Knowledge

Luttinger liquid

Source đź“ť

654: 31: 667: 1115: 1198:
There is no 'quasiparticle peak' in the momentum-dependent spectral function (i.e. no peak whose width becomes much smaller than the excitation energy above the Fermi level, as is the case for the Fermi liquid). Instead, there is a power-law singularity, with a 'non-universal' exponent that depends
1243:
At small temperatures, the scattering of these Friedel oscillations becomes so efficient that the effective strength of the impurity is renormalized to infinity, 'pinching off' the quantum wire. More precisely, the conductance becomes zero as temperature and transport voltage go to zero (and rises
1679:
Ishii, H; Kataura, H; Shiozawa, H; Yoshioka, H; Otsubo, H; Takayama, Y; Miyahara, T; Suzuki, S; Achiba, Y; Nakatake, M; Narimura, T; Higashiguchi, M; Shimada, K; Namatame, H; Taniguchi, M (4 December 2003). "Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low
944: 754:
reformulated the theory in terms of Bloch sound waves and showed that the constraints proposed by Tomonaga were unnecessary in order to treat the second-order perturbations as bosons. But his solution of the model was incorrect; the correct solution was given by
1255:
The Luttinger model is thought to describe the universal low-frequency/long-wavelength behaviour of any one-dimensional system of interacting fermions (that has not undergone a phase transition into some other state).
917: 1161:
Likewise, there are spin density waves (whose velocity, to lowest approximation, is equal to the unperturbed Fermi velocity). These propagate independently from the charge density waves. This fact is known as
846: 1154:" - or charge density waves) propagating at a velocity that is determined by the strength of the interaction and the average density. For a non-interacting system, this wave velocity is equal to the 1110:{\displaystyle H=\sum _{k=k_{\rm {F}}-\Lambda }^{k_{\rm {F}}+\Lambda }v_{\rm {F}}k\left(c_{k}^{\mathrm {R} \dagger }c_{k}^{\mathrm {R} }-c_{k}^{\mathrm {L} \dagger }c_{k}^{\mathrm {L} }\right)} 1195:
Even at zero temperature, the particles' momentum distribution function does not display a sharp jump, in contrast to the Fermi liquid (where this jump indicates the Fermi surface).
1238: 937: 1184:), and most of the work consists in transforming back to obtain the properties of the particles themselves (or treating impurities and other situations where ' 1180:
of the Fermi liquid (which carry both spin and charge). The mathematical description becomes very simple in terms of these waves (solving the one-dimensional
750:
in 1950. The model showed that under certain constraints, second-order interactions between electrons could be modelled as bosonic interactions. In 1963,
756: 698: 1569:
Blumenstein, C.; Schäfer, J.; Mietke, S.; Meyer, S.; Dollinger, A.; Lochner, M.; Cui, X. Y.; Patthey, L.; Matzdorf, R.; Claessen, R. (October 2011).
1314: 783: 853: 1130:
can then be used to predict spin-charge separation. Electron-electron interactions can be treated to calculate correlation functions.
778:
Luttinger liquid theory describes low energy excitations in a 1D electron gas as bosons. Starting with the free electron Hamiltonian:
1805: 1240:. However, in contrast to the Fermi liquid, their decay at large distances is governed by yet another interaction-dependent exponent. 691: 1643: 1379: 1264:
Attempts to demonstrate Luttinger-liquid-like behaviour in those systems are the subject of ongoing experimental research in
1119:
Expressions for bosons in terms of fermions are used to represent the Hamiltonian as a product of two boson operators in a
1489:
Mattis, Daniel C.; Lieb, Elliott H. (1965). "Exact Solution of a Many-Fermion System and Its Associated Boson Field".
1837: 1147: 684: 671: 1328: 1247:
Likewise, the tunneling rate into a Luttinger liquid is suppressed to zero at low voltages and temperatures, as a
653: 1832: 1301: 436: 1827: 1280: 611: 91: 1321: 616: 241: 1409: 1311:
electrons hopping along one-dimensional chains of molecules (e.g. certain organic molecular crystals)
1120: 850:
is separated into left and right moving electrons and undergoes linearization with the approximation
506: 181: 1665: 1401: 1449: 1265: 1213: 751: 501: 496: 22: 586: 1288: 191: 596: 1163: 581: 521: 491: 441: 161: 51: 922: 621: 236: 221: 1412:(1 June 1950). "Remarks on Bloch's Method of Sound Waves applied to Many-Fermion Problems". 1689: 1623: 1582: 1535: 1498: 1461: 1421: 1359: 728: 211: 101: 1324:(the Luttinger liquid model also works for integer spins in a large enough magnetic field) 8: 1305: 1203: 451: 261: 111: 1693: 1627: 1586: 1539: 1502: 1465: 1425: 1363: 1158:, while it is higher (lower) for repulsive (attractive) interactions among the fermions. 1784: 1766: 1713: 1653: 1526:
Haldane, F.D.M. (1981). "'Luttinger liquid theory' of one-dimensional quantum fluids".
1389: 747: 631: 591: 566: 314: 305: 1547: 1705: 1639: 1600: 1514: 1477: 1437: 1375: 1244:
like a power law in voltage and temperature, with an interaction-dependent exponent).
561: 406: 296: 216: 1788: 1776: 1717: 1697: 1631: 1590: 1543: 1506: 1469: 1429: 1367: 1169: 761: 266: 231: 226: 186: 156: 86: 46: 1295: 767: 736: 576: 526: 396: 151: 63: 1271:
Among the physical systems believed to be described by the Luttinger model are:
16:
Theoretical model describing interacting fermions in a one-dimensional conductor
1780: 1635: 1279:' (one-dimensional strips of electrons) defined by applying gate voltages to a 1185: 1173: 1155: 1143: 658: 626: 606: 601: 556: 476: 411: 309: 196: 41: 1811: 1732: 1821: 1604: 1518: 1481: 1441: 1181: 1177: 337: 318: 300: 201: 121: 531: 1709: 1341: 1276: 1189: 1127: 740: 732: 551: 541: 511: 471: 466: 446: 291: 271: 131: 1571:"Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid" 1433: 1284: 1176:
waves are the elementary excitations of the Luttinger liquid, unlike the
636: 571: 546: 516: 461: 456: 388: 30: 1701: 1207: 481: 323: 116: 1620:
Exact solution of a many-fermion system and its associated boson field
1595: 1570: 1510: 1473: 1248: 1138:
Among the hallmark features of a Luttinger liquid are the following:
536: 486: 359: 206: 106: 912:{\displaystyle \epsilon _{k}\approx \pm v_{\rm {F}}(k-k_{\rm {F}})} 720: 96: 1771: 1358:. Series on Directions in Condensed Matter Physics. Vol. 20. 1371: 1151: 724: 416: 401: 364: 355: 350: 1308:
although the latter is often considered a more trivial example.
369: 345: 76: 1568: 1452:(1963). "An Exactly Soluble Model of a Many-Fermion System". 841:{\displaystyle H=\sum _{k}\epsilon _{k}c_{k}^{\dagger }c_{k}} 374: 71: 1678: 1730: 1356:
Luttinger Model: The First 50 Years and Some New Directions
81: 1320:
a 1D 'chain' of half-odd-integer spins described by the
746:
The Tomonaga–Luttinger's liquid was first proposed by
1216: 947: 925: 856: 786: 1731:
Chudzinski, P.; Jarlborg, T.; Giamarchi, T. (2012).
1618:
Mattis, Daniel C.; Lieb, Elliot H. (February 1965).
1150:) density to some external perturbation are waves (" 1353: 1232: 1109: 931: 911: 840: 739:). Such a model is necessary as the commonly used 1819: 719:, is a theoretical model describing interacting 1354:Mastropietro, Vieri; Mattis, Daniel C. (2013). 1420:(4). Oxford University Press (OUP): 544–569. 692: 1733:"Luttinger-liquid theory of purple bronze 1617: 1488: 1300:electrons moving along edge states in the 699: 685: 29: 1770: 1594: 1448: 1408: 1525: 1202:Around impurities, there are the usual 1820: 1317:in quasi-one-dimensional atomic traps 743:model breaks down for one dimension. 1724: 1259: 13: 1096: 1076: 1056: 1036: 1011: 1000: 991: 980: 971: 926: 900: 879: 14: 1849: 1799: 1622:. Vol. 6. pp. 98–106. 1460:(9). AIP Publishing: 1154–1162. 1329:Lithium molybdenum purple bronze 666: 665: 652: 1808:(Stuttgart University, Germany) 1491:Journal of Mathematical Physics 1454:Journal of Mathematical Physics 1414:Progress of Theoretical Physics 1347: 1672: 1611: 1562: 1497:(2). AIP Publishing: 304–312. 1302:fractional Quantum Hall Effect 906: 885: 1: 1555: 1233:{\displaystyle 2k_{\text{F}}} 1528:J. Phys. C: Solid State Phys 1281:two-dimensional electron gas 1206:in the charge density, at a 1199:on the interaction strength. 7: 1548:10.1088/0022-3719/14/19/010 1335: 1133: 10: 1854: 1781:10.1103/PhysRevB.86.075147 1636:10.1142/9789812812650_0008 242:Spin gapless semiconductor 1121:Bogoliubov transformation 773: 717:Tomonaga–Luttinger liquid 182:Electronic band structure 1838:Condensed matter physics 1266:condensed matter physics 932:{\displaystyle \Lambda } 92:Bose–Einstein condensate 23:Condensed matter physics 1192:for one technique used. 727:) in a one-dimensional 1234: 1188:' is important). See 1164:spin-charge separation 1111: 1004: 933: 913: 842: 1833:Statistical mechanics 1814:(FreeScience Library) 1755:in the charge regime" 1283:, or by other means ( 1235: 1112: 954: 934: 914: 843: 237:Topological insulator 1214: 1204:Friedel oscillations 1142:The response of the 945: 923: 854: 784: 255:Electronic phenomena 102:Fermionic condensate 1828:Theoretical physics 1702:10.1038/nature02074 1694:2003Natur.426..540I 1628:1994boso.book...98M 1587:2011NatPh...7..776B 1540:1981JPhC...14.2585H 1503:1965JMP.....6..304M 1466:1963JMP.....4.1154L 1434:10.1143/ptp/5.4.544 1426:1950PThPh...5..544T 1364:2013SDCMP..20.....M 1306:Quantum Hall Effect 1101: 1084: 1061: 1044: 827: 262:Quantum Hall effect 1806:Short introduction 1230: 1107: 1085: 1065: 1045: 1025: 929: 909: 838: 813: 802: 748:Sin-Itiro Tomonaga 659:Physics portal 1759:Physical Review B 1688:(6966): 540–544. 1645:978-981-02-1847-8 1596:10.1038/nphys2051 1534:(19): 2585–2609. 1511:10.1063/1.1704281 1474:10.1063/1.1704046 1381:978-981-4520-71-3 1227: 793: 709: 708: 407:Granular material 175:Electronic phases 1845: 1793: 1792: 1774: 1754: 1752: 1751: 1743: 1742: 1728: 1722: 1721: 1676: 1670: 1669: 1663: 1659: 1657: 1649: 1615: 1609: 1608: 1598: 1566: 1551: 1522: 1485: 1450:Luttinger, J. M. 1445: 1405: 1399: 1395: 1393: 1385: 1322:Heisenberg model 1296:carbon nanotubes 1260:Physical systems 1239: 1237: 1236: 1231: 1229: 1228: 1225: 1116: 1114: 1113: 1108: 1106: 1102: 1100: 1099: 1093: 1083: 1079: 1073: 1060: 1059: 1053: 1043: 1039: 1033: 1016: 1015: 1014: 1003: 996: 995: 994: 983: 976: 975: 974: 938: 936: 935: 930: 918: 916: 915: 910: 905: 904: 903: 884: 883: 882: 866: 865: 847: 845: 844: 839: 837: 836: 826: 821: 812: 811: 801: 765: 757:Daniel C. Mattis 737:carbon nanotubes 713:Luttinger liquid 701: 694: 687: 674: 669: 668: 661: 657: 656: 267:Spin Hall effect 157:Phase transition 127:Luttinger liquid 64:States of matter 47:Phase transition 33: 19: 18: 1853: 1852: 1848: 1847: 1846: 1844: 1843: 1842: 1818: 1817: 1802: 1797: 1796: 1750: 1747: 1746: 1745: 1741: 1738: 1737: 1736: 1734: 1729: 1725: 1680:temperatures". 1677: 1673: 1661: 1660: 1651: 1650: 1646: 1616: 1612: 1581:(10): 776–780. 1567: 1563: 1558: 1410:Tomonaga, S.-i. 1397: 1396: 1387: 1386: 1382: 1350: 1338: 1315:fermionic atoms 1262: 1224: 1220: 1215: 1212: 1211: 1136: 1095: 1094: 1089: 1075: 1074: 1069: 1055: 1054: 1049: 1035: 1034: 1029: 1024: 1020: 1010: 1009: 1005: 990: 989: 985: 984: 970: 969: 965: 958: 946: 943: 942: 924: 921: 920: 919:over the range 899: 898: 894: 878: 877: 873: 861: 857: 855: 852: 851: 832: 828: 822: 817: 807: 803: 797: 785: 782: 781: 776: 759: 705: 664: 651: 650: 643: 642: 641: 431: 423: 422: 421: 397:Amorphous solid 391: 381: 380: 379: 358: 340: 330: 329: 328: 317: 315:Antiferromagnet 308: 306:Superparamagnet 299: 286: 285:Magnetic phases 278: 277: 276: 256: 248: 247: 246: 176: 168: 167: 166: 152:Order parameter 146: 145:Phase phenomena 138: 137: 136: 66: 56: 17: 12: 11: 5: 1851: 1841: 1840: 1835: 1830: 1816: 1815: 1809: 1801: 1800:External links 1798: 1795: 1794: 1748: 1739: 1723: 1671: 1662:|journal= 1644: 1610: 1575:Nature Physics 1560: 1559: 1557: 1554: 1553: 1552: 1523: 1486: 1446: 1406: 1398:|journal= 1380: 1349: 1346: 1345: 1344: 1337: 1334: 1333: 1332: 1325: 1318: 1312: 1309: 1298: 1292: 1261: 1258: 1253: 1252: 1245: 1241: 1223: 1219: 1200: 1196: 1193: 1186:backscattering 1178:quasiparticles 1167: 1159: 1156:Fermi velocity 1135: 1132: 1126:The completed 1105: 1098: 1092: 1088: 1082: 1078: 1072: 1068: 1064: 1058: 1052: 1048: 1042: 1038: 1032: 1028: 1023: 1019: 1013: 1008: 1002: 999: 993: 988: 982: 979: 973: 968: 964: 961: 957: 953: 950: 928: 908: 902: 897: 893: 890: 887: 881: 876: 872: 869: 864: 860: 835: 831: 825: 820: 816: 810: 806: 800: 796: 792: 789: 775: 772: 768:Elliot H. Lieb 752:J.M. Luttinger 707: 706: 704: 703: 696: 689: 681: 678: 677: 676: 675: 662: 645: 644: 640: 639: 634: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 574: 569: 564: 559: 554: 549: 544: 539: 534: 529: 524: 519: 514: 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 459: 454: 449: 444: 439: 433: 432: 429: 428: 425: 424: 420: 419: 414: 412:Liquid crystal 409: 404: 399: 393: 392: 387: 386: 383: 382: 378: 377: 372: 367: 362: 353: 348: 342: 341: 338:Quasiparticles 336: 335: 332: 331: 327: 326: 321: 312: 303: 297:Superdiamagnet 294: 288: 287: 284: 283: 280: 279: 275: 274: 269: 264: 258: 257: 254: 253: 250: 249: 245: 244: 239: 234: 229: 224: 222:Thermoelectric 219: 217:Superconductor 214: 209: 204: 199: 197:Mott insulator 194: 189: 184: 178: 177: 174: 173: 170: 169: 165: 164: 159: 154: 148: 147: 144: 143: 140: 139: 135: 134: 129: 124: 119: 114: 109: 104: 99: 94: 89: 84: 79: 74: 68: 67: 62: 61: 58: 57: 55: 54: 49: 44: 38: 35: 34: 26: 25: 15: 9: 6: 4: 3: 2: 1850: 1839: 1836: 1834: 1831: 1829: 1826: 1825: 1823: 1813: 1812:List of books 1810: 1807: 1804: 1803: 1790: 1786: 1782: 1778: 1773: 1768: 1765:(7): 075147. 1764: 1760: 1756: 1727: 1719: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1675: 1667: 1655: 1647: 1641: 1637: 1633: 1629: 1625: 1621: 1614: 1606: 1602: 1597: 1592: 1588: 1584: 1580: 1576: 1572: 1565: 1561: 1549: 1545: 1541: 1537: 1533: 1529: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1487: 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1391: 1383: 1377: 1373: 1369: 1365: 1361: 1357: 1352: 1351: 1343: 1340: 1339: 1330: 1327:electrons in 1326: 1323: 1319: 1316: 1313: 1310: 1307: 1303: 1299: 1297: 1294:electrons in 1293: 1290: 1286: 1282: 1278: 1277:quantum wires 1274: 1273: 1272: 1269: 1267: 1257: 1250: 1246: 1242: 1221: 1217: 1209: 1205: 1201: 1197: 1194: 1191: 1187: 1183: 1182:wave equation 1179: 1175: 1171: 1168: 1165: 1160: 1157: 1153: 1149: 1145: 1141: 1140: 1139: 1131: 1129: 1124: 1122: 1117: 1103: 1090: 1086: 1080: 1070: 1066: 1062: 1050: 1046: 1040: 1030: 1026: 1021: 1017: 1006: 997: 986: 977: 966: 962: 959: 955: 951: 948: 940: 895: 891: 888: 874: 870: 867: 862: 858: 848: 833: 829: 823: 818: 814: 808: 804: 798: 794: 790: 787: 779: 771: 769: 763: 758: 753: 749: 744: 742: 738: 734: 733:quantum wires 730: 726: 722: 718: 714: 702: 697: 695: 690: 688: 683: 682: 680: 679: 673: 663: 660: 655: 649: 648: 647: 646: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 437:Van der Waals 435: 434: 427: 426: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 394: 390: 385: 384: 376: 373: 371: 368: 366: 363: 361: 357: 354: 352: 349: 347: 344: 343: 339: 334: 333: 325: 322: 320: 316: 313: 311: 307: 304: 302: 298: 295: 293: 290: 289: 282: 281: 273: 270: 268: 265: 263: 260: 259: 252: 251: 243: 240: 238: 235: 233: 232:Ferroelectric 230: 228: 227:Piezoelectric 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 202:Semiconductor 200: 198: 195: 193: 190: 188: 185: 183: 180: 179: 172: 171: 163: 160: 158: 155: 153: 150: 149: 142: 141: 133: 130: 128: 125: 123: 122:Superfluidity 120: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 69: 65: 60: 59: 53: 50: 48: 45: 43: 40: 39: 37: 36: 32: 28: 27: 24: 21: 20: 1762: 1758: 1726: 1685: 1681: 1674: 1619: 1613: 1578: 1574: 1564: 1531: 1527: 1494: 1490: 1457: 1453: 1417: 1413: 1372:10.1142/8875 1355: 1348:Bibliography 1342:Fermi liquid 1275:artificial ' 1270: 1263: 1254: 1190:bosonization 1137: 1128:bosonization 1125: 1118: 941: 849: 780: 777: 745: 741:Fermi liquid 716: 712: 710: 567:von Klitzing 272:Kondo effect 132:Time crystal 126: 112:Fermi liquid 1304:or integer 1285:lithography 760: [ 389:Soft matter 310:Ferromagnet 1822:Categories 1556:References 1208:wavevector 723:(or other 532:Louis NĂ©el 522:Schrieffer 430:Scientists 324:Spin glass 319:Metamagnet 301:Paramagnet 117:Supersolid 1772:1205.0239 1664:ignored ( 1654:cite book 1605:1745-2473 1519:0022-2488 1482:0022-2488 1442:0033-068X 1400:ignored ( 1390:cite book 1249:power law 1081:† 1063:− 1041:† 1001:Λ 981:Λ 978:− 956:∑ 927:Λ 892:− 871:± 868:≈ 859:ϵ 824:† 805:ϵ 795:∑ 729:conductor 721:electrons 632:Wetterich 612:Abrikosov 527:Josephson 497:Van Vleck 487:Luttinger 360:Polariton 292:Diamagnet 212:Conductor 207:Semimetal 192:Insulator 107:Fermi gas 1789:53396531 1710:14654836 1336:See also 1152:plasmons 1148:particle 1134:Features 735:such as 725:fermions 672:Category 617:Ginzburg 592:Laughlin 552:Kadanoff 507:Shockley 492:Anderson 447:von Laue 97:Bose gas 1718:4395337 1690:Bibcode 1624:Bibcode 1583:Bibcode 1536:Bibcode 1499:Bibcode 1462:Bibcode 1422:Bibcode 1360:Bibcode 1291:, etc.) 622:Leggett 597:Störmer 582:Bednorz 542:Giaever 512:Bardeen 502:Hubbard 477:Peierls 467:Onsager 417:Polymer 402:Colloid 365:Polaron 356:Plasmon 351:Exciton 1787:  1716:  1708:  1682:Nature 1642:  1603:  1517:  1480:  1440:  1378:  1170:Charge 1144:charge 774:Theory 770:1965. 731:(e.g. 670:  637:Perdew 627:Parisi 587:MĂĽller 577:Rohrer 572:Binnig 562:Wilson 557:Fisher 517:Cooper 482:Landau 370:Magnon 346:Phonon 187:Plasma 87:Plasma 77:Liquid 42:Phases 1785:S2CID 1767:arXiv 1714:S2CID 764:] 715:, or 537:Esaki 462:Bloch 457:Debye 452:Bragg 442:Onnes 375:Roton 72:Solid 1706:PMID 1666:help 1640:ISBN 1601:ISSN 1515:ISSN 1478:ISSN 1438:ISSN 1402:help 1376:ISBN 1174:spin 1172:and 1146:(or 766:and 607:Tsui 602:Yang 547:Kohn 472:Mott 1777:doi 1753:O17 1740:0.9 1698:doi 1686:426 1632:doi 1591:doi 1544:doi 1507:doi 1470:doi 1430:doi 1368:doi 1289:AFM 1210:of 162:QCP 82:Gas 52:QCP 1824:: 1783:. 1775:. 1763:86 1761:. 1757:. 1744:Mo 1735:Li 1712:. 1704:. 1696:. 1684:. 1658:: 1656:}} 1652:{{ 1638:. 1630:. 1599:. 1589:. 1577:. 1573:. 1542:. 1532:14 1530:. 1513:. 1505:. 1493:. 1476:. 1468:. 1456:. 1436:. 1428:. 1416:. 1394:: 1392:}} 1388:{{ 1374:. 1366:. 1287:, 1268:. 1123:. 939:: 762:de 711:A 1791:. 1779:: 1769:: 1749:6 1720:. 1700:: 1692:: 1668:) 1648:. 1634:: 1626:: 1607:. 1593:: 1585:: 1579:7 1550:. 1546:: 1538:: 1521:. 1509:: 1501:: 1495:6 1484:. 1472:: 1464:: 1458:4 1444:. 1432:: 1424:: 1418:5 1404:) 1384:. 1370:: 1362:: 1331:. 1251:. 1226:F 1222:k 1218:2 1166:. 1104:) 1097:L 1091:k 1087:c 1077:L 1071:k 1067:c 1057:R 1051:k 1047:c 1037:R 1031:k 1027:c 1022:( 1018:k 1012:F 1007:v 998:+ 992:F 987:k 972:F 967:k 963:= 960:k 952:= 949:H 907:) 901:F 896:k 889:k 886:( 880:F 875:v 863:k 834:k 830:c 819:k 815:c 809:k 799:k 791:= 788:H 700:e 693:t 686:v

Index

Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal
Conductor
Superconductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑