Knowledge

Locally linear graph

Source đź“ť

2797: 20: 2296:, the number of incident edges. Every locally linear graph must have even degree at each vertex, because the edges at each vertex can be paired up into triangles. The Cartesian product of two locally linear regular graphs is again locally linear and regular, with degree equal to the sum of the degrees of the factors. Therefore, one can take Cartesian products of locally linear graphs of degree two (triangles) to produce regular locally linear graphs of every even degree. 124: 565: 3363:
Every locally linear graph has the property that it remains connected after any matching is removed from it, because in any path through the graph, each matched edge can be replaced by the other two edges of its triangle. Among the graphs with this property, the least dense are the triangular cactus
3384:
equations can be inferred from each other. In this application, the triangles of locally linear graphs form the blocks of Greechie diagrams with block size three. The Greechie diagrams corresponding to lattices come from the locally linear graphs of hypergraph girth five or more, as constructed for
1736:
in the third set of vertices. Form a graph as the union of all of these triangles. Because it is a union of triangles, every edge of the resulting graph belongs to a triangle. However, there can be no other triangles than the ones formed in this way. Any other triangle would have vertices numbered
810:
edges. For instance, the cuboctahedron can again be produced in this way, from the two faces (the interior and exterior) of a 4-cycle. The removed 4-cycle of this construction can be seen on the cuboctahedron as a cycle of four diagonals of its square faces, bisecting the polyhedron.
2045:, an incidence-preserving bijection between its points and its lines. The vertices of the polarity graph are points, and an edge connects two points whenever one is polar to a line containing the other. More algebraically, the vertices of the same graph can be represented by 137:, graphs formed by gluing together a collection of triangles at a single shared vertex, are locally linear. They are the only finite graphs having the stronger property that every pair of vertices (adjacent or not) share exactly one common neighbor. More generally every 823:, graphs constructed from the intersection patterns of equal-size sets, are locally linear. Kneser graphs are described by two parameters, the size of the sets they represent and the size of the universe from which these sets are drawn. The Kneser graph 2351:
vertices, because there are this many vertices among any triangle and its neighbors alone. (No two vertices of the triangle can share a neighbor without violating local linearity.) Regular graphs with exactly this many vertices are possible only when
188:
be any two locally linear graphs, select a triangle from each of them, and glue the two graphs by merging together corresponding pairs of vertices in the two selected triangles. Then the resulting graph remains locally linear.
105:
can have a number of edges proportional to the square of the number of vertices, locally linear graphs have a smaller number of edges, falling short of the square by at least a small non-constant factor. The densest
2725:
include (99,14,1,2) and (115,18,1,3) but it is unknown whether strongly regular graphs with those parameters exist. The question of the existence of a strongly regular graph with parameters (99,14,1,2) is known as
1228: 512:
is the line graph of a cube, so it is locally linear. The locally linear nine-vertex Paley graph, constructed above as a Cartesian product, may also be constructed in a different way as the line graph of the
2273: 2800:
The densest possible locally linear planar graphs are formed by gluing an antiprism (red vertices and black edges) into each quadrilateral face of a planar graph (blue vertices and dashed yellow edges)
2091:, not all zero, where two triples define the same point in the plane whenever they are scalar multiples of each other. Two points, represented by triples in this way, are adjacent when their 3004: 3985: 2918: 2037:(also called Brown graphs) has been used, in this context, to find dense locally linear graphs that have no 4-cycles; their hypergraph girth is five. A polarity graph is defined from a 3243: 3358: 3147: 3392:
can be used to find large high-girth 3-uniform hypergraphs within arbitrary 3-uniform linear hypergraphs or partial Steiner triple systems. This method can then be used to prove
2505: 2372:
is 1, 2, 3, or 5, and are uniquely defined for each of these four cases. The four regular graphs meeting this bound on the number of vertices are the 3-vertex 2-regular triangle
2685: 2944: 1141: 898: 196:
of any two locally linear graphs remains locally linear, because any triangles in the product come from triangles in one or the other factors. For instance, the nine-vertex
2746:
of degree 4 or 6 that are locally linear. Beyond the strongly regular graphs of the same degrees, they also include the line graph of the Petersen graph, the Hamming graph
1791: 3281: 2016: 1507: 4088: 3898: 2723: 2611: 2152: 1877: 2876: 2657: 2565: 2433: 1290: 857: 773: 4191: 3314: 3044: 2085: 1935: 808: 547: 3710: 3190: 2779: 240: 2397: 2205: 3723: 2585: 2349: 1734: 975: 446: 370: 321: 2178: 1981: 1705: 1619: 1553: 1254: 712: 3675: 2320: 2025:. Such a hypergraph must be linear, meaning that no two of its hyperedges (the triangles) can share more than one vertex. The locally linear graph itself is the 1468: 3103: 3064: 3024: 2832: 2545: 2525: 2370: 2113: 1955: 1897: 1831: 1811: 1679: 1659: 1639: 1593: 1573: 1527: 1441: 1417: 1397: 1373: 1353: 1333: 1313: 1095: 1075: 1055: 1035: 1015: 995: 942: 922: 732: 686: 666: 642: 622: 598: 506: 486: 466: 410: 390: 341: 292: 260: 186: 166: 2033:
of the hypergraph. In graph terms, this is the length of the shortest cycle that is not one of the triangles of the graph. An algebraic construction based on
3570:; see in particular p. 397: "We call the resultant network a triangle cactus; it is a cactus network in which every line belongs to exactly one triangle." 3945:; Haemers, W. H. (1992), "Structure and uniqueness of the (81,20,1,6) strongly regular graph", A collection of contributions in honour of Jack van Lint, 270:
Some graphs that are not themselves locally linear can be used as a framework to construct larger locally linear graphs. One such construction involves
3373: 572:, a planar locally linear graph that can be formed as the line graph of a cube or by gluing antiprisms onto the inside and outside faces of a 4-cycle 2034: 561:
has three vertices, each vertex is in exactly two edge-disjoint cliques, and the shortest cycle with edges from distinct cliques has length five.
2275:
edges, and hypergraph girth five, giving the maximum possible number of edges for a locally linear graph of this girth up to lower-order terms.
2613:
the graph is locally linear. The locally linear graphs already mentioned above that are strongly regular graphs and their parameters are
4030: 1146: 3777: 2029:
of the hypergraph, the graph of pairs of vertices that belong to a common hyperedge. In this view it makes sense to talk about the
2678: 2210: 600:
be a planar graph embedded in the plane in such a way that every face is a quadrilateral, such as the graph of a cube. Gluing a
2946:. The construction of locally linear graphs from progression-free sets leads to the densest known locally linear graphs, with 4293: 3835: 2180:
are self-adjacent and do not belong to any triangles. When these are removed, the result is a locally linear graph with
4005: 2042: 644:, produces a new locally linear planar graph. The numbers of edges and vertices of the result can be calculated from 2949: 110:
that can be locally linear are also known. The least dense locally linear graphs are the triangular cactus graphs.
141:, a graph formed by gluing triangles at shared vertices without forming any additional cycles, is locally linear. 4092: 3627: 2881: 144:
Locally linear graphs may be formed from smaller locally linear graphs by the following operation, a form of the
3947: 3728: 3195: 2811: 2805: 98: 4229: 645: 3990:
A Survey of Combinatorial Theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971)
3319: 3108: 2727: 3812:, Colloq. Math. Soc. János Bolyai, vol. 18, Amsterdam and New York: North-Holland, pp. 939–945, 2466: 193: 83: 44: 2923: 1509:
edges that is locally linear. To construct this graph, make three sets of vertices, each numbered from
1100: 862: 508:. Every 4-regular locally linear graph can be constructed in this way. For instance, the graph of the 70:
Many constructions for locally linear graphs are known. Examples of locally linear graphs include the
2671: 43:
in which every edge belongs to exactly one triangle. Equivalently, for each vertex of the graph, its
4160:
Hiraki, Akira; Nomura, Kazumasa; Suzuki, Hiroshi (2000), "Distance-regular graphs of valency 6 and
1740: 3248: 4322: 4064:
Bondarenko, Andriy V.; Radchenko, Danylo V. (2013), "On a family of strongly regular graphs with
2038: 1986: 1473: 71: 4067: 3877: 2702: 2590: 97:
The question of how many edges locally linear graphs can have is one of the formulations of the
2743: 2460: 2118: 2046: 1836: 1376: 1057:-element subset disjoint from both of them, consisting of all the elements that are neither in 91: 51:. Locally linear graphs have also been called locally matched graphs. Their triangles form the 3545:
Farley, Arthur M.; Proskurowski, Andrzej (1982), "Networks immune to isolated line failures",
2845: 2626: 2550: 2402: 2021:
The triangles in a locally linear graph can be equivalently thought of as forming a 3-uniform
1259: 826: 737: 4163: 3286: 3029: 2293: 2052: 1902: 1420: 778: 558: 519: 138: 3680: 3160: 2749: 210: 4303: 4263: 4216: 4123: 4051: 4015: 3964: 3921: 3858: 3817: 3785: 3751: 3650: 3608: 3566: 3492: 3445: 2375: 2183: 2030: 901: 47:
are each adjacent to exactly one other neighbor, so the neighbors can be paired up into an
2570: 2325: 1710: 951: 944:-element set. In this graph, two vertices are adjacent when the corresponding subsets are 422: 346: 297: 8: 3397: 3393: 3389: 2157: 1960: 1684: 1598: 1532: 1295:
Locally linear graphs can also be constructed from progression-free sets of numbers. Let
1233: 691: 554: 416: 79: 3657: 2302: 1450: 4276:
Henning, Michael A.; Yeo, Anders (2020), "Chapter 12: Partial Steiner triple systems",
4241: 4141: 4101: 3997: 3925: 3464: 3088: 3071: 3049: 3009: 2817: 2731: 2530: 2510: 2444: 2355: 2098: 1940: 1882: 1816: 1796: 1664: 1644: 1624: 1578: 1558: 1512: 1426: 1402: 1382: 1358: 1338: 1318: 1298: 1080: 1060: 1040: 1020: 1000: 980: 927: 907: 717: 671: 651: 627: 607: 583: 491: 471: 451: 395: 375: 326: 277: 245: 171: 151: 3805: 2839: 4289: 4001: 3956: 3929: 3509: 3067: 2440: 4281: 4251: 4202: 4111: 4039: 4028:
Cossidente, Antonio; Penttila, Tim (2005), "Hemisystems on the Hermitian surface",
3993: 3952: 3909: 3844: 3773: 3737: 3636: 3594: 3554: 3431: 3154: 2436: 1444: 601: 134: 127: 48: 40: 4299: 4285: 4259: 4232:; Megill, Norman D.; Pavičić, Mladen (2000), "Algorithms for Greechie diagrams", 4212: 4119: 4047: 4011: 3977: 3960: 3942: 3917: 3854: 3813: 3781: 3747: 3646: 3604: 3562: 3488: 3441: 488:, with the vertices of the triangle corresponding to the three edges incident to 2587:
is the number of shared neighbors for every non-adjacent pair of vertices. When
553:
is also locally linear by this construction. It has a property analogous to the
4280:, Developments in Mathematics, vol. 63, Cham: Springer, pp. 171–177, 4115: 3981: 3742: 3641: 3622: 3075: 2782: 550: 60: 4255: 4207: 4043: 3599: 3513: 3436: 2796: 4316: 3833:
Lazebnik, Felix; Verstraëte, Jacques (2003), "On hypergraphs of girth five",
3801: 3381: 3377: 3150: 2835: 2448: 2289: 2092: 2026: 569: 514: 509: 205: 64: 3517: 3505: 3558: 3082: 2785: 2567:
is the number of shared neighbors for every adjacent pair of vertices, and
2399:, the 9-vertex 4-regular Paley graph, the 15-vertex 6-regular Kneser graph 2088: 945: 820: 577: 201: 107: 87: 32: 4246: 2692: 413: 197: 102: 24: 19: 3913: 3810:
Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II
3778:
10.1002/(SICI)1097-0118(199609)23:1<21::AID-JGT2>3.0.CO;2-M
2022: 977:, the resulting graph is locally linear, because for each two disjoint 271: 145: 75: 56: 3986:"A strongly regular graph derived from the perfect ternary Golay code" 3808:(1978), "Triple systems with no six points carrying three triangles", 3372:
One application of locally linear graphs occurs in the formulation of
52: 3400:
of 3-uniform linear hypergraphs and partial Steiner triple systems.
1899:, violating the assumption that there be no arithmetic progressions 448:
is 4-regular and locally linear. It has a triangle for every vertex
123: 27:
is locally linear. One of its six triangles is highlighted in green.
4146: 4106: 3849: 2018:, the result of this construction is the nine-vertex Paley graph. 1223:{\displaystyle {\tfrac {1}{2}}{\tbinom {3b}{b}}{\tbinom {2b}{b}}} 564: 3462: 3364:
graphs, which are also the least dense locally linear graphs.
3085:, the maximum number of edges in a locally linear graph with 2095:
is zero. The polarity graph for a finite field of odd order
3625:(2013), "Local 2-geodesic transitivity and clique graphs", 3585:
Zelinka, Bohdan (1988), "Polytopic locally linear graphs",
2443:. The final 27-vertex 10-regular graph also represents the 2268:{\displaystyle {\bigl (}{\tfrac {1}{2}}+o(1){\bigr )}q^{3}} 3463:
Larrión, F.; Pizaña, M. A.; Villarroel-Flores, R. (2011),
1707:
in the second set of vertices, and the vertex with number
1661:, construct a triangle connecting the vertex with number 948:, having no elements in common. In the special case when 557:: it is the smallest possible graph in which the largest 3976: 372:
are adjacent when the two edges that they represent in
3324: 3283:, constructed by expanding the quadrilateral faces of 3200: 3113: 2222: 1192: 1163: 1151: 1105: 867: 4166: 4070: 3880: 3874:
Makhnëv, A. A. (1988), "Strongly regular graphs with
3683: 3660: 3620: 3322: 3289: 3251: 3198: 3163: 3111: 3091: 3052: 3032: 3012: 2952: 2926: 2884: 2848: 2820: 2752: 2705: 2666:
Other locally linear strongly regular graphs include
2629: 2593: 2573: 2553: 2533: 2513: 2469: 2405: 2378: 2358: 2328: 2305: 2213: 2186: 2160: 2121: 2101: 2055: 1989: 1963: 1943: 1905: 1885: 1839: 1819: 1799: 1743: 1713: 1687: 1681:
in the first set of vertices, the vertex with number
1667: 1647: 1627: 1601: 1581: 1561: 1535: 1515: 1476: 1453: 1429: 1405: 1385: 1361: 1341: 1321: 1301: 1262: 1236: 1149: 1103: 1083: 1063: 1043: 1023: 1003: 983: 954: 930: 910: 865: 829: 781: 740: 720: 694: 674: 654: 630: 610: 586: 522: 494: 474: 454: 425: 398: 378: 349: 329: 300: 280: 248: 213: 174: 154: 4136:
Zehavi, Sa'ar; Oliveira, Ivo Fagundes David (2017),
4063: 3654:. In the notation of this reference, the family of 2283: 4228: 4185: 4159: 4082: 4027: 3892: 3832: 3704: 3669: 3544: 3422:FronÄŤek, Dalibor (1989), "Locally linear graphs", 3352: 3308: 3275: 3237: 3184: 3141: 3097: 3058: 3038: 3018: 2998: 2938: 2912: 2870: 2826: 2773: 2717: 2651: 2605: 2579: 2559: 2539: 2519: 2499: 2463:can be characterized by a quadruple of parameters 2427: 2391: 2364: 2343: 2322:-regular locally linear graphs must have at least 2314: 2267: 2199: 2172: 2146: 2107: 2079: 2010: 1975: 1949: 1929: 1891: 1871: 1825: 1805: 1785: 1728: 1699: 1673: 1653: 1633: 1613: 1587: 1567: 1547: 1521: 1501: 1462: 1435: 1411: 1391: 1367: 1347: 1327: 1307: 1284: 1248: 1222: 1135: 1089: 1069: 1049: 1029: 1009: 989: 969: 936: 916: 892: 851: 802: 767: 726: 706: 680: 660: 636: 616: 592: 541: 500: 480: 460: 440: 404: 384: 364: 335: 315: 286: 254: 234: 180: 160: 3724:"On line graphs of subcubic triangle-free graphs" 2662:the complement of the Schläfli graph (27,10,1,5). 1292:is locally linear with 15 vertices and 45 edges. 204:) is the Cartesian product of two triangles. The 67:of these hypergraphs or partial Steiner systems. 4314: 714:faces, and the result of replacing the faces of 576:A more complicated expansion process applies to 63:, and the locally linear graphs are exactly the 323:is a graph that has a vertex for every edge of 4135: 3941: 3800: 3316:into antiprisms. These examples show that the 2999:{\displaystyle n^{2}/\exp O({\sqrt {\log n}})} 3504: 2734:has offered a $ 1000 prize for its solution. 2250: 2216: 1213: 1195: 1184: 1166: 1126: 1108: 883: 870: 4234:International Journal of Theoretical Physics 2547:is the number of incident edges per vertex, 2005: 1996: 2913:{\displaystyle \Omega (n^{2-\varepsilon })} 2814:asks for the maximum number of edges in an 4278:Transversals in Linear Uniform Hypergraphs 4275: 4031:Journal of the London Mathematical Society 3764:Fan, Cong (1996), "On generalized cages", 3621:Devillers, Alice; Jin, Wei; Li, Cai Heng; 2737: 2699:Other potentially-valid combinations with 2454: 814: 624:, and then deleting the original edges of 86:of smaller locally linear graphs. Certain 4245: 4206: 4145: 4105: 3848: 3741: 3640: 3598: 3435: 3238:{\displaystyle {\tfrac {12}{5}}(n-2)=12k} 1097:. The resulting locally linear graph has 16:Graph where every edge is in one triangle 3153:is the first in an infinite sequence of 2795: 563: 262:triangles, and again is locally linear. 122: 18: 3873: 3584: 3421: 3388:A combination of random sampling and a 2292:when all of its vertices have the same 1443:.) This set can be used to construct a 900:vertices (in the standard notation for 4315: 3869: 3867: 3721: 2620:the nine-vertex Paley graph (9,4,1,2), 265: 118: 3828: 3826: 3458: 3456: 3454: 3353:{\displaystyle {\tfrac {12}{5}}(n-2)} 3142:{\displaystyle {\tfrac {12}{5}}(n-2)} 3970: 3796: 3794: 3540: 3538: 4222: 4153: 3992:, Amsterdam: North-Holland: 25–30, 3864: 3836:Electronic Journal of Combinatorics 3763: 3614: 3580: 3578: 3576: 3417: 3415: 3413: 2500:{\displaystyle (n,k,\lambda ,\mu )} 13: 4269: 4195:Journal of Algebraic Combinatorics 4129: 4057: 4021: 3998:10.1016/B978-0-7204-2262-7.50008-9 3935: 3823: 3757: 3715: 3498: 3451: 3380:to help determine whether certain 3033: 2885: 1335:be a subset of the numbers modulo 1199: 1170: 1112: 874: 55:of triangle-free 3-uniform linear 14: 4334: 3791: 3535: 2939:{\displaystyle \varepsilon >0} 2834:-vertex locally linear graph. As 1136:{\displaystyle {\tbinom {3b}{b}}} 3573: 3410: 2284:Regular graphs with few vertices 893:{\displaystyle {\tbinom {a}{b}}} 113: 4093:Journal of Combinatorial Theory 3628:Journal of Combinatorial Theory 3385:instance from polarity graphs. 3367: 2842:proved, this maximum number is 2679:Berlekamp–van Lint–Seidel graph 2435:, and the 27-vertex 10-regular 3699: 3687: 3677:-regular graphs is denoted as 3518:"On a problem of graph theory" 3347: 3335: 3223: 3211: 3136: 3124: 2993: 2977: 2907: 2888: 2865: 2852: 2768: 2756: 2494: 2470: 2245: 2239: 2074: 2056: 2049:: these are triples of values 1924: 1906: 1858: 1846: 1780: 1744: 1495: 1487: 1355:such that no three members of 797: 785: 756: 744: 435: 429: 359: 353: 310: 304: 229: 217: 61:partial Steiner triple systems 1: 4138:Not Conway's 99-graph problem 3403: 3360:upper bound can be attained. 2278: 1786:{\displaystyle (x,x+a,x+a+b)} 4286:10.1007/978-3-030-46559-9_12 3957:10.1016/0012-365X(92)90532-K 3276:{\displaystyle k=2,3,\dots } 3006:edges. (In these formulas, 7: 2527:is the number of vertices, 2011:{\displaystyle A=\{\pm 1\}} 1502:{\displaystyle 3p\cdot |A|} 1315:be a prime number, and let 1037:there is exactly one other 392:have a common endpoint. If 94:, are also locally linear. 10: 4339: 4116:10.1016/j.jctb.2013.05.005 4083:{\displaystyle \lambda =1} 3893:{\displaystyle \lambda =1} 3743:10.1016/j.disc.2017.01.006 3642:10.1016/j.jcta.2012.10.004 2803: 2791: 2718:{\displaystyle \lambda =1} 2606:{\displaystyle \lambda =1} 646:Euler's polyhedral formula 242:is a Cartesian product of 59:and the blocks of certain 4044:10.1112/S0024610705006964 3525:Studia Sci. Math. Hungar. 2728:Conway's 99-graph problem 2686:Cossidente–Penttila graph 2147:{\displaystyle q^{2}+q+1} 1872:{\displaystyle c=(a+b)/2} 1230:edges. For instance, for 688:vertices, it has exactly 148:operation on graphs. Let 3984:; Seidel, J. J. (1973), 2871:{\displaystyle o(n^{2})} 2742:There are finitely many 2652:{\displaystyle KG_{6,2}} 2560:{\displaystyle \lambda } 2428:{\displaystyle KG_{6,2}} 1285:{\displaystyle KG_{6,2}} 852:{\displaystyle KG_{a,b}} 768:{\displaystyle 5(n-2)+2} 549:. The line graph of the 72:triangular cactus graphs 4256:10.1023/A:1026476701774 4208:10.1023/A:1008776031839 4186:{\displaystyle a_{1}=1} 3766:Journal of Graph Theory 3722:Munaro, Andrea (2017), 3309:{\displaystyle K_{2,k}} 3039:{\displaystyle \Omega } 2812:Ruzsa–SzemerĂ©di problem 2810:One formulation of the 2806:Ruzsa–SzemerĂ©di problem 2744:distance-regular graphs 2738:Distance-regular graphs 2617:the triangle (3,2,1,0), 2455:Strongly regular graphs 2080:{\displaystyle (x,y,z)} 2047:homogeneous coordinates 2039:finite projective plane 1930:{\displaystyle (a,c,b)} 924:-element subsets of an 815:Algebraic constructions 803:{\displaystyle 12(n-2)} 542:{\displaystyle K_{3,3}} 139:triangular cactus graph 99:Ruzsa–SzemerĂ©di problem 92:strongly regular graphs 4187: 4084: 3894: 3706: 3705:{\displaystyle F(r,2)} 3671: 3559:10.1002/net.3230120404 3354: 3310: 3277: 3239: 3186: 3185:{\displaystyle n=5k+2} 3143: 3099: 3060: 3040: 3020: 3000: 2940: 2914: 2872: 2828: 2801: 2775: 2774:{\displaystyle H(3,3)} 2719: 2653: 2607: 2581: 2561: 2541: 2521: 2501: 2461:strongly regular graph 2429: 2393: 2366: 2345: 2316: 2269: 2201: 2174: 2148: 2109: 2081: 2012: 1977: 1951: 1931: 1893: 1873: 1827: 1807: 1787: 1730: 1701: 1675: 1655: 1635: 1615: 1589: 1569: 1549: 1523: 1503: 1464: 1437: 1413: 1393: 1377:arithmetic progression 1369: 1349: 1329: 1309: 1286: 1250: 1224: 1137: 1091: 1071: 1051: 1031: 1011: 991: 971: 938: 918: 894: 853: 804: 769: 728: 708: 682: 662: 638: 618: 594: 573: 543: 502: 482: 462: 442: 419:, then its line graph 406: 386: 366: 337: 317: 288: 256: 236: 235:{\displaystyle H(d,3)} 182: 162: 130: 28: 4188: 4085: 3895: 3707: 3672: 3355: 3311: 3278: 3240: 3187: 3144: 3100: 3061: 3041: 3021: 3001: 2941: 2915: 2873: 2829: 2799: 2776: 2720: 2672:Brouwer–Haemers graph 2654: 2608: 2582: 2562: 2542: 2522: 2502: 2447:of the 27 lines on a 2430: 2394: 2392:{\displaystyle K_{3}} 2367: 2346: 2317: 2270: 2202: 2200:{\displaystyle q^{2}} 2175: 2149: 2110: 2082: 2013: 1978: 1952: 1932: 1894: 1874: 1828: 1808: 1788: 1731: 1702: 1676: 1656: 1636: 1616: 1590: 1570: 1550: 1524: 1504: 1465: 1438: 1414: 1394: 1370: 1350: 1330: 1310: 1287: 1251: 1225: 1138: 1092: 1072: 1052: 1032: 1012: 992: 972: 939: 919: 902:binomial coefficients 895: 854: 805: 770: 729: 709: 683: 663: 639: 619: 595: 567: 544: 503: 483: 463: 443: 407: 387: 367: 338: 318: 289: 257: 237: 183: 163: 126: 22: 4164: 4068: 3948:Discrete Mathematics 3878: 3729:Discrete Mathematics 3681: 3658: 3396:lower bounds on the 3394:asymptotically tight 3376:, which are used in 3320: 3287: 3249: 3196: 3161: 3109: 3089: 3050: 3030: 3010: 2950: 2924: 2882: 2846: 2818: 2750: 2703: 2627: 2591: 2580:{\displaystyle \mu } 2571: 2551: 2531: 2511: 2467: 2403: 2376: 2356: 2344:{\displaystyle 6r-3} 2326: 2303: 2211: 2184: 2158: 2119: 2099: 2053: 1987: 1961: 1957:. For example, with 1941: 1903: 1883: 1837: 1817: 1797: 1741: 1729:{\displaystyle x+2a} 1711: 1685: 1665: 1645: 1625: 1599: 1579: 1559: 1533: 1513: 1474: 1451: 1427: 1403: 1383: 1359: 1339: 1319: 1299: 1260: 1234: 1147: 1101: 1081: 1061: 1041: 1021: 1001: 981: 970:{\displaystyle a=3b} 952: 928: 908: 904:), representing the 863: 827: 779: 738: 718: 692: 672: 652: 628: 608: 584: 520: 492: 472: 452: 441:{\displaystyle L(G)} 423: 396: 376: 365:{\displaystyle L(G)} 347: 327: 316:{\displaystyle L(G)} 298: 278: 246: 211: 172: 152: 80:triangle-free graphs 37:locally linear graph 3908:(5): 667–672, 702, 3902:Akademiya Nauk SSSR 3587:Mathematica Slovaca 3424:Mathematica Slovaca 3398:independence number 3390:graph removal lemma 3149:. The graph of the 2173:{\displaystyle q+1} 2154:vertices, of which 1976:{\displaystyle p=3} 1700:{\displaystyle x+a} 1614:{\displaystyle p-1} 1548:{\displaystyle p-1} 1249:{\displaystyle b=2} 707:{\displaystyle n-2} 417:triangle-free graph 266:From smaller graphs 119:Gluing and products 4183: 4080: 3951:, 106/107: 77–82, 3914:10.1007/BF01158426 3890: 3702: 3670:{\displaystyle 2r} 3667: 3623:Praeger, Cheryl E. 3600:10338.dmlcz/133017 3437:10338.dmlcz/136481 3350: 3333: 3306: 3273: 3235: 3209: 3182: 3139: 3122: 3095: 3072:big Omega notation 3056: 3036: 3016: 2996: 2936: 2910: 2868: 2824: 2802: 2771: 2732:John Horton Conway 2715: 2649: 2603: 2577: 2557: 2537: 2517: 2497: 2445:intersection graph 2425: 2389: 2362: 2341: 2315:{\displaystyle 2r} 2312: 2265: 2231: 2197: 2170: 2144: 2105: 2077: 2008: 1973: 1947: 1927: 1889: 1869: 1823: 1803: 1783: 1726: 1697: 1671: 1651: 1631: 1611: 1585: 1575:in the range from 1565: 1555:. For each number 1545: 1519: 1499: 1463:{\displaystyle 3p} 1460: 1433: 1409: 1389: 1365: 1345: 1325: 1305: 1282: 1246: 1220: 1218: 1189: 1160: 1133: 1131: 1087: 1067: 1047: 1027: 1007: 987: 967: 934: 914: 890: 888: 849: 800: 765: 734:by antiprisms has 724: 704: 678: 658: 634: 614: 604:onto each face of 590: 574: 539: 498: 478: 458: 438: 402: 382: 362: 343:. Two vertices in 333: 313: 284: 252: 232: 200:(the graph of the 178: 158: 131: 84:Cartesian products 29: 4295:978-3-030-46559-9 4240:(10): 2381–2406, 4230:McKay, Brendan D. 4034:, Second Series, 3374:Greechie diagrams 3332: 3208: 3155:polyhedral graphs 3121: 3098:{\displaystyle n} 3078:, respectively.) 3068:little o notation 3059:{\displaystyle O} 3019:{\displaystyle o} 2991: 2827:{\displaystyle n} 2688:(378,52,1,8), and 2623:the Kneser graph 2540:{\displaystyle k} 2520:{\displaystyle n} 2365:{\displaystyle r} 2230: 2108:{\displaystyle q} 1950:{\displaystyle A} 1892:{\displaystyle A} 1826:{\displaystyle b} 1806:{\displaystyle a} 1674:{\displaystyle x} 1654:{\displaystyle A} 1634:{\displaystyle a} 1621:and each element 1588:{\displaystyle 0} 1568:{\displaystyle x} 1522:{\displaystyle 0} 1436:{\displaystyle p} 1421:Salem–Spencer set 1412:{\displaystyle A} 1392:{\displaystyle p} 1368:{\displaystyle A} 1348:{\displaystyle p} 1328:{\displaystyle A} 1308:{\displaystyle p} 1256:the Kneser graph 1211: 1182: 1159: 1124: 1090:{\displaystyle Y} 1070:{\displaystyle X} 1050:{\displaystyle b} 1030:{\displaystyle Y} 1010:{\displaystyle X} 997:-element subsets 990:{\displaystyle b} 937:{\displaystyle a} 917:{\displaystyle b} 881: 727:{\displaystyle G} 681:{\displaystyle n} 661:{\displaystyle G} 637:{\displaystyle G} 617:{\displaystyle G} 593:{\displaystyle G} 501:{\displaystyle v} 481:{\displaystyle G} 461:{\displaystyle v} 405:{\displaystyle G} 385:{\displaystyle G} 336:{\displaystyle G} 294:, the line graph 287:{\displaystyle G} 255:{\displaystyle d} 194:Cartesian product 181:{\displaystyle H} 161:{\displaystyle G} 135:friendship graphs 128:Friendship graphs 4330: 4307: 4306: 4273: 4267: 4266: 4249: 4247:quant-ph/0009039 4226: 4220: 4219: 4210: 4192: 4190: 4189: 4184: 4176: 4175: 4157: 4151: 4150: 4149: 4133: 4127: 4126: 4109: 4089: 4087: 4086: 4081: 4061: 4055: 4054: 4025: 4019: 4018: 3978:Berlekamp, E. R. 3974: 3968: 3967: 3939: 3933: 3932: 3899: 3897: 3896: 3891: 3871: 3862: 3861: 3852: 3843:: R25:1–R25:15, 3830: 3821: 3820: 3798: 3789: 3788: 3761: 3755: 3754: 3745: 3736:(6): 1210–1226, 3719: 3713: 3711: 3709: 3708: 3703: 3676: 3674: 3673: 3668: 3653: 3644: 3618: 3612: 3611: 3602: 3582: 3571: 3569: 3542: 3533: 3532: 3522: 3502: 3496: 3495: 3481:Ars Combinatoria 3478: 3473: 3460: 3449: 3448: 3439: 3419: 3359: 3357: 3356: 3351: 3334: 3325: 3315: 3313: 3312: 3307: 3305: 3304: 3282: 3280: 3279: 3274: 3244: 3242: 3241: 3236: 3210: 3201: 3191: 3189: 3188: 3183: 3148: 3146: 3145: 3140: 3123: 3114: 3104: 3102: 3101: 3096: 3066:are examples of 3065: 3063: 3062: 3057: 3045: 3043: 3042: 3037: 3025: 3023: 3022: 3017: 3005: 3003: 3002: 2997: 2992: 2981: 2967: 2962: 2961: 2945: 2943: 2942: 2937: 2919: 2917: 2916: 2911: 2906: 2905: 2877: 2875: 2874: 2869: 2864: 2863: 2833: 2831: 2830: 2825: 2780: 2778: 2777: 2772: 2724: 2722: 2721: 2716: 2658: 2656: 2655: 2650: 2648: 2647: 2612: 2610: 2609: 2604: 2586: 2584: 2583: 2578: 2566: 2564: 2563: 2558: 2546: 2544: 2543: 2538: 2526: 2524: 2523: 2518: 2506: 2504: 2503: 2498: 2437:complement graph 2434: 2432: 2431: 2426: 2424: 2423: 2398: 2396: 2395: 2390: 2388: 2387: 2371: 2369: 2368: 2363: 2350: 2348: 2347: 2342: 2321: 2319: 2318: 2313: 2274: 2272: 2271: 2266: 2264: 2263: 2254: 2253: 2232: 2223: 2220: 2219: 2206: 2204: 2203: 2198: 2196: 2195: 2179: 2177: 2176: 2171: 2153: 2151: 2150: 2145: 2131: 2130: 2114: 2112: 2111: 2106: 2086: 2084: 2083: 2078: 2017: 2015: 2014: 2009: 1982: 1980: 1979: 1974: 1956: 1954: 1953: 1948: 1936: 1934: 1933: 1928: 1898: 1896: 1895: 1890: 1878: 1876: 1875: 1870: 1865: 1832: 1830: 1829: 1824: 1812: 1810: 1809: 1804: 1792: 1790: 1789: 1784: 1735: 1733: 1732: 1727: 1706: 1704: 1703: 1698: 1680: 1678: 1677: 1672: 1660: 1658: 1657: 1652: 1640: 1638: 1637: 1632: 1620: 1618: 1617: 1612: 1594: 1592: 1591: 1586: 1574: 1572: 1571: 1566: 1554: 1552: 1551: 1546: 1528: 1526: 1525: 1520: 1508: 1506: 1505: 1500: 1498: 1490: 1469: 1467: 1466: 1461: 1445:tripartite graph 1442: 1440: 1439: 1434: 1418: 1416: 1415: 1410: 1398: 1396: 1395: 1390: 1374: 1372: 1371: 1366: 1354: 1352: 1351: 1346: 1334: 1332: 1331: 1326: 1314: 1312: 1311: 1306: 1291: 1289: 1288: 1283: 1281: 1280: 1255: 1253: 1252: 1247: 1229: 1227: 1226: 1221: 1219: 1217: 1216: 1207: 1198: 1190: 1188: 1187: 1178: 1169: 1161: 1152: 1142: 1140: 1139: 1134: 1132: 1130: 1129: 1120: 1111: 1096: 1094: 1093: 1088: 1076: 1074: 1073: 1068: 1056: 1054: 1053: 1048: 1036: 1034: 1033: 1028: 1016: 1014: 1013: 1008: 996: 994: 993: 988: 976: 974: 973: 968: 943: 941: 940: 935: 923: 921: 920: 915: 899: 897: 896: 891: 889: 887: 886: 873: 858: 856: 855: 850: 848: 847: 809: 807: 806: 801: 774: 772: 771: 766: 733: 731: 730: 725: 713: 711: 710: 705: 687: 685: 684: 679: 667: 665: 664: 659: 643: 641: 640: 635: 623: 621: 620: 615: 602:square antiprism 599: 597: 596: 591: 548: 546: 545: 540: 538: 537: 507: 505: 504: 499: 487: 485: 484: 479: 467: 465: 464: 459: 447: 445: 444: 439: 411: 409: 408: 403: 391: 389: 388: 383: 371: 369: 368: 363: 342: 340: 339: 334: 322: 320: 319: 314: 293: 291: 290: 285: 274:. For any graph 261: 259: 258: 253: 241: 239: 238: 233: 187: 185: 184: 179: 167: 165: 164: 159: 49:induced matching 41:undirected graph 23:The nine-vertex 4338: 4337: 4333: 4332: 4331: 4329: 4328: 4327: 4313: 4312: 4311: 4310: 4296: 4274: 4270: 4227: 4223: 4171: 4167: 4165: 4162: 4161: 4158: 4154: 4134: 4130: 4069: 4066: 4065: 4062: 4058: 4026: 4022: 4008: 3982:van Lint, J. H. 3975: 3971: 3940: 3936: 3879: 3876: 3875: 3872: 3865: 3831: 3824: 3799: 3792: 3762: 3758: 3720: 3716: 3682: 3679: 3678: 3659: 3656: 3655: 3619: 3615: 3583: 3574: 3543: 3536: 3520: 3503: 3499: 3476: 3472: 3466: 3465:"Small locally 3461: 3452: 3420: 3411: 3406: 3370: 3323: 3321: 3318: 3317: 3294: 3290: 3288: 3285: 3284: 3250: 3247: 3246: 3199: 3197: 3194: 3193: 3162: 3159: 3158: 3112: 3110: 3107: 3106: 3090: 3087: 3086: 3051: 3048: 3047: 3031: 3028: 3027: 3011: 3008: 3007: 2980: 2963: 2957: 2953: 2951: 2948: 2947: 2925: 2922: 2921: 2895: 2891: 2883: 2880: 2879: 2859: 2855: 2847: 2844: 2843: 2840:Endre SzemerĂ©di 2819: 2816: 2815: 2808: 2794: 2751: 2748: 2747: 2740: 2704: 2701: 2700: 2695:(729,112,1,20). 2659:(15,6,1,3), and 2637: 2633: 2628: 2625: 2624: 2592: 2589: 2588: 2572: 2569: 2568: 2552: 2549: 2548: 2532: 2529: 2528: 2512: 2509: 2508: 2468: 2465: 2464: 2457: 2413: 2409: 2404: 2401: 2400: 2383: 2379: 2377: 2374: 2373: 2357: 2354: 2353: 2327: 2324: 2323: 2304: 2301: 2300: 2286: 2281: 2259: 2255: 2249: 2248: 2221: 2215: 2214: 2212: 2209: 2208: 2191: 2187: 2185: 2182: 2181: 2159: 2156: 2155: 2126: 2122: 2120: 2117: 2116: 2100: 2097: 2096: 2054: 2051: 2050: 2035:polarity graphs 1988: 1985: 1984: 1962: 1959: 1958: 1942: 1939: 1938: 1904: 1901: 1900: 1884: 1881: 1880: 1861: 1838: 1835: 1834: 1818: 1815: 1814: 1798: 1795: 1794: 1742: 1739: 1738: 1712: 1709: 1708: 1686: 1683: 1682: 1666: 1663: 1662: 1646: 1643: 1642: 1626: 1623: 1622: 1600: 1597: 1596: 1580: 1577: 1576: 1560: 1557: 1556: 1534: 1531: 1530: 1514: 1511: 1510: 1494: 1486: 1475: 1472: 1471: 1452: 1449: 1448: 1428: 1425: 1424: 1404: 1401: 1400: 1384: 1381: 1380: 1360: 1357: 1356: 1340: 1337: 1336: 1320: 1317: 1316: 1300: 1297: 1296: 1270: 1266: 1261: 1258: 1257: 1235: 1232: 1231: 1212: 1200: 1194: 1193: 1191: 1183: 1171: 1165: 1164: 1162: 1150: 1148: 1145: 1144: 1125: 1113: 1107: 1106: 1104: 1102: 1099: 1098: 1082: 1079: 1078: 1062: 1059: 1058: 1042: 1039: 1038: 1022: 1019: 1018: 1002: 999: 998: 982: 979: 978: 953: 950: 949: 929: 926: 925: 909: 906: 905: 882: 869: 868: 866: 864: 861: 860: 837: 833: 828: 825: 824: 817: 780: 777: 776: 739: 736: 735: 719: 716: 715: 693: 690: 689: 673: 670: 669: 653: 650: 649: 629: 626: 625: 609: 606: 605: 585: 582: 581: 527: 523: 521: 518: 517: 493: 490: 489: 473: 470: 469: 453: 450: 449: 424: 421: 420: 397: 394: 393: 377: 374: 373: 348: 345: 344: 328: 325: 324: 299: 296: 295: 279: 276: 275: 268: 247: 244: 243: 212: 209: 208: 173: 170: 169: 153: 150: 149: 121: 116: 17: 12: 11: 5: 4336: 4326: 4325: 4323:Graph families 4309: 4308: 4294: 4268: 4221: 4201:(2): 101–134, 4182: 4179: 4174: 4170: 4152: 4128: 4100:(4): 521–531, 4079: 4076: 4073: 4056: 4038:(3): 731–741, 4020: 4006: 3969: 3943:Brouwer, A. E. 3934: 3889: 3886: 3883: 3863: 3822: 3790: 3756: 3714: 3701: 3698: 3695: 3692: 3689: 3686: 3666: 3663: 3635:(2): 500–508, 3613: 3572: 3553:(4): 393–403, 3534: 3497: 3470: 3450: 3408: 3407: 3405: 3402: 3369: 3366: 3349: 3346: 3343: 3340: 3337: 3331: 3328: 3303: 3300: 3297: 3293: 3272: 3269: 3266: 3263: 3260: 3257: 3254: 3234: 3231: 3228: 3225: 3222: 3219: 3216: 3213: 3207: 3204: 3181: 3178: 3175: 3172: 3169: 3166: 3138: 3135: 3132: 3129: 3126: 3120: 3117: 3094: 3076:big O notation 3055: 3035: 3015: 2995: 2990: 2987: 2984: 2979: 2976: 2973: 2970: 2966: 2960: 2956: 2935: 2932: 2929: 2909: 2904: 2901: 2898: 2894: 2890: 2887: 2867: 2862: 2858: 2854: 2851: 2823: 2804:Main article: 2793: 2790: 2770: 2767: 2764: 2761: 2758: 2755: 2739: 2736: 2714: 2711: 2708: 2697: 2696: 2689: 2682: 2675: 2664: 2663: 2660: 2646: 2643: 2640: 2636: 2632: 2621: 2618: 2602: 2599: 2596: 2576: 2556: 2536: 2516: 2496: 2493: 2490: 2487: 2484: 2481: 2478: 2475: 2472: 2456: 2453: 2441:Schläfli graph 2422: 2419: 2416: 2412: 2408: 2386: 2382: 2361: 2340: 2337: 2334: 2331: 2311: 2308: 2285: 2282: 2280: 2277: 2262: 2258: 2252: 2247: 2244: 2241: 2238: 2235: 2229: 2226: 2218: 2194: 2190: 2169: 2166: 2163: 2143: 2140: 2137: 2134: 2129: 2125: 2104: 2076: 2073: 2070: 2067: 2064: 2061: 2058: 2007: 2004: 2001: 1998: 1995: 1992: 1972: 1969: 1966: 1946: 1926: 1923: 1920: 1917: 1914: 1911: 1908: 1888: 1879:all belong to 1868: 1864: 1860: 1857: 1854: 1851: 1848: 1845: 1842: 1822: 1802: 1782: 1779: 1776: 1773: 1770: 1767: 1764: 1761: 1758: 1755: 1752: 1749: 1746: 1725: 1722: 1719: 1716: 1696: 1693: 1690: 1670: 1650: 1630: 1610: 1607: 1604: 1584: 1564: 1544: 1541: 1538: 1518: 1497: 1493: 1489: 1485: 1482: 1479: 1459: 1456: 1432: 1408: 1388: 1364: 1344: 1324: 1304: 1279: 1276: 1273: 1269: 1265: 1245: 1242: 1239: 1215: 1210: 1206: 1203: 1197: 1186: 1181: 1177: 1174: 1168: 1158: 1155: 1128: 1123: 1119: 1116: 1110: 1086: 1066: 1046: 1026: 1006: 986: 966: 963: 960: 957: 933: 913: 885: 880: 877: 872: 846: 843: 840: 836: 832: 816: 813: 799: 796: 793: 790: 787: 784: 764: 761: 758: 755: 752: 749: 746: 743: 723: 703: 700: 697: 677: 657: 633: 613: 589: 551:Petersen graph 536: 533: 530: 526: 497: 477: 457: 437: 434: 431: 428: 401: 381: 361: 358: 355: 352: 332: 312: 309: 306: 303: 283: 267: 264: 251: 231: 228: 225: 222: 219: 216: 177: 157: 120: 117: 115: 112: 90:, and certain 65:Gaifman graphs 15: 9: 6: 4: 3: 2: 4335: 4324: 4321: 4320: 4318: 4305: 4301: 4297: 4291: 4287: 4283: 4279: 4272: 4265: 4261: 4257: 4253: 4248: 4243: 4239: 4235: 4231: 4225: 4218: 4214: 4209: 4204: 4200: 4196: 4180: 4177: 4172: 4168: 4156: 4148: 4143: 4139: 4132: 4125: 4121: 4117: 4113: 4108: 4103: 4099: 4095: 4094: 4077: 4074: 4071: 4060: 4053: 4049: 4045: 4041: 4037: 4033: 4032: 4024: 4017: 4013: 4009: 4007:9780720422627 4003: 3999: 3995: 3991: 3987: 3983: 3979: 3973: 3966: 3962: 3958: 3954: 3950: 3949: 3944: 3938: 3931: 3927: 3923: 3919: 3915: 3911: 3907: 3903: 3887: 3884: 3881: 3870: 3868: 3860: 3856: 3851: 3850:10.37236/1718 3846: 3842: 3838: 3837: 3829: 3827: 3819: 3815: 3811: 3807: 3806:SzemerĂ©di, E. 3803: 3797: 3795: 3787: 3783: 3779: 3775: 3771: 3767: 3760: 3753: 3749: 3744: 3739: 3735: 3731: 3730: 3725: 3718: 3696: 3693: 3690: 3684: 3664: 3661: 3652: 3648: 3643: 3638: 3634: 3630: 3629: 3624: 3617: 3610: 3606: 3601: 3596: 3593:(2): 99–103, 3592: 3588: 3581: 3579: 3577: 3568: 3564: 3560: 3556: 3552: 3548: 3541: 3539: 3530: 3526: 3519: 3515: 3511: 3510:RĂ©nyi, AlfrĂ©d 3507: 3501: 3494: 3490: 3486: 3482: 3475: 3469: 3459: 3457: 3455: 3447: 3443: 3438: 3433: 3429: 3425: 3418: 3416: 3414: 3409: 3401: 3399: 3395: 3391: 3386: 3383: 3382:Hilbert space 3379: 3378:quantum logic 3375: 3365: 3361: 3344: 3341: 3338: 3329: 3326: 3301: 3298: 3295: 3291: 3270: 3267: 3264: 3261: 3258: 3255: 3252: 3232: 3229: 3226: 3220: 3217: 3214: 3205: 3202: 3192:vertices and 3179: 3176: 3173: 3170: 3167: 3164: 3156: 3152: 3151:cuboctahedron 3133: 3130: 3127: 3118: 3115: 3092: 3084: 3083:planar graphs 3079: 3077: 3073: 3069: 3053: 3013: 2988: 2985: 2982: 2974: 2971: 2968: 2964: 2958: 2954: 2933: 2930: 2927: 2902: 2899: 2896: 2892: 2860: 2856: 2849: 2841: 2837: 2836:Imre Z. Ruzsa 2821: 2813: 2807: 2798: 2789: 2787: 2784: 2765: 2762: 2759: 2753: 2745: 2735: 2733: 2729: 2712: 2709: 2706: 2694: 2690: 2687: 2683: 2681:(243,22,1,2), 2680: 2676: 2673: 2669: 2668: 2667: 2661: 2644: 2641: 2638: 2634: 2630: 2622: 2619: 2616: 2615: 2614: 2600: 2597: 2594: 2574: 2554: 2534: 2514: 2491: 2488: 2485: 2482: 2479: 2476: 2473: 2462: 2452: 2450: 2449:cubic surface 2446: 2442: 2438: 2420: 2417: 2414: 2410: 2406: 2384: 2380: 2359: 2338: 2335: 2332: 2329: 2309: 2306: 2297: 2295: 2291: 2276: 2260: 2256: 2242: 2236: 2233: 2227: 2224: 2192: 2188: 2167: 2164: 2161: 2141: 2138: 2135: 2132: 2127: 2123: 2102: 2094: 2093:inner product 2090: 2071: 2068: 2065: 2062: 2059: 2048: 2044: 2040: 2036: 2032: 2028: 2027:Gaifman graph 2024: 2019: 2002: 1999: 1993: 1990: 1970: 1967: 1964: 1944: 1921: 1918: 1915: 1912: 1909: 1886: 1866: 1862: 1855: 1852: 1849: 1843: 1840: 1820: 1800: 1777: 1774: 1771: 1768: 1765: 1762: 1759: 1756: 1753: 1750: 1747: 1723: 1720: 1717: 1714: 1694: 1691: 1688: 1668: 1648: 1628: 1608: 1605: 1602: 1582: 1562: 1542: 1539: 1536: 1516: 1491: 1483: 1480: 1477: 1470:vertices and 1457: 1454: 1446: 1430: 1422: 1406: 1386: 1378: 1362: 1342: 1322: 1302: 1293: 1277: 1274: 1271: 1267: 1263: 1243: 1240: 1237: 1208: 1204: 1201: 1179: 1175: 1172: 1156: 1153: 1143:vertices and 1121: 1117: 1114: 1084: 1064: 1044: 1024: 1004: 984: 964: 961: 958: 955: 947: 946:disjoint sets 931: 911: 903: 878: 875: 844: 841: 838: 834: 830: 822: 821:Kneser graphs 812: 794: 791: 788: 782: 775:vertices and 762: 759: 753: 750: 747: 741: 721: 701: 698: 695: 675: 655: 647: 631: 611: 603: 587: 579: 578:planar graphs 571: 570:cuboctahedron 566: 562: 560: 556: 552: 534: 531: 528: 524: 516: 515:utility graph 511: 510:cuboctahedron 495: 475: 455: 432: 426: 418: 415: 399: 379: 356: 350: 330: 307: 301: 281: 273: 263: 249: 226: 223: 220: 214: 207: 206:Hamming graph 203: 199: 195: 190: 175: 155: 147: 142: 140: 136: 129: 125: 114:Constructions 111: 109: 108:planar graphs 104: 100: 95: 93: 89: 88:Kneser graphs 85: 81: 78:of 3-regular 77: 73: 68: 66: 62: 58: 54: 50: 46: 42: 38: 34: 26: 21: 4277: 4271: 4237: 4233: 4224: 4198: 4194: 4155: 4137: 4131: 4097: 4096:, Series B, 4091: 4059: 4035: 4029: 4023: 3989: 3972: 3946: 3937: 3905: 3901: 3840: 3834: 3809: 3802:Ruzsa, I. Z. 3772:(1): 21–31, 3769: 3765: 3759: 3733: 3727: 3717: 3632: 3631:, Series A, 3626: 3616: 3590: 3586: 3550: 3546: 3528: 3524: 3514:SĂłs, Vera T. 3500: 3484: 3480: 3467: 3427: 3423: 3387: 3371: 3368:Applications 3362: 3105:vertices is 3080: 2809: 2786:Foster graph 2741: 2698: 2674:(81,20,1,6), 2665: 2458: 2298: 2287: 2089:finite field 2020: 1399:. (That is, 1294: 818: 575: 269: 202:3-3 duoprism 191: 143: 132: 103:dense graphs 96: 69: 36: 33:graph theory 30: 3506:ErdĹ‘s, Paul 3487:: 385–391, 3245:edges, for 2693:Games graph 2288:A graph is 272:line graphs 198:Paley graph 101:. Although 76:line graphs 57:hypergraphs 25:Paley graph 4147:1707.08047 3430:(1): 3–6, 3404:References 2920:for every 2781:, and the 2279:Regularity 2207:vertices, 2023:hypergraph 146:clique-sum 82:, and the 53:hyperedges 4107:1201.0383 4072:λ 3930:120911900 3882:λ 3531:: 215–235 3342:− 3271:… 3218:− 3131:− 3034:Ω 2986:⁡ 2972:⁡ 2928:ε 2903:ε 2900:− 2886:Ω 2707:λ 2595:λ 2575:μ 2555:λ 2492:μ 2486:λ 2336:− 2000:± 1606:− 1540:− 1484:⋅ 792:− 751:− 699:− 414:3-regular 45:neighbors 4317:Category 3547:Networks 3516:(1966), 2043:polarity 2041:, and a 1375:form an 819:Certain 4304:4180641 4264:1803695 4217:1761910 4124:3071380 4052:2190334 4016:0364015 3965:1181899 3922:0980587 3859:2014512 3818:0519318 3786:1402135 3752:3624607 3651:2995054 3609:0945363 3567:0686540 3493:2867738 3474:graphs" 3446:1016323 2878:but is 2792:Density 2439:of the 2290:regular 2087:from a 1423:modulo 1379:modulo 1077:nor in 4302:  4292:  4262:  4215:  4122:  4050:  4014:  4004:  3963:  3928:  3920:  3857:  3816:  3784:  3750:  3649:  3607:  3565:  3491:  3444:  3081:Among 3074:, and 3046:, and 2783:halved 2730:, and 2507:where 2294:degree 1833:, and 1793:where 580:. Let 559:clique 74:, the 39:is an 4242:arXiv 4142:arXiv 4102:arXiv 3926:S2CID 3521:(PDF) 3477:(PDF) 3157:with 2031:girth 1447:with 1419:is a 648:: if 555:cages 412:is a 4290:ISBN 4002:ISBN 2931:> 2838:and 2691:the 2684:the 2677:the 2670:the 2299:The 2115:has 1983:and 1017:and 859:has 668:has 568:The 192:The 168:and 133:The 35:, a 4282:doi 4252:doi 4203:doi 4193:", 4112:doi 4098:103 4090:", 4040:doi 3994:doi 3953:doi 3910:doi 3900:", 3845:doi 3774:doi 3738:doi 3734:340 3637:doi 3633:120 3595:hdl 3555:doi 3485:102 3432:hdl 2983:log 2969:exp 1937:in 1641:of 1595:to 1529:to 468:of 31:In 4319:: 4300:MR 4298:, 4288:, 4260:MR 4258:, 4250:, 4238:39 4236:, 4213:MR 4211:, 4199:11 4197:, 4140:, 4120:MR 4118:, 4110:, 4048:MR 4046:, 4036:72 4012:MR 4010:, 4000:, 3988:, 3980:; 3961:MR 3959:, 3924:, 3918:MR 3916:, 3906:44 3904:, 3866:^ 3855:MR 3853:, 3841:10 3839:, 3825:^ 3814:MR 3804:; 3793:^ 3782:MR 3780:, 3770:23 3768:, 3748:MR 3746:, 3732:, 3726:, 3647:MR 3645:, 3605:MR 3603:, 3591:38 3589:, 3575:^ 3563:MR 3561:, 3551:12 3549:, 3537:^ 3527:, 3523:, 3512:; 3508:; 3489:MR 3483:, 3479:, 3468:nK 3453:^ 3442:MR 3440:, 3428:39 3426:, 3412:^ 3327:12 3230:12 3203:12 3116:12 3070:, 3026:, 2788:. 2459:A 2451:. 1813:, 783:12 4284:: 4254:: 4244:: 4205:: 4181:1 4178:= 4173:1 4169:a 4144:: 4114:: 4104:: 4078:1 4075:= 4042:: 3996:: 3955:: 3912:: 3888:1 3885:= 3847:: 3776:: 3740:: 3712:. 3700:) 3697:2 3694:, 3691:r 3688:( 3685:F 3665:r 3662:2 3639:: 3597:: 3557:: 3529:1 3471:2 3434:: 3348:) 3345:2 3339:n 3336:( 3330:5 3302:k 3299:, 3296:2 3292:K 3268:, 3265:3 3262:, 3259:2 3256:= 3253:k 3233:k 3227:= 3224:) 3221:2 3215:n 3212:( 3206:5 3180:2 3177:+ 3174:k 3171:5 3168:= 3165:n 3137:) 3134:2 3128:n 3125:( 3119:5 3093:n 3054:O 3014:o 2994:) 2989:n 2978:( 2975:O 2965:/ 2959:2 2955:n 2934:0 2908:) 2897:2 2893:n 2889:( 2866:) 2861:2 2857:n 2853:( 2850:o 2822:n 2769:) 2766:3 2763:, 2760:3 2757:( 2754:H 2713:1 2710:= 2645:2 2642:, 2639:6 2635:G 2631:K 2601:1 2598:= 2535:k 2515:n 2495:) 2489:, 2483:, 2480:k 2477:, 2474:n 2471:( 2421:2 2418:, 2415:6 2411:G 2407:K 2385:3 2381:K 2360:r 2339:3 2333:r 2330:6 2310:r 2307:2 2261:3 2257:q 2251:) 2246:) 2243:1 2240:( 2237:o 2234:+ 2228:2 2225:1 2217:( 2193:2 2189:q 2168:1 2165:+ 2162:q 2142:1 2139:+ 2136:q 2133:+ 2128:2 2124:q 2103:q 2075:) 2072:z 2069:, 2066:y 2063:, 2060:x 2057:( 2006:} 2003:1 1997:{ 1994:= 1991:A 1971:3 1968:= 1965:p 1945:A 1925:) 1922:b 1919:, 1916:c 1913:, 1910:a 1907:( 1887:A 1867:2 1863:/ 1859:) 1856:b 1853:+ 1850:a 1847:( 1844:= 1841:c 1821:b 1801:a 1781:) 1778:b 1775:+ 1772:a 1769:+ 1766:x 1763:, 1760:a 1757:+ 1754:x 1751:, 1748:x 1745:( 1724:a 1721:2 1718:+ 1715:x 1695:a 1692:+ 1689:x 1669:x 1649:A 1629:a 1609:1 1603:p 1583:0 1563:x 1543:1 1537:p 1517:0 1496:| 1492:A 1488:| 1481:p 1478:3 1458:p 1455:3 1431:p 1407:A 1387:p 1363:A 1343:p 1323:A 1303:p 1278:2 1275:, 1272:6 1268:G 1264:K 1244:2 1241:= 1238:b 1214:) 1209:b 1205:b 1202:2 1196:( 1185:) 1180:b 1176:b 1173:3 1167:( 1157:2 1154:1 1127:) 1122:b 1118:b 1115:3 1109:( 1085:Y 1065:X 1045:b 1025:Y 1005:X 985:b 965:b 962:3 959:= 956:a 932:a 912:b 884:) 879:b 876:a 871:( 845:b 842:, 839:a 835:G 831:K 798:) 795:2 789:n 786:( 763:2 760:+ 757:) 754:2 748:n 745:( 742:5 722:G 702:2 696:n 676:n 656:G 632:G 612:G 588:G 535:3 532:, 529:3 525:K 496:v 476:G 456:v 436:) 433:G 430:( 427:L 400:G 380:G 360:) 357:G 354:( 351:L 331:G 311:) 308:G 305:( 302:L 282:G 250:d 230:) 227:3 224:, 221:d 218:( 215:H 176:H 156:G

Index


Paley graph
graph theory
undirected graph
neighbors
induced matching
hyperedges
hypergraphs
partial Steiner triple systems
Gaifman graphs
triangular cactus graphs
line graphs
triangle-free graphs
Cartesian products
Kneser graphs
strongly regular graphs
Ruzsa–Szemerédi problem
dense graphs
planar graphs

Friendship graphs
friendship graphs
triangular cactus graph
clique-sum
Cartesian product
Paley graph
3-3 duoprism
Hamming graph
line graphs
3-regular

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑