Knowledge

Localization (commutative algebra)

Source 📝

3126:. So all properties of localizations can be deduced from the universal property, independently from the way they have been constructed. Moreover, many important properties of localization are easily deduced from the general properties of universal properties, while their direct proof may be together technical, straightforward and boring. 6802: 7245: 6954: 7099: 6681: 3629: 2591: 8798: 5057: 2717: 9384: 8931: 9044: 6687: 8417: 1700: 8089: 7105: 3634:
This may seem a rather tricky way of expressing the universal property, but it is useful for showing easily many properties, by using the fact that the composition of two left adjoint functors is a left adjoint functor.
8640: 7397: 6814: 3431: 1089: 4895: 9452:, which are properties that can be studied by restriction to a small neighborhood of each point of the variety. (There is another concept of local property that refers to localization to Zariski open sets; see 9424:
Such localizations are fundamental for commutative algebra and algebraic geometry for several reasons. One is that local rings are often easier to study than general commutative rings, in particular because of
5266: 7931: 1156: 2179: 7995: 9501: 7498: 6960: 7314: 4408:
Localization is a rich construction that has many useful properties. In this section, only the properties relative to rings and to a single localization are considered. Properties concerning
2347: 1859: 3717: 8170: 7453: 1282: 9155: 6551: 4664: 4254: 774: 2280: 1960: 567: 9835:
One case for non-commutative rings where localization has a clear interest is for rings of differential operators. It has the interpretation, for example, of adjoining a formal inverse
8264: 6590: 4059: 6597: 2830: 675: 7351: 3474: 2407: 1409: 503: 8954: 6181: 3265: 3172: 3083: 3828: 9659: 9593: 9420: 9248: 5610: 4760: 4351: 870: 9277: 5925: 4949: 2451: 9315: 6391: 4385: 2789: 2754: 459: 9683: 9617: 9179: 7271: 6483:
Many properties of ideals are either preserved by saturation and localization, or can be characterized by simpler properties of localization and saturation. In what follows,
5896: 5868: 5424: 4973: 4692: 4278: 4207: 2041: 1556: 979: 805: 85: 9782: 8296: 7606: 3670: 3367: 3343: 3208: 8675: 6087: 6113: 6016: 5312: 5131: 4988: 4565: 4513: 3972: 3772: 1498: 160: 134: 7755: 4802: 4176: 3300: 5497: 5163: 3466: 7821: 4456: 1781: 7853: 6479: 6298: 5533: 5468: 5392: 4728: 2893: 2107: 1740: 1322: 1225: 618: 9216: 9105: 8509: 8472: 7787: 7673: 6258: 6225: 5695: 5662: 5566: 5341: 4613: 4315: 4092: 3921: 3861: 3750: 3120: 3022: 2966: 2933: 2602: 2443: 1995: 1618: 1589: 1466: 1370: 1189: 1008: 931: 838: 708: 327: 252: 9320: 7644: 6447: 6421: 5974: 5725: 2205: 1885: 738: 1527: 9076: 2071: 8824: 4178:(The proof consists of showing that this ring satisfies the above universal property.) This sort of localization plays a fundamental role in the definition of an 8966: 8094:
It is straightforward to check that these operations are well-defined, that is, they give the same result for different choices of representatives of fractions.
6797:{\displaystyle I\subseteq J\quad \ \implies \quad \ S^{-1}I\subseteq S^{-1}J\quad \ {\text{and}}\quad \ \operatorname {sat} (I)\subseteq \operatorname {sat} (J)} 8663: 5183: 3995: 2857: 2300: 8311: 9828:
of prospective units, it might take a different form to the one described above. One condition which ensures that the localization is well behaved is the
8526:
make that localization preserves many properties of modules and rings, and is compatible with solutions of other universal properties. For example, the
1623: 7240:{\displaystyle S^{-1}(I\cdot J)=S^{-1}I\cdot S^{-1}J,\qquad \quad \operatorname {sat} (I\cdot J)=\operatorname {sat} (I)\cdot \operatorname {sat} (J)} 8019: 9429:. However, the main reason is that many properties are true for a ring if and only if they are true for all its local rings. For example, a ring is 8535: 6949:{\displaystyle S^{-1}(I\cap J)=S^{-1}I\cap S^{-1}J,\qquad \,\operatorname {sat} (I\cap J)=\operatorname {sat} (I)\cap \operatorname {sat} (J)} 3389:
of these categories are the ring homomorphisms that map the submonoid of the first object into the submonoid of the second one. Finally, let
7356: 3392: 1013: 4824: 5191: 7861: 1094: 5980:. Thus the localization is the analog of the restriction of a topological space to a neighborhood of a point (every prime ideal has a 2112: 422:. As this often makes reasoning and notation simpler, it is standard practice to consider only localizations by multiplicative sets. 7937: 573:. Therefore, one generally talks of "the localization by the powers of an element" rather than of "the localization by an element". 17: 5828:
by a multiplicative set may be viewed as the restriction of the spectrum of a ring to the subspace of the prime ideals (viewed as
9465: 7458: 10100: 10071: 9977: 7094:{\displaystyle S^{-1}(I+J)=S^{-1}I+S^{-1}J,\qquad \operatorname {sat} (I+J)=\operatorname {sat} (I)+\operatorname {sat} (J)} 5734:
Saturated multiplicative sets are not widely used explicitly, since, for verifying that a set is saturated, one must know
10161: 9878: 402:
must be a multiplicative set is natural, since it implies that all denominators introduced by the localization belong to
410:
that is not multiplicatively closed can also be defined, by taking as possible denominators all products of elements of
7280: 2305: 10037: 10010: 9994: 1786: 3679: 8107: 7402: 1230: 9124: 6514: 4633: 4391:, because many properties of a commutative ring can be read on its local rings. Such a property is often called a 4223: 743: 2210: 1890: 508: 6676:{\displaystyle 1\in S^{-1}I\quad \iff \quad 1\in \operatorname {sat} (I)\quad \iff \quad S\cap I\neq \emptyset } 8214: 6560: 4004: 3624:{\displaystyle \hom _{\mathcal {C}}((R,S),{\mathcal {F}}(T,U))\to \hom _{\mathcal {D}}((S^{-1}R,j(S)),(T,U)).} 5765:, that is in terms of their behavior near each point. Examples of this trend are the fundamental concepts of 2802: 623: 8960:, that is the ideal of the elements of the ring that map to zero all elements of the module. In particular, 7319: 5798: 2352: 1375: 1339:
are the localization of the ring of integers by the multiplicative set of the powers of ten. In this case,
464: 8939: 6141: 3433:
be the forgetful functor that forgets that the elements of the second element of the pair are invertible.
3225: 3132: 3043: 2586:{\displaystyle {\frac {r_{1}}{s_{1}}}+{\frac {r_{2}}{s_{2}}}={\frac {r_{1}s_{2}+r_{2}s_{1}}{s_{1}s_{2}}},} 3792: 365: 290: 9632: 9566: 9393: 9221: 5571: 4733: 4324: 843: 9873: 9253: 5901: 4925: 9293: 8793:{\displaystyle S^{-1}\operatorname {Hom} _{R}(M,N)\to \operatorname {Hom} _{S^{-1}R}(S^{-1}M,S^{-1}N)} 6341: 4363: 2762: 2727: 432: 9664: 9598: 9160: 8957: 8811: 8666: 8098: 7252: 5932: 5877: 5849: 5397: 5052:{\displaystyle R=\bigcap _{\mathfrak {p}}R_{\mathfrak {p}}=\bigcap _{\mathfrak {m}}R_{\mathfrak {m}}} 4954: 4780:
Localization commutes with formations of finite sums, products, intersections and radicals; e.g., if
4673: 4259: 4188: 2016: 1532: 955: 786: 60: 9755: 8269: 7584: 3647: 3348: 3324: 3181: 6067: 6096: 5999: 5282: 5110: 4531: 4479: 3938: 3755: 1471: 143: 117: 9519: 7760:
Addition and scalar multiplication are defined as for usual fractions (in the following formula,
7713: 5840: 4783: 4667: 4101: 3924: 3270: 3025: 2757: 777: 5473: 5139: 3439: 2712:{\displaystyle {\frac {r_{1}}{s_{1}}}\,{\frac {r_{2}}{s_{2}}}={\frac {r_{1}r_{2}}{s_{1}s_{2}}},} 10156: 9507: 9379:{\displaystyle {\mathfrak {p}}\,R_{\mathfrak {p}}={\mathfrak {p}}\otimes _{R}R_{\mathfrak {p}}} 8527: 7791: 5616:, that is, there is a unique isomorphism between them that fixes the images of the elements of 5427: 4422: 2794: 1760: 190: 7826: 6452: 6267: 5502: 5437: 5365: 4697: 2862: 2076: 1709: 1291: 1194: 587: 9844: 9188: 9081: 8481: 8444: 8176: 7763: 7649: 6230: 6197: 5667: 5634: 5613: 5538: 5317: 5063:
where the first intersection is over all prime ideals and the second over the maximal ideals.
4585: 4287: 4095: 4064: 3893: 3833: 3722: 3092: 2994: 2938: 2909: 2415: 1967: 1594: 1561: 1442: 1342: 1161: 984: 903: 810: 680: 388: 299: 224: 8926:{\displaystyle S^{-1}(\operatorname {Ann} _{R}(M))=\operatorname {Ann} _{S^{-1}R}(S^{-1}M),} 7623: 6426: 6400: 5949: 5704: 2184: 1864: 875:
In the remainder of this article, only localizations by a multiplicative set are considered.
713: 10151: 10110: 10081: 10047: 10020: 9821: 9039:{\displaystyle S^{-1}M=0\quad \iff \quad S\cap \operatorname {Ann} _{R}(M)\neq \emptyset ,} 7537: 5782: 4413: 1754: 1503: 47: 9052: 2045: 8: 9848: 9801: 9449: 8426: 8302: 6184: 5774: 4805: 4409: 4388: 1227:
This results from the defining property of a multiplicative set, which implies also that
174: 31: 10032:. Vol. 3 (2nd ed.). Chichester: John Wiley & Sons Ltd. pp. xii+474. 10005:. Vol. 2 (2nd ed.). Chichester: John Wiley & Sons Ltd. pp. xvi+428. 9743: 9711: 9434: 8648: 8523: 8412:{\displaystyle S^{-1}R\otimes _{R}f:\quad S^{-1}R\otimes _{R}M\to S^{-1}R\otimes _{R}N} 8179:) can be done by showing that the two definitions satisfy the same universal property. 7521: 5993: 5981: 5818: 5778: 5770: 5738: 5168: 3980: 3864: 3215: 3086: 2896: 2842: 2285: 934: 345: 263: 182: 170: 111: 55: 43: 35: 9796:
On the other hand, some properties are not local properties. For example, an infinite
414:. However, the same localization is obtained by using the multiplicatively closed set 10096: 10095:. Lecture Notes in Mathematics, Vol. 237. Berlin: Springer-Verlag. pp. vii+136. 10067: 10033: 10006: 9990: 9973: 9731: 7578: 5810: 4572: 4474: 3318: 2836: 2722: 1998: 194: 9965: 9812:, while all its local rings are fields, and therefore Noetherian integral domains. 7513: 5814: 5806: 3879: 3123: 1336: 349: 283: 5697:
are isomorphic if and only if they have the same saturation, or, equivalently, if
10131: 10106: 10077: 10063: 10043: 10016: 9809: 9805: 5976:
and its spectrum is the Zariski open set of the prime ideals that do not contain
5790: 3786: 3775: 3306: 1695:{\displaystyle {\tfrac {a}{1}}={\tfrac {as}{s}}={\tfrac {0}{s}}={\tfrac {0}{1}}.} 889: 341: 137: 107: 10055: 9961: 9868: 9856: 9797: 9445: 9426: 9119: 8434: 8084:{\displaystyle r\,{\frac {m}{s}}={\frac {r}{1}}{\frac {m}{s}}={\frac {rm}{s}}.} 4458: 4392: 4218: 3382: 6064:" means that the property is considered after localization at the prime ideal 10145: 9829: 9511: 9440:
Properties of a ring that can be characterized on its local rings are called
9387: 8475: 6806: 6116: 5989: 5794: 5786: 4767: 4179: 6048:" means that the property is considered after localization by the powers of 9986: 9430: 6057: 4906: 4522: 4396: 3887: 3370: 3314: 2984: 1428: 1329: 353: 8635:{\displaystyle S^{-1}(M\otimes _{R}N)\to S^{-1}M\otimes _{S^{-1}R}S^{-1}N} 50:. That is, it introduces a new ring/module out of an existing ring/module 9721: 9115: 8512: 7274: 5844: 5802: 4616: 4568: 4210: 1324:
It is shown below that this is no longer true in general, typically when
781: 88: 1742:
The construction that follows is designed for taking this into account.
10117: 9280: 5928: 4763: 4576: 4318: 4284:
is a multiplicative set (by the definition of a prime ideal). The ring
271: 5801:). This correspondence has been generalized for making the set of the 10135: 8299: 8192: 7392:{\displaystyle {\mathfrak {p}}=\operatorname {sat} ({\mathfrak {p}})} 5793:
in such a way that the points of the algebraic set correspond to the
5069: 3426:{\displaystyle {\mathcal {F}}\colon {\mathcal {D}}\to {\mathcal {C}}} 3374: 2969: 1084:{\displaystyle {\tfrac {a}{s}}+{\tfrac {b}{t}}={\tfrac {at+bs}{st}},} 9459:
Many local properties are a consequence of the fact that the module
4890:{\displaystyle {\sqrt {I}}\cdot S^{-1}R={\sqrt {I\cdot S^{-1}R}}\,.} 5766: 5758: 5754: 5261:{\displaystyle {\hat {S}}=\{r\in R\colon \exists s\in R,rs\in S\}.} 4416:, or several multiplicative sets are considered in other sections. 3386: 10062:, Graduate Texts in Mathematics, vol. 150, Berlin, New York: 8097:
The localization of a module can be equivalently defined by using
7926:{\displaystyle {\frac {m}{s}}+{\frac {n}{t}}={\frac {tm+sn}{st}},} 3974:
is injective. The preceding example is a special case of this one.
2409:
is nonzero even though the fractions should be regarded as equal.
1151:{\displaystyle {\tfrac {a}{s}}\,{\tfrac {b}{t}}={\tfrac {ab}{st}}} 6019: 3673: 3310: 945: 163: 9989:. Linear Algebraic Groups (2nd ed.). New York: Springer-Verlag. 9510:
when the direct sum is taken over all prime ideals (or over all
620:
but other notations are commonly used in some special cases: if
9824:
is more difficult. While the localization exists for every set
5753:
originates in the general trend of modern mathematics to study
3378: 2174:{\displaystyle {\tfrac {r_{1}}{s_{1}}}={\tfrac {r_{2}}{s_{2}}}} 352:
as the field of fractions of the integers. For rings that have
7990:{\displaystyle {\frac {r}{s}}{\frac {m}{t}}={\frac {rm}{st}}.} 10120:, "Algebraic Number Theory," Springer, 2000. pages 3–4. 5898:", or "localization at a point". The resulting ring, denoted 5701:
belongs to one of the multiplicative sets, then there exists
3935:
is the largest multiplicative set such that the homomorphism
344:
the construction generalizes and follows closely that of the
201:, and one wants to study this variety "locally" near a point 5938:
The multiplicative set consists of all powers of an element
262:, and excludes information that is not "local", such as the 9847:. There is now a large mathematical theory about it, named 9496:{\displaystyle \bigoplus _{\mathfrak {p}}R_{\mathfrak {p}}} 7569:-module that is constructed exactly as the localization of 5835:
Two classes of localizations are more commonly considered:
505:
So, the denominators will belong to the multiplicative set
42:
is a formal way to introduce the "denominators" to a given
6093:
is prime, the nonzero prime ideals of the localization of
6089:. This terminology can be explained by the fact that, if 3309:, this can be expressed by saying that localization is a 9185:
is a multiplicative set. In this case, the localization
7573:, except that the numerators of the fractions belong to 7493:{\displaystyle \operatorname {sat} ({\mathfrak {p}})=R.} 6125: 1372:
consists of the rational numbers that can be written as
9444:, and are often the algebraic counterpart of geometric 5744: 9453: 8522:
This flatness and the fact that localization solves a
5087:. This bijection is induced by the given homomorphism 4909:
if and only if its total ring of fractions is reduced.
3871:. The preceding example is a special case of this one. 2767: 2732: 2325: 2310: 2146: 2117: 1678: 1663: 1643: 1628: 1537: 1380: 1241: 1127: 1112: 1099: 1048: 1033: 1018: 960: 469: 437: 356:, the construction is similar but requires more care. 169:
The technique has become fundamental, particularly in
114:: this case generalizes the construction of the field 9758: 9667: 9635: 9601: 9569: 9468: 9396: 9323: 9296: 9256: 9224: 9191: 9163: 9127: 9084: 9055: 8969: 8942: 8827: 8678: 8651: 8538: 8484: 8447: 8314: 8272: 8217: 8110: 8022: 7940: 7864: 7829: 7794: 7766: 7716: 7652: 7626: 7587: 7461: 7405: 7359: 7322: 7283: 7255: 7108: 6963: 6817: 6690: 6600: 6563: 6517: 6455: 6429: 6403: 6344: 6270: 6233: 6200: 6144: 6099: 6070: 6041:, depending on the localization that is considered. " 6002: 5952: 5904: 5880: 5852: 5707: 5670: 5637: 5574: 5541: 5505: 5476: 5440: 5400: 5368: 5320: 5285: 5194: 5171: 5142: 5113: 5102: 4991: 4957: 4928: 4827: 4786: 4736: 4700: 4676: 4636: 4588: 4534: 4482: 4425: 4366: 4327: 4290: 4262: 4226: 4191: 4104: 4067: 4007: 3983: 3941: 3896: 3836: 3795: 3758: 3725: 3682: 3650: 3477: 3442: 3395: 3351: 3327: 3273: 3228: 3184: 3135: 3095: 3046: 2997: 2941: 2912: 2865: 2845: 2805: 2765: 2730: 2605: 2454: 2418: 2355: 2308: 2288: 2213: 2187: 2115: 2079: 2048: 2019: 1970: 1893: 1867: 1789: 1763: 1712: 1626: 1597: 1564: 1535: 1506: 1474: 1445: 1378: 1345: 1294: 1233: 1197: 1164: 1097: 1016: 987: 958: 941:. As such, the localization of a domain is a domain. 906: 846: 813: 789: 746: 716: 683: 626: 590: 511: 467: 435: 302: 227: 146: 120: 63: 6397:, which can also defined as the set of the elements 5874:. In this case, one speaks of the "localization at 10087:
Matsumura. Commutative Algebra. Benjamin-Cummings
2991:(that is the elements that are not zero divisors), 9776: 9677: 9653: 9611: 9587: 9495: 9414: 9378: 9309: 9271: 9242: 9210: 9173: 9149: 9099: 9070: 9038: 8948: 8925: 8792: 8657: 8634: 8503: 8466: 8411: 8290: 8258: 8164: 8083: 7989: 7925: 7847: 7815: 7781: 7749: 7667: 7638: 7600: 7492: 7447: 7391: 7345: 7308: 7265: 7239: 7093: 6948: 6796: 6675: 6584: 6545: 6473: 6441: 6415: 6385: 6292: 6252: 6219: 6175: 6107: 6081: 6022:, one refers to a property relative to an integer 6010: 5968: 5919: 5890: 5862: 5719: 5689: 5656: 5604: 5560: 5527: 5491: 5462: 5418: 5386: 5335: 5306: 5260: 5177: 5157: 5125: 5051: 4967: 4943: 4918:be an integral domain with the field of fractions 4889: 4796: 4754: 4722: 4686: 4658: 4607: 4559: 4507: 4450: 4379: 4345: 4309: 4272: 4248: 4201: 4170: 4086: 4053: 3989: 3966: 3915: 3855: 3822: 3766: 3744: 3711: 3664: 3623: 3460: 3425: 3361: 3337: 3294: 3259: 3210:is a ring homomorphism that maps every element of 3202: 3166: 3114: 3077: 3016: 2960: 2927: 2887: 2851: 2824: 2783: 2748: 2711: 2585: 2437: 2401: 2341: 2294: 2274: 2199: 2173: 2101: 2065: 2035: 1989: 1954: 1879: 1853: 1775: 1734: 1694: 1612: 1583: 1550: 1521: 1492: 1460: 1403: 1364: 1316: 1276: 1219: 1183: 1150: 1083: 1002: 973: 925: 864: 832: 799: 768: 732: 702: 669: 612: 561: 497: 453: 425:For example, the localization by a single element 321: 246: 154: 128: 79: 7309:{\displaystyle {\mathfrak {p}}\cap S=\emptyset ,} 10143: 5832:) that do not intersect the multiplicative set. 2342:{\displaystyle {\tfrac {a}{1}}={\tfrac {0}{1}},} 364:Localization is commonly done with respect to a 329:whose elements are fractions with numerators in 9960: 9939: 9897: 9851:, connecting with numerous other branches. The 9843:. This is done in many contexts in methods for 9525: 6122:or its complement in the set of prime numbers. 4399:if and only if all its local rings are regular. 1854:{\displaystyle (r_{1},s_{1})\sim (r_{2},s_{2})} 6134:be a multiplicative set in a commutative ring 5984:consisting of Zariski open sets of this form). 3712:{\displaystyle S=\mathbb {Z} \setminus \{0\},} 3468:of the universal property defines a bijection 1435:be a multiplicative set in a commutative ring 461:but also products of such fractions, such as 8474:-modules. In other words, localization is an 8165:{\displaystyle S^{-1}M=S^{-1}R\otimes _{R}M.} 7448:{\displaystyle S^{-1}{\mathfrak {p}}=S^{-1}R} 6183:be the canonical ring homomorphism. Given an 4624: 1277:{\displaystyle 1={\tfrac {1}{1}}\in S^{-1}R.} 9546:if the following conditions are equivalent: 9150:{\displaystyle S=R\setminus {\mathfrak {p}}} 6546:{\displaystyle \operatorname {sat} _{S}(I),} 5252: 5210: 4659:{\displaystyle S=R\setminus {\mathfrak {p}}} 4387:This sort of localization is fundamental in 4249:{\displaystyle S=R\setminus {\mathfrak {p}}} 4045: 4014: 3814: 3808: 3703: 3697: 3089:that is described below. This characterizes 769:{\displaystyle S=R\setminus {\mathfrak {p}}} 677:consists of the powers of a single element, 664: 633: 556: 512: 7503: 3886:is the subset of its elements that are not 2275:{\displaystyle t(s_{1}r_{2}-s_{2}r_{1})=0.} 1955:{\displaystyle t(s_{1}r_{2}-s_{2}r_{1})=0.} 1427:In the general case, a problem arises with 562:{\displaystyle \{1,s,s^{2},s^{3},\ldots \}} 254:contains information about the behavior of 8997: 8993: 6708: 6704: 6656: 6652: 6628: 6624: 3222:, there exists a unique ring homomorphism 106:is the set of the non-zero elements of an 10090: 9331: 9109: 8259:{\displaystyle S^{-1}M\subseteq S^{-1}N.} 8026: 6888: 6101: 6075: 6004: 5946:. The resulting ring is commonly denoted 5279:if it equals its saturation, that is, if 4883: 4775:Properties to be moved in another section 3760: 3690: 3658: 2630: 1110: 277: 148: 122: 10054: 9927: 9454:§ Localization to Zariski open sets 7399:; if the intersection is nonempty, then 6585:{\displaystyle \operatorname {sat} (I).} 5535:and the universal property implies that 4054:{\displaystyle S=\{1,x,x^{2},\ldots \},} 9815: 9784:is injective (resp. surjective), where 9433:if and only if all its local rings are 5817:; this topological space is called the 2825:{\displaystyle r\mapsto {\frac {r}{1}}} 1422: 670:{\displaystyle S=\{1,t,t^{2},\ldots \}} 14: 10144: 7699:are equivalent if there is an element 3040:The (above defined) ring homomorphism 209:of all functions that are not zero at 7346:{\displaystyle S^{-1}{\mathfrak {p}}} 6126:Localization and saturation of ideals 3377:of, respectively, the multiplicative 3035: 2445:is a commutative ring with addition 2402:{\displaystyle s_{1}r_{2}-s_{2}r_{1}} 2302:is to handle cases such as the above 1404:{\displaystyle {\tfrac {n}{10^{k}}},} 498:{\displaystyle {\tfrac {ab}{s^{2}}}.} 359: 10027: 10000: 9693:The following are local properties: 8949:{\displaystyle \operatorname {Ann} } 8429:, this implies that localization by 8182: 7577:. That is, as a set, it consists of 6176:{\displaystyle j\colon R\to S^{-1}R} 5745:Terminology explained by the context 3997:is an element of a commutative ring 3369:be the categories whose objects are 3260:{\displaystyle g\colon S^{-1}R\to T} 3167:{\displaystyle j\colon R\to S^{-1}R} 3129:The universal property satisfied by 3078:{\displaystyle j\colon R\to S^{-1}R} 2903:does not contain any zero divisors. 9970:Introduction to Commutative Algebra 9879:Localization of a topological space 9855:tag is to do with connections with 9706:is torsion-free (in the case where 9670: 9642: 9604: 9576: 9487: 9475: 9403: 9370: 9349: 9338: 9326: 9299: 9263: 9231: 9166: 9142: 8422:is also an injective homomorphism. 8013:-module with scalar multiplication 7473: 7421: 7381: 7362: 7338: 7286: 7258: 5931:, and is the algebraic analog of a 5911: 5883: 5855: 5072:between the set of prime ideals of 5043: 5031: 5016: 5004: 4960: 4935: 4743: 4679: 4651: 4369: 4334: 4265: 4241: 4194: 3823:{\displaystyle S=R\setminus \{0\},} 879: 853: 792: 761: 391:under multiplication, and contains 173:, as it provides a natural link to 27:Construction of a ring of fractions 24: 9654:{\displaystyle M_{\mathfrak {m}},} 9588:{\displaystyle M_{\mathfrak {p}},} 9415:{\displaystyle R_{\mathfrak {p}}.} 9243:{\displaystyle R_{\mathfrak {p}}.} 9030: 8175:The proof of equivalence (up to a 7300: 6670: 6487:is a multiplicative set in a ring 5631:are two multiplicative sets, then 5605:{\displaystyle {\hat {S}}{}^{-1}R} 5470:So, the images of the elements of 5225: 5103:Saturation of a multiplicative set 4755:{\displaystyle R_{\mathfrak {p}},} 4403: 4346:{\displaystyle R_{\mathfrak {p}},} 3548: 3516: 3484: 3418: 3408: 3398: 3354: 3330: 865:{\displaystyle R_{\mathfrak {p}}.} 348:, and, in particular, that of the 193:defined on some geometric object ( 25: 10173: 10125: 9272:{\displaystyle R_{\mathfrak {p}}} 9137: 5920:{\displaystyle R_{\mathfrak {p}}} 4944:{\displaystyle R_{\mathfrak {p}}} 4646: 4236: 3805: 3694: 952:, that consists of the fractions 756: 429:introduces fractions of the form 9310:{\displaystyle {\mathfrak {p}}.} 6553:or, when the multiplicative set 6386:{\displaystyle j^{-1}(S^{-1}I);} 4625:§ Localization of a module 4380:{\displaystyle {\mathfrak {p}}.} 2784:{\displaystyle {\tfrac {1}{1}}.} 2749:{\displaystyle {\tfrac {0}{1}},} 2001:for this relation. The class of 1010:This is a subring since the sum 454:{\displaystyle {\tfrac {a}{s}},} 9839:for a differentiation operator 9678:{\displaystyle {\mathfrak {m}}} 9612:{\displaystyle {\mathfrak {p}}} 9174:{\displaystyle {\mathfrak {p}}} 8998: 8992: 8441:-modules to exact sequences of 8347: 7266:{\displaystyle {\mathfrak {p}}} 7179: 7178: 7033: 6887: 6757: 6748: 6709: 6700: 6657: 6651: 6629: 6623: 5891:{\displaystyle {\mathfrak {p}}} 5863:{\displaystyle {\mathfrak {p}}} 5419:{\displaystyle {\frac {s}{rs}}} 5079:and the set of prime ideals of 4968:{\displaystyle {\mathfrak {p}}} 4687:{\displaystyle {\mathfrak {p}}} 4273:{\displaystyle {\mathfrak {p}}} 4202:{\displaystyle {\mathfrak {p}}} 2036:{\displaystyle {\frac {r}{s}},} 1551:{\displaystyle {\tfrac {a}{1}}} 974:{\displaystyle {\tfrac {a}{s}}} 800:{\displaystyle {\mathfrak {p}}} 418:of all products of elements of 110:, then the localization is the 80:{\displaystyle {\frac {m}{s}},} 10093:Rings and modules of quotients 9945: 9933: 9921: 9912: 9903: 9891: 9777:{\displaystyle f\colon M\to N} 9768: 9024: 9018: 8994: 8917: 8898: 8866: 8863: 8857: 8841: 8787: 8749: 8720: 8717: 8705: 8574: 8571: 8552: 8425:Since the tensor product is a 8377: 8291:{\displaystyle f\colon M\to N} 8282: 7738: 7720: 7601:{\displaystyle {\frac {m}{s}}} 7478: 7468: 7386: 7376: 7234: 7228: 7216: 7210: 7198: 7186: 7134: 7122: 7088: 7082: 7070: 7064: 7052: 7040: 6989: 6977: 6943: 6937: 6925: 6919: 6907: 6895: 6843: 6831: 6791: 6785: 6773: 6767: 6705: 6653: 6648: 6642: 6625: 6576: 6570: 6537: 6531: 6377: 6358: 6154: 5839:The multiplicative set is the 5581: 5483: 5292: 5201: 5149: 4975:can be viewed as a subring of 4538: 4486: 4162: 4147: 4139: 4133: 4124: 4108: 3945: 3665:{\displaystyle R=\mathbb {Z} } 3615: 3612: 3600: 3594: 3591: 3585: 3560: 3557: 3539: 3536: 3533: 3521: 3508: 3496: 3493: 3413: 3362:{\displaystyle {\mathcal {D}}} 3338:{\displaystyle {\mathcal {C}}} 3251: 3203:{\displaystyle f\colon R\to T} 3194: 3145: 3056: 2809: 2263: 2217: 1943: 1897: 1848: 1822: 1816: 1790: 1702:Thus some nonzero elements of 13: 1: 10028:Cohn, P. M. (1991). "§ 9.1". 10001:Cohn, P. M. (1989). "§ 9.3". 9884: 9738:is a commutative domain, and 9118:implies immediately that the 6805:(this is not always true for 6503:; the saturation of an ideal 6082:{\displaystyle p\mathbb {Z} } 5996:, when working over the ring 5133:be a multiplicative set. The 1997:is defined as the set of the 948:of the field of fractions of 205:, then one considers the set 9526:Examples of local properties 6227:the set of the fractions in 6108:{\displaystyle \mathbb {Z} } 6011:{\displaystyle \mathbb {Z} } 5307:{\displaystyle {\hat {S}}=S} 5126:{\displaystyle S\subseteq R} 4560:{\displaystyle R\to S^{-1}R} 4515:is injective if and only if 4508:{\displaystyle R\to S^{-1}R} 3967:{\displaystyle R\to S^{-1}R} 3767:{\displaystyle \mathbb {Q} } 3373:of a commutative ring and a 1753:as above, one considers the 1493:{\displaystyle 0\neq a\in R} 406:. The localization by a set 155:{\displaystyle \mathbb {Z} } 129:{\displaystyle \mathbb {Q} } 7: 9940:Atiyah & Macdonald 1969 9898:Atiyah & Macdonald 1969 9862: 8207:is a multiplicative set in 7750:{\displaystyle u(sn-tm)=0.} 6557:is clear from the context, 4797:{\displaystyle {\sqrt {I}}} 4766:; that is, it has only one 4171:{\displaystyle R=R/(xs-1).} 3638: 3295:{\displaystyle f=g\circ j.} 576:The localization of a ring 366:multiplicatively closed set 291:multiplicatively closed set 270:(c.f. the example given at 10: 10178: 10162:Localization (mathematics) 9874:Localization of a category 7542:localization of the module 5492:{\displaystyle {\hat {S}}} 5158:{\displaystyle {\hat {S}}} 4321:that is generally denoted 3461:{\displaystyle f=g\circ j} 2181:if and only if there is a 1419:is a nonnegative integer. 944:More precisely, it is the 177:theory. In fact, the term 94:belongs to a given subset 8667:finitely presented module 7816:{\displaystyle s,t\in S,} 5799:Hilbert's Nullstellensatz 5785:can be identified with a 4451:{\displaystyle S^{-1}R=0} 4395:. For example, a ring is 1776:{\displaystyle R\times S} 54:, so that it consists of 9900:, Proposition 3.11. (v). 8803:is also an isomorphism. 7848:{\displaystyle m,n\in M} 7504:Localization of a module 6507:by a multiplicative set 6474:{\displaystyle sr\in I.} 6293:{\displaystyle S^{-1}R,} 5528:{\displaystyle S^{-1}R,} 5463:{\displaystyle S^{-1}R.} 5387:{\displaystyle rs\in S,} 4922:. Then its localization 4723:{\displaystyle S^{-1}R,} 3218:(invertible element) in 2888:{\displaystyle S^{-1}R,} 2102:{\displaystyle s^{-1}r.} 1735:{\displaystyle S^{-1}R.} 1317:{\displaystyle S^{-1}R.} 1220:{\displaystyle S^{-1}R.} 613:{\displaystyle S^{-1}R,} 580:by a multiplicative set 379:) of elements of a ring 18:Localization of a module 9962:Atiyah, Michael Francis 9520:Faithfully flat descent 9211:{\displaystyle S^{-1}R} 9100:{\displaystyle t\in S.} 8504:{\displaystyle S^{-1}R} 8467:{\displaystyle S^{-1}R} 7782:{\displaystyle r\in R,} 7668:{\displaystyle s\in S,} 6423:such that there exists 6253:{\displaystyle S^{-1}R} 6220:{\displaystyle S^{-1}I} 5690:{\displaystyle T^{-1}R} 5657:{\displaystyle S^{-1}R} 5561:{\displaystyle S^{-1}R} 5336:{\displaystyle rs\in S} 5314:, or equivalently, if 5271:The multiplicative set 4608:{\displaystyle S^{-1}R} 4310:{\displaystyle S^{-1}R} 4087:{\displaystyle S^{-1}R} 3925:total ring of fractions 3916:{\displaystyle S^{-1}R} 3856:{\displaystyle S^{-1}R} 3745:{\displaystyle S^{-1}R} 3436:Then the factorization 3115:{\displaystyle S^{-1}R} 3026:total ring of fractions 3017:{\displaystyle S^{-1}R} 2961:{\displaystyle S^{-1}R} 2928:{\displaystyle 0\in S,} 2758:multiplicative identity 2438:{\displaystyle S^{-1}R} 1990:{\displaystyle S^{-1}R} 1613:{\displaystyle a\in R,} 1584:{\displaystyle S^{-1}R} 1500:is a zero divisor with 1461:{\displaystyle s\in S,} 1365:{\displaystyle S^{-1}R} 1184:{\displaystyle S^{-1}R} 1003:{\displaystyle s\in S.} 926:{\displaystyle S^{-1}R} 833:{\displaystyle S^{-1}R} 703:{\displaystyle S^{-1}R} 322:{\displaystyle S^{-1}R} 247:{\displaystyle S^{-1}R} 10091:Stenström, Bo (1971). 9918:Matsumura, Theorem 4.7 9845:differential equations 9778: 9742:is a submodule of the 9685:is a maximal ideal of 9679: 9655: 9613: 9589: 9508:faithfully flat module 9497: 9416: 9380: 9311: 9273: 9244: 9212: 9181:in a commutative ring 9175: 9151: 9110:Localization at primes 9101: 9072: 9040: 8950: 8927: 8794: 8659: 8645:is an isomorphism. If 8636: 8505: 8468: 8413: 8292: 8266:This implies that, if 8260: 8166: 8085: 7991: 7927: 7849: 7817: 7783: 7751: 7669: 7640: 7639:{\displaystyle m\in M} 7602: 7494: 7449: 7393: 7347: 7310: 7267: 7241: 7095: 6950: 6798: 6677: 6586: 6547: 6475: 6443: 6442:{\displaystyle s\in S} 6417: 6416:{\displaystyle r\in R} 6387: 6300:which is generated by 6294: 6264:. This is an ideal of 6260:whose numerator is in 6254: 6221: 6177: 6109: 6083: 6012: 5970: 5969:{\displaystyle R_{t},} 5921: 5892: 5864: 5731:belongs to the other. 5721: 5720:{\displaystyle t\in R} 5691: 5658: 5614:canonically isomorphic 5606: 5562: 5529: 5499:are all invertible in 5493: 5464: 5428:multiplicative inverse 5420: 5388: 5362:is not saturated, and 5337: 5308: 5262: 5179: 5159: 5127: 5083:that do not intersect 5053: 4969: 4945: 4891: 4798: 4756: 4724: 4688: 4660: 4609: 4561: 4528:The ring homomorphism 4509: 4452: 4381: 4347: 4311: 4274: 4250: 4213:of a commutative ring 4203: 4172: 4096:canonically isomorphic 4094:can be identified (is 4088: 4055: 3991: 3968: 3917: 3857: 3824: 3768: 3746: 3713: 3666: 3625: 3462: 3427: 3363: 3339: 3321:. More precisely, let 3296: 3261: 3204: 3168: 3116: 3079: 3018: 2962: 2929: 2889: 2853: 2826: 2785: 2750: 2713: 2587: 2439: 2403: 2343: 2296: 2276: 2201: 2200:{\displaystyle t\in S} 2175: 2103: 2067: 2037: 1991: 1956: 1881: 1880:{\displaystyle t\in S} 1855: 1777: 1736: 1696: 1614: 1585: 1552: 1523: 1494: 1462: 1405: 1366: 1318: 1278: 1221: 1185: 1152: 1085: 1004: 975: 927: 866: 834: 801: 770: 734: 733:{\displaystyle R_{t};} 704: 671: 614: 563: 499: 455: 383:, that is a subset of 323: 282:The localization of a 278:Localization of a ring 248: 156: 130: 81: 9822:non-commutative rings 9779: 9680: 9656: 9614: 9590: 9498: 9417: 9381: 9312: 9274: 9245: 9213: 9176: 9152: 9102: 9073: 9041: 8951: 8928: 8795: 8660: 8637: 8506: 8469: 8414: 8293: 8261: 8177:canonical isomorphism 8167: 8086: 7992: 7928: 7850: 7818: 7784: 7752: 7670: 7641: 7603: 7495: 7450: 7394: 7353:is a prime ideal and 7348: 7311: 7268: 7242: 7096: 6951: 6799: 6678: 6587: 6548: 6476: 6444: 6418: 6388: 6295: 6255: 6222: 6178: 6110: 6084: 6013: 5971: 5922: 5893: 5865: 5797:of the ring (this is 5722: 5692: 5659: 5607: 5563: 5530: 5494: 5465: 5421: 5389: 5338: 5309: 5263: 5180: 5160: 5128: 5054: 4970: 4946: 4892: 4799: 4757: 4725: 4689: 4661: 4610: 4562: 4521:does not contain any 4510: 4453: 4382: 4348: 4312: 4275: 4251: 4204: 4173: 4089: 4056: 3992: 3969: 3918: 3858: 3825: 3769: 3747: 3714: 3667: 3626: 3463: 3428: 3364: 3340: 3297: 3262: 3205: 3169: 3117: 3080: 3019: 2963: 2930: 2890: 2854: 2827: 2786: 2751: 2714: 2588: 2440: 2404: 2344: 2297: 2277: 2202: 2176: 2104: 2068: 2038: 1992: 1957: 1882: 1856: 1778: 1737: 1697: 1615: 1586: 1553: 1524: 1522:{\displaystyle as=0.} 1495: 1463: 1406: 1367: 1319: 1279: 1222: 1186: 1153: 1086: 1005: 976: 928: 867: 835: 802: 771: 735: 705: 672: 615: 584:is generally denoted 564: 500: 456: 398:The requirement that 377:multiplicative system 324: 249: 221:. The resulting ring 157: 131: 82: 9816:Non-commutative case 9756: 9665: 9633: 9619:is a prime ideal of 9599: 9567: 9466: 9394: 9321: 9294: 9254: 9222: 9218:is commonly denoted 9189: 9161: 9125: 9114:The definition of a 9082: 9071:{\displaystyle tM=0} 9053: 8967: 8940: 8825: 8676: 8649: 8536: 8482: 8445: 8312: 8270: 8215: 8108: 8020: 7938: 7862: 7827: 7792: 7764: 7714: 7650: 7624: 7585: 7459: 7403: 7357: 7320: 7281: 7253: 7106: 6961: 6815: 6688: 6598: 6561: 6515: 6453: 6427: 6401: 6342: 6268: 6231: 6198: 6142: 6097: 6068: 6000: 5950: 5902: 5878: 5850: 5819:spectrum of the ring 5783:affine algebraic set 5705: 5668: 5635: 5572: 5539: 5503: 5474: 5438: 5398: 5366: 5318: 5283: 5192: 5169: 5140: 5111: 4989: 4955: 4926: 4825: 4784: 4734: 4698: 4674: 4634: 4586: 4532: 4480: 4423: 4364: 4325: 4288: 4260: 4224: 4189: 4102: 4065: 4005: 3981: 3939: 3894: 3834: 3793: 3756: 3723: 3680: 3648: 3475: 3440: 3393: 3349: 3325: 3271: 3226: 3182: 3133: 3093: 3044: 2995: 2939: 2910: 2863: 2843: 2803: 2763: 2728: 2603: 2452: 2416: 2353: 2306: 2286: 2211: 2185: 2113: 2077: 2066:{\displaystyle r/s,} 2046: 2017: 1968: 1891: 1865: 1787: 1761: 1755:equivalence relation 1710: 1624: 1595: 1562: 1533: 1504: 1472: 1443: 1423:General construction 1376: 1343: 1292: 1231: 1195: 1162: 1095: 1014: 985: 956: 933:is a subring of the 904: 844: 811: 787: 744: 714: 681: 624: 588: 509: 465: 433: 333:and denominators in 300: 225: 144: 118: 61: 10060:Commutative algebra 9942:, Proposition 3.14. 9734:(in the case where 9450:algebraic varieties 9435:regular local rings 8427:right exact functor 8303:module homomorphism 7579:equivalence classes 6026:as a property true 5824:In this context, a 4806:radical of an ideal 4389:commutative algebra 3174:is the following: 2976:as unique element. 2282:The reason for the 1999:equivalence classes 1783:that is defined by 1415:is an integer, and 1158:of two elements of 32:commutative algebra 9972:. Westview Press. 9930:, Proposition 2.10 9774: 9744:field of fractions 9712:commutative domain 9675: 9651: 9609: 9585: 9493: 9480: 9412: 9376: 9307: 9285:the local ring of 9269: 9240: 9208: 9171: 9147: 9097: 9068: 9036: 8946: 8923: 8812:finitely generated 8790: 8669:, the natural map 8655: 8632: 8524:universal property 8501: 8464: 8409: 8288: 8256: 8162: 8081: 7987: 7923: 7845: 7813: 7779: 7747: 7665: 7636: 7598: 7522:multiplicative set 7490: 7445: 7389: 7343: 7306: 7263: 7237: 7091: 6946: 6794: 6673: 6582: 6543: 6471: 6439: 6413: 6393:it is an ideal of 6383: 6290: 6250: 6217: 6173: 6105: 6079: 6008: 5994:algebraic topology 5982:neighborhood basis 5966: 5917: 5888: 5860: 5813:equipped with the 5779:algebraic geometry 5717: 5687: 5654: 5602: 5558: 5525: 5489: 5460: 5416: 5384: 5333: 5304: 5258: 5175: 5155: 5123: 5049: 5036: 5009: 4965: 4941: 4887: 4794: 4752: 4720: 4684: 4656: 4605: 4557: 4505: 4448: 4377: 4355:the local ring of 4343: 4307: 4270: 4246: 4199: 4168: 4084: 4051: 3987: 3964: 3913: 3865:field of fractions 3853: 3820: 3764: 3742: 3709: 3662: 3621: 3458: 3423: 3359: 3335: 3292: 3257: 3200: 3164: 3112: 3087:universal property 3075: 3036:Universal property 3014: 2983:is the set of all 2958: 2925: 2885: 2849: 2822: 2781: 2776: 2746: 2741: 2709: 2583: 2435: 2399: 2339: 2334: 2319: 2292: 2272: 2197: 2171: 2169: 2140: 2099: 2063: 2033: 1987: 1952: 1877: 1861:if there exists a 1851: 1773: 1732: 1692: 1687: 1672: 1657: 1637: 1610: 1581: 1548: 1546: 1519: 1490: 1458: 1401: 1396: 1362: 1314: 1274: 1250: 1217: 1181: 1148: 1146: 1121: 1108: 1081: 1076: 1042: 1027: 1000: 971: 969: 935:field of fractions 923: 862: 830: 797: 766: 730: 700: 667: 610: 559: 495: 490: 451: 446: 373:multiplicative set 360:Multiplicative set 346:field of fractions 340:If the ring is an 319: 264:zeros of functions 244: 183:algebraic geometry 171:algebraic geometry 152: 126: 112:field of fractions 77: 36:algebraic geometry 10102:978-3-540-05690-4 10073:978-0-387-94268-1 9979:978-0-201-40751-8 9859:, in particular. 9849:microlocalization 9732:invertible module 9469: 9283:, that is called 9157:of a prime ideal 8658:{\displaystyle M} 8183:Module properties 8076: 8058: 8048: 8035: 7982: 7959: 7949: 7918: 7886: 7873: 7596: 6807:strict inclusions 6760: 6755: 6751: 6712: 6703: 6311:, and called the 5811:topological space 5584: 5486: 5414: 5295: 5204: 5178:{\displaystyle S} 5152: 5025: 4998: 4951:at a prime ideal 4881: 4833: 4792: 4670:of a prime ideal 4573:category of rings 4475:ring homomorphism 3990:{\displaystyle x} 3385:of the ring. The 3319:forgetful functor 2852:{\displaystyle R} 2837:ring homomorphism 2820: 2775: 2740: 2723:additive identity 2704: 2653: 2628: 2578: 2504: 2477: 2412:The localization 2333: 2318: 2295:{\displaystyle t} 2168: 2139: 2028: 1964:The localization 1686: 1671: 1656: 1636: 1545: 1395: 1337:decimal fractions 1335:For example, the 1249: 1145: 1120: 1107: 1075: 1041: 1026: 968: 896:does not contain 710:is often denoted 569:of the powers of 489: 445: 266:that are outside 195:algebraic variety 72: 16:(Redirected from 10169: 10114: 10084: 10051: 10024: 9983: 9952: 9949: 9943: 9937: 9931: 9925: 9919: 9916: 9910: 9907: 9901: 9895: 9791: 9787: 9783: 9781: 9780: 9775: 9749: 9741: 9737: 9729: 9719: 9709: 9705: 9699: 9688: 9684: 9682: 9681: 9676: 9674: 9673: 9660: 9658: 9657: 9652: 9647: 9646: 9645: 9628: 9622: 9618: 9616: 9615: 9610: 9608: 9607: 9594: 9592: 9591: 9586: 9581: 9580: 9579: 9562: 9556: 9552: 9541: 9537: 9533: 9517: 9502: 9500: 9499: 9494: 9492: 9491: 9490: 9479: 9478: 9446:local properties 9442:local properties 9421: 9419: 9418: 9413: 9408: 9407: 9406: 9385: 9383: 9382: 9377: 9375: 9374: 9373: 9363: 9362: 9353: 9352: 9343: 9342: 9341: 9330: 9329: 9317:This means that 9316: 9314: 9313: 9308: 9303: 9302: 9288: 9278: 9276: 9275: 9270: 9268: 9267: 9266: 9249: 9247: 9246: 9241: 9236: 9235: 9234: 9217: 9215: 9214: 9209: 9204: 9203: 9184: 9180: 9178: 9177: 9172: 9170: 9169: 9156: 9154: 9153: 9148: 9146: 9145: 9106: 9104: 9103: 9098: 9077: 9075: 9074: 9069: 9045: 9043: 9042: 9037: 9014: 9013: 8982: 8981: 8955: 8953: 8952: 8947: 8932: 8930: 8929: 8924: 8913: 8912: 8894: 8893: 8889: 8888: 8853: 8852: 8840: 8839: 8799: 8797: 8796: 8791: 8783: 8782: 8764: 8763: 8745: 8744: 8740: 8739: 8701: 8700: 8691: 8690: 8664: 8662: 8661: 8656: 8641: 8639: 8638: 8633: 8628: 8627: 8615: 8614: 8610: 8609: 8589: 8588: 8567: 8566: 8551: 8550: 8516: 8510: 8508: 8507: 8502: 8497: 8496: 8473: 8471: 8470: 8465: 8460: 8459: 8440: 8432: 8418: 8416: 8415: 8410: 8405: 8404: 8392: 8391: 8373: 8372: 8360: 8359: 8340: 8339: 8327: 8326: 8297: 8295: 8294: 8289: 8265: 8263: 8262: 8257: 8249: 8248: 8230: 8229: 8210: 8206: 8202: 8198: 8190: 8171: 8169: 8168: 8163: 8155: 8154: 8142: 8141: 8123: 8122: 8090: 8088: 8087: 8082: 8077: 8072: 8064: 8059: 8051: 8049: 8041: 8036: 8028: 8012: 8008: 7996: 7994: 7993: 7988: 7983: 7981: 7973: 7965: 7960: 7952: 7950: 7942: 7932: 7930: 7929: 7924: 7919: 7917: 7909: 7892: 7887: 7879: 7874: 7866: 7854: 7852: 7851: 7846: 7822: 7820: 7819: 7814: 7788: 7786: 7785: 7780: 7756: 7754: 7753: 7748: 7706: 7702: 7698: 7686: 7674: 7672: 7671: 7666: 7645: 7643: 7642: 7637: 7619: 7607: 7605: 7604: 7599: 7597: 7589: 7576: 7572: 7568: 7559: 7550: 7546: 7535: 7531: 7527: 7519: 7514:commutative ring 7511: 7499: 7497: 7496: 7491: 7477: 7476: 7454: 7452: 7451: 7446: 7441: 7440: 7425: 7424: 7418: 7417: 7398: 7396: 7395: 7390: 7385: 7384: 7366: 7365: 7352: 7350: 7349: 7344: 7342: 7341: 7335: 7334: 7315: 7313: 7312: 7307: 7290: 7289: 7272: 7270: 7269: 7264: 7262: 7261: 7246: 7244: 7243: 7238: 7171: 7170: 7152: 7151: 7121: 7120: 7100: 7098: 7097: 7092: 7026: 7025: 7007: 7006: 6976: 6975: 6955: 6953: 6952: 6947: 6880: 6879: 6861: 6860: 6830: 6829: 6803: 6801: 6800: 6795: 6758: 6756: 6753: 6749: 6744: 6743: 6725: 6724: 6710: 6701: 6682: 6680: 6679: 6674: 6619: 6618: 6591: 6589: 6588: 6583: 6556: 6552: 6550: 6549: 6544: 6527: 6526: 6510: 6506: 6502: 6498: 6494: 6490: 6486: 6480: 6478: 6477: 6472: 6448: 6446: 6445: 6440: 6422: 6420: 6419: 6414: 6396: 6392: 6390: 6389: 6384: 6373: 6372: 6357: 6356: 6337: 6333: 6322: 6318: 6310: 6299: 6297: 6296: 6291: 6283: 6282: 6263: 6259: 6257: 6256: 6251: 6246: 6245: 6226: 6224: 6223: 6218: 6213: 6212: 6193: 6189: 6182: 6180: 6179: 6174: 6169: 6168: 6137: 6133: 6121: 6114: 6112: 6111: 6106: 6104: 6092: 6088: 6086: 6085: 6080: 6078: 6063: 6055: 6051: 6047: 6040: 6032: 6025: 6017: 6015: 6014: 6009: 6007: 5979: 5975: 5973: 5972: 5967: 5962: 5961: 5945: 5941: 5926: 5924: 5923: 5918: 5916: 5915: 5914: 5897: 5895: 5894: 5889: 5887: 5886: 5873: 5869: 5867: 5866: 5861: 5859: 5858: 5815:Zariski topology 5807:commutative ring 5730: 5726: 5724: 5723: 5718: 5700: 5696: 5694: 5693: 5688: 5683: 5682: 5663: 5661: 5660: 5655: 5650: 5649: 5630: 5626: 5619: 5611: 5609: 5608: 5603: 5598: 5597: 5589: 5586: 5585: 5577: 5567: 5565: 5564: 5559: 5554: 5553: 5534: 5532: 5531: 5526: 5518: 5517: 5498: 5496: 5495: 5490: 5488: 5487: 5479: 5469: 5467: 5466: 5461: 5453: 5452: 5433: 5430:of the image of 5425: 5423: 5422: 5417: 5415: 5413: 5402: 5393: 5391: 5390: 5385: 5361: 5354: 5350: 5346: 5342: 5340: 5339: 5334: 5313: 5311: 5310: 5305: 5297: 5296: 5288: 5274: 5267: 5265: 5264: 5259: 5206: 5205: 5197: 5184: 5182: 5181: 5176: 5164: 5162: 5161: 5156: 5154: 5153: 5145: 5132: 5130: 5129: 5124: 5058: 5056: 5055: 5050: 5048: 5047: 5046: 5035: 5034: 5021: 5020: 5019: 5008: 5007: 4974: 4972: 4971: 4966: 4964: 4963: 4950: 4948: 4947: 4942: 4940: 4939: 4938: 4896: 4894: 4893: 4888: 4882: 4877: 4876: 4858: 4850: 4849: 4834: 4829: 4803: 4801: 4800: 4795: 4793: 4788: 4761: 4759: 4758: 4753: 4748: 4747: 4746: 4729: 4727: 4726: 4721: 4713: 4712: 4693: 4691: 4690: 4685: 4683: 4682: 4665: 4663: 4662: 4657: 4655: 4654: 4620: 4614: 4612: 4611: 4606: 4601: 4600: 4566: 4564: 4563: 4558: 4553: 4552: 4520: 4514: 4512: 4511: 4506: 4501: 4500: 4469: 4465: 4457: 4455: 4454: 4449: 4438: 4437: 4386: 4384: 4383: 4378: 4373: 4372: 4358: 4352: 4350: 4349: 4344: 4339: 4338: 4337: 4316: 4314: 4313: 4308: 4303: 4302: 4283: 4279: 4277: 4276: 4271: 4269: 4268: 4255: 4253: 4252: 4247: 4245: 4244: 4216: 4208: 4206: 4205: 4200: 4198: 4197: 4177: 4175: 4174: 4169: 4146: 4123: 4122: 4093: 4091: 4090: 4085: 4080: 4079: 4060: 4058: 4057: 4052: 4038: 4037: 4000: 3996: 3994: 3993: 3988: 3973: 3971: 3970: 3965: 3960: 3959: 3934: 3931:. In this case, 3930: 3922: 3920: 3919: 3914: 3909: 3908: 3885: 3880:commutative ring 3877: 3870: 3862: 3860: 3859: 3854: 3849: 3848: 3829: 3827: 3826: 3821: 3784: 3776:rational numbers 3773: 3771: 3770: 3765: 3763: 3751: 3749: 3748: 3743: 3738: 3737: 3718: 3716: 3715: 3710: 3693: 3671: 3669: 3668: 3663: 3661: 3630: 3628: 3627: 3622: 3575: 3574: 3553: 3552: 3551: 3520: 3519: 3489: 3488: 3487: 3467: 3465: 3464: 3459: 3432: 3430: 3429: 3424: 3422: 3421: 3412: 3411: 3402: 3401: 3368: 3366: 3365: 3360: 3358: 3357: 3344: 3342: 3341: 3336: 3334: 3333: 3301: 3299: 3298: 3293: 3266: 3264: 3263: 3258: 3247: 3246: 3221: 3213: 3209: 3207: 3206: 3201: 3173: 3171: 3170: 3165: 3160: 3159: 3121: 3119: 3118: 3113: 3108: 3107: 3084: 3082: 3081: 3076: 3071: 3070: 3031: 3023: 3021: 3020: 3015: 3010: 3009: 2990: 2985:regular elements 2982: 2975: 2967: 2965: 2964: 2959: 2954: 2953: 2934: 2932: 2931: 2926: 2902: 2894: 2892: 2891: 2886: 2878: 2877: 2858: 2856: 2855: 2850: 2831: 2829: 2828: 2823: 2821: 2813: 2790: 2788: 2787: 2782: 2777: 2768: 2755: 2753: 2752: 2747: 2742: 2733: 2718: 2716: 2715: 2710: 2705: 2703: 2702: 2701: 2692: 2691: 2681: 2680: 2679: 2670: 2669: 2659: 2654: 2652: 2651: 2642: 2641: 2632: 2629: 2627: 2626: 2617: 2616: 2607: 2592: 2590: 2589: 2584: 2579: 2577: 2576: 2575: 2566: 2565: 2555: 2554: 2553: 2544: 2543: 2531: 2530: 2521: 2520: 2510: 2505: 2503: 2502: 2493: 2492: 2483: 2478: 2476: 2475: 2466: 2465: 2456: 2444: 2442: 2441: 2436: 2431: 2430: 2408: 2406: 2405: 2400: 2398: 2397: 2388: 2387: 2375: 2374: 2365: 2364: 2348: 2346: 2345: 2340: 2335: 2326: 2320: 2311: 2301: 2299: 2298: 2293: 2281: 2279: 2278: 2273: 2262: 2261: 2252: 2251: 2239: 2238: 2229: 2228: 2206: 2204: 2203: 2198: 2180: 2178: 2177: 2172: 2170: 2167: 2166: 2157: 2156: 2147: 2141: 2138: 2137: 2128: 2127: 2118: 2108: 2106: 2105: 2100: 2092: 2091: 2072: 2070: 2069: 2064: 2056: 2042: 2040: 2039: 2034: 2029: 2021: 2012: 1996: 1994: 1993: 1988: 1983: 1982: 1961: 1959: 1958: 1953: 1942: 1941: 1932: 1931: 1919: 1918: 1909: 1908: 1886: 1884: 1883: 1878: 1860: 1858: 1857: 1852: 1847: 1846: 1834: 1833: 1815: 1814: 1802: 1801: 1782: 1780: 1779: 1774: 1752: 1748: 1741: 1739: 1738: 1733: 1725: 1724: 1706:must be zero in 1705: 1701: 1699: 1698: 1693: 1688: 1679: 1673: 1664: 1658: 1652: 1644: 1638: 1629: 1619: 1617: 1616: 1611: 1590: 1588: 1587: 1582: 1577: 1576: 1558:is the image in 1557: 1555: 1554: 1549: 1547: 1538: 1528: 1526: 1525: 1520: 1499: 1497: 1496: 1491: 1467: 1465: 1464: 1459: 1438: 1434: 1418: 1414: 1410: 1408: 1407: 1402: 1397: 1394: 1393: 1381: 1371: 1369: 1368: 1363: 1358: 1357: 1327: 1323: 1321: 1320: 1315: 1307: 1306: 1288:is a subring of 1287: 1283: 1281: 1280: 1275: 1267: 1266: 1251: 1242: 1226: 1224: 1223: 1218: 1210: 1209: 1190: 1188: 1187: 1182: 1177: 1176: 1157: 1155: 1154: 1149: 1147: 1144: 1136: 1128: 1122: 1113: 1109: 1100: 1091:and the product 1090: 1088: 1087: 1082: 1077: 1074: 1066: 1049: 1043: 1034: 1028: 1019: 1009: 1007: 1006: 1001: 980: 978: 977: 972: 970: 961: 951: 940: 932: 930: 929: 924: 919: 918: 899: 895: 887: 880:Integral domains 871: 869: 868: 863: 858: 857: 856: 839: 837: 836: 831: 826: 825: 806: 804: 803: 798: 796: 795: 775: 773: 772: 767: 765: 764: 739: 737: 736: 731: 726: 725: 709: 707: 706: 701: 696: 695: 676: 674: 673: 668: 657: 656: 619: 617: 616: 611: 603: 602: 583: 579: 572: 568: 566: 565: 560: 549: 548: 536: 535: 504: 502: 501: 496: 491: 488: 487: 478: 470: 460: 458: 457: 452: 447: 438: 428: 421: 417: 413: 409: 405: 401: 394: 386: 382: 370: 350:rational numbers 336: 332: 328: 326: 325: 320: 315: 314: 295: 288: 284:commutative ring 253: 251: 250: 245: 240: 239: 217:with respect to 161: 159: 158: 153: 151: 138:rational numbers 135: 133: 132: 127: 125: 86: 84: 83: 78: 73: 65: 21: 10177: 10176: 10172: 10171: 10170: 10168: 10167: 10166: 10142: 10141: 10128: 10123: 10103: 10074: 10064:Springer-Verlag 10056:Eisenbud, David 10040: 10013: 9980: 9966:Macdonald, I.G. 9956: 9955: 9950: 9946: 9938: 9934: 9926: 9922: 9917: 9913: 9908: 9904: 9896: 9892: 9887: 9865: 9818: 9810:Noetherian ring 9806:integral domain 9789: 9785: 9757: 9754: 9753: 9747: 9739: 9735: 9727: 9717: 9707: 9703: 9697: 9686: 9669: 9668: 9666: 9663: 9662: 9641: 9640: 9636: 9634: 9631: 9630: 9626: 9620: 9603: 9602: 9600: 9597: 9596: 9575: 9574: 9570: 9568: 9565: 9564: 9560: 9554: 9550: 9539: 9535: 9531: 9528: 9515: 9486: 9485: 9481: 9474: 9473: 9467: 9464: 9463: 9402: 9401: 9397: 9395: 9392: 9391: 9369: 9368: 9364: 9358: 9354: 9348: 9347: 9337: 9336: 9332: 9325: 9324: 9322: 9319: 9318: 9298: 9297: 9295: 9292: 9291: 9286: 9262: 9261: 9257: 9255: 9252: 9251: 9230: 9229: 9225: 9223: 9220: 9219: 9196: 9192: 9190: 9187: 9186: 9182: 9165: 9164: 9162: 9159: 9158: 9141: 9140: 9126: 9123: 9122: 9112: 9083: 9080: 9079: 9054: 9051: 9050: 9009: 9005: 8974: 8970: 8968: 8965: 8964: 8941: 8938: 8937: 8905: 8901: 8881: 8877: 8876: 8872: 8848: 8844: 8832: 8828: 8826: 8823: 8822: 8775: 8771: 8756: 8752: 8732: 8728: 8727: 8723: 8696: 8692: 8683: 8679: 8677: 8674: 8673: 8650: 8647: 8646: 8620: 8616: 8602: 8598: 8597: 8593: 8581: 8577: 8562: 8558: 8543: 8539: 8537: 8534: 8533: 8514: 8489: 8485: 8483: 8480: 8479: 8452: 8448: 8446: 8443: 8442: 8438: 8435:exact sequences 8430: 8400: 8396: 8384: 8380: 8368: 8364: 8352: 8348: 8335: 8331: 8319: 8315: 8313: 8310: 8309: 8271: 8268: 8267: 8241: 8237: 8222: 8218: 8216: 8213: 8212: 8208: 8204: 8200: 8196: 8188: 8185: 8150: 8146: 8134: 8130: 8115: 8111: 8109: 8106: 8105: 8099:tensor products 8065: 8063: 8050: 8040: 8027: 8021: 8018: 8017: 8010: 8001: 7974: 7966: 7964: 7951: 7941: 7939: 7936: 7935: 7910: 7893: 7891: 7878: 7865: 7863: 7860: 7859: 7828: 7825: 7824: 7793: 7790: 7789: 7765: 7762: 7761: 7715: 7712: 7711: 7704: 7700: 7688: 7676: 7651: 7648: 7647: 7625: 7622: 7621: 7609: 7588: 7586: 7583: 7582: 7574: 7570: 7561: 7552: 7548: 7544: 7533: 7529: 7525: 7517: 7509: 7506: 7472: 7471: 7460: 7457: 7456: 7433: 7429: 7420: 7419: 7410: 7406: 7404: 7401: 7400: 7380: 7379: 7361: 7360: 7358: 7355: 7354: 7337: 7336: 7327: 7323: 7321: 7318: 7317: 7285: 7284: 7282: 7279: 7278: 7257: 7256: 7254: 7251: 7250: 7163: 7159: 7144: 7140: 7113: 7109: 7107: 7104: 7103: 7018: 7014: 6999: 6995: 6968: 6964: 6962: 6959: 6958: 6872: 6868: 6853: 6849: 6822: 6818: 6816: 6813: 6812: 6804: 6752: 6736: 6732: 6717: 6713: 6689: 6686: 6685: 6611: 6607: 6599: 6596: 6595: 6562: 6559: 6558: 6554: 6522: 6518: 6516: 6513: 6512: 6508: 6504: 6500: 6496: 6492: 6488: 6484: 6454: 6451: 6450: 6428: 6425: 6424: 6402: 6399: 6398: 6394: 6365: 6361: 6349: 6345: 6343: 6340: 6339: 6335: 6331: 6320: 6316: 6301: 6275: 6271: 6269: 6266: 6265: 6261: 6238: 6234: 6232: 6229: 6228: 6205: 6201: 6199: 6196: 6195: 6191: 6187: 6161: 6157: 6143: 6140: 6139: 6135: 6131: 6128: 6119: 6115:are either the 6100: 6098: 6095: 6094: 6090: 6074: 6069: 6066: 6065: 6061: 6053: 6049: 6045: 6038: 6030: 6023: 6003: 6001: 5998: 5997: 5977: 5957: 5953: 5951: 5948: 5947: 5943: 5939: 5910: 5909: 5905: 5903: 5900: 5899: 5882: 5881: 5879: 5876: 5875: 5871: 5854: 5853: 5851: 5848: 5847: 5791:polynomial ring 5747: 5728: 5706: 5703: 5702: 5698: 5675: 5671: 5669: 5666: 5665: 5642: 5638: 5636: 5633: 5632: 5628: 5624: 5617: 5590: 5588: 5587: 5576: 5575: 5573: 5570: 5569: 5546: 5542: 5540: 5537: 5536: 5510: 5506: 5504: 5501: 5500: 5478: 5477: 5475: 5472: 5471: 5445: 5441: 5439: 5436: 5435: 5431: 5406: 5401: 5399: 5396: 5395: 5367: 5364: 5363: 5359: 5352: 5348: 5344: 5319: 5316: 5315: 5287: 5286: 5284: 5281: 5280: 5272: 5196: 5195: 5193: 5190: 5189: 5170: 5167: 5166: 5144: 5143: 5141: 5138: 5137: 5112: 5109: 5108: 5105: 5042: 5041: 5037: 5030: 5029: 5015: 5014: 5010: 5003: 5002: 4990: 4987: 4986: 4959: 4958: 4956: 4953: 4952: 4934: 4933: 4929: 4927: 4924: 4923: 4901:In particular, 4869: 4865: 4857: 4842: 4838: 4828: 4826: 4823: 4822: 4787: 4785: 4782: 4781: 4742: 4741: 4737: 4735: 4732: 4731: 4705: 4701: 4699: 4696: 4695: 4678: 4677: 4675: 4672: 4671: 4650: 4649: 4635: 4632: 4631: 4618: 4593: 4589: 4587: 4584: 4583: 4545: 4541: 4533: 4530: 4529: 4516: 4493: 4489: 4481: 4478: 4477: 4467: 4461: 4430: 4426: 4424: 4421: 4420: 4406: 4404:Ring properties 4368: 4367: 4365: 4362: 4361: 4356: 4333: 4332: 4328: 4326: 4323: 4322: 4295: 4291: 4289: 4286: 4285: 4281: 4264: 4263: 4261: 4258: 4257: 4240: 4239: 4225: 4222: 4221: 4214: 4193: 4192: 4190: 4187: 4186: 4142: 4115: 4111: 4103: 4100: 4099: 4072: 4068: 4066: 4063: 4062: 4033: 4029: 4006: 4003: 4002: 3998: 3982: 3979: 3978: 3952: 3948: 3940: 3937: 3936: 3932: 3928: 3901: 3897: 3895: 3892: 3891: 3883: 3875: 3868: 3841: 3837: 3835: 3832: 3831: 3794: 3791: 3790: 3787:integral domain 3782: 3759: 3757: 3754: 3753: 3730: 3726: 3724: 3721: 3720: 3689: 3681: 3678: 3677: 3672:is the ring of 3657: 3649: 3646: 3645: 3641: 3567: 3563: 3547: 3546: 3542: 3515: 3514: 3483: 3482: 3478: 3476: 3473: 3472: 3441: 3438: 3437: 3417: 3416: 3407: 3406: 3397: 3396: 3394: 3391: 3390: 3353: 3352: 3350: 3347: 3346: 3329: 3328: 3326: 3323: 3322: 3307:category theory 3272: 3269: 3268: 3239: 3235: 3227: 3224: 3223: 3219: 3211: 3183: 3180: 3179: 3152: 3148: 3134: 3131: 3130: 3100: 3096: 3094: 3091: 3090: 3063: 3059: 3045: 3042: 3041: 3038: 3029: 3002: 2998: 2996: 2993: 2992: 2988: 2980: 2973: 2946: 2942: 2940: 2937: 2936: 2911: 2908: 2907: 2900: 2899:if and only if 2870: 2866: 2864: 2861: 2860: 2844: 2841: 2840: 2812: 2804: 2801: 2800: 2766: 2764: 2761: 2760: 2731: 2729: 2726: 2725: 2697: 2693: 2687: 2683: 2682: 2675: 2671: 2665: 2661: 2660: 2658: 2647: 2643: 2637: 2633: 2631: 2622: 2618: 2612: 2608: 2606: 2604: 2601: 2600: 2596:multiplication 2571: 2567: 2561: 2557: 2556: 2549: 2545: 2539: 2535: 2526: 2522: 2516: 2512: 2511: 2509: 2498: 2494: 2488: 2484: 2482: 2471: 2467: 2461: 2457: 2455: 2453: 2450: 2449: 2423: 2419: 2417: 2414: 2413: 2393: 2389: 2383: 2379: 2370: 2366: 2360: 2356: 2354: 2351: 2350: 2324: 2309: 2307: 2304: 2303: 2287: 2284: 2283: 2257: 2253: 2247: 2243: 2234: 2230: 2224: 2220: 2212: 2209: 2208: 2186: 2183: 2182: 2162: 2158: 2152: 2148: 2145: 2133: 2129: 2123: 2119: 2116: 2114: 2111: 2110: 2084: 2080: 2078: 2075: 2074: 2052: 2047: 2044: 2043: 2020: 2018: 2015: 2014: 2002: 1975: 1971: 1969: 1966: 1965: 1937: 1933: 1927: 1923: 1914: 1910: 1904: 1900: 1892: 1889: 1888: 1866: 1863: 1862: 1842: 1838: 1829: 1825: 1810: 1806: 1797: 1793: 1788: 1785: 1784: 1762: 1759: 1758: 1750: 1746: 1717: 1713: 1711: 1708: 1707: 1703: 1677: 1662: 1645: 1642: 1627: 1625: 1622: 1621: 1596: 1593: 1592: 1569: 1565: 1563: 1560: 1559: 1536: 1534: 1531: 1530: 1505: 1502: 1501: 1473: 1470: 1469: 1444: 1441: 1440: 1439:. Suppose that 1436: 1432: 1425: 1416: 1412: 1389: 1385: 1379: 1377: 1374: 1373: 1350: 1346: 1344: 1341: 1340: 1325: 1299: 1295: 1293: 1290: 1289: 1285: 1259: 1255: 1240: 1232: 1229: 1228: 1202: 1198: 1196: 1193: 1192: 1169: 1165: 1163: 1160: 1159: 1137: 1129: 1126: 1111: 1098: 1096: 1093: 1092: 1067: 1050: 1047: 1032: 1017: 1015: 1012: 1011: 986: 983: 982: 959: 957: 954: 953: 949: 938: 911: 907: 905: 902: 901: 897: 893: 890:integral domain 885: 882: 852: 851: 847: 845: 842: 841: 818: 814: 812: 809: 808: 791: 790: 788: 785: 784: 760: 759: 745: 742: 741: 721: 717: 715: 712: 711: 688: 684: 682: 679: 678: 652: 648: 625: 622: 621: 595: 591: 589: 586: 585: 581: 577: 570: 544: 540: 531: 527: 510: 507: 506: 483: 479: 471: 468: 466: 463: 462: 436: 434: 431: 430: 426: 419: 415: 411: 407: 403: 399: 392: 384: 380: 371:(also called a 368: 362: 342:integral domain 334: 330: 307: 303: 301: 298: 297: 293: 286: 280: 232: 228: 226: 223: 222: 147: 145: 142: 141: 121: 119: 116: 115: 108:integral domain 64: 62: 59: 58: 28: 23: 22: 15: 12: 11: 5: 10175: 10165: 10164: 10159: 10154: 10140: 10139: 10127: 10126:External links 10124: 10122: 10121: 10115: 10101: 10088: 10085: 10072: 10052: 10038: 10025: 10011: 9998: 9984: 9978: 9957: 9954: 9953: 9951:Borel, AG. 3.1 9944: 9932: 9920: 9911: 9909:Borel, AG. 3.3 9902: 9889: 9888: 9886: 9883: 9882: 9881: 9876: 9871: 9869:Local analysis 9864: 9861: 9857:Fourier theory 9817: 9814: 9798:direct product 9794: 9793: 9773: 9770: 9767: 9764: 9761: 9751: 9725: 9715: 9701: 9691: 9690: 9672: 9650: 9644: 9639: 9629:holds for all 9624: 9606: 9584: 9578: 9573: 9563:holds for all 9558: 9544:local property 9527: 9524: 9512:maximal ideals 9504: 9503: 9489: 9484: 9477: 9472: 9427:Nakayama lemma 9411: 9405: 9400: 9386:is the unique 9372: 9367: 9361: 9357: 9351: 9346: 9340: 9335: 9328: 9306: 9301: 9265: 9260: 9239: 9233: 9228: 9207: 9202: 9199: 9195: 9168: 9144: 9139: 9136: 9133: 9130: 9111: 9108: 9096: 9093: 9090: 9087: 9067: 9064: 9061: 9058: 9047: 9046: 9035: 9032: 9029: 9026: 9023: 9020: 9017: 9012: 9008: 9004: 9001: 8996: 8991: 8988: 8985: 8980: 8977: 8973: 8945: 8934: 8933: 8922: 8919: 8916: 8911: 8908: 8904: 8900: 8897: 8892: 8887: 8884: 8880: 8875: 8871: 8868: 8865: 8862: 8859: 8856: 8851: 8847: 8843: 8838: 8835: 8831: 8801: 8800: 8789: 8786: 8781: 8778: 8774: 8770: 8767: 8762: 8759: 8755: 8751: 8748: 8743: 8738: 8735: 8731: 8726: 8722: 8719: 8716: 8713: 8710: 8707: 8704: 8699: 8695: 8689: 8686: 8682: 8654: 8643: 8642: 8631: 8626: 8623: 8619: 8613: 8608: 8605: 8601: 8596: 8592: 8587: 8584: 8580: 8576: 8573: 8570: 8565: 8561: 8557: 8554: 8549: 8546: 8542: 8500: 8495: 8492: 8488: 8463: 8458: 8455: 8451: 8420: 8419: 8408: 8403: 8399: 8395: 8390: 8387: 8383: 8379: 8376: 8371: 8367: 8363: 8358: 8355: 8351: 8346: 8343: 8338: 8334: 8330: 8325: 8322: 8318: 8287: 8284: 8281: 8278: 8275: 8255: 8252: 8247: 8244: 8240: 8236: 8233: 8228: 8225: 8221: 8184: 8181: 8173: 8172: 8161: 8158: 8153: 8149: 8145: 8140: 8137: 8133: 8129: 8126: 8121: 8118: 8114: 8092: 8091: 8080: 8075: 8071: 8068: 8062: 8057: 8054: 8047: 8044: 8039: 8034: 8031: 8025: 7998: 7997: 7986: 7980: 7977: 7972: 7969: 7963: 7958: 7955: 7948: 7945: 7933: 7922: 7916: 7913: 7908: 7905: 7902: 7899: 7896: 7890: 7885: 7882: 7877: 7872: 7869: 7844: 7841: 7838: 7835: 7832: 7812: 7809: 7806: 7803: 7800: 7797: 7778: 7775: 7772: 7769: 7758: 7757: 7746: 7743: 7740: 7737: 7734: 7731: 7728: 7725: 7722: 7719: 7675:and two pairs 7664: 7661: 7658: 7655: 7635: 7632: 7629: 7595: 7592: 7505: 7502: 7501: 7500: 7489: 7486: 7483: 7480: 7475: 7470: 7467: 7464: 7444: 7439: 7436: 7432: 7428: 7423: 7416: 7413: 7409: 7388: 7383: 7378: 7375: 7372: 7369: 7364: 7340: 7333: 7330: 7326: 7305: 7302: 7299: 7296: 7293: 7288: 7260: 7247: 7236: 7233: 7230: 7227: 7224: 7221: 7218: 7215: 7212: 7209: 7206: 7203: 7200: 7197: 7194: 7191: 7188: 7185: 7182: 7177: 7174: 7169: 7166: 7162: 7158: 7155: 7150: 7147: 7143: 7139: 7136: 7133: 7130: 7127: 7124: 7119: 7116: 7112: 7101: 7090: 7087: 7084: 7081: 7078: 7075: 7072: 7069: 7066: 7063: 7060: 7057: 7054: 7051: 7048: 7045: 7042: 7039: 7036: 7032: 7029: 7024: 7021: 7017: 7013: 7010: 7005: 7002: 6998: 6994: 6991: 6988: 6985: 6982: 6979: 6974: 6971: 6967: 6956: 6945: 6942: 6939: 6936: 6933: 6930: 6927: 6924: 6921: 6918: 6915: 6912: 6909: 6906: 6903: 6900: 6897: 6894: 6891: 6886: 6883: 6878: 6875: 6871: 6867: 6864: 6859: 6856: 6852: 6848: 6845: 6842: 6839: 6836: 6833: 6828: 6825: 6821: 6810: 6793: 6790: 6787: 6784: 6781: 6778: 6775: 6772: 6769: 6766: 6763: 6747: 6742: 6739: 6735: 6731: 6728: 6723: 6720: 6716: 6707: 6699: 6696: 6693: 6683: 6672: 6669: 6666: 6663: 6660: 6655: 6650: 6647: 6644: 6641: 6638: 6635: 6632: 6627: 6622: 6617: 6614: 6610: 6606: 6603: 6581: 6578: 6575: 6572: 6569: 6566: 6542: 6539: 6536: 6533: 6530: 6525: 6521: 6499:are ideals of 6470: 6467: 6464: 6461: 6458: 6438: 6435: 6432: 6412: 6409: 6406: 6382: 6379: 6376: 6371: 6368: 6364: 6360: 6355: 6352: 6348: 6289: 6286: 6281: 6278: 6274: 6249: 6244: 6241: 6237: 6216: 6211: 6208: 6204: 6172: 6167: 6164: 6160: 6156: 6153: 6150: 6147: 6127: 6124: 6103: 6077: 6073: 6006: 5986: 5985: 5965: 5960: 5956: 5936: 5913: 5908: 5885: 5857: 5795:maximal ideals 5746: 5743: 5716: 5713: 5710: 5686: 5681: 5678: 5674: 5653: 5648: 5645: 5641: 5601: 5596: 5593: 5583: 5580: 5557: 5552: 5549: 5545: 5524: 5521: 5516: 5513: 5509: 5485: 5482: 5459: 5456: 5451: 5448: 5444: 5412: 5409: 5405: 5383: 5380: 5377: 5374: 5371: 5332: 5329: 5326: 5323: 5303: 5300: 5294: 5291: 5269: 5268: 5257: 5254: 5251: 5248: 5245: 5242: 5239: 5236: 5233: 5230: 5227: 5224: 5221: 5218: 5215: 5212: 5209: 5203: 5200: 5174: 5151: 5148: 5122: 5119: 5116: 5104: 5101: 5100: 5099: 5065: 5064: 5061: 5060: 5059: 5045: 5040: 5033: 5028: 5024: 5018: 5013: 5006: 5001: 4997: 4994: 4981: 4980: 4962: 4937: 4932: 4911: 4910: 4899: 4898: 4897: 4886: 4880: 4875: 4872: 4868: 4864: 4861: 4856: 4853: 4848: 4845: 4841: 4837: 4832: 4817: 4816: 4791: 4772: 4771: 4751: 4745: 4740: 4719: 4716: 4711: 4708: 4704: 4681: 4653: 4648: 4645: 4642: 4639: 4628: 4604: 4599: 4596: 4592: 4580: 4575:, that is not 4556: 4551: 4548: 4544: 4540: 4537: 4526: 4504: 4499: 4496: 4492: 4488: 4485: 4471: 4459:if and only if 4447: 4444: 4441: 4436: 4433: 4429: 4405: 4402: 4401: 4400: 4393:local property 4376: 4371: 4342: 4336: 4331: 4306: 4301: 4298: 4294: 4267: 4243: 4238: 4235: 4232: 4229: 4219:set complement 4196: 4183: 4167: 4164: 4161: 4158: 4155: 4152: 4149: 4145: 4141: 4138: 4135: 4132: 4129: 4126: 4121: 4118: 4114: 4110: 4107: 4083: 4078: 4075: 4071: 4050: 4047: 4044: 4041: 4036: 4032: 4028: 4025: 4022: 4019: 4016: 4013: 4010: 3986: 3975: 3963: 3958: 3955: 3951: 3947: 3944: 3912: 3907: 3904: 3900: 3872: 3852: 3847: 3844: 3840: 3819: 3816: 3813: 3810: 3807: 3804: 3801: 3798: 3779: 3762: 3741: 3736: 3733: 3729: 3708: 3705: 3702: 3699: 3696: 3692: 3688: 3685: 3660: 3656: 3653: 3640: 3637: 3632: 3631: 3620: 3617: 3614: 3611: 3608: 3605: 3602: 3599: 3596: 3593: 3590: 3587: 3584: 3581: 3578: 3573: 3570: 3566: 3562: 3559: 3556: 3550: 3545: 3541: 3538: 3535: 3532: 3529: 3526: 3523: 3518: 3513: 3510: 3507: 3504: 3501: 3498: 3495: 3492: 3486: 3481: 3457: 3454: 3451: 3448: 3445: 3420: 3415: 3410: 3405: 3400: 3383:group of units 3356: 3332: 3303: 3302: 3291: 3288: 3285: 3282: 3279: 3276: 3256: 3253: 3250: 3245: 3242: 3238: 3234: 3231: 3199: 3196: 3193: 3190: 3187: 3163: 3158: 3155: 3151: 3147: 3144: 3141: 3138: 3111: 3106: 3103: 3099: 3074: 3069: 3066: 3062: 3058: 3055: 3052: 3049: 3037: 3034: 3024:is called the 3013: 3008: 3005: 3001: 2957: 2952: 2949: 2945: 2924: 2921: 2918: 2915: 2884: 2881: 2876: 2873: 2869: 2848: 2833: 2832: 2819: 2816: 2811: 2808: 2780: 2774: 2771: 2745: 2739: 2736: 2720: 2719: 2708: 2700: 2696: 2690: 2686: 2678: 2674: 2668: 2664: 2657: 2650: 2646: 2640: 2636: 2625: 2621: 2615: 2611: 2594: 2593: 2582: 2574: 2570: 2564: 2560: 2552: 2548: 2542: 2538: 2534: 2529: 2525: 2519: 2515: 2508: 2501: 2497: 2491: 2487: 2481: 2474: 2470: 2464: 2460: 2434: 2429: 2426: 2422: 2396: 2392: 2386: 2382: 2378: 2373: 2369: 2363: 2359: 2338: 2332: 2329: 2323: 2317: 2314: 2291: 2271: 2268: 2265: 2260: 2256: 2250: 2246: 2242: 2237: 2233: 2227: 2223: 2219: 2216: 2196: 2193: 2190: 2165: 2161: 2155: 2151: 2144: 2136: 2132: 2126: 2122: 2098: 2095: 2090: 2087: 2083: 2062: 2059: 2055: 2051: 2032: 2027: 2024: 2013:is denoted as 1986: 1981: 1978: 1974: 1951: 1948: 1945: 1940: 1936: 1930: 1926: 1922: 1917: 1913: 1907: 1903: 1899: 1896: 1876: 1873: 1870: 1850: 1845: 1841: 1837: 1832: 1828: 1824: 1821: 1818: 1813: 1809: 1805: 1800: 1796: 1792: 1772: 1769: 1766: 1731: 1728: 1723: 1720: 1716: 1691: 1685: 1682: 1676: 1670: 1667: 1661: 1655: 1651: 1648: 1641: 1635: 1632: 1609: 1606: 1603: 1600: 1580: 1575: 1572: 1568: 1544: 1541: 1518: 1515: 1512: 1509: 1489: 1486: 1483: 1480: 1477: 1457: 1454: 1451: 1448: 1424: 1421: 1400: 1392: 1388: 1384: 1361: 1356: 1353: 1349: 1313: 1310: 1305: 1302: 1298: 1284:In this case, 1273: 1270: 1265: 1262: 1258: 1254: 1248: 1245: 1239: 1236: 1216: 1213: 1208: 1205: 1201: 1180: 1175: 1172: 1168: 1143: 1140: 1135: 1132: 1125: 1119: 1116: 1106: 1103: 1080: 1073: 1070: 1065: 1062: 1059: 1056: 1053: 1046: 1040: 1037: 1031: 1025: 1022: 999: 996: 993: 990: 967: 964: 922: 917: 914: 910: 884:When the ring 881: 878: 861: 855: 850: 829: 824: 821: 817: 794: 763: 758: 755: 752: 749: 729: 724: 720: 699: 694: 691: 687: 666: 663: 660: 655: 651: 647: 644: 641: 638: 635: 632: 629: 609: 606: 601: 598: 594: 558: 555: 552: 547: 543: 539: 534: 530: 526: 523: 520: 517: 514: 494: 486: 482: 477: 474: 450: 444: 441: 361: 358: 318: 313: 310: 306: 296:is a new ring 279: 276: 243: 238: 235: 231: 213:and localizes 181:originated in 150: 140:from the ring 124: 87:such that the 76: 71: 68: 26: 9: 6: 4: 3: 2: 10174: 10163: 10160: 10158: 10157:Module theory 10155: 10153: 10150: 10149: 10147: 10137: 10133: 10130: 10129: 10119: 10116: 10112: 10108: 10104: 10098: 10094: 10089: 10086: 10083: 10079: 10075: 10069: 10065: 10061: 10057: 10053: 10049: 10045: 10041: 10039:0-471-92840-2 10035: 10031: 10026: 10022: 10018: 10014: 10012:0-471-92234-X 10008: 10004: 9999: 9996: 9995:0-387-97370-2 9992: 9988: 9987:Borel, Armand 9985: 9981: 9975: 9971: 9967: 9963: 9959: 9958: 9948: 9941: 9936: 9929: 9928:Eisenbud 1995 9924: 9915: 9906: 9899: 9894: 9890: 9880: 9877: 9875: 9872: 9870: 9867: 9866: 9860: 9858: 9854: 9850: 9846: 9842: 9838: 9833: 9831: 9830:Ore condition 9827: 9823: 9813: 9811: 9807: 9803: 9799: 9771: 9765: 9762: 9759: 9752: 9745: 9733: 9726: 9723: 9716: 9713: 9702: 9696: 9695: 9694: 9648: 9637: 9625: 9582: 9571: 9559: 9549: 9548: 9547: 9545: 9523: 9521: 9513: 9509: 9482: 9470: 9462: 9461: 9460: 9457: 9455: 9451: 9447: 9443: 9438: 9436: 9432: 9428: 9422: 9409: 9398: 9389: 9388:maximal ideal 9365: 9359: 9355: 9344: 9333: 9304: 9289: 9282: 9258: 9237: 9226: 9205: 9200: 9197: 9193: 9134: 9131: 9128: 9121: 9117: 9107: 9094: 9091: 9088: 9085: 9065: 9062: 9059: 9056: 9033: 9027: 9021: 9015: 9010: 9006: 9002: 8999: 8989: 8986: 8983: 8978: 8975: 8971: 8963: 8962: 8961: 8959: 8943: 8920: 8914: 8909: 8906: 8902: 8895: 8890: 8885: 8882: 8878: 8873: 8869: 8860: 8854: 8849: 8845: 8836: 8833: 8829: 8821: 8820: 8819: 8817: 8813: 8809: 8804: 8784: 8779: 8776: 8772: 8768: 8765: 8760: 8757: 8753: 8746: 8741: 8736: 8733: 8729: 8724: 8714: 8711: 8708: 8702: 8697: 8693: 8687: 8684: 8680: 8672: 8671: 8670: 8668: 8652: 8629: 8624: 8621: 8617: 8611: 8606: 8603: 8599: 8594: 8590: 8585: 8582: 8578: 8568: 8563: 8559: 8555: 8547: 8544: 8540: 8532: 8531: 8530: 8529: 8525: 8520: 8518: 8498: 8493: 8490: 8486: 8477: 8476:exact functor 8461: 8456: 8453: 8449: 8436: 8428: 8423: 8406: 8401: 8397: 8393: 8388: 8385: 8381: 8374: 8369: 8365: 8361: 8356: 8353: 8349: 8344: 8341: 8336: 8332: 8328: 8323: 8320: 8316: 8308: 8307: 8306: 8304: 8301: 8285: 8279: 8276: 8273: 8253: 8250: 8245: 8242: 8238: 8234: 8231: 8226: 8223: 8219: 8194: 8180: 8178: 8159: 8156: 8151: 8147: 8143: 8138: 8135: 8131: 8127: 8124: 8119: 8116: 8112: 8104: 8103: 8102: 8100: 8095: 8078: 8073: 8069: 8066: 8060: 8055: 8052: 8045: 8042: 8037: 8032: 8029: 8023: 8016: 8015: 8014: 8007: 8004: 7984: 7978: 7975: 7970: 7967: 7961: 7956: 7953: 7946: 7943: 7934: 7920: 7914: 7911: 7906: 7903: 7900: 7897: 7894: 7888: 7883: 7880: 7875: 7870: 7867: 7858: 7857: 7856: 7842: 7839: 7836: 7833: 7830: 7810: 7807: 7804: 7801: 7798: 7795: 7776: 7773: 7770: 7767: 7744: 7741: 7735: 7732: 7729: 7726: 7723: 7717: 7710: 7709: 7708: 7696: 7692: 7684: 7680: 7662: 7659: 7656: 7653: 7633: 7630: 7627: 7617: 7613: 7593: 7590: 7580: 7567: 7564: 7558: 7555: 7543: 7539: 7523: 7515: 7487: 7484: 7481: 7465: 7462: 7442: 7437: 7434: 7430: 7426: 7414: 7411: 7407: 7373: 7370: 7367: 7331: 7328: 7324: 7303: 7297: 7294: 7291: 7276: 7248: 7231: 7225: 7222: 7219: 7213: 7207: 7204: 7201: 7195: 7192: 7189: 7183: 7180: 7175: 7172: 7167: 7164: 7160: 7156: 7153: 7148: 7145: 7141: 7137: 7131: 7128: 7125: 7117: 7114: 7110: 7102: 7085: 7079: 7076: 7073: 7067: 7061: 7058: 7055: 7049: 7046: 7043: 7037: 7034: 7030: 7027: 7022: 7019: 7015: 7011: 7008: 7003: 7000: 6996: 6992: 6986: 6983: 6980: 6972: 6969: 6965: 6957: 6940: 6934: 6931: 6928: 6922: 6916: 6913: 6910: 6904: 6901: 6898: 6892: 6889: 6884: 6881: 6876: 6873: 6869: 6865: 6862: 6857: 6854: 6850: 6846: 6840: 6837: 6834: 6826: 6823: 6819: 6811: 6808: 6788: 6782: 6779: 6776: 6770: 6764: 6761: 6745: 6740: 6737: 6733: 6729: 6726: 6721: 6718: 6714: 6697: 6694: 6691: 6684: 6667: 6664: 6661: 6658: 6645: 6639: 6636: 6633: 6630: 6620: 6615: 6612: 6608: 6604: 6601: 6594: 6593: 6592: 6579: 6573: 6567: 6564: 6540: 6534: 6528: 6523: 6519: 6481: 6468: 6465: 6462: 6459: 6456: 6436: 6433: 6430: 6410: 6407: 6404: 6380: 6374: 6369: 6366: 6362: 6353: 6350: 6346: 6329: 6324: 6314: 6308: 6304: 6287: 6284: 6279: 6276: 6272: 6247: 6242: 6239: 6235: 6214: 6209: 6206: 6202: 6186: 6170: 6165: 6162: 6158: 6151: 6148: 6145: 6123: 6118: 6117:singleton set 6071: 6059: 6044: 6036: 6029: 6021: 5995: 5991: 5990:number theory 5983: 5963: 5958: 5954: 5937: 5934: 5933:ring of germs 5930: 5906: 5846: 5842: 5838: 5837: 5836: 5833: 5831: 5827: 5822: 5820: 5816: 5812: 5808: 5804: 5800: 5796: 5792: 5788: 5787:quotient ring 5784: 5780: 5776: 5772: 5768: 5764: 5760: 5756: 5752: 5742: 5741:of the ring. 5740: 5737: 5732: 5714: 5711: 5708: 5684: 5679: 5676: 5672: 5651: 5646: 5643: 5639: 5621: 5615: 5599: 5594: 5591: 5578: 5555: 5550: 5547: 5543: 5522: 5519: 5514: 5511: 5507: 5480: 5457: 5454: 5449: 5446: 5442: 5429: 5410: 5407: 5403: 5381: 5378: 5375: 5372: 5369: 5356: 5343:implies that 5330: 5327: 5324: 5321: 5301: 5298: 5289: 5278: 5255: 5249: 5246: 5243: 5240: 5237: 5234: 5231: 5228: 5222: 5219: 5216: 5213: 5207: 5198: 5188: 5187: 5186: 5172: 5146: 5136: 5120: 5117: 5114: 5097: 5094: 5090: 5086: 5082: 5078: 5075: 5071: 5067: 5066: 5062: 5038: 5026: 5022: 5011: 4999: 4995: 4992: 4985: 4984: 4983: 4982: 4978: 4930: 4921: 4917: 4913: 4912: 4908: 4904: 4900: 4884: 4878: 4873: 4870: 4866: 4862: 4859: 4854: 4851: 4846: 4843: 4839: 4835: 4830: 4821: 4820: 4819: 4818: 4814: 4810: 4807: 4789: 4779: 4778: 4777: 4776: 4769: 4768:maximal ideal 4765: 4749: 4738: 4717: 4714: 4709: 4706: 4702: 4669: 4643: 4640: 4637: 4629: 4627:for details). 4626: 4622: 4602: 4597: 4594: 4590: 4581: 4578: 4574: 4570: 4554: 4549: 4546: 4542: 4535: 4527: 4524: 4523:zero divisors 4519: 4502: 4497: 4494: 4490: 4483: 4476: 4472: 4464: 4460: 4445: 4442: 4439: 4434: 4431: 4427: 4419: 4418: 4417: 4415: 4411: 4398: 4394: 4390: 4374: 4360: 4340: 4329: 4320: 4304: 4299: 4296: 4292: 4233: 4230: 4227: 4220: 4212: 4184: 4181: 4180:affine scheme 4165: 4159: 4156: 4153: 4150: 4143: 4136: 4130: 4127: 4119: 4116: 4112: 4105: 4097: 4081: 4076: 4073: 4069: 4048: 4042: 4039: 4034: 4030: 4026: 4023: 4020: 4017: 4011: 4008: 3984: 3976: 3961: 3956: 3953: 3949: 3942: 3926: 3910: 3905: 3902: 3898: 3889: 3888:zero divisors 3881: 3873: 3866: 3850: 3845: 3842: 3838: 3817: 3811: 3802: 3799: 3796: 3788: 3780: 3777: 3752:is the field 3739: 3734: 3731: 3727: 3706: 3700: 3686: 3683: 3675: 3654: 3651: 3643: 3642: 3636: 3618: 3609: 3606: 3603: 3597: 3588: 3582: 3579: 3576: 3571: 3568: 3564: 3554: 3543: 3530: 3527: 3524: 3511: 3505: 3502: 3499: 3490: 3479: 3471: 3470: 3469: 3455: 3452: 3449: 3446: 3443: 3434: 3403: 3388: 3384: 3380: 3376: 3372: 3320: 3316: 3312: 3308: 3289: 3286: 3283: 3280: 3277: 3274: 3254: 3248: 3243: 3240: 3236: 3232: 3229: 3217: 3197: 3191: 3188: 3185: 3177: 3176: 3175: 3161: 3156: 3153: 3149: 3142: 3139: 3136: 3127: 3125: 3109: 3104: 3101: 3097: 3088: 3072: 3067: 3064: 3060: 3053: 3050: 3047: 3033: 3027: 3011: 3006: 3003: 2999: 2986: 2977: 2971: 2955: 2950: 2947: 2943: 2922: 2919: 2916: 2913: 2904: 2898: 2882: 2879: 2874: 2871: 2867: 2846: 2838: 2817: 2814: 2806: 2799: 2798: 2797: 2796: 2791: 2778: 2772: 2769: 2759: 2743: 2737: 2734: 2724: 2706: 2698: 2694: 2688: 2684: 2676: 2672: 2666: 2662: 2655: 2648: 2644: 2638: 2634: 2623: 2619: 2613: 2609: 2599: 2598: 2597: 2580: 2572: 2568: 2562: 2558: 2550: 2546: 2540: 2536: 2532: 2527: 2523: 2517: 2513: 2506: 2499: 2495: 2489: 2485: 2479: 2472: 2468: 2462: 2458: 2448: 2447: 2446: 2432: 2427: 2424: 2420: 2410: 2394: 2390: 2384: 2380: 2376: 2371: 2367: 2361: 2357: 2336: 2330: 2327: 2321: 2315: 2312: 2289: 2269: 2266: 2258: 2254: 2248: 2244: 2240: 2235: 2231: 2225: 2221: 2214: 2194: 2191: 2188: 2163: 2159: 2153: 2149: 2142: 2134: 2130: 2124: 2120: 2096: 2093: 2088: 2085: 2081: 2060: 2057: 2053: 2049: 2030: 2025: 2022: 2010: 2006: 2000: 1984: 1979: 1976: 1972: 1962: 1949: 1946: 1938: 1934: 1928: 1924: 1920: 1915: 1911: 1905: 1901: 1894: 1874: 1871: 1868: 1843: 1839: 1835: 1830: 1826: 1819: 1811: 1807: 1803: 1798: 1794: 1770: 1767: 1764: 1756: 1743: 1729: 1726: 1721: 1718: 1714: 1689: 1683: 1680: 1674: 1668: 1665: 1659: 1653: 1649: 1646: 1639: 1633: 1630: 1607: 1604: 1601: 1598: 1578: 1573: 1570: 1566: 1542: 1539: 1516: 1513: 1510: 1507: 1487: 1484: 1481: 1478: 1475: 1455: 1452: 1449: 1446: 1430: 1429:zero divisors 1420: 1398: 1390: 1386: 1382: 1359: 1354: 1351: 1347: 1338: 1333: 1331: 1330:zero divisors 1311: 1308: 1303: 1300: 1296: 1271: 1268: 1263: 1260: 1256: 1252: 1246: 1243: 1237: 1234: 1214: 1211: 1206: 1203: 1199: 1178: 1173: 1170: 1166: 1141: 1138: 1133: 1130: 1123: 1117: 1114: 1104: 1101: 1078: 1071: 1068: 1063: 1060: 1057: 1054: 1051: 1044: 1038: 1035: 1029: 1023: 1020: 997: 994: 991: 988: 965: 962: 947: 942: 936: 920: 915: 912: 908: 891: 877: 876: 872: 859: 848: 827: 822: 819: 815: 783: 779: 753: 750: 747: 727: 722: 718: 697: 692: 689: 685: 661: 658: 653: 649: 645: 642: 639: 636: 630: 627: 607: 604: 599: 596: 592: 574: 553: 550: 545: 541: 537: 532: 528: 524: 521: 518: 515: 492: 484: 480: 475: 472: 448: 442: 439: 423: 396: 390: 378: 374: 367: 357: 355: 354:zero divisors 351: 347: 343: 338: 316: 311: 308: 304: 292: 285: 275: 273: 269: 265: 261: 257: 241: 236: 233: 229: 220: 216: 212: 208: 204: 200: 196: 192: 189:is a ring of 188: 184: 180: 176: 172: 167: 165: 139: 113: 109: 105: 101: 97: 93: 90: 74: 69: 66: 57: 53: 49: 45: 41: 37: 33: 19: 10132:Localization 10092: 10059: 10029: 10002: 9969: 9947: 9935: 9923: 9914: 9905: 9893: 9852: 9840: 9836: 9834: 9825: 9819: 9795: 9692: 9543: 9529: 9518:). See also 9505: 9458: 9441: 9439: 9423: 9390:of the ring 9284: 9113: 9049:that is, if 9048: 8935: 8815: 8807: 8806:If a module 8805: 8802: 8644: 8521: 8424: 8421: 8186: 8174: 8096: 8093: 8005: 8002: 7999: 7759: 7694: 7690: 7682: 7678: 7615: 7611: 7565: 7562: 7556: 7553: 7541: 7507: 6482: 6327: 6325: 6313:localization 6312: 6306: 6302: 6129: 6058:prime number 6042: 6034: 6027: 5987: 5834: 5829: 5826:localization 5825: 5823: 5803:prime ideals 5762: 5751:localization 5750: 5748: 5735: 5733: 5622: 5357: 5276: 5270: 5185:is the set 5134: 5106: 5095: 5092: 5088: 5084: 5080: 5076: 5073: 4976: 4919: 4915: 4902: 4812: 4808: 4774: 4773: 4517: 4462: 4407: 4354: 3633: 3435: 3315:left adjoint 3304: 3128: 3085:satisfies a 3039: 2978: 2905: 2834: 2792: 2721: 2595: 2411: 2109:So, one has 2008: 2004: 1963: 1744: 1620:and one has 1426: 1334: 943: 883: 874: 873: 575: 424: 397: 376: 372: 363: 339: 281: 267: 259: 255: 218: 214: 210: 206: 202: 198: 186: 179:localization 178: 168: 103: 99: 95: 91: 51: 40:localization 39: 29: 10152:Ring theory 9820:Localizing 9788:is another 9722:flat module 9530:A property 9116:prime ideal 8958:annihilator 8528:natural map 8009:is also an 7608:, of pairs 7275:prime ideal 6511:is denoted 5845:prime ideal 5759:topological 5755:geometrical 5068:There is a 4979:. Moreover, 4804:denote the 4579:in general. 4569:epimorphism 4353:and called 4211:prime ideal 3124:isomorphism 900:, the ring 840:is denoted 782:prime ideal 89:denominator 10146:Categories 10118:Serge Lang 9885:References 9804:is not an 9553:holds for 9456:, below.) 9281:local ring 9120:complement 8818:, one has 8211:, one has 8000:Moreover, 7707:such that 7581:, denoted 7551:, denoted 7277:such that 6328:saturation 6052:, and, if 5942:of a ring 5929:local ring 5870:of a ring 5841:complement 5727:such that 5135:saturation 4764:local ring 4668:complement 4577:surjective 4319:local ring 3267:such that 2835:defines a 2207:such that 1887:such that 981:such that 778:complement 272:local ring 10136:MathWorld 9769:→ 9763:: 9471:⨁ 9356:⊗ 9250:The ring 9198:− 9138:∖ 9089:∈ 9078:for some 9031:∅ 9028:≠ 9016:⁡ 9003:∩ 8995:⟺ 8976:− 8907:− 8896:⁡ 8883:− 8855:⁡ 8834:− 8777:− 8758:− 8747:⁡ 8734:− 8721:→ 8703:⁡ 8685:− 8622:− 8604:− 8595:⊗ 8583:− 8575:→ 8560:⊗ 8545:− 8491:− 8454:− 8398:⊗ 8386:− 8378:→ 8366:⊗ 8354:− 8333:⊗ 8321:− 8300:injective 8283:→ 8277:: 8243:− 8235:⊆ 8224:− 8193:submodule 8148:⊗ 8136:− 8117:− 7840:∈ 7805:∈ 7771:∈ 7730:− 7657:∈ 7631:∈ 7466:⁡ 7435:− 7412:− 7374:⁡ 7329:− 7301:∅ 7292:∩ 7226:⁡ 7220:⋅ 7208:⁡ 7193:⋅ 7184:⁡ 7165:− 7157:⋅ 7146:− 7129:⋅ 7115:− 7080:⁡ 7062:⁡ 7038:⁡ 7020:− 7001:− 6970:− 6935:⁡ 6929:∩ 6917:⁡ 6902:∩ 6893:⁡ 6874:− 6866:∩ 6855:− 6838:∩ 6824:− 6783:⁡ 6777:⊆ 6765:⁡ 6738:− 6730:⊆ 6719:− 6706:⟹ 6695:⊆ 6671:∅ 6668:≠ 6662:∩ 6654:⟺ 6640:⁡ 6634:∈ 6626:⟺ 6613:− 6605:∈ 6568:⁡ 6529:⁡ 6463:∈ 6434:∈ 6408:∈ 6367:− 6351:− 6277:− 6240:− 6207:− 6163:− 6155:→ 6149:: 6043:Away from 5767:manifolds 5749:The term 5712:∈ 5677:− 5644:− 5592:− 5582:^ 5548:− 5512:− 5484:^ 5447:− 5376:∈ 5328:∈ 5293:^ 5277:saturated 5247:∈ 5232:∈ 5226:∃ 5223:: 5217:∈ 5202:^ 5150:^ 5118:⊆ 5070:bijection 5027:⋂ 5000:⋂ 4871:− 4863:⋅ 4844:− 4836:⋅ 4707:− 4647:∖ 4595:− 4582:The ring 4547:− 4539:→ 4495:− 4487:→ 4466:contains 4432:− 4297:− 4237:∖ 4157:− 4117:− 4074:− 4043:… 3954:− 3946:→ 3903:− 3882:, and if 3843:− 3806:∖ 3732:− 3695:∖ 3569:− 3555:⁡ 3540:→ 3491:⁡ 3453:∘ 3414:→ 3404:: 3387:morphisms 3375:submonoid 3284:∘ 3252:→ 3241:− 3233:: 3195:→ 3189:: 3154:− 3146:→ 3140:: 3122:up to an 3102:− 3065:− 3057:→ 3051:: 3004:− 2972:that has 2970:zero ring 2948:− 2917:∈ 2897:injective 2895:which is 2872:− 2810:↦ 2425:− 2377:− 2241:− 2192:∈ 2086:− 1977:− 1921:− 1872:∈ 1820:∼ 1768:× 1719:− 1602:∈ 1571:− 1485:∈ 1479:≠ 1450:∈ 1352:− 1328:contains 1301:− 1261:− 1253:∈ 1204:− 1171:− 992:∈ 913:− 820:− 757:∖ 690:− 662:… 597:− 554:… 309:− 234:− 191:functions 56:fractions 10058:(1995), 9968:(1969). 9863:See also 9792:-module. 9700:is zero. 9538:-module 8956:denotes 8305:, then 8199:-module 7620:, where 7560:, is an 6020:integers 5761:objects 4730:denoted 3674:integers 3639:Examples 3313:that is 2795:function 387:that is 164:integers 10111:0325663 10082:1322960 10048:1098018 10030:Algebra 10021:1006872 10003:Algebra 9431:regular 8517:-module 5763:locally 5351:are in 4907:reduced 4694:, then 4666:is the 4621:-module 4571:in the 4414:modules 4397:regular 3923:is the 3890:, then 3863:is the 3774:of the 3381:or the 3311:functor 2968:is the 1191:are in 946:subring 807:, then 776:is the 10109:  10099:  10080:  10070:  10046:  10036:  10019:  10009:  9993:  9976:  9853:micro- 9808:nor a 9802:fields 9730:is an 9720:is a 9661:where 9595:where 9534:of an 8936:where 8478:, and 8298:is an 8203:, and 8195:of an 7540:. The 7538:module 7532:be an 7528:, and 6759:  6750:  6711:  6702:  6491:, and 6194:, let 6138:, and 6060:, "at 5830:points 5775:sheafs 4815:, then 4567:is an 4410:ideals 4217:, the 3789:, and 3785:is an 3676:, and 3379:monoid 3305:Using 2349:where 1745:Given 1431:. Let 1411:where 888:is an 389:closed 48:module 10134:from 9710:is a 9542:is a 9506:is a 9279:is a 8814:over 8810:is a 8665:is a 8513:flat 8511:is a 8433:maps 8191:is a 7520:be a 7512:be a 7316:then 7273:is a 6449:with 6185:ideal 6056:is a 6037:from 5927:is a 5843:of a 5805:of a 5789:of a 5781:, an 5777:. In 5771:germs 5739:units 5426:is a 5394:then 4762:is a 4623:(see 4617:flat 4615:is a 4317:is a 4209:is a 4061:then 3878:is a 3830:then 3719:then 3371:pairs 3317:to a 3214:to a 2935:then 2859:into 2839:from 1529:Then 780:of a 375:or a 289:by a 258:near 185:: if 175:sheaf 102:. If 10097:ISBN 10068:ISBN 10034:ISBN 10007:ISBN 9991:ISBN 9974:ISBN 7823:and 7687:and 7646:and 7508:Let 7455:and 6495:and 6326:The 6130:Let 6035:away 5992:and 5773:and 5757:and 5664:and 5627:and 5612:are 5568:and 5347:and 5107:Let 4914:Let 4473:The 4098:to) 4001:and 3345:and 3216:unit 3178:If 2793:The 2756:and 1749:and 1468:and 892:and 44:ring 34:and 9800:of 9746:of 9514:of 9448:of 9290:at 9007:Ann 8944:Ann 8874:Ann 8846:Ann 8725:Hom 8694:Hom 8437:of 8187:If 7855:): 7703:in 7547:by 7524:in 7463:sat 7371:sat 7249:If 7223:sat 7205:sat 7181:sat 7077:sat 7059:sat 7035:sat 6932:sat 6914:sat 6890:sat 6780:sat 6762:sat 6754:and 6637:sat 6565:sat 6520:sat 6338:is 6334:by 6330:of 6319:by 6315:of 6190:in 6120:{p} 6033:or 6018:of 5988:In 5736:all 5623:If 5434:in 5358:If 5275:is 5165:of 4905:is 4811:in 4630:If 4280:in 4256:of 4185:If 3977:If 3927:of 3874:If 3867:of 3781:If 3644:If 3544:hom 3480:hom 3028:of 2987:of 2979:If 2906:If 2073:or 1757:on 1591:of 937:of 740:if 274:). 162:of 136:of 98:of 46:or 30:In 10148:: 10107:MR 10105:. 10078:MR 10076:, 10066:, 10044:MR 10042:. 10017:MR 10015:. 9964:; 9832:. 9750:). 9714:). 9522:. 9437:. 8519:. 8101:: 7745:0. 7693:, 7681:, 7614:, 7516:, 6323:. 6028:at 5821:. 5809:a 5769:, 5729:st 5620:. 5355:. 5091:→ 4412:, 4359:at 3032:. 2270:0. 2007:, 1950:0. 1517:0. 1387:10 1332:. 395:. 337:. 197:) 166:. 38:, 10138:. 10113:. 10050:. 10023:. 9997:. 9982:. 9841:D 9837:D 9826:S 9790:R 9786:N 9772:N 9766:M 9760:f 9748:R 9740:M 9736:R 9728:M 9724:. 9718:M 9708:R 9704:M 9698:M 9689:. 9687:R 9671:m 9649:, 9643:m 9638:M 9627:P 9623:. 9621:R 9605:p 9583:, 9577:p 9572:M 9561:P 9557:. 9555:M 9551:P 9540:M 9536:R 9532:P 9516:R 9488:p 9483:R 9476:p 9410:. 9404:p 9399:R 9371:p 9366:R 9360:R 9350:p 9345:= 9339:p 9334:R 9327:p 9305:. 9300:p 9287:R 9264:p 9259:R 9238:. 9232:p 9227:R 9206:R 9201:1 9194:S 9183:R 9167:p 9143:p 9135:R 9132:= 9129:S 9095:. 9092:S 9086:t 9066:0 9063:= 9060:M 9057:t 9034:, 9025:) 9022:M 9019:( 9011:R 9000:S 8990:0 8987:= 8984:M 8979:1 8972:S 8921:, 8918:) 8915:M 8910:1 8903:S 8899:( 8891:R 8886:1 8879:S 8870:= 8867:) 8864:) 8861:M 8858:( 8850:R 8842:( 8837:1 8830:S 8816:R 8808:M 8788:) 8785:N 8780:1 8773:S 8769:, 8766:M 8761:1 8754:S 8750:( 8742:R 8737:1 8730:S 8718:) 8715:N 8712:, 8709:M 8706:( 8698:R 8688:1 8681:S 8653:M 8630:N 8625:1 8618:S 8612:R 8607:1 8600:S 8591:M 8586:1 8579:S 8572:) 8569:N 8564:R 8556:M 8553:( 8548:1 8541:S 8515:R 8499:R 8494:1 8487:S 8462:R 8457:1 8450:S 8439:R 8431:S 8407:N 8402:R 8394:R 8389:1 8382:S 8375:M 8370:R 8362:R 8357:1 8350:S 8345:: 8342:f 8337:R 8329:R 8324:1 8317:S 8286:N 8280:M 8274:f 8254:. 8251:N 8246:1 8239:S 8232:M 8227:1 8220:S 8209:R 8205:S 8201:N 8197:R 8189:M 8160:. 8157:M 8152:R 8144:R 8139:1 8132:S 8128:= 8125:M 8120:1 8113:S 8079:. 8074:s 8070:m 8067:r 8061:= 8056:s 8053:m 8046:1 8043:r 8038:= 8033:s 8030:m 8024:r 8011:R 8006:M 8003:S 7985:. 7979:t 7976:s 7971:m 7968:r 7962:= 7957:t 7954:m 7947:s 7944:r 7921:, 7915:t 7912:s 7907:n 7904:s 7901:+ 7898:m 7895:t 7889:= 7884:t 7881:n 7876:+ 7871:s 7868:m 7843:M 7837:n 7834:, 7831:m 7811:, 7808:S 7802:t 7799:, 7796:s 7777:, 7774:R 7768:r 7742:= 7739:) 7736:m 7733:t 7727:n 7724:s 7721:( 7718:u 7705:S 7701:u 7697:) 7695:t 7691:n 7689:( 7685:) 7683:s 7679:m 7677:( 7663:, 7660:S 7654:s 7634:M 7628:m 7618:) 7616:s 7612:m 7610:( 7594:s 7591:m 7575:M 7571:R 7566:R 7563:S 7557:M 7554:S 7549:S 7545:M 7536:- 7534:R 7530:M 7526:R 7518:S 7510:R 7488:. 7485:R 7482:= 7479:) 7474:p 7469:( 7443:R 7438:1 7431:S 7427:= 7422:p 7415:1 7408:S 7387:) 7382:p 7377:( 7368:= 7363:p 7339:p 7332:1 7325:S 7304:, 7298:= 7295:S 7287:p 7259:p 7235:) 7232:J 7229:( 7217:) 7214:I 7211:( 7202:= 7199:) 7196:J 7190:I 7187:( 7176:, 7173:J 7168:1 7161:S 7154:I 7149:1 7142:S 7138:= 7135:) 7132:J 7126:I 7123:( 7118:1 7111:S 7089:) 7086:J 7083:( 7074:+ 7071:) 7068:I 7065:( 7056:= 7053:) 7050:J 7047:+ 7044:I 7041:( 7031:, 7028:J 7023:1 7016:S 7012:+ 7009:I 7004:1 6997:S 6993:= 6990:) 6987:J 6984:+ 6981:I 6978:( 6973:1 6966:S 6944:) 6941:J 6938:( 6926:) 6923:I 6920:( 6911:= 6908:) 6905:J 6899:I 6896:( 6885:, 6882:J 6877:1 6870:S 6863:I 6858:1 6851:S 6847:= 6844:) 6841:J 6835:I 6832:( 6827:1 6820:S 6809:) 6792:) 6789:J 6786:( 6774:) 6771:I 6768:( 6746:J 6741:1 6734:S 6727:I 6722:1 6715:S 6698:J 6692:I 6665:I 6659:S 6649:) 6646:I 6643:( 6631:1 6621:I 6616:1 6609:S 6602:1 6580:. 6577:) 6574:I 6571:( 6555:S 6541:, 6538:) 6535:I 6532:( 6524:S 6509:S 6505:I 6501:R 6497:J 6493:I 6489:R 6485:S 6469:. 6466:I 6460:r 6457:s 6437:S 6431:s 6411:R 6405:r 6395:R 6381:; 6378:) 6375:I 6370:1 6363:S 6359:( 6354:1 6347:j 6336:S 6332:I 6321:S 6317:I 6309:) 6307:I 6305:( 6303:j 6288:, 6285:R 6280:1 6273:S 6262:I 6248:R 6243:1 6236:S 6215:I 6210:1 6203:S 6192:R 6188:I 6171:R 6166:1 6159:S 6152:R 6146:j 6136:R 6132:S 6102:Z 6091:p 6076:Z 6072:p 6062:p 6054:p 6050:n 6046:n 6039:n 6031:n 6024:n 6005:Z 5978:t 5964:, 5959:t 5955:R 5944:R 5940:t 5935:. 5912:p 5907:R 5884:p 5872:R 5856:p 5715:R 5709:t 5699:s 5685:R 5680:1 5673:T 5652:R 5647:1 5640:S 5629:T 5625:S 5618:R 5600:R 5595:1 5579:S 5556:R 5551:1 5544:S 5523:, 5520:R 5515:1 5508:S 5481:S 5458:. 5455:R 5450:1 5443:S 5432:r 5411:s 5408:r 5404:s 5382:, 5379:S 5373:s 5370:r 5360:S 5353:S 5349:s 5345:r 5331:S 5325:s 5322:r 5302:S 5299:= 5290:S 5273:S 5256:. 5253:} 5250:S 5244:s 5241:r 5238:, 5235:R 5229:s 5220:R 5214:r 5211:{ 5208:= 5199:S 5173:S 5147:S 5121:R 5115:S 5098:. 5096:R 5093:S 5089:R 5085:S 5081:R 5077:R 5074:S 5044:m 5039:R 5032:m 5023:= 5017:p 5012:R 5005:p 4996:= 4993:R 4977:K 4961:p 4936:p 4931:R 4920:K 4916:R 4903:R 4885:. 4879:R 4874:1 4867:S 4860:I 4855:= 4852:R 4847:1 4840:S 4831:I 4813:R 4809:I 4790:I 4770:. 4750:, 4744:p 4739:R 4718:, 4715:R 4710:1 4703:S 4680:p 4652:p 4644:R 4641:= 4638:S 4619:R 4603:R 4598:1 4591:S 4555:R 4550:1 4543:S 4536:R 4525:. 4518:S 4503:R 4498:1 4491:S 4484:R 4470:. 4468:0 4463:S 4446:0 4443:= 4440:R 4435:1 4428:S 4375:. 4370:p 4357:R 4341:, 4335:p 4330:R 4305:R 4300:1 4293:S 4282:R 4266:p 4242:p 4234:R 4231:= 4228:S 4215:R 4195:p 4182:. 4166:. 4163:) 4160:1 4154:s 4151:x 4148:( 4144:/ 4140:] 4137:s 4134:[ 4131:R 4128:= 4125:] 4120:1 4113:x 4109:[ 4106:R 4082:R 4077:1 4070:S 4049:, 4046:} 4040:, 4035:2 4031:x 4027:, 4024:x 4021:, 4018:1 4015:{ 4012:= 4009:S 3999:R 3985:x 3962:R 3957:1 3950:S 3943:R 3933:S 3929:R 3911:R 3906:1 3899:S 3884:S 3876:R 3869:R 3851:R 3846:1 3839:S 3818:, 3815:} 3812:0 3809:{ 3803:R 3800:= 3797:S 3783:R 3778:. 3761:Q 3740:R 3735:1 3728:S 3707:, 3704:} 3701:0 3698:{ 3691:Z 3687:= 3684:S 3659:Z 3655:= 3652:R 3619:. 3616:) 3613:) 3610:U 3607:, 3604:T 3601:( 3598:, 3595:) 3592:) 3589:S 3586:( 3583:j 3580:, 3577:R 3572:1 3565:S 3561:( 3558:( 3549:D 3537:) 3534:) 3531:U 3528:, 3525:T 3522:( 3517:F 3512:, 3509:) 3506:S 3503:, 3500:R 3497:( 3494:( 3485:C 3456:j 3450:g 3447:= 3444:f 3419:C 3409:D 3399:F 3355:D 3331:C 3290:. 3287:j 3281:g 3278:= 3275:f 3255:T 3249:R 3244:1 3237:S 3230:g 3220:T 3212:S 3198:T 3192:R 3186:f 3162:R 3157:1 3150:S 3143:R 3137:j 3110:R 3105:1 3098:S 3073:R 3068:1 3061:S 3054:R 3048:j 3030:R 3012:R 3007:1 3000:S 2989:R 2981:S 2974:0 2956:R 2951:1 2944:S 2923:, 2920:S 2914:0 2901:S 2883:, 2880:R 2875:1 2868:S 2847:R 2818:1 2815:r 2807:r 2779:. 2773:1 2770:1 2744:, 2738:1 2735:0 2707:, 2699:2 2695:s 2689:1 2685:s 2677:2 2673:r 2667:1 2663:r 2656:= 2649:2 2645:s 2639:2 2635:r 2624:1 2620:s 2614:1 2610:r 2581:, 2573:2 2569:s 2563:1 2559:s 2551:1 2547:s 2541:2 2537:r 2533:+ 2528:2 2524:s 2518:1 2514:r 2507:= 2500:2 2496:s 2490:2 2486:r 2480:+ 2473:1 2469:s 2463:1 2459:r 2433:R 2428:1 2421:S 2395:1 2391:r 2385:2 2381:s 2372:2 2368:r 2362:1 2358:s 2337:, 2331:1 2328:0 2322:= 2316:1 2313:a 2290:t 2267:= 2264:) 2259:1 2255:r 2249:2 2245:s 2236:2 2232:r 2226:1 2222:s 2218:( 2215:t 2195:S 2189:t 2164:2 2160:s 2154:2 2150:r 2143:= 2135:1 2131:s 2125:1 2121:r 2097:. 2094:r 2089:1 2082:s 2061:, 2058:s 2054:/ 2050:r 2031:, 2026:s 2023:r 2011:) 2009:s 2005:r 2003:( 1985:R 1980:1 1973:S 1947:= 1944:) 1939:1 1935:r 1929:2 1925:s 1916:2 1912:r 1906:1 1902:s 1898:( 1895:t 1875:S 1869:t 1849:) 1844:2 1840:s 1836:, 1831:2 1827:r 1823:( 1817:) 1812:1 1808:s 1804:, 1799:1 1795:r 1791:( 1771:S 1765:R 1751:S 1747:R 1730:. 1727:R 1722:1 1715:S 1704:R 1690:. 1684:1 1681:0 1675:= 1669:s 1666:0 1660:= 1654:s 1650:s 1647:a 1640:= 1634:1 1631:a 1608:, 1605:R 1599:a 1579:R 1574:1 1567:S 1543:1 1540:a 1514:= 1511:s 1508:a 1488:R 1482:a 1476:0 1456:, 1453:S 1447:s 1437:R 1433:S 1417:k 1413:n 1399:, 1391:k 1383:n 1360:R 1355:1 1348:S 1326:S 1312:. 1309:R 1304:1 1297:S 1286:R 1272:. 1269:R 1264:1 1257:S 1247:1 1244:1 1238:= 1235:1 1215:. 1212:R 1207:1 1200:S 1179:R 1174:1 1167:S 1142:t 1139:s 1134:b 1131:a 1124:= 1118:t 1115:b 1105:s 1102:a 1079:, 1072:t 1069:s 1064:s 1061:b 1058:+ 1055:t 1052:a 1045:= 1039:t 1036:b 1030:+ 1024:s 1021:a 998:. 995:S 989:s 966:s 963:a 950:R 939:R 921:R 916:1 909:S 898:0 894:S 886:R 860:. 854:p 849:R 828:R 823:1 816:S 793:p 762:p 754:R 751:= 748:S 728:; 723:t 719:R 698:R 693:1 686:S 665:} 659:, 654:2 650:t 646:, 643:t 640:, 637:1 634:{ 631:= 628:S 608:, 605:R 600:1 593:S 582:S 578:R 571:s 557:} 551:, 546:3 542:s 538:, 533:2 529:s 525:, 522:s 519:, 516:1 513:{ 493:. 485:2 481:s 476:b 473:a 449:, 443:s 440:a 427:s 420:U 416:S 412:U 408:U 404:S 400:S 393:1 385:R 381:R 369:S 335:S 331:R 317:R 312:1 305:S 294:S 287:R 268:V 260:p 256:V 242:R 237:1 230:S 219:S 215:R 211:p 207:S 203:p 199:V 187:R 149:Z 123:Q 104:S 100:R 96:S 92:s 75:, 70:s 67:m 52:R 20:)

Index

Localization of a module
commutative algebra
algebraic geometry
ring
module
fractions
denominator
integral domain
field of fractions
rational numbers
integers
algebraic geometry
sheaf
algebraic geometry
functions
algebraic variety
zeros of functions
local ring
commutative ring
multiplicatively closed set
integral domain
field of fractions
rational numbers
zero divisors
multiplicatively closed set
closed
complement
prime ideal
integral domain
field of fractions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.