Knowledge

Link (knot theory)

Source 📝

131: 162: 1793: 1005:, where for the category structure, one can compose two tangles if the bottom end of one equals the top end of the other (so the boundaries can be stitched together), by stacking them – they do not literally form a category (pointwise) because there is no identity, since even a trivial tangle takes up vertical space, but up to isotopy they do. The tensor structure is given by juxtaposition of tangles – putting one tangle to the right of the other. 69: 142: 27: 1805: 981:
is a tangle consisting of only intervals, with the ends of each strand required to lie at (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), ... – i.e., connecting the integers, and ending in the same order that they began (one may use any
366: 53:
which do not intersect, but which may be linked (or knotted) together. A knot can be described as a link with one component. Links and knots are studied in a branch of mathematics called
847: 520: 1031:
Every link can be cut apart to form a string link, though this is not unique, and invariants of links can sometimes be understood as invariants of string links – this is the case for
852:
says that intervals either connect two lines or connect two points on one of the lines, but imposes no conditions on the circles. One may view tangles as having a vertical direction (
914: 886: 561: 947: 404: 477: 307:
While (1-dimensional) links are defined as embeddings of circles, it is often interesting and especially technically useful to consider embedded intervals (strands), as in
599: 974:) direction. In particular, it must consist solely of intervals, and not double back on itself; however, no specification is made on where on the line the ends lie. 800: 698: 666: 248: 217: 445: 766: 639: 733: 990:-component string link". A string link need not be a braid – it may double back on itself, such as a two-component string link that features an 967:
consists of circles only), braids, and others besides – for example, a strand connecting the two lines together with a circle linked around it.
970:
In this context, a braid is defined as a tangle which is always going down – whose derivative always has a non-zero component in the vertical (
1079: 1020:-component string links, and there is an identity), but not a group, as isotopy classes of string links need not have inverses. However, 1028:
classes) of string links do have inverses, where inverse is given by flipping the string link upside down, and thus form a group.
1170: 1001:
The key technical value of tangles and string links is that they have algebraic structure. Isotopy classes of tangles form a
1738: 324: 1657: 123:
are collectively linked despite the fact that no two of them are directly linked. The Borromean rings thus form a
1204: 812: 485: 1652: 1647: 1523: 1831: 1809: 1224: 891: 863: 1286: 525: 923: 1356: 1351: 1292: 1163: 374: 1129: 450: 1484: 578: 1698: 1667: 1124: 1032: 65:, but the word is also sometimes used in context where there is no notion of a trivial link. 1528: 1115:
Habegger, Nathan; Masbaum, Gregor (2000), "The Kontsevich integral and Milnor's invariants",
73: 775: 703: 1797: 1568: 1156: 671: 644: 302: 226: 195: 8: 1605: 1588: 409: 85: 606: 1836: 1626: 1573: 1183: 1098: 50: 1139: 1723: 1672: 1622: 1578: 1538: 1533: 1451: 1002: 111:
The simplest nontrivial example of a link with more than one component is called the
1758: 1583: 1479: 1214: 1134: 1088: 1077:
Habegger, Nathan; Lin, X.S. (1990), "The classification of links up to homotopy",
1718: 1682: 1617: 1563: 1518: 1511: 1401: 1313: 1196: 1048: 278: 120: 97: 89: 31: 1148: 1778: 1677: 1639: 1558: 1471: 1346: 1338: 1298: 20: 130: 1825: 1713: 1501: 1494: 1489: 1036: 991: 141: 124: 1728: 1708: 1612: 1595: 1391: 1328: 957: 308: 134: 101: 1743: 1506: 1411: 1280: 1260: 1250: 1242: 1234: 1179: 81: 54: 42: 39: 603:
Concretely, a connected compact 1-manifold with boundary is an interval
1763: 1748: 1703: 1600: 1553: 1548: 1543: 1373: 1270: 1102: 1058: 995: 920:
and then being able to move in a two-dimensional horizontal direction (
166: 68: 1768: 1436: 269:(considered to be trivially embedded) and a non-trivial embedding of 150: 146: 112: 1093: 1753: 1363: 161: 93: 26: 1773: 1421: 1381: 1053: 285:
is disconnected, the embedding is called a link (or said to be
220: 190: 154: 116: 105: 62: 1662: 177:
The notion of a link can be generalized in a number of ways.
34:, a link with three components each equivalent to the unknot. 16:
Collection of knots which do not intersect, but may be linked
1733: 1016:-component string links form a monoid (one can compose all 277:, non-trivial in the sense that the 2nd embedding is not 219:
diffeomorphic to a disjoint union of a finite number of
952:
between these lines; one can project these to form a
926: 894: 866: 815: 778: 736: 706: 674: 647: 609: 581: 528: 488: 453: 412: 377: 361:{\displaystyle T\colon X\to \mathbf {R} ^{2}\times I} 327: 229: 198: 856:), lying between and possibly connecting two lines 296: 941: 908: 880: 841: 794: 760: 727: 692: 660: 633: 593: 555: 514: 471: 439: 398: 360: 242: 211: 1178: 994:. A braid that is also a string link is called a 57:. Implicit in this definition is that there is a 1823: 1114: 371:of a (smooth) compact 1-manifold with boundary 127:and in fact constitute the simplest such link. 998:, and corresponds with the usual such notion. 1164: 1087:(2), American Mathematical Society: 389–419, 1080:Journal of the American Mathematical Society 836: 824: 541: 529: 509: 497: 261:– the context is that one has a submanifold 1076: 189:is used to describe any submanifold of the 119:) linked together once. The circles in the 1171: 1157: 842:{\displaystyle \mathbf {R} \times \{0,1\}} 515:{\displaystyle \mathbf {R} \times \{0,1\}} 1138: 1128: 1092: 668:(compactness rules out the open interval 982:other fixed set of points); if this has 160: 140: 129: 67: 25: 1824: 1152: 1804: 909:{\displaystyle \mathbf {R} \times 1} 881:{\displaystyle \mathbf {R} \times 0} 257:is essentially the same as the word 180: 115:, which consists of two circles (or 802:The condition that the boundary of 575:together with a fixed embedding of 314:Most generally, one can consider a 293:is connected, it is called a knot. 84:2 link in 3-dimensional space is a 61:reference link, usually called the 13: 582: 556:{\displaystyle \{0,1\}=\partial I} 547: 460: 406:into the plane times the interval 387: 172: 14: 1848: 297:Tangles, string links, and braids 72:A Hopf link spanned by a twisted 1803: 1792: 1791: 942:{\displaystyle \mathbf {R} ^{2}} 929: 896: 868: 817: 490: 342: 1658:Dowker–Thistlethwaite notation 1108: 1070: 755: 743: 719: 707: 687: 675: 628: 616: 466: 457: 431: 419: 399:{\displaystyle (X,\partial X)} 393: 378: 337: 1: 1140:10.1016/S0040-9383(99)00041-5 1064: 1035:, for instance. Compare with 472:{\displaystyle T(\partial X)} 318:– a tangle is an embedding 253:In full generality, the word 571:of a tangle is the manifold 7: 1042: 986:components, we call it an " 700:and the half-open interval 594:{\displaystyle \partial X.} 10: 1853: 963:Tangles include links (if 300: 18: 1787: 1691: 1648:Alexander–Briggs notation 1635: 1470: 1372: 1337: 1195: 19:Not to be confused with 1739:List of knots and links 1287:Kinoshita–Terasaka knot 1024:classes (and thus also 447:such that the boundary 943: 910: 882: 843: 796: 795:{\displaystyle S^{1}.} 762: 729: 728:{\displaystyle [0,1),} 694: 662: 635: 595: 557: 516: 473: 441: 400: 362: 244: 213: 169: 158: 138: 77: 35: 1529:Finite type invariant 944: 911: 883: 844: 797: 763: 730: 695: 693:{\displaystyle (0,1)} 663: 661:{\displaystyle S^{1}} 636: 596: 558: 517: 474: 442: 401: 363: 245: 243:{\displaystyle S^{j}} 214: 212:{\displaystyle S^{n}} 164: 144: 137:linked with a circle. 133: 71: 29: 924: 892: 864: 813: 776: 734: 704: 672: 645: 607: 579: 526: 486: 451: 410: 375: 325: 303:Tangle (mathematics) 227: 196: 185:Frequently the word 98:connected components 1832:Links (knot theory) 1699:Alexander's theorem 1033:Milnor's invariants 1012:isotopy classes of 440:{\displaystyle I=,} 49:is a collection of 939: 906: 878: 839: 792: 761:{\displaystyle I=} 758: 725: 690: 658: 634:{\displaystyle I=} 631: 591: 553: 512: 469: 437: 396: 358: 240: 209: 170: 159: 139: 78: 36: 1819: 1818: 1673:Reidemeister move 1539:Khovanov homology 1534:Hyperbolic volume 956:, analogous to a 181:General manifolds 88:of 3-dimensional 1844: 1807: 1806: 1795: 1794: 1759:Tait conjectures 1462: 1461: 1447: 1446: 1432: 1431: 1324: 1323: 1309: 1308: 1293:(−2,3,7) pretzel 1173: 1166: 1159: 1150: 1149: 1144: 1143: 1142: 1132: 1123:(6): 1253–1289, 1112: 1106: 1105: 1096: 1074: 948: 946: 945: 940: 938: 937: 932: 915: 913: 912: 907: 899: 887: 885: 884: 879: 871: 848: 846: 845: 840: 820: 801: 799: 798: 793: 788: 787: 767: 765: 764: 759: 732: 731: 726: 699: 697: 696: 691: 667: 665: 664: 659: 657: 656: 640: 638: 637: 632: 600: 598: 597: 592: 562: 560: 559: 554: 521: 519: 518: 513: 493: 479:is embedded in 478: 476: 475: 470: 446: 444: 443: 438: 405: 403: 402: 397: 367: 365: 364: 359: 351: 350: 345: 281:to the 1st. If 249: 247: 246: 241: 239: 238: 218: 216: 215: 210: 208: 207: 1852: 1851: 1847: 1846: 1845: 1843: 1842: 1841: 1822: 1821: 1820: 1815: 1783: 1687: 1653:Conway notation 1637: 1631: 1618:Tricolorability 1466: 1460: 1457: 1456: 1455: 1445: 1442: 1441: 1440: 1430: 1427: 1426: 1425: 1417: 1407: 1397: 1387: 1368: 1347:Composite knots 1333: 1322: 1319: 1318: 1317: 1314:Borromean rings 1307: 1304: 1303: 1302: 1276: 1266: 1256: 1246: 1238: 1230: 1220: 1210: 1191: 1177: 1147: 1113: 1109: 1094:10.2307/1990959 1075: 1071: 1067: 1049:Hyperbolic link 1045: 1003:tensor category 933: 928: 927: 925: 922: 921: 895: 893: 890: 889: 867: 865: 862: 861: 816: 814: 811: 810: 783: 779: 777: 774: 773: 735: 705: 702: 701: 673: 670: 669: 652: 648: 646: 643: 642: 608: 605: 604: 580: 577: 576: 527: 524: 523: 489: 487: 484: 483: 452: 449: 448: 411: 408: 407: 376: 373: 372: 346: 341: 340: 326: 323: 322: 305: 299: 234: 230: 228: 225: 224: 203: 199: 197: 194: 193: 183: 175: 173:Generalizations 121:Borromean rings 90:Euclidean space 80:For example, a 32:Borromean rings 24: 17: 12: 11: 5: 1850: 1840: 1839: 1834: 1817: 1816: 1814: 1813: 1801: 1788: 1785: 1784: 1782: 1781: 1779:Surgery theory 1776: 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1695: 1693: 1689: 1688: 1686: 1685: 1680: 1678:Skein relation 1675: 1670: 1665: 1660: 1655: 1650: 1644: 1642: 1633: 1632: 1630: 1629: 1623:Unknotting no. 1620: 1615: 1610: 1609: 1608: 1598: 1593: 1592: 1591: 1586: 1581: 1576: 1571: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1521: 1516: 1515: 1514: 1504: 1499: 1498: 1497: 1487: 1482: 1476: 1474: 1468: 1467: 1465: 1464: 1458: 1449: 1443: 1434: 1428: 1419: 1415: 1409: 1405: 1399: 1395: 1389: 1385: 1378: 1376: 1370: 1369: 1367: 1366: 1361: 1360: 1359: 1354: 1343: 1341: 1335: 1334: 1332: 1331: 1326: 1320: 1311: 1305: 1296: 1290: 1284: 1278: 1274: 1268: 1264: 1258: 1254: 1248: 1244: 1240: 1236: 1232: 1228: 1222: 1218: 1212: 1208: 1201: 1199: 1193: 1192: 1176: 1175: 1168: 1161: 1153: 1146: 1145: 1130:10.1.1.31.6675 1107: 1068: 1066: 1063: 1062: 1061: 1056: 1051: 1044: 1041: 954:tangle diagram 936: 931: 918: 917: 905: 902: 898: 877: 874: 870: 850: 849: 838: 835: 832: 829: 826: 823: 819: 791: 786: 782: 757: 754: 751: 748: 745: 742: 739: 724: 721: 718: 715: 712: 709: 689: 686: 683: 680: 677: 655: 651: 630: 627: 624: 621: 618: 615: 612: 590: 587: 584: 565: 564: 552: 549: 546: 543: 540: 537: 534: 531: 511: 508: 505: 502: 499: 496: 492: 468: 465: 462: 459: 456: 436: 433: 430: 427: 424: 421: 418: 415: 395: 392: 389: 386: 383: 380: 369: 368: 357: 354: 349: 344: 339: 336: 333: 330: 298: 295: 265:of a manifold 237: 233: 206: 202: 182: 179: 174: 171: 92:(or often the 21:Linking number 15: 9: 6: 4: 3: 2: 1849: 1838: 1835: 1833: 1830: 1829: 1827: 1812: 1811: 1802: 1800: 1799: 1790: 1789: 1786: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1714:Conway sphere 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1696: 1694: 1690: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1645: 1643: 1641: 1634: 1628: 1624: 1621: 1619: 1616: 1614: 1611: 1607: 1604: 1603: 1602: 1599: 1597: 1594: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1566: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1513: 1510: 1509: 1508: 1505: 1503: 1500: 1496: 1493: 1492: 1491: 1488: 1486: 1485:Arf invariant 1483: 1481: 1478: 1477: 1475: 1473: 1469: 1453: 1450: 1438: 1435: 1423: 1420: 1413: 1410: 1403: 1400: 1393: 1390: 1383: 1380: 1379: 1377: 1375: 1371: 1365: 1362: 1358: 1355: 1353: 1350: 1349: 1348: 1345: 1344: 1342: 1340: 1336: 1330: 1327: 1315: 1312: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1272: 1269: 1262: 1259: 1252: 1249: 1247: 1241: 1239: 1233: 1226: 1223: 1216: 1213: 1206: 1203: 1202: 1200: 1198: 1194: 1189: 1185: 1181: 1174: 1169: 1167: 1162: 1160: 1155: 1154: 1151: 1141: 1136: 1131: 1126: 1122: 1118: 1111: 1104: 1100: 1095: 1090: 1086: 1082: 1081: 1073: 1069: 1060: 1057: 1055: 1052: 1050: 1047: 1046: 1040: 1038: 1037:closed braids 1034: 1029: 1027: 1023: 1019: 1015: 1011: 1006: 1004: 999: 997: 993: 992:overhand knot 989: 985: 980: 975: 973: 968: 966: 961: 959: 955: 950: 934: 903: 900: 875: 872: 859: 858: 857: 855: 833: 830: 827: 821: 809: 808: 807: 805: 789: 784: 780: 771: 752: 749: 746: 740: 737: 722: 716: 713: 710: 684: 681: 678: 653: 649: 625: 622: 619: 613: 610: 601: 588: 585: 574: 570: 550: 544: 538: 535: 532: 506: 503: 500: 494: 482: 481: 480: 463: 454: 434: 428: 425: 422: 416: 413: 390: 384: 381: 355: 352: 347: 334: 331: 328: 321: 320: 319: 317: 312: 310: 304: 294: 292: 288: 284: 280: 276: 272: 268: 264: 260: 256: 251: 235: 231: 222: 204: 200: 192: 188: 178: 168: 163: 156: 152: 148: 143: 136: 132: 128: 126: 125:Brunnian link 122: 118: 114: 109: 107: 103: 99: 95: 91: 87: 83: 75: 70: 66: 64: 60: 56: 52: 48: 44: 41: 33: 28: 22: 1808: 1796: 1724:Double torus 1709:Braid theory 1524:Crossing no. 1519:Crosscap no. 1205:Figure-eight 1187: 1120: 1116: 1110: 1084: 1078: 1072: 1030: 1025: 1021: 1017: 1013: 1009: 1008:For a fixed 1007: 1000: 987: 983: 978: 976: 971: 969: 964: 962: 958:knot diagram 953: 951: 919: 853: 851: 803: 769: 641:or a circle 602: 572: 568: 566: 370: 315: 313: 309:braid theory 306: 290: 286: 282: 274: 270: 266: 262: 258: 254: 252: 186: 184: 176: 135:Trefoil knot 110: 102:homeomorphic 82:co-dimension 79: 58: 46: 40:mathematical 37: 1559:Linking no. 1480:Alternating 1281:Conway knot 1261:Carrick mat 1215:Three-twist 1180:Knot theory 1022:concordance 979:string link 55:knot theory 43:knot theory 1826:Categories 1719:Complement 1683:Tabulation 1640:operations 1564:Polynomial 1554:Link group 1549:Knot group 1512:Invertible 1490:Bridge no. 1472:Invariants 1402:Cinquefoil 1271:Perko pair 1197:Hyperbolic 1065:References 1059:Link group 996:pure braid 301:See also: 167:torus link 1837:Manifolds 1613:Stick no. 1569:Alexander 1507:Chirality 1452:Solomon's 1412:Septafoil 1339:Satellite 1299:Whitehead 1225:Stevedore 1125:CiteSeerX 901:× 873:× 822:× 806:lies in 583:∂ 548:∂ 495:× 461:∂ 388:∂ 353:× 338:→ 332:: 151:cobordant 147:Hopf link 113:Hopf link 1798:Category 1668:Mutation 1636:Notation 1589:Kauffman 1502:Brunnian 1495:2-bridge 1364:Knot sum 1295:(12n242) 1117:Topology 1043:See also 1026:homotopy 772:circles 279:isotopic 96:) whose 94:3-sphere 86:subspace 1810:Commons 1729:Fibered 1627:problem 1596:Pretzel 1574:Bracket 1392:Trefoil 1329:L10a140 1289:(11n42) 1283:(11n34) 1251:Endless 1103:1990959 289:). If 221:spheres 153:to the 117:unknots 106:circles 74:annulus 59:trivial 1774:Writhe 1744:Ribbon 1579:HOMFLY 1422:Unlink 1382:Unknot 1357:Square 1352:Granny 1127:  1101:  1054:Unlink 316:tangle 287:linked 191:sphere 165:(2,8) 155:unlink 63:unlink 1764:Twist 1749:Slice 1704:Berge 1692:Other 1663:Flype 1601:Prime 1584:Jones 1544:Genus 1374:Torus 1188:links 1184:knots 1099:JSTOR 1083:, 2, 51:knots 1769:Wild 1734:Knot 1638:and 1625:and 1606:list 1437:Hopf 1186:and 888:and 768:and 569:type 567:The 259:knot 255:link 250:. 187:link 145:The 100:are 47:link 45:, a 30:The 1754:Sum 1275:161 1273:(10 1135:doi 1089:doi 949:) 273:in 149:is 108:. 104:to 38:In 1828:: 1454:(4 1439:(2 1424:(0 1414:(7 1404:(5 1394:(3 1384:(0 1316:(6 1301:(5 1265:18 1263:(8 1253:(7 1227:(6 1217:(5 1207:(4 1133:, 1121:39 1119:, 1097:, 1039:. 1010:ℓ, 977:A 960:. 916:), 573:X, 563:). 311:. 223:, 1463:) 1459:1 1448:) 1444:1 1433:) 1429:1 1418:) 1416:1 1408:) 1406:1 1398:) 1396:1 1388:) 1386:1 1325:) 1321:2 1310:) 1306:1 1277:) 1267:) 1257:) 1255:4 1245:3 1243:6 1237:2 1235:6 1231:) 1229:1 1221:) 1219:2 1211:) 1209:1 1190:) 1182:( 1172:e 1165:t 1158:v 1137:: 1091:: 1085:3 1018:ℓ 1014:ℓ 988:ℓ 984:ℓ 972:I 965:X 935:2 930:R 904:1 897:R 876:0 869:R 860:( 854:I 837:} 834:1 831:, 828:0 825:{ 818:R 804:X 790:. 785:1 781:S 770:m 756:] 753:1 750:, 747:0 744:[ 741:= 738:I 723:, 720:) 717:1 714:, 711:0 708:[ 688:) 685:1 682:, 679:0 676:( 654:1 650:S 629:] 626:1 623:, 620:0 617:[ 614:= 611:I 589:. 586:X 551:I 545:= 542:} 539:1 536:, 533:0 530:{ 522:( 510:} 507:1 504:, 501:0 498:{ 491:R 467:) 464:X 458:( 455:T 435:, 432:] 429:1 426:, 423:0 420:[ 417:= 414:I 394:) 391:X 385:, 382:X 379:( 356:I 348:2 343:R 335:X 329:T 291:M 283:M 275:N 271:M 267:N 263:M 236:j 232:S 205:n 201:S 157:. 76:. 23:.

Index

Linking number

Borromean rings
mathematical
knot theory
knots
knot theory
unlink

annulus
co-dimension
subspace
Euclidean space
3-sphere
connected components
homeomorphic
circles
Hopf link
unknots
Borromean rings
Brunnian link

Trefoil knot

Hopf link
cobordant
unlink

torus link
sphere

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.