 588: 568: 548: 528: 508: 488: 452: 416: 377: 357: 333: 313: 285: 253: 233: 213: 193: 169: 146: 107: 1564: 1359:(1958), "A homotopy theorem for matroids. I, II", 1232: 1205: 1181:Like uniform matroids and partition matroids, the 1170: 1085: 1065: 1041: 1021: 1001: 945:of the fields over which it is linear. For every 856: 814: 778:are the matroids that can be represented over the 687: 655: 635: 606: 574: 554: 534: 514: 494: 474: 438: 399: 363: 343: 319: 291: 271: 239: 219: 199: 179: 152: 129: 1362:Transactions of the American Mathematical Society 351:is the family of linearly independent subsets of 78:) is a matroid that has a representation using a 1997: 1247:are matroids defined from sets of elements of a 1128:. Every graphic matroid is regular, and thus is 1944:The Bulletin of the London Mathematical Society 868:(a binary matroid with seven elements), or the 755:Not every matroid is linear; the eight-element 63:is a matroid that has a representation, and an 967: 160:(the elements of the matroid) and a non-empty 1871:Graver, Jack E. (1991), "Rigidity matroids", 1526:(1979), "Matroid representation over GF(3)", 1465:, Paris: Gauthier-Villars, pp. 229–233, 1461:(1971), "Combinatorial theory, old and new", 941:of a linear matroid is defined as the set of 751:, linear over the reals but not the rationals 1981:, London: Academic Press, pp. 149–167, 1120:is the matroid defined from the edges of an 327:is a finite set or multiset of vectors, and 1782:Journal of the London Mathematical Society 1623:Journal of the London Mathematical Society 1306:, Courier Dover Publications, p. 10, 29:Vectors with given pattern of independence 1941: 1918: 1756: 1541: 1499: 1434: 1412: 1410: 1351: 1349: 1347: 1164: 1097:-linear for all but finitely many fields 446:is any matroid, then a representation of 1976: 1905: 1698: 1568:; Gerards, A. M. H.; Kapoor, A. (2000), 1152:with a structure similar to that of the 894:) no such characterization is possible. 742: 730: 227:is larger than a second independent set 1522: 1156:of the underlying graph, and hence are 14: 1998: 1870: 1650: 1407: 1344: 897: 1858: 1846: 1840: 1834: 1828: 1822: 1816: 1692: 1656: 1619: 1483: 1416: 1398: 1355: 1338: 1326: 1298: 1270: 932: 1873:SIAM Journal on Discrete Mathematics 1779: 1703:, Academic Press, pp. 149–167, 1457: 1389: 882:states that, for every finite field 711:of a linear matroid is given by the 1516: 1289:. For the rank function, see p. 26. 727:Characterization of linear matroids 24: 1911:Matroid theory (Seattle, WA, 1995) 542:, with the property that a subset 475:{\displaystyle (E,{\mathcal {I}})} 464: 439:{\displaystyle (E,{\mathcal {I}})} 428: 400:{\displaystyle (E,{\mathcal {I}})} 389: 336: 172: 130:{\displaystyle (E,{\mathcal {I}})} 119: 25: 2017: 272:{\displaystyle x\in A\setminus B} 263: 1970: 1935: 1899: 1864: 1852: 1773: 1724: 1613: 1578:Journal of Combinatorial Theory 1558: 1529:Journal of Combinatorial Theory 1487:Journal of Combinatorial Theory 1477: 1451: 1332: 1320: 1292: 1264: 929:can be taken to be of rank 3. 667:then the matroid is called an 630: 624: 594: 582:is independent if and only if 469: 453: 433: 417: 394: 378: 344:{\displaystyle {\mathcal {I}}} 180:{\displaystyle {\mathcal {I}}} 124: 108: 93: 32:In the mathematical theory of 13: 1: 1749:10.1016/S0012-365X(00)00466-0 1258: 663:is a vector space over field 482:may be defined as a function 247:then there exists an element 88:Matroid representation theory 1543:10.1016/0095-8956(79)90055-8 1501:10.1016/0095-8956(79)90056-X 1171:{\displaystyle \mathbb {R} } 7: 1109:-linear matroids is itself 1101:. The same is true for the 1002:{\displaystyle U{}_{n}^{r}} 968:Related classes of matroids 857:{\displaystyle U{}_{4}^{2}} 815:{\displaystyle U{}_{4}^{2}} 739:, not linear over any field 10: 2022: 1665:Cambridge University Press 764:is representable over the 1657:White, Neil, ed. (1987), 874:totally unimodular matrix 1794:10.1112/jlms/s2-26.2.207 1660:Combinatorial geometries 1636:10.1112/jlms/s2-18.3.403 1185:, matroids representing 1132:-linear for every field 723:of subsets of vectors. 1920:10.1090/conm/197/02540 1591:10.1006/jctb.2000.1963 1419:"Lectures on matroids" 1253:algebraic independence 1234: 1207: 1172: 1087: 1067: 1043: 1023: 1003: 904:algebraic number field 858: 816: 752: 740: 689: 657: 637: 608: 607:{\displaystyle f|_{A}} 576: 556: 536: 516: 496: 476: 440: 401: 365: 345: 321: 293: 273: 241: 221: 201: 181: 154: 131: 38:matroid representation 1436:10.6028/jres.069b.001 1417:Tutte, W. T. (1965), 1235: 1233:{\displaystyle 2^{n}} 1208: 1173: 1088: 1068: 1044: 1024: 1004: 859: 817: 746: 734: 690: 658: 638: 609: 577: 557: 537: 517: 497: 477: 441: 402: 366: 346: 322: 294: 279:that can be added to 274: 242: 222: 202: 182: 155: 132: 50:group representations 1737:Discrete Mathematics 1251:using the notion of 1217: 1197: 1160: 1077: 1057: 1033: 1013: 979: 925:can be represented: 834: 826:. The unimodular or 792: 762:Perles configuration 749:Perles configuration 679: 647: 636:{\displaystyle f(A)} 618: 586: 566: 546: 526: 506: 486: 450: 414: 375: 355: 331: 311: 283: 251: 231: 211: 191: 167: 144: 105: 1956:10.1112/blms/5.1.85 1341:, pp. 170–172, 196. 998: 913:there is a matroid 898:Field of definition 853: 811: 410:More generally, if 301:linear independence 46:linear independence 1245:algebraic matroids 1230: 1203: 1168: 1145:degrees of freedom 1103:partition matroids 1083: 1063: 1039: 1019: 999: 985: 939:characteristic set 933:Characteristic set 854: 840: 812: 798: 753: 741: 685: 653: 633: 604: 572: 552: 532: 522:to a vector space 512: 492: 472: 436: 397: 361: 341: 317: 289: 269: 237: 217: 197: 187:of the subsets of 177: 150: 127: 1784:, Second Series, 1626:, Second Series, 1404:White (1987) p.12 1206:{\displaystyle n} 1141:rigidity matroids 1086:{\displaystyle n} 1066:{\displaystyle r} 1042:{\displaystyle r} 1022:{\displaystyle n} 956:}, and for every 880:Rota's conjecture 768:but not over the 688:{\displaystyle f} 656:{\displaystyle V} 614:is injective and 575:{\displaystyle E} 555:{\displaystyle A} 535:{\displaystyle V} 515:{\displaystyle E} 495:{\displaystyle f} 364:{\displaystyle E} 320:{\displaystyle E} 292:{\displaystyle B} 240:{\displaystyle B} 220:{\displaystyle A} 200:{\displaystyle E} 153:{\displaystyle E} 16:(Redirected from 2013: 1991: 1989: 1974: 1968: 1966: 1939: 1933: 1931: 1922: 1907:Whiteley, Walter 1903: 1897: 1895: 1868: 1862: 1856: 1850: 1844: 1838: 1832: 1826: 1820: 1814: 1812: 1777: 1771: 1769: 1760: 1743:(1–3): 175–185, 1728: 1722: 1721: 1696: 1690: 1689: 1654: 1648: 1646: 1617: 1611: 1609: 1607: 1601:, archived from 1574: 1562: 1556: 1554: 1545: 1520: 1514: 1512: 1503: 1481: 1475: 1473: 1459:Rota, Gian-Carlo 1455: 1449: 1447: 1438: 1414: 1405: 1402: 1396: 1395:White (1987) p.2 1393: 1387: 1385: 1353: 1342: 1336: 1330: 1324: 1318: 1316: 1296: 1290: 1288: 1268: 1239: 1237: 1236: 1231: 1229: 1228: 1212: 1210: 1209: 1204: 1177: 1175: 1174: 1169: 1167: 1154:incidence matrix 1122:undirected graph 1092: 1090: 1089: 1084: 1072: 1070: 1069: 1064: 1051:general position 1048: 1046: 1045: 1040: 1028: 1026: 1025: 1020: 1008: 1006: 1005: 1000: 997: 992: 987: 863: 861: 860: 855: 852: 847: 842: 828:regular matroids 821: 819: 818: 813: 810: 805: 800: 770:rational numbers 694: 692: 691: 686: 662: 660: 659: 654: 642: 640: 639: 634: 613: 611: 610: 605: 603: 602: 597: 581: 579: 578: 573: 561: 559: 558: 553: 541: 539: 538: 533: 521: 519: 518: 513: 501: 499: 498: 493: 481: 479: 478: 473: 468: 467: 445: 443: 442: 437: 432: 431: 406: 404: 403: 398: 393: 392: 370: 368: 367: 362: 350: 348: 347: 342: 340: 339: 326: 324: 323: 318: 303:of vectors in a 298: 296: 295: 290: 278: 276: 275: 270: 246: 244: 243: 238: 226: 224: 223: 218: 206: 204: 203: 198: 186: 184: 183: 178: 176: 175: 159: 157: 156: 151: 137:is defined by a 136: 134: 133: 128: 123: 122: 21: 2021: 2020: 2016: 2015: 2014: 2012: 2011: 2010: 1996: 1995: 1994: 1975: 1971: 1940: 1936: 1904: 1900: 1885:10.1137/0404032 1869: 1865: 1857: 1853: 1845: 1841: 1833: 1829: 1821: 1817: 1778: 1774: 1729: 1725: 1711: 1697: 1693: 1679: 1655: 1651: 1618: 1614: 1605: 1572: 1563: 1559: 1521: 1517: 1482: 1478: 1456: 1452: 1415: 1408: 1403: 1399: 1394: 1390: 1375:10.2307/1993244 1354: 1345: 1337: 1333: 1325: 1321: 1314: 1300:Welsh, D. J. A. 1297: 1293: 1286: 1272:Oxley, James G. 1269: 1265: 1261: 1249:field extension 1224: 1220: 1218: 1215: 1214: 1198: 1195: 1194: 1191:directed graphs 1163: 1161: 1158: 1157: 1118:graphic matroid 1078: 1075: 1074: 1058: 1055: 1054: 1034: 1031: 1030: 1014: 1011: 1010: 993: 988: 986: 980: 977: 976: 974:uniform matroid 970: 943:characteristics 935: 900: 848: 843: 841: 835: 832: 831: 806: 801: 799: 793: 790: 789: 787:uniform matroid 776:Binary matroids 729: 680: 677: 676: 648: 645: 644: 619: 616: 615: 598: 593: 592: 587: 584: 583: 567: 564: 563: 547: 544: 543: 527: 524: 523: 507: 504: 503: 487: 484: 483: 463: 462: 451: 448: 447: 427: 426: 415: 412: 411: 388: 387: 376: 373: 372: 356: 353: 352: 335: 334: 332: 329: 328: 312: 309: 308: 284: 281: 280: 252: 249: 248: 232: 229: 228: 212: 209: 208: 192: 189: 188: 171: 170: 168: 165: 164: 145: 142: 141: 118: 117: 106: 103: 102: 96: 40:is a family of 30: 23: 22: 15: 12: 11: 5: 2019: 2009: 2008: 2006:Matroid theory 1993: 1992: 1969: 1934: 1898: 1879:(3): 355–368, 1863: 1851: 1839: 1827: 1815: 1788:(2): 207–217, 1772: 1723: 1709: 1691: 1677: 1649: 1630:(3): 403–408, 1612: 1585:(2): 247–299, 1557: 1536:(2): 159–173, 1524:Seymour, P. D. 1515: 1494:(2): 174–204, 1476: 1450: 1406: 1397: 1388: 1343: 1331: 1319: 1312: 1304:Matroid Theory 1291: 1284: 1276:Matroid Theory 1262: 1260: 1257: 1227: 1223: 1202: 1166: 1082: 1062: 1038: 1018: 996: 991: 984: 969: 966: 934: 931: 899: 896: 851: 846: 839: 809: 804: 797: 728: 725: 684: 652: 632: 629: 626: 623: 601: 596: 591: 571: 551: 531: 511: 491: 471: 466: 461: 458: 455: 435: 430: 425: 422: 419: 407:is a matroid. 396: 391: 386: 383: 380: 360: 338: 316: 288: 268: 265: 262: 259: 256: 236: 216: 196: 174: 149: 126: 121: 116: 113: 110: 95: 92: 69:linear matroid 61:linear matroid 54:linear algebra 28: 18:Linear matroid 9: 6: 4: 3: 2: 2018: 2007: 2004: 2003: 2001: 1988: 1984: 1980: 1973: 1965: 1961: 1957: 1953: 1949: 1945: 1938: 1930: 1926: 1921: 1916: 1912: 1908: 1902: 1894: 1890: 1886: 1882: 1878: 1874: 1867: 1860: 1855: 1848: 1843: 1836: 1831: 1824: 1819: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1776: 1768: 1764: 1759: 1754: 1750: 1746: 1742: 1738: 1734: 1727: 1720: 1716: 1712: 1710:0-12-743350-3 1706: 1702: 1695: 1688: 1684: 1680: 1678:0-521-33339-3 1674: 1670: 1666: 1662: 1661: 1653: 1645: 1641: 1637: 1633: 1629: 1625: 1624: 1616: 1608:on 2010-09-24 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1579: 1571: 1567: 1566:Geelen, J. F. 1561: 1553: 1549: 1544: 1539: 1535: 1531: 1530: 1525: 1519: 1511: 1507: 1502: 1497: 1493: 1489: 1488: 1480: 1472: 1468: 1464: 1460: 1454: 1446: 1442: 1437: 1432: 1428: 1424: 1420: 1413: 1411: 1401: 1392: 1384: 1380: 1376: 1372: 1368: 1364: 1363: 1358: 1352: 1350: 1348: 1340: 1335: 1328: 1323: 1315: 1313:9780486474397 1309: 1305: 1301: 1295: 1287: 1285:9780199202508 1281: 1277: 1273: 1267: 1263: 1256: 1254: 1250: 1246: 1241: 1225: 1221: 1200: 1192: 1188: 1184: 1179: 1155: 1151: 1146: 1143:describe the 1142: 1137: 1135: 1131: 1127: 1123: 1119: 1114: 1112: 1108: 1104: 1100: 1096: 1080: 1060: 1052: 1036: 1016: 994: 989: 982: 975: 965: 961: 959: 955: 951: 948: 944: 940: 930: 928: 924: 920: 916: 912: 909: 905: 895: 893: 889: 885: 881: 877: 875: 871: 867: 849: 844: 837: 829: 825: 807: 802: 795: 788: 784: 781: 777: 773: 771: 767: 763: 758: 757:Vámos matroid 750: 745: 738: 737:Vámos matroid 733: 724: 722: 718: 714: 710: 709:rank function 706: 703:over a field 702: 698: 682: 674: 670: 666: 650: 627: 621: 599: 589: 569: 549: 529: 509: 489: 459: 456: 423: 420: 408: 384: 381: 358: 314: 306: 302: 286: 266: 260: 257: 254: 234: 214: 194: 163: 147: 140: 114: 111: 101: 91: 89: 85: 81: 77: 74: 70: 66: 62: 57: 55: 51: 47: 43: 39: 35: 27: 19: 1978: 1972: 1947: 1943: 1937: 1910: 1901: 1876: 1872: 1866: 1859:Oxley (2006) 1854: 1847:Oxley (2006) 1842: 1835:Oxley (2006) 1830: 1823:Oxley (2006) 1818: 1785: 1781: 1775: 1740: 1736: 1732: 1726: 1700: 1694: 1659: 1652: 1627: 1621: 1615: 1603:the original 1582: 1581:, Series B, 1576: 1560: 1533: 1532:, Series B, 1527: 1518: 1491: 1490:, Series B, 1485: 1479: 1462: 1453: 1426: 1422: 1400: 1391: 1366: 1360: 1357:Tutte, W. T. 1339:Oxley (2006) 1334: 1327:Oxley (2006) 1322: 1303: 1294: 1275: 1266: 1242: 1187:reachability 1180: 1150:real numbers 1138: 1133: 1129: 1115: 1110: 1106: 1098: 1094: 971: 962: 953: 949: 947:prime number 938: 936: 926: 922: 918: 914: 910: 908:finite field 901: 892:real numbers 887: 883: 878: 870:dual matroid 780:finite field 774: 766:real numbers 754: 704: 668: 664: 409: 305:vector space 97: 87: 83: 80:vector space 75: 68: 64: 60: 58: 37: 31: 26: 1758:10092/13245 1369:: 144–174, 721:linear span 713:matrix rank 98:A (finite) 94:Definitions 1810:0468.05020 1719:0222.05025 1687:0626.00007 1667:, p.  1259:References 1240:elements. 958:finite set 917:for which 906:and every 902:For every 866:Fano plane 697:one-to-one 673:isomorphic 502:that maps 139:finite set 1950:: 85–90, 1861:, p. 100. 1849:, p. 228. 1837:, p. 226. 1825:, p. 225. 1178:-linear. 1113:-linear. 717:dimension 264:∖ 258:∈ 2000:Category 1429:: 1–47, 1329:, p. 12. 1302:(2010), 1274:(2006), 1183:gammoids 701:matrices 695:will be 34:matroids 1987:0278974 1964:0335313 1929:1411692 1893:1105942 1802:0675165 1767:1874763 1644:0518224 1599:1769191 1552:0532586 1510:0532587 1471:0505646 1445:0179781 1383:0101526 719:of the 371:, then 100:matroid 71:(for a 42:vectors 1985:  1962:  1927:  1891:  1808:  1800:  1765:  1717:  1707:  1685:  1675:  1642:  1597:  1550:  1508:  1469:  1443:  1381:  1310:  1282:  1053:in an 886:, the 864:, the 162:family 44:whose 1606:(PDF) 1573:(PDF) 1126:cycle 824:minor 822:as a 783:GF(2) 307:: if 82:over 73:field 1735:}", 1705:ISBN 1673:ISBN 1308:ISBN 1280:ISBN 1243:The 1139:The 1009:has 937:The 747:The 735:The 36:, a 1952:doi 1915:doi 1881:doi 1806:Zbl 1790:doi 1753:hdl 1745:doi 1741:242 1715:Zbl 1683:Zbl 1632:doi 1587:doi 1538:doi 1496:doi 1431:doi 1427:69B 1371:doi 1189:in 562:of 2002:: 1983:MR 1960:MR 1958:, 1946:, 1925:MR 1923:, 1889:MR 1887:, 1875:, 1804:, 1798:MR 1796:, 1786:26 1763:MR 1761:, 1751:, 1739:, 1713:, 1681:, 1671:, 1669:18 1640:MR 1638:, 1628:18 1595:MR 1593:, 1583:79 1575:, 1548:MR 1546:, 1534:26 1506:MR 1504:, 1492:26 1467:MR 1441:MR 1439:, 1425:, 1421:, 1409:^ 1379:MR 1377:, 1367:88 1365:, 1346:^ 1136:. 1116:A 972:A 876:. 772:. 86:. 59:A 56:. 1990:. 1967:. 1954:: 1948:5 1932:. 1917:: 1896:. 1883:: 1877:4 1813:. 1792:: 1770:. 1755:: 1747:: 1733:p 1647:. 1634:: 1610:. 1589:: 1555:. 1540:: 1513:. 1498:: 1474:. 1448:. 1433:: 1386:. 1373:: 1317:. 1226:n 1222:2 1201:n 1165:R 1134:F 1130:F 1111:F 1107:F 1099:F 1095:F 1081:n 1061:r 1037:r 1017:n 995:r 990:n 983:U 954:p 950:p 927:M 923:M 919:F 915:M 911:F 888:F 884:F 850:2 845:4 838:U 808:2 803:4 796:U 705:F 683:f 669:F 665:F 651:V 631:) 628:A 625:( 622:f 600:A 595:| 590:f 570:E 550:A 530:V 510:E 490:f 470:) 465:I 460:, 457:E 454:( 434:) 429:I 424:, 421:E 418:( 395:) 390:I 385:, 382:E 379:( 359:E 337:I 315:E 287:B 267:B 261:A 255:x 235:B 215:A 195:E 173:I 148:E 125:) 120:I 115:, 112:E 109:( 84:F 76:F 67:- 65:F 20:)

Index

Linear matroid
matroids
vectors
linear independence
group representations
linear algebra
field
vector space
matroid
finite set
family
linear independence
vector space
isomorphic
one-to-one
matrices
rank function
matrix rank
dimension
linear span

Vámos matroid

Perles configuration
Vámos matroid
Perles configuration
real numbers
rational numbers
Binary matroids
finite field

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑