Knowledge

Lossy compression

Source đź“ť

255:, which transforms the raw data to a domain that more accurately reflects the information content. For example, rather than expressing a sound file as the amplitude levels over time, one may express it as the frequency spectrum over time, which corresponds more accurately to human audio perception. While data reduction (compression, be it lossy or lossless) is a main goal of transform coding, it also allows other goals: one may represent data more accurately for the original amount of space – for example, in principle, if one starts with an analog or high-resolution 2986: 2976: 527:. If data which has been compressed lossily is decoded and compressed losslessly, the size of the result can be comparable with the size of the data before lossy compression, but the data already lost cannot be recovered. When deciding to use lossy conversion without keeping the original, format conversion may be needed in the future to achieve compatibility with software or devices ( 148:
compression techniques as closely matched to human perception as possible is a complex task. Sometimes the ideal is a file that provides exactly the same perception as the original, with as much digital information as possible removed; other times, perceptible loss of quality is considered a valid tradeoff.
127:
needed to transmit it, with no loss of the full information contained in the original file. A picture, for example, is converted to a digital file by considering it to be an array of dots and specifying the color and brightness of each dot. If the picture contains an area of the same color, it can be
147:
In many cases, files or data streams contain more information than is needed. For example, a picture may have more detail than the eye can distinguish when reproduced at the largest size intended; likewise, an audio file does not need a lot of fine detail during a very loud passage. Developing lossy
423:
methods is that in some cases a lossy method can produce a much smaller compressed file than any lossless method, while still meeting the requirements of the application. Lossy methods are most often used for compressing sound, images or videos. This is because these types of data are intended for
323:, allow one to reduce the resolution on the components to accord with human perception – humans have highest resolution for black-and-white (luma), lower resolution for mid-spectrum colors like yellow and green, and lowest for red and blues – thus NTSC displays approximately 350 pixels of luma per 271:
file of the same size. This is because uncompressed audio can only reduce file size by lowering bit rate or depth, whereas compressing audio can reduce size while maintaining bit rate and depth. This compression becomes a selective loss of the least significant data, rather than losing data across
553:
By modifying the compressed data directly without decoding and re-encoding, some editing of lossily compressed files without degradation of quality is possible. Editing which reduces the file size as if it had been compressed to a greater degree, but without more loss than this, is sometimes also
62:
Well-designed lossy compression technology often reduces file sizes significantly before degradation is noticed by the end-user. Even when noticeable by the user, further data reduction may be desirable (e.g., for real-time communication or to reduce transmission times or storage needs). The most
54:
methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat on this page show how higher degrees of approximation create
695:
video, although those prior schemes had limited success in terms of adoption into real-world common usage. Without this capacity, which is often the case in practice, to produce a representation with lower resolution or lower fidelity than a given one, one needs to start with the original source
151:
The terms "irreversible" and "reversible" are preferred over "lossy" and "lossless" respectively for some applications, such as medical image compression, to circumvent the negative implications of "loss". The type and amount of loss can affect the utility of the images. Artifacts or undesirable
1264:, are, like lossy compression, irreversible: the original signal cannot be reconstructed from the transformed signal. However, in general these will have the same size as the original, and are not a form of compression. Lowering resolution has practical uses, as the 143:
file is smaller than its original, but repeatedly compressing the same file will not reduce the size to nothing. Most compression algorithms can recognize when further compression would be pointless and would in fact increase the size of the data.
1488:“Although one main goal of digital audio perceptual coders is data reduction, this is not a necessary characteristic. As we shall see, perceptual coding can be used to improve the representation of digital audio through advanced bit allocation.” 735:
methods. Some audio formats feature a combination of a lossy format and a lossless correction which when combined reproduce the original signal; the correction can be stripped, leaving a smaller, lossily compressed, file. Such formats include
403:, previous and/or subsequent decoded data is used to predict the current sound sample or image frame. The error between the predicted data and the real data, together with any extra information needed to reproduce the prediction, is then 201:. The remaining information can then be compressed via a variety of methods. When the output is decoded, the result may not be identical to the original input, but is expected to be close enough for the purpose of the application. 671:, but this functionality is not supported in all designs, as not all codecs encode data in a form that allows less important detail to simply be dropped. Some well-known designs that have this capability include 106:
which can then be used to produce additional copies from. This allows one to avoid basing new compressed copies off of a lossy source file, which would yield additional artifacts and further unnecessary
606:
Some other transforms are possible to some extent, such as joining images with the same encoding (composing side by side, as on a grid) or pasting images such as logos onto existing images (both via
31: 490:(that is, the size of the compressed file compared to that of the uncompressed file) of lossy video codecs is nearly always far superior to that of the audio and still-image equivalents. 1279:
which progressively defines the image. Thus a partial transmission is enough to preview the final image, in a lower resolution version, without creating a scaled and a full version too.
474:
describes how sound can be highly compressed without degrading perceived quality. Flaws caused by lossy compression that are noticeable to the human eye or ear are known as
59:(reversible data compression) which does not degrade the data. The amount of data reduction possible using lossy compression is much higher than using lossless techniques. 34:
Composite image showing JPG and PNG image compression. Left side of the image is from a low-quality JPEG image, showing lossy artefacts; the right side is from a PNG image.
1643: 707:
Another approach is to encode the original signal at several different bitrates, and then either choose which to use (as when streaming over the internet – as in
680: 667:
or otherwise decrease the resolution of the represented source signal and the quantity of data used for its compressed representation without re-encoding, as in
519:
from the re-encoding. This can be avoided by only producing lossy files from (lossless) originals and only editing (copies of) original files, such as images in
131:
The original data contains a certain amount of information, and there is a lower bound to the size of a file that can still carry all the information. Basic
102:. By contrast, lossless compression is typically required for text and data files, such as bank records and text articles. It can be advantageous to make a 1625: 462:
When a user acquires a lossily compressed file, (for example, to reduce download time) the retrieved file can be quite different from the original at the
157: 432:. Data files using lossy compression are smaller in size and thus cost less to store and to transmit over the Internet, a crucial consideration for 424:
human interpretation where the mind can easily "fill in the blanks" or see past very minor errors or inconsistencies – ideally lossy compression is
411:
In some systems the two techniques are combined, with transform codecs being used to compress the error signals generated by the predictive stage.
466:
level while being indistinguishable to the human ear or eye for most practical purposes. Many compression methods focus on the idiosyncrasies of
1810: 712: 500:
Still images are often lossily compressed at 10:1, as with audio, but the quality loss is more noticeable, especially on closer inspection.
152:
effects of compression may be clearly discernible yet the result still useful for the intended purpose. Or lossy compressed images may be '
2478: 2289: 1089: 1587: 1275:
of its encounter with Pluto-Charon before it sent the higher resolution images. Another solution for slow connections is the usage of
2178: 2684: 2507: 2301: 1151: 1349:"Usability of irreversible image compression in radiological imaging. A position paper by the European Society of Radiology (ESR)" 1992: 272:
the board. Further, a transform coding may provide a better domain for manipulating or otherwise editing the data – for example,
327:, 150 pixels of yellow vs. green, and 50 pixels of blue vs. red, which are proportional to human sensitivity to each component. 276:
of audio is most naturally expressed in the frequency domain (boost the bass, for instance) rather than in the raw time domain.
2689: 2266: 1157: 17: 1489: 3020: 2419: 1673: 1651: 339:: repeatedly compressing and decompressing the file will cause it to progressively lose quality. This is in contrast with 1208: 1723: 2796: 2534: 2473: 2284: 2234: 2057: 1197: 1043: 1031: 548: 1917: 1902: 1803: 1761: 515:
An important caveat about lossy compression (formally transcoding), is that editing lossily compressed files causes
2909: 860: 404: 389: 194: 83: 307:) means that black-and-white sets display the luminance, while ignoring the color information. Another example is 2919: 2757: 2608: 2527: 2321: 1169: 457: 425: 128:
compressed without loss by saying "200 red dots" instead of "red dot, red dot, ...(197 more times)..., red dot."
719:), or broadcast several, where the best that is successfully received is used, as in various implementations of 2892: 2512: 2306: 2094: 1253: 1145: 1776: 1698: 1618: 2989: 2025: 268: 2654: 2979: 2882: 2424: 1982: 1796: 1538: 1095: 965: 794: 136: 1972: 1967: 1233: 186: 544: 2914: 2841: 2679: 2659: 2603: 2261: 2052: 1855: 1318: 1139: 810: 728: 470:, taking into account, for instance, that the human eye can see only certain wavelengths of light. The 603:
channel). While unwanted information is destroyed, the quality of the remaining portion is unchanged.
3015: 2924: 2865: 2791: 2639: 2229: 2224: 2079: 1922: 1465:"T.81 – DIGITAL COMPRESSION AND CODING OF CONTINUOUS-TONE STILL IMAGES – REQUIREMENTS AND GUIDELINES" 918: 852: 777: 340: 205: 135:
says that there is an absolute limit in reducing the size of this data. When data is compressed, its
64: 2929: 2502: 2296: 1997: 1133: 800: 696:
signal and encode, or start with a compressed representation and then decompress and re-encode it (
237: 1576:, Prentice Hall, 1996; JPEG: Chapter 8; H.261: Chapter 9; MPEG-1: Chapter 10; MPEG-2: Chapter 11. 2870: 2241: 2128: 2084: 1897: 1880: 1870: 1401: 720: 701: 516: 1084:(Notable for lack of patent restrictions, low delay, and high quality speech and general audio.) 2495: 2246: 2030: 1875: 1020: 487: 385: 348: 288: 225: 39: 2767: 197:. Knowledge of the application is used to choose information to discard, thereby lowering its 2899: 1276: 1237: 1103: 1055: 955: 384:, samples of picture or sound are taken, chopped into small segments, transformed into a new 263:
file of a given size should provide a better representation than a raw uncompressed audio in
198: 124: 2583: 2045: 2007: 1828: 1313: 1288: 745: 475: 471: 420: 292: 273: 245: 56: 119:
It is possible to compress many types of digital data in a way that reduces the size of a
8: 2814: 2705: 2664: 2649: 2618: 2613: 2522: 2429: 2362: 2331: 2316: 2099: 1396: 1070: 1016: 987: 908: 866: 822: 749: 632: 1771: 1749: 683:
for video. Such schemes have also been standardized for older designs as well, such as
27:
Data compression approach that reduces data size while discarding or changing some of it
2887: 2857: 2836: 2742: 2674: 2568: 2256: 2072: 2062: 1957: 1937: 1932: 1595: 1447: 1373: 1348: 842: 655:
information, can usually be modified or removed without modifying the underlying data.
344: 308: 132: 2468: 2831: 2819: 2801: 2669: 2553: 2490: 2336: 2251: 2168: 1850: 1451: 1378: 912: 771: 359: 296: 252: 217: 153: 140: 2806: 2762: 2735: 2730: 2588: 2573: 2483: 2392: 2387: 2216: 1949: 1927: 1819: 1439: 1368: 1360: 1293: 992: 676: 584: 520: 467: 393: 175: 169: 103: 51: 1248:
A general kind of lossy compression is to lower the resolution of an image, as in
2725: 2539: 2463: 2444: 2414: 2382: 2348: 1907: 1845: 1765: 1127: 880: 668: 532: 528: 441: 433: 363: 356: 336: 95: 494:
Video can be compressed immensely (e.g., 100:1) with little visible quality loss
2517: 2311: 2040: 2035: 1892: 1865: 1837: 1464: 1308: 1163: 1049: 1004: 648: 617:
Optimizing the compression (to reduce size without change to the decoded image)
497:
Audio can often be compressed at 10:1 with almost imperceptible loss of quality
256: 179: 1779:, comparing the suitability of JPG and lossless compression for image archives 1364: 3009: 2824: 2772: 2439: 2434: 2409: 2341: 1962: 1860: 1298: 1261: 1256:. One may also remove less "lower information" parts of an image, such as by 1249: 1037: 945: 939: 934: 692: 592: 588: 190: 183: 120: 30: 1443: 1073:(WMA) (Standard and Pro profiles are lossy. WMA Lossless is also available.) 216:
in 1974. DCT is the most widely used form of lossy compression, for popular
204:
The most common form of lossy compression is a transform coding method, the
2945: 1912: 1887: 1788: 1752:, comparing the speed and compression strength of five lossy audio formats. 1382: 1323: 1268: 1257: 1214: 1081: 1076: 716: 708: 1755: 139:
increases, and it cannot increase indefinitely. For example, a compressed
2904: 2782: 2578: 2454: 2404: 1328: 997: 929: 732: 697: 600: 510: 352: 312: 300: 1502: 607: 193:. The transformation is typically used to enable better (more targeted) 2961: 2752: 2747: 2634: 2593: 2399: 1236:
techniques, although these sometimes fall into the related category of
1228:
Researchers have performed lossy compression on text by either using a
737: 664: 174:
Some forms of lossy compression can be thought of as an application of
79: 279:
From this point of view, perceptual encoding is not essentially about
1758:, including chapters on lossy compression of images, audio and video. 1427: 1272: 1229: 846: 827: 672: 658: 625: 596: 367: 233: 213: 72: 2875: 2720: 2377: 1423: 1109: 831: 791:(high-density lossless or lossy compression of RGB and RGBA images) 564: 429: 324: 209: 68: 355:
in optimal coding theory, rate-distortion theory heavily draws on
2644: 2118: 2067: 1539:"Reminiscences of the Early Work in DCT: Interview with K.R. Rao" 806: 741: 644: 613:
Some changes can be made to the compression without re-encoding:
445: 437: 251:
In the case of audio data, a popular form of transform coding is
2158: 1203: 1183: 1065: 974: 959: 724: 688: 577: 343:, where data will not be lost via the use of such a procedure. 55:
coarser images as more details are removed. This is opposed to
2993: 2598: 2191: 2138: 1346: 1303: 1189: 949: 924: 871: 814: 380: 91: 87: 1782: 620:
Converting between progressive and non-progressive encoding.
2148: 2002: 1987: 1977: 1724:"Semantic and Generative Models for Lossy Text Compression" 1574:
Techniques and Standards for Image, Video, and Audio Coding
1265: 1177: 1115: 980: 962:
AVC) (may also be lossless, even in certain video sections)
896: 877: 855:, Progressive Graphics File (lossless or lossy compression) 837: 788: 783: 684: 652: 573: 524: 320: 229: 221: 99: 2123: 2089: 1173: 1059: 971: 884: 463: 316: 304: 264: 260: 241: 562:
The primary programs for lossless editing of JPEGs are
347:
foundations for lossy data compression are provided by
1772:
Using lossy GIF/PNG compression for the web (article)
1546:
Reprints from the Early Days of Information Sciences
78:
Lossy compression is most commonly used to compress
1588:"The Use of FFT and MDCT in MP3 Audio Compression" 659:Downsampling/compressed representation scalability 549:commons:Commons:Software § Ogg Vorbis (audio) 535:for decoding or distribution of compressed files. 158:diagnostically acceptable irreversible compression 1537:Stanković, Radomir S.; Astola, Jaakko T. (2012). 1422: 715:" – or offering varying downloads, as at Apple's 366:in order to model perceptual distortion and even 3007: 1536: 373:There are two basic lossy compression schemes: 178:, which is a type of data compression used for 156:', or in the case of medical images, so-called 63:widely used lossy compression algorithm is the 1644:"The inconvenient truth about Bluetooth audio" 428:(imperceptible), which can be verified via an 1804: 1430:(January 1974), "Discrete Cosine Transform", 817:pixel formats (lossless or lossy compression) 1818: 1232:to substitute short words for long ones, or 295:: in color television, encoding color via a 1674:"What is Sony LDAC, and how does it do it?" 1616: 1610: 1532: 1530: 1528: 1526: 1524: 1522: 1492:, Victor Lombardi, noisebetweenstations.com 1192:(noted for its lack of patent restrictions) 1186:(noted for its lack of patent restrictions) 1090:Adaptive differential pulse-code modulation 977:(noted for its lack of patent restrictions) 1811: 1797: 1690: 1665: 1635: 750:DTS-HD Master Audio in lossless (XLL) mode 504: 392:. The resulting quantized values are then 1372: 628:has some lossless JPEG operations in its 538: 1721: 1519: 1152:Algebraic code-excited linear prediction 29: 1585: 890: 809:, a successor of JPEG with support for 14: 3008: 1579: 1347:European Society of Radiology (2011). 1243: 1158:Relaxed code-excited linear prediction 845:, used by the Mars Rovers, related to 687:images with progressive encoding, and 580:(which provides a Windows interface). 335:Lossy compression formats suffer from 94:), especially in applications such as 1792: 1641: 1568: 1566: 1416: 803:(BPG) (lossless or lossy compression) 108: 1696: 1671: 830:, JPEG's successor format that uses 700:), though the latter tends to cause 545:commons:Commons:Software § JPEG 481: 419:The advantage of lossy methods over 208:(DCT), which was first published by 1217:(mostly for real-time applications) 1209:Constrained Energy Lapped Transform 330: 163: 24: 1563: 1198:Modified discrete cosine transform 1044:Adaptive Transform Acoustic Coding 1032:Modified discrete cosine transform 25: 3032: 1743: 1260:. Many media transforms, such as 723:. Similar techniques are used in 2985: 2984: 2975: 2974: 1631:from the original on 2017-02-13. 861:Cartesian Perceptual Compression 1715: 1617:Brandenburg, Karlheinz (1999). 874:(lossless or lossy compression) 834:(lossless or lossy compression) 458:Transparency (data compression) 451: 1699:"aptX HD - lossless or lossy?" 1495: 1482: 1457: 1432:IEEE Transactions on Computers 1389: 1340: 1146:Code-excited linear prediction 160:(DAIC) may have been applied. 13: 1: 1642:Darko, John H. (2017-03-29). 1586:Guckert, John (Spring 2012). 1490:Masking and Perceptual Coding 1223: 885:3D computer graphics hardware 414: 3021:Lossy compression algorithms 1096:Master Quality Authenticated 966:High Efficiency Video Coding 795:High Efficiency Image Format 583:These allow the image to be 287:of data. Another use is for 7: 1762:Lossy PNG image compression 1572:K. R. Rao and J. J. Hwang, 1282: 760: 638: 123:needed to store it, or the 10: 3037: 2866:Compressed data structures 2188:RLE + BWT + MTF + Huffman 1856:Asymmetric numeral systems 1785:, Jpg, Png compressor tool 1768: (archived 2005-10-03) 1722:I. H. WITTEN; et al. 1140:Adaptive predictive coding 1125: 1025: 1014: 906: 769: 755: 624:The freeware Windows-only 542: 508: 455: 303:transform domain (such as 167: 67:(DCT), first published by 2970: 2954: 2938: 2856: 2781: 2713: 2704: 2627: 2561: 2552: 2453: 2370: 2361: 2277: 2225:Discrete cosine transform 2215: 2206: 2155:LZ77 + Huffman + context 2108: 2018: 1948: 1836: 1827: 1365:10.1007/s13244-011-0071-x 1121: 919:Discrete cosine transform 778:Discrete cosine transform 731:, and more sophisticated 341:lossless data compression 283:data, but rather about a 206:discrete cosine transform 65:discrete cosine transform 57:lossless data compression 2930:Smallest grammar problem 1697:Ford, Jez (2016-11-22). 1672:Ford, Jez (2015-08-24). 1334: 1134:Linear predictive coding 1010: 902: 801:Better Portable Graphics 765: 740:(Scalable to Lossless), 351:. Much like the use of 114: 48:irreversible compression 2871:Compressed suffix array 2420:Nyquist–Shannon theorem 1756:Data compression basics 1619:"MP3 and AAC Explained" 1503:"New jpegtran features" 1470:. CCITT. September 1992 1444:10.1109/T-C.1974.223784 1402:Encyclopedia Britannica 729:pyramid representations 721:hierarchical modulation 702:digital generation loss 595:, or even converted to 557: 517:digital generation loss 505:Transcoding and editing 401:lossy predictive codecs 345:Information-theoretical 1729:. The Computer Journal 1319:Rate–distortion theory 1021:Audio data compression 849:in its use of wavelets 572:(which also preserves 539:Editing of lossy files 531:), or to avoid paying 349:rate-distortion theory 289:backward compatibility 226:video coding standards 40:information technology 35: 18:Lossy data compression 2900:Kolmogorov complexity 2768:Video characteristics 2145:LZ77 + Huffman + ANS 1783:JPG Image Compression 1238:lossy data conversion 1126:Further information: 1104:MPEG-1 Audio Layer II 1056:Advanced Audio Coding 1015:Further information: 956:Advanced Video Coding 907:Further information: 770:Further information: 681:Scalable Video Coding 675:for still images and 509:Further information: 476:compression artifacts 456:Further information: 285:better representation 33: 2990:Compression software 2584:Compression artifact 2540:Psychoacoustic model 1314:Lossless compression 1289:Compression artifact 1005:Sorenson video codec 891:3D computer graphics 746:OptimFROG DualStream 472:psychoacoustic model 293:graceful degradation 104:master lossless file 2980:Compression formats 2619:Texture compression 2614:Standard test image 2430:Silence compression 1750:Lossy audio formats 1244:Lowering resolution 1170:Adaptive Multi-Rate 1071:Windows Media Audio 1017:Audio coding format 988:Wavelet compression 909:Video coding format 867:Fractal compression 863:, also known as CPC 823:Wavelet compression 212:, T. Natarajan and 71:, T. Natarajan and 2888:Information theory 2743:Display resolution 2569:Chroma subsampling 1958:Byte pair encoding 1903:Shannon–Fano–Elias 1596:University of Utah 1397:"Data compression" 1271:craft transmitted 1112:(based on Musicam) 811:high-dynamic range 643:Metadata, such as 576:information), and 568:, and the derived 309:chroma subsampling 133:information theory 100:internet telephony 36: 3003: 3002: 2852: 2851: 2802:Deblocking filter 2700: 2699: 2548: 2547: 2357: 2356: 2202: 2201: 1777:JPG for Archiving 1426:; Natarajan, T.; 1277:Image interlacing 913:Video compression 772:Image compression 599:(by dropping the 488:compression ratio 482:Compression ratio 444:services such as 436:services such as 253:perceptual coding 240:formats (such as 238:audio compression 220:formats (such as 218:image compression 154:visually lossless 44:lossy compression 16:(Redirected from 3028: 3016:Data compression 2988: 2987: 2978: 2977: 2807:Lapped transform 2711: 2710: 2589:Image resolution 2574:Coding tree unit 2559: 2558: 2368: 2367: 2213: 2212: 1834: 1833: 1820:Data compression 1813: 1806: 1799: 1790: 1789: 1738: 1737: 1735: 1734: 1728: 1719: 1713: 1712: 1710: 1709: 1694: 1688: 1687: 1685: 1684: 1669: 1663: 1662: 1660: 1659: 1650:. Archived from 1639: 1633: 1632: 1630: 1623: 1614: 1608: 1607: 1605: 1603: 1592: 1583: 1577: 1570: 1561: 1560: 1558: 1556: 1543: 1534: 1517: 1516: 1514: 1513: 1499: 1493: 1486: 1480: 1479: 1477: 1475: 1469: 1461: 1455: 1454: 1420: 1414: 1413: 1411: 1409: 1393: 1387: 1386: 1376: 1353:Insights Imaging 1344: 1294:Data compression 993:Motion JPEG 2000 883:compression for 677:H.264/MPEG-4 AVC 663:One may wish to 631: 571: 567: 533:patent royalties 521:raw image format 468:human physiology 379:lossy transform 331:Information loss 176:transform coding 170:Transform coding 164:Transform coding 109:information loss 52:data compression 50:is the class of 21: 3036: 3035: 3031: 3030: 3029: 3027: 3026: 3025: 3006: 3005: 3004: 2999: 2966: 2950: 2934: 2915:Rate–distortion 2848: 2777: 2696: 2623: 2544: 2449: 2445:Sub-band coding 2353: 2278:Predictive type 2273: 2198: 2165:LZSS + Huffman 2115:LZ77 + Huffman 2104: 2014: 1950:Dictionary type 1944: 1846:Adaptive coding 1823: 1817: 1766:Wayback Machine 1746: 1741: 1732: 1730: 1726: 1720: 1716: 1707: 1705: 1695: 1691: 1682: 1680: 1670: 1666: 1657: 1655: 1640: 1636: 1628: 1621: 1615: 1611: 1601: 1599: 1590: 1584: 1580: 1571: 1564: 1554: 1552: 1541: 1535: 1520: 1511: 1509: 1501: 1500: 1496: 1487: 1483: 1473: 1471: 1467: 1463: 1462: 1458: 1421: 1417: 1407: 1405: 1395: 1394: 1390: 1345: 1341: 1337: 1285: 1252:, particularly 1246: 1234:generative text 1226: 1130: 1128:Speech encoding 1124: 1028: 1023: 1013: 958:(AVC / H.264 / 915: 905: 893: 774: 768: 763: 758: 669:bitrate peeling 661: 649:Vorbis comments 641: 629: 610:), or scaling. 569: 563: 560: 551: 541: 529:format shifting 513: 507: 484: 460: 454: 442:streaming audio 434:streaming video 417: 364:decision theory 337:generation loss 333: 172: 166: 117: 96:streaming media 28: 23: 22: 15: 12: 11: 5: 3034: 3024: 3023: 3018: 3001: 3000: 2998: 2997: 2982: 2971: 2968: 2967: 2965: 2964: 2958: 2956: 2952: 2951: 2949: 2948: 2942: 2940: 2936: 2935: 2933: 2932: 2927: 2922: 2917: 2912: 2907: 2902: 2897: 2896: 2895: 2885: 2880: 2879: 2878: 2873: 2862: 2860: 2854: 2853: 2850: 2849: 2847: 2846: 2845: 2844: 2839: 2829: 2828: 2827: 2822: 2817: 2809: 2804: 2799: 2794: 2788: 2786: 2779: 2778: 2776: 2775: 2770: 2765: 2760: 2755: 2750: 2745: 2740: 2739: 2738: 2733: 2728: 2717: 2715: 2708: 2702: 2701: 2698: 2697: 2695: 2694: 2693: 2692: 2687: 2682: 2677: 2667: 2662: 2657: 2652: 2647: 2642: 2637: 2631: 2629: 2625: 2624: 2622: 2621: 2616: 2611: 2606: 2601: 2596: 2591: 2586: 2581: 2576: 2571: 2565: 2563: 2556: 2550: 2549: 2546: 2545: 2543: 2542: 2537: 2532: 2531: 2530: 2525: 2520: 2515: 2510: 2500: 2499: 2498: 2488: 2487: 2486: 2481: 2471: 2466: 2460: 2458: 2451: 2450: 2448: 2447: 2442: 2437: 2432: 2427: 2422: 2417: 2412: 2407: 2402: 2397: 2396: 2395: 2390: 2385: 2374: 2372: 2365: 2359: 2358: 2355: 2354: 2352: 2351: 2349:Psychoacoustic 2346: 2345: 2344: 2339: 2334: 2326: 2325: 2324: 2319: 2314: 2309: 2304: 2294: 2293: 2292: 2281: 2279: 2275: 2274: 2272: 2271: 2270: 2269: 2264: 2259: 2249: 2244: 2239: 2238: 2237: 2232: 2221: 2219: 2217:Transform type 2210: 2204: 2203: 2200: 2199: 2197: 2196: 2195: 2194: 2186: 2185: 2184: 2181: 2173: 2172: 2171: 2163: 2162: 2161: 2153: 2152: 2151: 2143: 2142: 2141: 2133: 2132: 2131: 2126: 2121: 2112: 2110: 2106: 2105: 2103: 2102: 2097: 2092: 2087: 2082: 2077: 2076: 2075: 2070: 2060: 2055: 2050: 2049: 2048: 2038: 2033: 2028: 2022: 2020: 2016: 2015: 2013: 2012: 2011: 2010: 2005: 2000: 1995: 1990: 1985: 1980: 1975: 1970: 1960: 1954: 1952: 1946: 1945: 1943: 1942: 1941: 1940: 1935: 1930: 1925: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1884: 1883: 1878: 1873: 1863: 1858: 1853: 1848: 1842: 1840: 1831: 1825: 1824: 1816: 1815: 1808: 1801: 1793: 1787: 1786: 1780: 1774: 1769: 1759: 1753: 1745: 1744:External links 1742: 1740: 1739: 1714: 1689: 1664: 1634: 1609: 1578: 1562: 1518: 1494: 1481: 1456: 1415: 1388: 1359:(2): 103–115. 1338: 1336: 1333: 1332: 1331: 1326: 1321: 1316: 1311: 1309:List of codecs 1306: 1301: 1296: 1291: 1284: 1281: 1245: 1242: 1225: 1222: 1221: 1220: 1219: 1218: 1212: 1206: 1195: 1194: 1193: 1187: 1181: 1167: 1164:Low-delay CELP 1161: 1155: 1149: 1143: 1123: 1120: 1119: 1118: 1113: 1107: 1101: 1100: 1099: 1087: 1086: 1085: 1079: 1074: 1068: 1063: 1053: 1050:MPEG Layer III 1047: 1041: 1027: 1024: 1012: 1009: 1008: 1007: 1002: 1001: 1000: 995: 985: 984: 983: 978: 969: 968:(HEVC / H.265) 963: 953: 943: 937: 932: 927: 904: 901: 900: 899: 892: 889: 888: 887: 875: 869: 864: 858: 857: 856: 850: 840: 835: 820: 819: 818: 804: 798: 792: 786: 767: 764: 762: 759: 757: 754: 660: 657: 640: 637: 622: 621: 618: 559: 556: 540: 537: 506: 503: 502: 501: 498: 495: 483: 480: 453: 450: 416: 413: 409: 408: 397: 332: 329: 257:digital master 180:digital images 168:Main article: 165: 162: 116: 113: 26: 9: 6: 4: 3: 2: 3033: 3022: 3019: 3017: 3014: 3013: 3011: 2995: 2991: 2983: 2981: 2973: 2972: 2969: 2963: 2960: 2959: 2957: 2953: 2947: 2944: 2943: 2941: 2937: 2931: 2928: 2926: 2923: 2921: 2918: 2916: 2913: 2911: 2908: 2906: 2903: 2901: 2898: 2894: 2891: 2890: 2889: 2886: 2884: 2881: 2877: 2874: 2872: 2869: 2868: 2867: 2864: 2863: 2861: 2859: 2855: 2843: 2840: 2838: 2835: 2834: 2833: 2830: 2826: 2823: 2821: 2818: 2816: 2813: 2812: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2789: 2787: 2784: 2780: 2774: 2773:Video quality 2771: 2769: 2766: 2764: 2761: 2759: 2756: 2754: 2751: 2749: 2746: 2744: 2741: 2737: 2734: 2732: 2729: 2727: 2724: 2723: 2722: 2719: 2718: 2716: 2712: 2709: 2707: 2703: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2673: 2672: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2651: 2648: 2646: 2643: 2641: 2638: 2636: 2633: 2632: 2630: 2626: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2566: 2564: 2560: 2557: 2555: 2551: 2541: 2538: 2536: 2533: 2529: 2526: 2524: 2521: 2519: 2516: 2514: 2511: 2509: 2506: 2505: 2504: 2501: 2497: 2494: 2493: 2492: 2489: 2485: 2482: 2480: 2477: 2476: 2475: 2472: 2470: 2467: 2465: 2462: 2461: 2459: 2456: 2452: 2446: 2443: 2441: 2440:Speech coding 2438: 2436: 2435:Sound quality 2433: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2410:Dynamic range 2408: 2406: 2403: 2401: 2398: 2394: 2391: 2389: 2386: 2384: 2381: 2380: 2379: 2376: 2375: 2373: 2369: 2366: 2364: 2360: 2350: 2347: 2343: 2340: 2338: 2335: 2333: 2330: 2329: 2327: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2299: 2298: 2295: 2291: 2288: 2287: 2286: 2283: 2282: 2280: 2276: 2268: 2265: 2263: 2260: 2258: 2255: 2254: 2253: 2250: 2248: 2245: 2243: 2240: 2236: 2233: 2231: 2228: 2227: 2226: 2223: 2222: 2220: 2218: 2214: 2211: 2209: 2205: 2193: 2190: 2189: 2187: 2182: 2180: 2177: 2176: 2175:LZ77 + Range 2174: 2170: 2167: 2166: 2164: 2160: 2157: 2156: 2154: 2150: 2147: 2146: 2144: 2140: 2137: 2136: 2134: 2130: 2127: 2125: 2122: 2120: 2117: 2116: 2114: 2113: 2111: 2107: 2101: 2098: 2096: 2093: 2091: 2088: 2086: 2083: 2081: 2078: 2074: 2071: 2069: 2066: 2065: 2064: 2061: 2059: 2056: 2054: 2051: 2047: 2044: 2043: 2042: 2039: 2037: 2034: 2032: 2029: 2027: 2024: 2023: 2021: 2017: 2009: 2006: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1965: 1964: 1961: 1959: 1956: 1955: 1953: 1951: 1947: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1920: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1882: 1879: 1877: 1874: 1872: 1869: 1868: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1843: 1841: 1839: 1835: 1832: 1830: 1826: 1821: 1814: 1809: 1807: 1802: 1800: 1795: 1794: 1791: 1784: 1781: 1778: 1775: 1773: 1770: 1767: 1763: 1760: 1757: 1754: 1751: 1748: 1747: 1725: 1718: 1704: 1700: 1693: 1679: 1675: 1668: 1654:on 2018-01-14 1653: 1649: 1645: 1638: 1627: 1620: 1613: 1598: 1597: 1589: 1582: 1575: 1569: 1567: 1551: 1547: 1540: 1533: 1531: 1529: 1527: 1525: 1523: 1508: 1504: 1498: 1491: 1485: 1466: 1460: 1453: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1419: 1404: 1403: 1398: 1392: 1384: 1380: 1375: 1370: 1366: 1362: 1358: 1354: 1350: 1343: 1339: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1299:Image scaling 1297: 1295: 1292: 1290: 1287: 1286: 1280: 1278: 1274: 1270: 1267: 1263: 1262:Gaussian blur 1259: 1255: 1251: 1250:image scaling 1241: 1239: 1235: 1231: 1216: 1213: 1210: 1207: 1205: 1202: 1201: 1199: 1196: 1191: 1188: 1185: 1182: 1179: 1175: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1137: 1135: 1132: 1131: 1129: 1117: 1116:aptX/ aptX-HD 1114: 1111: 1108: 1105: 1102: 1097: 1094: 1093: 1091: 1088: 1083: 1080: 1078: 1075: 1072: 1069: 1067: 1064: 1061: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1038:Dolby Digital 1036: 1035: 1033: 1030: 1029: 1022: 1018: 1006: 1003: 999: 996: 994: 991: 990: 989: 986: 982: 979: 976: 973: 970: 967: 964: 961: 957: 954: 951: 947: 946:MPEG-4 Part 2 944: 941: 940:MPEG-2 Part 2 938: 936: 935:MPEG-1 Part 2 933: 931: 928: 926: 923: 922: 920: 917: 916: 914: 910: 898: 895: 894: 886: 882: 879: 876: 873: 870: 868: 865: 862: 859: 854: 851: 848: 844: 841: 839: 836: 833: 829: 826: 825: 824: 821: 816: 812: 808: 805: 802: 799: 796: 793: 790: 787: 785: 782: 781: 779: 776: 775: 773: 753: 751: 747: 743: 739: 734: 730: 726: 722: 718: 714: 710: 705: 703: 699: 694: 693:MPEG-4 Part 2 690: 686: 682: 678: 674: 670: 666: 656: 654: 650: 646: 636: 634: 630:JPG_TRANSFORM 627: 619: 616: 615: 614: 611: 609: 604: 602: 598: 594: 590: 586: 581: 579: 575: 566: 555: 550: 546: 536: 534: 530: 526: 522: 518: 512: 499: 496: 493: 492: 491: 489: 479: 477: 473: 469: 465: 459: 449: 447: 443: 439: 435: 431: 427: 422: 412: 406: 402: 398: 395: 394:entropy coded 391: 387: 383: 382: 376: 375: 374: 371: 369: 365: 361: 358: 354: 350: 346: 342: 338: 328: 326: 322: 318: 314: 311:: the use of 310: 306: 302: 298: 294: 290: 286: 282: 277: 275: 270: 266: 262: 258: 254: 249: 247: 243: 239: 235: 231: 227: 223: 219: 215: 211: 207: 202: 200: 196: 192: 191:digital video 188: 185: 184:digital audio 181: 177: 171: 161: 159: 155: 149: 145: 142: 138: 134: 129: 126: 122: 121:computer file 112: 110: 105: 101: 97: 93: 89: 85: 81: 76: 74: 70: 66: 60: 58: 53: 49: 45: 41: 32: 19: 2946:Hutter Prize 2910:Quantization 2815:Compensation 2609:Quantization 2332:Compensation 2207: 1898:Shannon–Fano 1838:Entropy type 1731:. Retrieved 1717: 1706:. Retrieved 1702: 1692: 1681:. Retrieved 1677: 1667: 1656:. Retrieved 1652:the original 1647: 1637: 1612: 1600:. Retrieved 1594: 1581: 1573: 1553:. Retrieved 1549: 1545: 1510:. Retrieved 1506: 1497: 1484: 1472:. Retrieved 1459: 1438:(1): 90–93, 1435: 1431: 1424:Ahmed, Nasir 1418: 1406:. Retrieved 1400: 1391: 1356: 1352: 1342: 1324:Seam carving 1269:New Horizons 1258:seam carving 1247: 1227: 717:iTunes Store 709:RealNetworks 706: 662: 642: 623: 612: 605: 582: 561: 552: 514: 485: 461: 452:Transparency 418: 410: 400: 378: 372: 334: 313:color spaces 284: 280: 278: 274:equalization 250: 203: 195:quantization 173: 150: 146: 130: 118: 77: 61: 47: 43: 37: 2905:Prefix code 2758:Frame types 2579:Color space 2405:Convolution 2135:LZ77 + ANS 2046:Incremental 2019:Other types 1938:Levenshtein 1507:sylvana.net 1329:Transcoding 930:Motion JPEG 733:scale space 698:transcoding 601:chrominance 587:, rotated, 523:instead of 511:Transcoding 426:transparent 386:basis space 353:probability 301:chrominance 210:Nasir Ahmed 69:Nasir Ahmed 3010:Categories 2962:Mark Adler 2920:Redundancy 2837:Daubechies 2820:Estimation 2753:Frame rate 2675:Daubechies 2635:Chain code 2594:Macroblock 2400:Companding 2337:Estimation 2257:Daubechies 1963:Lempel–Ziv 1923:Exp-Golomb 1851:Arithmetic 1733:2007-10-13 1708:2018-01-13 1683:2018-01-13 1658:2018-01-13 1555:13 October 1512:2019-09-20 1428:Rao, K. R. 1273:thumbnails 1254:decimation 1224:Other data 738:MPEG-4 SLS 713:SureStream 665:downsample 554:possible. 543:See also: 415:Comparison 407:and coded. 370:judgment. 360:estimation 319:, used in 281:discarding 80:multimedia 2939:Community 2763:Interlace 2149:Zstandard 1928:Fibonacci 1918:Universal 1876:Canonical 1452:149806273 1408:13 August 1230:thesaurus 1172:(used in 1166:(LD-CELP) 847:JPEG 2000 828:JPEG 2000 673:JPEG 2000 626:IrfanView 597:grayscale 405:quantized 390:quantized 368:aesthetic 297:luminance 234:H.264/AVC 228:(such as 214:K. R. Rao 199:bandwidth 125:bandwidth 75:in 1974. 73:K. R. Rao 2925:Symmetry 2893:Timeline 2876:FM-index 2721:Bit rate 2714:Concepts 2562:Concepts 2425:Sampling 2378:Bit rate 2371:Concepts 2073:Sequitur 1908:Tunstall 1881:Modified 1871:Adaptive 1829:Lossless 1626:Archived 1383:22347940 1283:See also 1110:Musepack 1092:(ADPCM) 832:wavelets 761:Graphics 645:ID3 tags 639:Metadata 608:Jpegjoin 578:Jpegcrop 570:exiftran 565:jpegtran 430:ABX test 421:lossless 357:Bayesian 325:scanline 315:such as 2883:Entropy 2832:Wavelet 2811:Motion 2670:Wavelet 2650:Fractal 2645:Deflate 2628:Methods 2415:Latency 2328:Motion 2252:Wavelet 2169:LHA/LZH 2119:Deflate 2068:Re-Pair 2063:Grammar 1893:Shannon 1866:Huffman 1822:methods 1764:at the 1648:DAR__KO 1602:14 July 1474:12 July 1374:3259360 1200:(MDCT) 1160:(RCELP) 1154:(ACELP) 1058:(AAC / 1046:(ATRAC) 1034:(MDCT) 1026:General 942:(H.262) 881:texture 813:, wide 807:JPEG XR 756:Methods 742:WavPack 725:mipmaps 593:flopped 589:flipped 585:cropped 446:Spotify 438:Netflix 187:signals 137:entropy 2994:codecs 2955:People 2858:Theory 2825:Vector 2342:Vector 2159:Brotli 2109:Hybrid 2008:Snappy 1861:Golomb 1450:  1381:  1371:  1211:(CELT) 1204:AAC-LD 1184:Codec2 1148:(CELP) 1136:(LPC) 1122:Speech 1066:Vorbis 1062:Audio) 1040:(AC-3) 975:Theora 960:MPEG-4 921:(DCT) 797:(HEIF) 780:(DCT) 748:, and 689:MPEG-2 679:based 633:plugin 591:, and 547:, and 388:, and 381:codecs 236:) and 189:, and 92:images 90:, and 82:data ( 2785:parts 2783:Codec 2748:Frame 2706:Video 2690:SPIHT 2599:Pixel 2554:Image 2508:ACELP 2479:ADPCM 2469:ÎĽ-law 2464:A-law 2457:parts 2455:Codec 2363:Audio 2302:ACELP 2290:ADPCM 2267:SPIHT 2208:Lossy 2192:bzip2 2183:LZHAM 2139:LZFSE 2041:Delta 1933:Gamma 1913:Unary 1888:Range 1727:(PDF) 1703:AVHub 1678:AVHub 1629:(PDF) 1622:(PDF) 1591:(PDF) 1542:(PDF) 1468:(PDF) 1448:S2CID 1335:Notes 1304:Lenna 1190:Speex 1142:(APC) 1106:(MP2) 1098:(MQA) 1052:(MP3) 1011:Audio 998:Dirac 950:H.263 925:H.261 903:Video 872:JBIG2 815:gamut 766:Image 651:, or 259:, an 115:Types 88:video 84:audio 2797:DPCM 2604:PSNR 2535:MDCT 2528:WLPC 2513:CELP 2474:DPCM 2322:WLPC 2307:CELP 2285:DPCM 2235:MDCT 2179:LZMA 2080:LDCT 2058:DPCM 2003:LZWL 1993:LZSS 1988:LZRW 1978:LZJB 1604:2019 1557:2019 1476:2019 1436:C-23 1410:2019 1379:PMID 1266:NASA 1215:Opus 1178:3GPP 1176:and 1082:Opus 1077:LDAC 1019:and 981:VC-1 911:and 897:glTF 878:S3TC 843:ICER 838:DjVu 789:WebP 784:JPEG 691:and 685:JPEG 653:Exif 574:Exif 558:JPEG 525:JPEG 486:The 440:and 362:and 321:NTSC 291:and 269:AIFF 244:and 232:and 230:MPEG 222:JPEG 98:and 2842:DWT 2792:DCT 2736:VBR 2731:CBR 2726:ABR 2685:EZW 2680:DWT 2665:RLE 2655:KLT 2640:DCT 2523:LSP 2518:LAR 2503:LPC 2496:FFT 2393:VBR 2388:CBR 2383:ABR 2317:LSP 2312:LAR 2297:LPC 2262:DWT 2247:FFT 2242:DST 2230:DCT 2129:LZS 2124:LZX 2100:RLE 2095:PPM 2090:PAQ 2085:MTF 2053:DMC 2031:CTW 2026:BWT 1998:LZW 1983:LZO 1973:LZ4 1968:842 1440:doi 1369:PMC 1361:doi 1174:GSM 1060:MP4 972:Ogg 853:PGF 752:). 711:' " 464:bit 399:In 377:In 317:YIQ 305:YUV 267:or 265:WAV 261:MP3 248:). 246:AAC 242:MP3 224:), 141:ZIP 46:or 38:In 3012:: 2660:LP 2491:FT 2484:DM 2036:CM 1701:. 1676:. 1646:. 1624:. 1593:. 1565:^ 1550:60 1548:. 1544:. 1521:^ 1505:. 1446:, 1434:, 1399:. 1377:. 1367:. 1355:. 1351:. 1240:. 744:, 727:, 704:. 647:, 635:. 478:. 448:. 182:, 111:. 86:, 42:, 2996:) 2992:( 1812:e 1805:t 1798:v 1736:. 1711:. 1686:. 1661:. 1606:. 1559:. 1515:. 1478:. 1442:: 1412:. 1385:. 1363:: 1357:2 1180:) 952:) 948:( 396:. 299:- 20:)

Index

Lossy data compression

information technology
data compression
lossless data compression
discrete cosine transform
Nasir Ahmed
K. R. Rao
multimedia
audio
video
images
streaming media
internet telephony
master lossless file
information loss
computer file
bandwidth
information theory
entropy
ZIP
visually lossless
diagnostically acceptable irreversible compression
Transform coding
transform coding
digital images
digital audio
signals
digital video
quantization

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑