Knowledge

Lunar orbit

Source 📝

352: 318: 396: 302: 407: 437: 27: 279: 1881: 678:
correct the orbit, most satellites released into low lunar orbits (under about 60 miles or 100 km) will eventually crash into the Moon. ... a number of 'frozen orbits' where a spacecraft can stay in a low lunar orbit indefinitely. They occur at four inclinations: 27°, 50°, 76°, and 86° — the last one being nearly over the lunar poles. The orbit of the relatively long-lived
168:) beneath the lunar surface caused by large impacting bodies at some remote time in the past. These anomalies are large enough to cause a lunar orbit to change significantly over the course of several days. They can cause a plumb bob to hang about a third of a degree off vertical, pointing toward the mascon, and increase the force of gravity by one-half percent. The 541:(LM) landed. The combined CSM/LM would first enter an elliptical orbit, nominally 170 nautical miles (310 km; 200 mi) by 60 nautical miles (110 km; 69 mi), which was then changed to a circular parking orbit of about 60 nautical miles (110 km; 69 mi). Orbital periods vary according to the sum of 516:
of 102.1 nautical miles (189.1 km; 117.5 mi). Then the orbit was circularized at around 170 nautical miles (310 km; 200 mi) to obtain suitable imagery. Five such spacecraft were launched over a period of thirteen months, all of which successfully mapped the Moon, primarily for the
172:
first manned landing mission employed the first attempt to correct for the perturbation effect (the frozen orbits were not known at that time). The parking orbit was "circularized" at 66 nautical miles (122 km; 76 mi) by 54 nautical miles (100 km; 62 mi), which was expected to
677:
Lunar mascons make most low lunar orbits unstable ... As a satellite passes 50 or 60 miles overhead, the mascons pull it forward, back, left, right, or down, the exact direction and magnitude of the tugging depends on the satellite's trajectory. Absent any periodic boosts from onboard rockets to
177:
with the CSM. But the effect was overestimated by a factor of two; at rendezvous, the orbit was calculated to be 63.2 nautical miles (117.0 km; 72.7 mi) by 56.8 nautical miles (105.2 km; 65.4 mi).
218:, and successfully completed its mission after one and a half years. PFS-2 was placed in a particularly unstable orbital inclination of 11°, and lasted only 35 days in orbit before crashing into the lunar surface. 927: 245:
extends to a radius of 60,000 km (37,000 mi), the gravity of Earth intervenes enough to make lunar orbits unstable at a distance of 690 km (430 mi).
686:
had an inclination of 28°, which turned out to be close to the inclination of one of the frozen orbits—but poor PFS-2 was cursed with an inclination of only 11°.
923: 699:
Konopliv, A. S.; Asmar, S. W.; Carranza, E.; Sjogren, W. L.; Yuan, D. N. (2001-03-01). "Recent Gravity Models as a Result of the Lunar Prospector Mission".
873: 764: 980: 464:, on January 4, 1959. It passed within 6,000 kilometres (3,200 nmi; 3,700 mi) of the Moon's surface, but did not achieve lunar orbit. 1039: 125:) is an orbit below 100 km (62 mi) altitude. These have a period of about 2 hours. They are of particular interest in the 549:, and for the CSM were about two hours. The LM began its landing sequence with a Descent Orbit Insertion (DOI) burn to lower their 211: 1758: 631: 561:
to save more of the LM fuel for its powered descent, by using the CSM's fuel to perform the DOI burn, and later raising its
557:
reaching heights of 20,000 feet (6.1 km; 3.3 nmi). After the second landing mission, the procedure was changed on
1818: 341: 426: 947: 410: 1013: 226:
For lunar orbits with altitudes in the 500 to 20,000 km (300 to 12,000 mi) range, the gravity of Earth leads to orbit
898: 497:, was launched on August 24, 1966, and studied lunar gravitational anomalies, radiation and solar wind measurements. 351: 1813: 1693: 1112: 1778: 1532: 795: 1851: 1490: 1481: 1218: 813:
The moon's Hill sphere has a radius of 60,000 kilometres, about one-sixth of the distance between it and Earth.
161: 660: 554: 534: 460:
sent the first spacecraft to the vicinity of the Moon (or any extraterrestrial object), the robotic vehicle
1798: 1268: 366: 356: 1743: 594: 306: 291: 479:
and returned to the Earth. This craft provided the first pictures of the far side of the Lunar surface.
1905: 1723: 1550: 160:
Gravitational anomalies slightly distorting the orbits of some Lunar Orbiters led to the discovery of
1861: 988: 951: 173:
become the nominal circular 60 nautical miles (110 km; 69 mi) when the LM made its return
1846: 1371: 589: 257: 227: 130: 1856: 1164: 816:
For mean distance and mass data for the bodies (for verification of the foregoing citation), see
272: 263:
Some halo orbits remain over particular regions of the lunar surface. These can be used by lunar
126: 819: 1718: 1320: 1240: 1228: 472: 469: 1047: 317: 1841: 1783: 1753: 1541: 1418: 1386: 1356: 1315: 1300: 1179: 331: 359:
trajectory around Earth. Using a direct transfer, it arrived on moon in four and a half days
1866: 1688: 1472: 1361: 1330: 1258: 1233: 1208: 1169: 1150: 1105: 847: 708: 476: 268: 742: 395: 194:: 27°, 50°, 76°, and 86°, in which a spacecraft can stay in a low orbit indefinitely. The 8: 1728: 1523: 1263: 538: 441: 414: 345: 215: 191: 1040:"CHAPTER IX: MISSIONS I, II, III: APOLLO SITE SEARCH AND VERIFICATION, The First Launch" 712: 1401: 1290: 1188: 981:"APPENDIX C [367-373] RECORD OF UNMANNED LUNAR PROBES, 1958-1968: Soviet Union" 294:, using as well a Lagrange point, have been used and are planned to be employed by the 235: 1768: 1666: 1596: 1351: 1305: 1223: 724: 627: 584: 301: 20: 1069: 1748: 1680: 1444: 1406: 1280: 1250: 1203: 800: 776: 716: 619: 505: 174: 252:
of the Earth-Moon system can provide stable orbits in the lunar vicinity, such as
1788: 1381: 1285: 1275: 1174: 1098: 501: 445: 406: 335: 275:. It was placed around Earth-Moon L2 at roughly 65,000 km (40,000 mi). 264: 214:, contributed to this discovery. PFS-1 ended up in a long-lasting orbit, at 28° 186:
Study of the mascons' effect on lunar spacecraft led to the discovery in 2001 of
112: 1017: 623: 436: 1884: 1836: 1828: 1823: 1708: 1703: 1634: 1614: 1605: 1198: 1184: 1160: 1155: 1130: 579: 574: 530: 518: 490: 249: 26: 955: 468:, launched on October 4, 1959, was the first robotic spacecraft to complete a 1899: 1738: 1733: 1652: 1295: 1213: 728: 399: 340:
There are three main ways to get to lunar orbit from Earth: direct transfer,
295: 231: 152: 30: 924:"Fifty Years Ago, This Photo Captured the First View of Earth From the Moon" 475:, still not a lunar orbit, but a figure-8 trajectory which swung around the 65:. In general these orbits are not circular. When farthest from the Moon (at 1803: 1713: 1587: 1570: 1428: 1325: 1193: 720: 457: 278: 187: 139: 98: 402:'s trajectory included multiple orbit raising maneuvers to get to the Moon 1808: 1643: 1413: 1310: 553:
to about 50,000 feet (15 km; 8.2 nmi), chosen to avoid hitting
242: 46: 444:(the Moon), and first picture of both Earth and the Moon from space, by 1376: 1090: 780: 253: 134: 309:) in cislunar space, as illustrated by A.I. Solutions, Inc. using the 1793: 1145: 679: 562: 558: 550: 546: 493:
flux, and lunar environment until May 30, 1966. A follow-on mission,
449: 310: 203: 195: 169: 82: 42: 34: 824: 542: 513: 287: 66: 865: 765:"Stable Constellations of Frozen Elliptical Inclined Lunar Orbits" 1698: 899:"45 Years Ago: How the 1st Photo of Earth From the Moon Happened" 509: 494: 482: 1046:. National Aeronautics and Space Administration. Archived from 987:. National Aeronautics and Space Administration. Archived from 614:
Woods, W.D. (2008). "Entering lunar orbit: the LOI manoeuvre".
465: 461: 282:
An example of a halo orbit at the second lunar lagrange point.
874:"It's International Moon Day! Let's talk about Cislunar Space" 618:. Space Exploration. Springer Praxis Books. pp. 189–210. 1503: 1122: 683: 512:
of 1,008 nautical miles (1,867 km; 1,160 mi) and a
348:. These take 3–4 days, months or 2.5–4 months respectively. 207: 199: 58: 698: 565:
back to a circular orbit after the LM had made its landing.
749: 486: 62: 871: 500:
The first United States spacecraft to orbit the Moon was
157:
Most lunar low orbits below 100 km (60 mi) are unstable.
1044:
DESTINATION MOON: A History of the Lunar Orbiter Program
985:
DESTINATION MOON: A History of the Lunar Orbiter Program
489:
and any extraterrestrial body in April 1966. It studied
735: 146: 133:
that make most unstable, and leave only a few orbital
420: 143:. These would be useful for long-term stays in LLO. 230:. At altitudes higher than that perturbed two-body 817: 537:(CSM) remained in a lunar parking orbit while the 485:became the first spacecraft to actually orbit the 840: 828:. Greenbelt, MD: NASA Goddard Space Flight Center 210:, both small satellites released from the Apollo 1897: 19:For the orbit of the Moon around the Earth, see 1076:. National Aeronautics and Space Administration 655: 653: 651: 649: 647: 645: 643: 1106: 793: 427:List of extraterrestrial orbiters § Moon 97:. These derive from names or epithets of the 524: 267:to communicate with surface stations on the 1016:. Encyclopedia Astronautica. Archived from 640: 504:on August 14, 1966. The first orbit was an 1880: 1113: 1099: 1007: 1005: 974: 972: 769:The Journal of the Astronautical Sciences 440:First image of Earth from around another 1120: 872:The Aerospace Corporation (2023-07-20). 435: 405: 394: 350: 316: 300: 277: 25: 1002: 941: 939: 937: 818:Williams, David R. (20 December 2021). 756: 1898: 1759:Transposition, docking, and extraction 969: 115:maneuver used to achieve lunar orbit. 1094: 1067: 1061: 1037: 978: 930:from the original on August 25, 2016. 916: 896: 613: 934: 271:. The first to do this was the 2019 221: 181: 762: 448:(not to be confused with the later 325: 147:Perturbation effects and low orbits 13: 421:History of missions to lunar orbit 16:Orbit of an object around the Moon 14: 1917: 1819:Kepler's laws of planetary motion 897:Stein, Ben P. (August 23, 2011). 848:"A New Paradigm for Lunar Orbits" 431: 321:Overview of NRHOs around the Moon 1879: 1814:Interplanetary Transport Network 1694:Collision avoidance (spacecraft) 1011: 945: 794:Follows, Mike (4 October 2017). 129:, but suffer from gravitational 69:) a spacecraft is said to be at 37:above the Moon in December 2022. 1779:Astronomical coordinate systems 1533:Longitude of the ascending node 1074:Apollo 11 Lunar Surface Journal 1031: 81:. When closest to the Moon (at 1852:Retrograde and prograde motion 1038:Byers, Bruce K. (1976-12-14). 979:Byers, Bruce K. (1976-12-14). 890: 787: 692: 607: 1: 1068:Jones, Eric M. (1976-12-14). 600: 305:Near-rectilinear halo orbit ( 1799:Equatorial coordinate system 517:purpose of finding suitable 367:Lunar Reconnaissance Orbiter 292:near-rectilinear halo orbits 234:models are insufficient and 61:by an object around Earth's 7: 624:10.1007/978-0-387-74066-9_8 616:How Apollo Flew to the Moon 595:Near-rectilinear halo orbit 568: 10: 1922: 1551:Longitude of the periapsis 743:"Apollo 11 Mission Report" 665:NASA Science: Science News 424: 329: 150: 18: 1875: 1862:Specific angular momentum 1767: 1679: 1623: 1559: 1512: 1452: 1443: 1339: 1249: 1138: 1129: 1070:"The First Lunar Landing" 952:Encyclopedia Astronautica 796:"Ever Decreasing Circles" 525:Crewed and later orbiters 258:distant retrograde orbits 590:Distant retrograde orbit 137:possible for indefinite 1857:Specific orbital energy 763:Ely, Todd (July 2005). 413:'s trajectory included 273:Queqiao relay satellite 127:exploration of the Moon 1269:Geostationary transfer 752:. pp. 4–3 to 4–4. 721:10.1006/icar.2000.6573 661:"Bizarre Lunar Orbits" 535:Command/Service Module 473:free return trajectory 453: 417: 403: 392: 322: 314: 283: 85:) it is said to be at 38: 1842:Orbital state vectors 1784:Characteristic energy 1754:Trans-lunar injection 1542:Argument of periapsis 1219:Prograde / Retrograde 1180:Hyperbolic trajectory 439: 425:Further information: 409: 398: 354: 332:Trans-lunar injection 320: 304: 281: 238:models are required. 151:Further information: 105:Lunar orbit insertion 29: 1689:Bi-elliptic transfer 1209:Parabolic trajectory 477:far side of the Moon 269:far side of the Moon 241:Although the Moon's 192:orbital inclinations 1729:Low-energy transfer 926:. August 23, 2016. 713:2001Icar..150....1K 442:astronomical object 415:low energy transfer 346:low-energy transfer 342:low thrust transfer 162:mass concentrations 55:selenocentric orbit 1724:Inclination change 1372:Distant retrograde 1020:on August 21, 2002 781:10.1007/BF03546355 667:. NASA. 2006-11-06 454: 418: 404: 393: 323: 315: 284: 190:occurring at four 39: 1906:Orbit of the Moon 1893: 1892: 1867:Two-line elements 1675: 1674: 1597:Eccentric anomaly 1439: 1438: 1306:Orbit of the Moon 1165:Highly elliptical 820:"Moon Fact Sheet" 633:978-0-387-71675-6 585:Orbital mechanics 222:Lunar high orbits 182:Stable low orbits 53:(also known as a 21:Orbit of the Moon 1913: 1883: 1882: 1824:Lagrangian point 1719:Hohmann transfer 1664: 1650: 1641: 1632: 1612: 1603: 1594: 1585: 1581: 1577: 1568: 1548: 1539: 1530: 1521: 1501: 1497: 1488: 1479: 1470: 1450: 1449: 1419:Heliosynchronous 1368:Lagrange points 1321:Transatmospheric 1136: 1135: 1115: 1108: 1101: 1092: 1091: 1085: 1084: 1082: 1081: 1065: 1059: 1058: 1056: 1055: 1035: 1029: 1028: 1026: 1025: 1009: 1000: 999: 997: 996: 976: 967: 966: 964: 963: 954:. Archived from 943: 932: 931: 920: 914: 913: 911: 909: 894: 888: 887: 885: 884: 869: 863: 862: 860: 859: 844: 838: 837: 835: 833: 815: 810: 808: 801:NewScientist.com 791: 785: 784: 760: 754: 753: 747: 739: 733: 732: 696: 690: 689: 673: 672: 657: 638: 637: 611: 506:elliptical orbit 391: 389: 380: 378: 369: 364: 326:Orbital transfer 265:relay satellites 1921: 1920: 1916: 1915: 1914: 1912: 1911: 1910: 1896: 1895: 1894: 1889: 1871: 1789:Escape velocity 1770: 1763: 1744:Rocket equation 1671: 1663: 1657: 1648: 1639: 1630: 1619: 1610: 1601: 1592: 1583: 1579: 1575: 1566: 1555: 1546: 1537: 1528: 1519: 1508: 1499: 1495: 1491:Semi-minor axis 1486: 1482:Semi-major axis 1477: 1468: 1462: 1435: 1357:Areosynchronous 1341: 1335: 1316:Sun-synchronous 1301:Near-equatorial 1245: 1125: 1119: 1089: 1088: 1079: 1077: 1066: 1062: 1053: 1051: 1036: 1032: 1023: 1021: 1014:"Lunar Orbiter" 1010: 1003: 994: 992: 977: 970: 961: 959: 944: 935: 922: 921: 917: 907: 905: 895: 891: 882: 880: 870: 866: 857: 855: 846: 845: 841: 831: 829: 806: 804: 792: 788: 761: 757: 745: 741: 740: 736: 697: 693: 670: 668: 659: 658: 641: 634: 612: 608: 603: 571: 555:lunar mountains 527: 521:landing sites. 502:Lunar Orbiter 1 446:Lunar Orbiter 1 434: 429: 423: 387: 386: 376: 375: 362: 361: 360: 338: 336:orbit insertion 330:Main articles: 328: 250:Lagrange points 224: 184: 155: 149: 119:Low lunar orbit 113:orbit insertion 24: 17: 12: 11: 5: 1919: 1909: 1908: 1891: 1890: 1888: 1887: 1885:List of orbits 1876: 1873: 1872: 1870: 1869: 1864: 1859: 1854: 1849: 1844: 1839: 1837:Orbit equation 1834: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1781: 1775: 1773: 1765: 1764: 1762: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1709:Gravity assist 1706: 1704:Delta-v budget 1701: 1696: 1691: 1685: 1683: 1677: 1676: 1673: 1672: 1670: 1669: 1661: 1655: 1646: 1637: 1635:Orbital period 1627: 1625: 1621: 1620: 1618: 1617: 1615:True longitude 1608: 1606:Mean longitude 1599: 1590: 1573: 1563: 1561: 1557: 1556: 1554: 1553: 1544: 1535: 1526: 1516: 1514: 1510: 1509: 1507: 1506: 1493: 1484: 1475: 1465: 1463: 1461: 1460: 1457: 1453: 1447: 1441: 1440: 1437: 1436: 1434: 1433: 1432: 1431: 1423: 1422: 1421: 1416: 1411: 1410: 1409: 1396: 1391: 1390: 1389: 1384: 1379: 1374: 1366: 1365: 1364: 1362:Areostationary 1359: 1354: 1345: 1343: 1337: 1336: 1334: 1333: 1331:Very low Earth 1328: 1323: 1318: 1313: 1308: 1303: 1298: 1293: 1288: 1283: 1278: 1273: 1272: 1271: 1266: 1259:Geosynchronous 1255: 1253: 1247: 1246: 1244: 1243: 1241:Transfer orbit 1238: 1237: 1236: 1231: 1221: 1216: 1211: 1206: 1201: 1199:Lagrange point 1196: 1191: 1182: 1177: 1172: 1167: 1158: 1153: 1148: 1142: 1140: 1133: 1127: 1126: 1121:Gravitational 1118: 1117: 1110: 1103: 1095: 1087: 1086: 1060: 1030: 1001: 968: 933: 915: 889: 864: 839: 786: 775:(3): 301–316. 755: 734: 691: 639: 632: 605: 604: 602: 599: 598: 597: 592: 587: 582: 580:List of orbits 577: 575:Cislunar space 570: 567: 531:Apollo program 526: 523: 519:Apollo program 491:micrometeoroid 433: 432:First orbiters 430: 422: 419: 327: 324: 223: 220: 212:Service Module 183: 180: 148: 145: 15: 9: 6: 4: 3: 2: 1918: 1907: 1904: 1903: 1901: 1886: 1878: 1877: 1874: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1832:-body problem 1831: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1776: 1774: 1772: 1766: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1734:Oberth effect 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1686: 1684: 1682: 1678: 1668: 1660: 1656: 1654: 1653:Orbital speed 1647: 1645: 1638: 1636: 1629: 1628: 1626: 1622: 1616: 1609: 1607: 1600: 1598: 1591: 1589: 1574: 1572: 1565: 1564: 1562: 1558: 1552: 1545: 1543: 1536: 1534: 1527: 1525: 1518: 1517: 1515: 1511: 1505: 1494: 1492: 1485: 1483: 1476: 1474: 1467: 1466: 1464: 1458: 1455: 1454: 1451: 1448: 1446: 1442: 1430: 1427: 1426: 1424: 1420: 1417: 1415: 1412: 1408: 1407:Earth's orbit 1405: 1404: 1403: 1400: 1399: 1397: 1395: 1392: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1369: 1367: 1363: 1360: 1358: 1355: 1353: 1350: 1349: 1347: 1346: 1344: 1338: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1270: 1267: 1265: 1264:Geostationary 1262: 1261: 1260: 1257: 1256: 1254: 1252: 1248: 1242: 1239: 1235: 1232: 1230: 1227: 1226: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1166: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1143: 1141: 1137: 1134: 1132: 1128: 1124: 1116: 1111: 1109: 1104: 1102: 1097: 1096: 1093: 1075: 1071: 1064: 1050:on 2020-09-27 1049: 1045: 1041: 1034: 1019: 1015: 1008: 1006: 991:on 2021-01-26 990: 986: 982: 975: 973: 958:on 2012-01-11 957: 953: 949: 942: 940: 938: 929: 925: 919: 904: 900: 893: 879: 875: 868: 853: 849: 843: 827: 826: 821: 814: 803: 802: 797: 790: 782: 778: 774: 770: 766: 759: 751: 744: 738: 730: 726: 722: 718: 714: 710: 706: 702: 695: 688: 687: 685: 682:subsatellite 681: 666: 662: 656: 654: 652: 650: 648: 646: 644: 635: 629: 625: 621: 617: 610: 606: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 572: 566: 564: 560: 556: 552: 548: 544: 540: 536: 532: 522: 520: 515: 511: 507: 503: 498: 496: 492: 488: 484: 480: 478: 474: 471: 467: 463: 459: 451: 447: 443: 438: 428: 416: 412: 408: 401: 400:Chandrayaan-3 397: 384: 373: 368: 358: 355:Animation of 353: 349: 347: 343: 337: 333: 319: 312: 308: 303: 299: 297: 296:Lunar Gateway 293: 289: 280: 276: 274: 270: 266: 261: 259: 255: 251: 246: 244: 239: 237: 233: 232:astrodynamics 229: 228:perturbations 219: 217: 213: 209: 206:subsatellite 205: 201: 198:subsatellite 197: 193: 189: 188:frozen orbits 179: 176: 171: 167: 163: 158: 154: 153:Lunar mascons 144: 142: 141: 140:frozen orbits 136: 132: 131:perturbations 128: 124: 120: 116: 114: 110: 106: 102: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 36: 32: 31:Orion capsule 28: 22: 1847:Perturbation 1829: 1804:Ground track 1714:Gravity turn 1665:   1658: 1651:   1642:   1633:   1613:   1604:   1595:   1588:True anomaly 1586:   1571:Mean anomaly 1569:   1549:   1540:   1531:   1522:   1502:   1489:   1480:   1473:Eccentricity 1471:   1429:Lunar cycler 1402:Heliocentric 1393: 1342:other points 1291:Medium Earth 1189:Non-inclined 1078:. Retrieved 1073: 1063: 1052:. Retrieved 1048:the original 1043: 1033: 1022:. Retrieved 1018:the original 1012:Wade, Mark. 993:. Retrieved 989:the original 984: 960:. Retrieved 956:the original 946:Wade, Mark. 918: 906:. Retrieved 902: 892: 881:. Retrieved 877: 867: 856:. Retrieved 854:. 2006-12-01 851: 842: 830:. Retrieved 823: 812: 805:. Retrieved 799: 789: 772: 768: 758: 737: 704: 700: 694: 676: 675: 669:. Retrieved 664: 615: 609: 539:Lunar Module 528: 499: 481: 458:Soviet Union 455: 382: 371: 339: 286:Since 2022 ( 285: 262: 247: 240: 225: 185: 165: 159: 156: 138: 135:trajectories 122: 118: 117: 108: 104: 103: 99:moon goddess 94: 91:pericynthion 90: 86: 78: 74: 70: 54: 50: 40: 1809:Hill sphere 1644:Mean motion 1524:Inclination 1513:Orientation 1414:Mars cycler 1352:Areocentric 1224:Synchronous 707:(1): 1–18. 470:circumlunar 379: Earth 254:halo orbits 243:Hill sphere 216:inclination 75:apocynthion 51:lunar orbit 47:spaceflight 1749:Rendezvous 1445:Parameters 1281:High Earth 1251:Geocentric 1204:Osculating 1161:Elliptical 1080:2014-11-09 1054:2007-02-17 1024:2007-02-17 995:2007-02-17 962:2007-02-17 908:October 7, 883:2023-11-07 858:2023-11-05 671:2012-12-09 601:References 508:, with an 390: Moon 236:three-body 175:rendezvous 95:periselene 1794:Ephemeris 1771:mechanics 1681:Maneuvers 1624:Variation 1387:Libration 1382:Lissajous 1286:Low Earth 1276:Graveyard 1175:Horseshoe 903:Space.com 729:0019-1035 680:Apollo 15 563:periapsis 559:Apollo 14 551:periapsis 547:periapsis 450:Earthrise 313:software. 311:FreeFlyer 204:Apollo 16 196:Apollo 15 170:Apollo 11 83:periapsis 79:aposelene 43:astronomy 35:Artemis 1 1900:Category 1560:Position 1185:Inclined 1156:Circular 928:Archived 852:Phys.org 825:NASA.gov 569:See also 543:apoapsis 514:perilune 452:image). 288:CAPSTONE 202:and the 164:(dubbed 111:) is an 87:perilune 67:apoapsis 57:) is an 1769:Orbital 1739:Phasing 1699:Delta-v 1504:Apsides 1498:,  1296:Molniya 1214:Parking 1151:Capture 1139:General 832:23 July 807:23 July 709:Bibcode 510:apolune 495:Luna 11 483:Luna 10 166:mascons 71:apolune 1425:Other 1326:Tundra 1194:Kepler 1170:Escape 1123:orbits 948:"Luna" 878:Medium 727:  701:Icarus 630:  466:Luna 3 462:Luna 1 388:  383:· 381:  377:  372:· 370:  365:  363:  1667:Epoch 1456:Shape 1394:Lunar 1348:Mars 1340:About 1311:Polar 1131:Types 746:(PDF) 684:PFS-1 385: 374: 208:PFS-2 200:PFS-1 93:, or 77:, or 59:orbit 1459:Size 1398:Sun 1377:Halo 1229:semi 910:2020 834:2023 809:2023 750:NASA 725:ISSN 628:ISBN 545:and 529:The 487:Moon 456:The 411:SLIM 344:and 334:and 307:NRHO 256:and 248:The 63:Moon 49:, a 45:and 1234:sub 1146:Box 777:doi 717:doi 705:150 620:doi 533:'s 357:LRO 123:LLO 109:LOI 41:In 33:of 1902:: 1582:, 1578:, 1187:/ 1163:/ 1072:. 1042:. 1004:^ 983:. 971:^ 950:. 936:^ 901:. 876:. 850:. 822:. 811:. 798:. 773:53 771:. 767:. 748:. 723:. 715:. 703:. 674:. 663:. 642:^ 626:. 298:. 290:) 260:. 101:. 89:, 73:, 1830:n 1662:0 1659:t 1649:v 1640:n 1631:T 1611:l 1602:L 1593:E 1584:f 1580:θ 1576:ν 1567:M 1547:ϖ 1538:ω 1529:Ω 1520:i 1500:q 1496:Q 1487:b 1478:a 1469:e 1114:e 1107:t 1100:v 1083:. 1057:. 1027:. 998:. 965:. 912:. 886:. 861:. 836:. 783:. 779:: 731:. 719:: 711:: 636:. 622:: 121:( 107:( 23:.

Index

Orbit of the Moon

Orion capsule
Artemis 1
astronomy
spaceflight
orbit
Moon
apoapsis
periapsis
moon goddess
orbit insertion
exploration of the Moon
perturbations
trajectories
frozen orbits
Lunar mascons
mass concentrations
Apollo 11
rendezvous
frozen orbits
orbital inclinations
Apollo 15
PFS-1
Apollo 16
PFS-2
Service Module
inclination
perturbations
astrodynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.