Knowledge

Magnetic resonance angiography

Source đź“ť

752:
results in lower quality images at view angles different from the original data acquisition. Furthermore, the 3D data can not only be used to create cross sectional images, but also projections can be calculated from the data. Three-dimensional data acquisition might also be helpful when dealing with complex vessel geometries where blood is flowing in all spatial directions (unfortunately, this case also requires three different flow encodings, one in each spatial direction). Both PC-MRA and TOF-MRA have advantages and disadvantages. PC-MRA has fewer difficulties with slow flow than TOF-MRA and also allows quantitative measurements of flow. PC-MRA shows low sensitivity when imaging pulsating and non-uniform flow. In general, slow blood flow is a major challenge in flow dependent MRA. It causes the differences between the blood signal and the static tissue signal to be small. This either applies to PC-MRA where the phase difference between blood and static tissue is reduced compared to faster flow and to TOF-MRA where the transverse blood magnetization and thus the blood signal are reduced. Contrast agents may be used to increase blood signal – this is especially important for very small vessels and vessels with very small flow velocities that normally show accordingly weak signal. Unfortunately, the use of gadolinium-based contrast media can be dangerous if patients suffer from poor renal function. To avoid these complications as well as eliminate the costs of contrast media, non-enhanced methods have been researched recently.
302: 655:, of the MRI signal is manipulated by bipolar gradients (varying magnetic fields) that are preset to a maximum expected flow velocity. An image acquisition that is reverse of the bipolar gradient is then acquired and the difference of the two images is calculated. Static tissues such as muscle or bone will subtract out, however moving tissues such as blood will acquire a different phase since it moves constantly through the gradient, thus also giving its speed of the flow. Since phase-contrast can only acquire flow in one direction at a time, 3 separate image acquisitions in all three directions must be computed to give the complete image of flow. Despite the slowness of this method, the strength of the technique is that in addition to imaging flowing blood, quantitative measurements of blood flow can be obtained. 800:(MRV) is achieved by exciting a plane inferiorly while signal is gathered in the plane immediately superior to the excitation plane, and thus imaging the venous blood which has recently moved from the excited plane. Differences in tissue signals, can also be used for MRA. This method is based on the different signal properties of blood compared to other tissues in the body, independent of MR flow effects. This is most successfully done with balanced pulse sequences such as TrueFISP or bTFE. BOLD can also be used in stroke imaging in order to assess the viability of tissue survival. 740: 712:
originating from body fat during the actual image acquisition, which is a method that is sensitive to small deviations in the magnetic and electromagnetic fields and as a result may show insufficient fat suppression in some areas. mDIXON methods can distinguish and accurately separate image signals created by fat or water. By using the 'water images' for MRA scans, virtually no body fat is seen so that no subtraction masks are needed for high quality MR venograms.
2341: 338:. The most common method used to encode velocity is the application of a bipolar gradient between the excitation pulse and the readout. A bipolar gradient is formed by two symmetric lobes of equal area. It is created by turning on the magnetic field gradient for some time, and then switching the magnetic field gradient to the opposite direction for the same amount of time. By definition, the total area (0th moment) of a bipolar gradient, 293:
signal than the saturated stationary tissue. As this method is dependent on flowing blood, areas with slow flow (such as large aneurysms) or flow that is in plane of the image may not be well visualized. This is most commonly used in the head and neck and gives detailed high-resolution images. It is also the most common technique used for routine angiographic evaluation of the intracranial circulation in patients with ischemic stroke.
36: 816:: Phase wrapping caused by the underestimation of maximum blood velocity in the image. The fast-moving blood about maximum set velocity for phase-contrast MRA gets aliased and the signal wraps from pi to -pi instead, making flow information unreliable. This can be avoided by using velocity encoding (VENC) values above the maximum measured velocity. It can also be corrected with the so-called phase-unwrapping. 789:(SWI): This method exploits the susceptibility differences between tissues and uses the phase image to detect these differences. The magnitude and phase data are combined (digitally, by an image-processing program) to produce an enhanced contrast magnitude image which is exquisitely sensitive to venous blood, hemorrhage and iron storage. The imaging of venous blood with SWI is a 855: 142: 699:
principle only shows blood vessels, and not the surrounding tissue. Provided that the timing is correct, this may result in images of very high quality. An alternative is to use a contrast agent that does not, as most agents, leave the vascular system within a few minutes, but remains in the circulation up to an hour (a "
902:. Also, contrast media used for MRI tend to be less toxic than those used for CT angiography and catheter angiography, with fewer people having any risk of allergy. Also far less is needed to be injected into the patient. The greatest drawbacks of the method are its comparatively high cost and its somewhat limited 751:
For the acquisition of the images two different approaches exist. In general, 2D and 3D images can be acquired. If 3D data is acquired, cross sections at arbitrary view angles can be calculated. Three-dimensional data can also be generated by combining 2D data from different slices, but this approach
777:
Gated subtraction fast spin-echo: An imaging technique that subtracts two fast spin echo sequences acquired at systole and diastole. Arteriography is achieved by subtracting the systolic data, where the arteries appear dark, from the diastolic data set, where the arteries appear bright. Requires the
284:
One group of methods for MRA is based on blood flow. Those methods are referred to as flow dependent MRA. They take advantage of the fact that the blood within vessels is flowing to distinguish the vessels from other static tissue. That way, images of the vasculature can be produced. Flow dependent
781:
4D dynamic MR angiography (4D-MRA): The first images, before enhancement, serve as a subtraction mask to extract the vascular tree in the succeeding images. Allows the operator to divide arterial and venous phases of a blood-groove with visualisation of its dynamics. Much less time has been spent
698:
and is currently the most common method of performing MRA. The contrast medium is injected into a vein, and images are acquired both pre-contrast and during the first pass of the agent through the arteries. By subtraction of these two acquisitions in post-processing, an image is obtained which in
292:
Time-of-flight (TOF) or inflow angiography, uses a short echo time and flow compensation to make flowing blood much brighter than stationary tissue. As flowing blood enters the area being imaged it has seen a limited number of excitation pulses so it is not saturated, this gives it a much higher
808:
MRA techniques in general are sensitive to turbulent flow, which causes a variety of different magnetized proton spins to lose phase coherence (intra-voxel dephasing phenomenon), resulting in a loss of signal. This phenomenon may result in the overestimation of arterial stenosis. Other artifacts
706:
Subtractionless contrast-enhanced magnetic resonance angiography: recent developments in MRA technology have made it possible to create high quality contrast-enhanced MRA images without subtraction of a non-contrast enhanced mask image. This approach has been shown to improve diagnostic quality,
678:
and chemical shift of the different tissues of the voxel. One of the main advantages of this kind of techniques is that we may image the regions of slow flow often found in patients with vascular diseases more easily. Moreover, non-contrast enhanced methods do not require the administration of
663:
Whereas most of techniques in MRA rely on contrast agents or flow into blood to generate contrast (Contrast Enhanced techniques), there are also non-contrast enhanced flow-independent methods. These methods, as the name suggests, do not rely on flow, but are instead based on the differences of
889:
MRA has been successful in studying many arteries in the body, including cerebral and other vessels in the head and neck, the aorta and its major branches in the thorax and abdomen, the renal arteries, and the arteries in the lower limbs. For the coronary arteries, however, MRA has been less
711:
as well as an increase of image background noise, both direct results of the image subtraction. An important condition for this approach is to have excellent body fat suppression over large image areas, which is possible by using mDIXON acquisition methods. Traditional MRA suppresses signals
1197:
Leiner, Tim; Habets, Jesse; Versluis, Bastiaan; Geerts, Liesbeth; Alberts, Eveline; Blanken, Niels; Hendrikse, Jeroen; Vonken, Evert-Jan; Eggers, Holger (2013-04-17). "Subtractionless first-pass single contrast medium dose peripheral MR angiography using two-point Dixon fat suppression".
909:
MRA procedures for visualizing cranial circulation are no different from the positioning for a normal MRI brain. Immobilization within the head coil will be required. MRA is usually a part of the total MRI brain examination and adds approximately 10 minutes to the normal MRI protocol.
862:
Occasionally, MRA directly produces (thick) slices that contain the entire vessel of interest. More commonly, however, the acquisition results in a stack of slices representing a 3D volume in the body. To display this 3D dataset on a 2D device such as a computer monitor, some
897:
An advantage of MRA compared to invasive catheter angiography is the non-invasive character of the examination (no catheters have to be introduced in the body). Another advantage, compared to CT angiography and catheter angiography, is that the patient is not exposed to any
715:
Non-enhanced magnetic resonance angiography: Since the injection of contrast agents may be dangerous for patients with poor kidney function, others techniques have been developed, which do not require any injection. These methods are based on the differences of
235:(vessel wall dilatations, at risk of rupture) or other abnormalities. MRA is often used to evaluate the arteries of the neck and brain, the thoracic and abdominal aorta, the renal arteries, and the legs (the latter exam is often referred to as a "run-off"). 275:
of all other tissues (except fat). Short-TR sequences produce bright images of the blood. However, many other techniques for performing MRA exist, and can be classified into two general groups: 'flow-dependent' methods and 'flow-independent' methods.
873:(MIP), where the computer simulates rays through the volume and selects the highest value for display on the screen. The resulting images resemble conventional catheter angiography images. If several such projections are combined into a cine loop or 289:(PC-MRA) which utilizes phase differences to distinguish blood from static tissue and time-of-flight MRA (TOF MRA) which exploits that moving spins of the blood experience fewer excitation pulses than static tissue, e.g. when imaging a thin slice. 730:
and chemical shift of the different tissues of the voxel. A notable non-enhanced method for flow-independent angiography is balanced steady-state free precession (bSSFP) imaging which naturally produces high signal from arteries and veins.
793:(BOLD) technique which is why it was (and is sometimes still) referred to as BOLD venography. Due to its sensitivity to venous blood SWI is commonly used in traumatic brain injuries (TBI) and for high resolution brain venographies. 906:. The length of time the scans take can also be an issue, with CT being far quicker. It is also ruled out in patients for whom MRI exams may be unsafe (such as having a pacemaker or metal in the eyes or certain surgical clips). 703:"). Since longer time is available for image acquisition, higher resolution imaging is possible. A problem, however, is the fact that both arteries and veins are enhanced at the same time if higher resolution images are required. 839:: In many vessels, blood flow is slower near the vessel walls than near the center of the vessel. This causes blood near the vessel walls to become saturated and can reduce the apparent caliber of the vessel. 845:: Because the technique acquires images in slabs (as in Multiple overlapping thin-slab acquisition, MOTSA), a non-uniform flip angle across the slab can appear as horizontal stripe in the composed images. 438:, the phase accrued during the application of the gradient, is 0 for stationary spins: their phase is unaffected by the application of the bipolar gradient. For spins moving with a constant velocity, 518: 409: 363: 822:: caused by the switching of the gradients field in the main field B0. This causes the over magnetic field to be distort and give inaccurate phase information for the flow. 653: 579: 436: 301: 778:
use of electrocardiographic gating. Trade names for this technique include Fresh Blood Imaging (Toshiba), TRANCE (Philips), native SPACE (Siemens) and DeltaFlow (GE).
626: 606: 549: 463: 305: 2300: 223:(MRI) to image blood vessels. Magnetic resonance angiography is used to generate images of arteries (and less commonly veins) in order to evaluate them for 251:, based on flow effects or on contrast (inherent or pharmacologically generated). The most frequently applied MRA methods involve the use intravenous 415:
The bipolar gradient can be applied along any axis or combination of axes depending on the direction along which flow is to be measured (e.g. x).
53: 2377: 2015: 1699: 100: 1829: 72: 1841: 2169: 1113: 79: 1441: 329: 286: 2277: 828:: accelerating blood flow is not properly encoded by phase-contrast technique, which can lead to errors in quantifying blood flow. 1807: 86: 877:
object, the depth impression is improved, and the observer can get a good perception of 3D structure. An alternative to MIP is
324:(lower). Laminar flow is present in the true lumen (closed arrow) and helical flow is present in the false lumen (open arrow). 1812: 1331: 1251:"Cervical carotid MR angiography with multiple overlapping thin-slab acquisition: comparison with conventional angiography" 1047: 471: 68: 2755: 2575: 1653: 2570: 2205: 2084: 1824: 1733: 881:
where the MR signal is translated to properties like brightness, opacity and color and then used in an optical model.
2729: 2370: 1663: 119: 1648: 1643: 1526: 2633: 1728: 1711: 1398: 1388: 919: 786: 2089: 1936: 1819: 371: 57: 17: 2032: 334:
Phase-contrast (PC-MRA) can be used to encode the velocity of moving blood in the magnetic resonance signal's
2215: 2069: 1668: 1543: 1535: 1434: 864: 680: 2399: 93: 2760: 2539: 2363: 2326: 2260: 2192: 2182: 2160: 1931: 1899: 1530: 869: 790: 1299: 1990: 1958: 1941: 260: 2064: 1799: 1539: 1408: 1249:
Blatter, D D; Bahr, A L; Parker, D L; Robison, R O; Kimball, J A; Perry, D M; Horn, S (December 1993).
890:
successful than CT angiography or invasive catheter angiography. Most often, the underlying disease is
858:
Maximum intensity projection of an MRA covering from the aortic arch to just below the circle of Willis
744: 321: 220: 2408: 2305: 1973: 1963: 1324: 341: 2699: 2653: 2344: 2295: 2074: 1953: 1926: 1687: 1472: 1427: 1303: 156: 635: 554: 418: 2704: 2648: 2243: 2079: 2020: 2005: 1894: 1716: 1692: 1403: 1358: 46: 2683: 2560: 2468: 2436: 2114: 1983: 1914: 1721: 1378: 684: 1978: 1909: 1775: 1658: 1577: 1484: 1373: 611: 1114:"Measurement of Flow with NMR Imaging Using a Gradient Pulse and Phase Difference Technique" 944:
Campeau; Huston (2012). "Vascular disorders—magnetic resonance angiography: Brain vessels".
894:, but medical conditions like aneurysms or abnormal vascular anatomy can also be diagnosed. 2638: 2321: 2010: 1948: 1770: 1368: 1317: 924: 584: 527: 441: 313: 1250: 1088: 8: 2597: 2592: 2544: 2267: 2145: 1968: 1704: 739: 2255: 2104: 2099: 2000: 1883: 1738: 1489: 1231: 1144: 1018: 983: 903: 899: 695: 252: 228: 796:
Similar procedures to flow effect based MRA can be used to image veins. For instance,
2587: 2530: 2094: 2059: 2054: 1995: 1743: 1592: 1278: 1270: 1223: 1215: 1179: 1136: 1132: 1070: 1023: 1005: 961: 700: 27:
Group of techniques based on magnetic resonance imaging (MRI) to image blood vessels.
1066: 243:
A variety of techniques can be used to generate the pictures of blood vessels, both
2448: 2394: 2386: 1921: 1780: 1552: 1504: 1363: 1262: 1235: 1207: 1171: 1148: 1128: 1062: 1013: 995: 953: 878: 629: 147: 192: 2616: 2582: 2526: 2416: 2130: 1582: 1548: 1521: 1516: 1450: 1383: 891: 760:
Flow-independent NEMRA methods are not based on flow, but exploit differences in
708: 162: 2602: 2506: 2483: 2460: 2431: 2272: 1175: 688: 1266: 1211: 1033: 957: 2749: 2478: 2473: 1904: 1873: 1861: 1856: 1614: 1509: 1274: 1219: 1009: 335: 317: 179: 175: 1000: 2734: 2565: 2287: 2140: 2135: 2042: 1866: 1851: 1785: 1227: 1183: 1027: 965: 874: 309: 1282: 1140: 1074: 2678: 2643: 2625: 2511: 2426: 2421: 2210: 1765: 1597: 1587: 1567: 1557: 1499: 1494: 1463: 1353: 1341: 186: 782:
researching this method so far in comparison with other methods of MRA.
2724: 2670: 2516: 1846: 1609: 1604: 1572: 256: 984:"Magnetic resonance angiography: current status and future directions" 202: 2173: 2109: 1562: 982:
Hartung, Michael P; Grist, Thomas M; François, Christopher J (2011).
232: 35: 2443: 2355: 2196: 694:
Contrast-enhanced magnetic resonance angiography uses injection of
224: 1419: 2225: 1628: 170: 2493: 2220: 244: 1309: 679:
additional contrast agent, which have been recently linked to
2247: 1458: 774:
and chemical shift to distinguish blood from static tissue.
2497: 248: 1196: 141: 1048:"Verification and Evaluation of Internal Flow and Motion" 755: 1248: 1162:
Kramer; Grist (Nov 2012). "Peripheral MR Angiography".
854: 465:, along the direction of the applied bipolar gradient: 306:
Vastly undersampled Isotropic Projection Reconstruction
285:
MRA can be divided into different categories: There is
638: 614: 587: 557: 530: 513:{\displaystyle \Delta \Phi =\gamma v_{x}\Delta m_{1}} 474: 444: 421: 374: 344: 981: 60:. Unsourced material may be challenged and removed. 647: 620: 600: 573: 543: 512: 457: 430: 403: 357: 867:method has to be used. The most common method is 2747: 2407: 658: 2371: 1435: 1325: 943: 279: 988:Journal of Cardiovascular Magnetic Resonance 551:and the 1st moment of the bipolar gradient, 1161: 268:of blood to about 250 ms, shorter than the 2378: 2364: 1442: 1428: 1332: 1318: 524:The accrued phase is proportional to both 140: 1302:at the U.S. National Library of Medicine 1017: 999: 734: 404:{\displaystyle \int G_{\text{bip}}\,dt=0} 388: 330:Phase contrast magnetic resonance imaging 120:Learn how and when to remove this message 2278:Orthogonal polarization spectral imaging 853: 738: 300: 1121:Journal of Computer Assisted Tomography 837:Saturation artifact due to laminar flow 707:because it prevents motion subtraction 146:Time-of-flight MRA at the level of the 14: 2748: 1111: 756:Non-enhanced techniques in development 2359: 1423: 1313: 1045: 581:, thus providing a means to estimate 296: 2385: 977: 975: 219:) is a group of techniques based on 58:adding citations to reliable sources 29: 2576:Extracorporeal membrane oxygenation 1449: 24: 2571:Isolated organ perfusion technique 2085:Sestamibi parathyroid scintigraphy 642: 639: 558: 497: 478: 475: 425: 422: 25: 2772: 1293: 1255:American Journal of Roentgenology 972: 2340: 2339: 1133:10.1097/00004728-198408000-00002 849: 632:of the imaged spins. To measure 308:(VIPR) of a Phase Contrast (PC) 255:, particularly those containing 69:"Magnetic resonance angiography" 34: 2634:Digital subtraction angiography 1842:Cholangiopancreatography (MRCP) 1399:Digital subtraction angiography 1389:Computed tomography angiography 1339: 1067:10.1148/radiology.154.2.3966130 925:Transcranial doppler sonography 920:Computed tomography angiography 884: 787:susceptibility weighted imaging 743:3D rendered MRA to identify an 45:needs additional citations for 2659:Magnetic resonance angiography 2090:Radioactive iodine uptake test 1394:Magnetic resonance angiography 1300:Magnetic+Resonance+Angiography 1242: 1190: 1155: 1105: 1081: 1039: 937: 358:{\displaystyle G_{\text{bip}}} 238: 213:Magnetic resonance angiography 135:Magnetic resonance angiography 13: 1: 2730:Ankle–brachial pressure index 2070:Radionuclide ventriculography 1544:Lower gastrointestinal series 1536:Upper gastrointestinal series 1112:Bryant, D. J. (August 1984). 930: 798:Magnetic resonance venography 681:nephrogenic systemic fibrosis 2540:Endovascular aneurysm repair 2261:Optical coherence tomography 2183:Myocardial perfusion imaging 1771:Dental panoramic radiography 1164:Magn Reson Imaging Clin N Am 870:maximum intensity projection 803: 791:blood-oxygen-level dependent 659:Flow-independent angiography 648:{\displaystyle \Delta \Phi } 574:{\displaystyle \Delta m_{1}} 431:{\displaystyle \Delta \Phi } 7: 913: 312:of a 56-year-old male with 10: 2777: 2756:Magnetic resonance imaging 2065:Ventilation/perfusion scan 1540:Small-bowel follow-through 1409:Carbon dioxide angiography 1176:10.1016/j.mric.2012.08.002 745:aberrant subclavian artery 327: 322:superior mesenteric artery 280:Flow-dependent angiography 221:magnetic resonance imaging 2717: 2692: 2669: 2624: 2615: 2553: 2525: 2492: 2459: 2393: 2335: 2314: 2306:Dynamic angiothermography 2286: 2242: 2191: 2168: 2158: 2123: 2050: 2040: 2031: 1974:Abdominal ultrasonography 1882: 1798: 1758: 1677: 1636: 1627: 1480: 1471: 1457: 1349: 1267:10.2214/ajr.161.6.8249741 1212:10.1007/s00330-013-2833-y 958:10.1016/j.nic.2012.02.006 809:observed in MRA include: 199: 185: 169: 155: 139: 134: 2700:Intravascular ultrasound 2654:Radionuclide angiography 2296:Non-contact thermography 2075:Radionuclide angiography 1927:Doppler echocardiography 1304:Medical Subject Headings 946:Neuroimaging Clin. N. Am 2705:Carotid ultrasonography 2649:Fluorescein angiography 2080:Radioisotope renography 1404:Fluorescein angiography 1359:Cardiac catheterization 1046:Moran, Paul R. (1985). 1001:10.1186/1532-429X-13-19 879:direct volume rendering 843:Venetian blind artifact 621:{\displaystyle \gamma } 2684:Impedance phlebography 2561:Cardiopulmonary bypass 2469:Ambulatory phlebectomy 2437:Carotid endarterectomy 2115:Gastric emptying study 1379:CT pulmonary angiogram 859: 748: 735:2D and 3D acquisitions 685:chronic kidney disease 649: 622: 602: 575: 545: 514: 459: 432: 405: 359: 325: 227:(abnormal narrowing), 1776:X-ray motion analysis 1659:X-ray microtomography 1578:Hysterosalpingography 1485:Pneumoencephalography 1374:Pulmonary angiography 857: 742: 650: 623: 603: 601:{\displaystyle v_{x}} 576: 546: 544:{\displaystyle v_{x}} 515: 460: 458:{\displaystyle v_{x}} 433: 406: 360: 304: 2639:Cerebral angiography 2400:Endovascular surgery 2301:Contact thermography 2011:Emergency ultrasound 1949:Transcranial Doppler 1700:Abdominal and pelvis 1369:Cerebral angiography 636: 612: 585: 555: 528: 472: 442: 419: 372: 342: 54:improve this article 2761:Vascular procedures 2598:Seldinger technique 2593:First rib resection 2545:Open aortic surgery 2268:Confocal microscopy 2146:Indium-111 WBC scan 1969:Echoencephalography 1705:Virtual colonoscopy 832:Time-of-flight MRA: 785:BOLD venography or 696:MRI contrast agents 2256:Optical tomography 2105:Dacryoscintigraphy 2100:Immunoscintigraphy 1739:Whole body imaging 1490:Dental radiography 1200:European Radiology 904:spatial resolution 900:ionizing radiation 860: 814:Phase-contrast MRA 749: 645: 618: 598: 571: 541: 510: 455: 428: 401: 355: 326: 297:Phase-contrast MRA 287:phase-contrast MRA 2743: 2742: 2713: 2712: 2611: 2610: 2588:Revascularization 2353: 2352: 2315:Target conditions 2238: 2237: 2234: 2233: 2154: 2153: 2095:Bone scintigraphy 2060:Scintimammography 2055:Cholescintigraphy 1900:contrast-enhanced 1794: 1793: 1754: 1753: 1744:Full-body CT scan 1644:General operation 1623: 1622: 1593:Angiocardiography 1417: 1416: 683:in patients with 385: 352: 210: 209: 171:OPS-301 code 130: 129: 122: 104: 16:(Redirected from 2768: 2718:Other diagnostic 2622: 2621: 2449:Carotid stenting 2409:Arterial disease 2405: 2404: 2387:Vascular surgery 2380: 2373: 2366: 2357: 2356: 2343: 2342: 2166: 2165: 2048: 2047: 2038: 2037: 1922:Echocardiography 1781:Hounsfield scale 1634: 1633: 1553:Cholecystography 1478: 1477: 1469: 1468: 1444: 1437: 1430: 1421: 1420: 1364:Microangiography 1334: 1327: 1320: 1311: 1310: 1287: 1286: 1261:(6): 1269–1277. 1246: 1240: 1239: 1206:(8): 2228–2235. 1194: 1188: 1187: 1159: 1153: 1152: 1118: 1109: 1103: 1102: 1100: 1099: 1085: 1079: 1078: 1052: 1043: 1037: 1031: 1021: 1003: 979: 970: 969: 952:(2): 207–33, x. 941: 701:blood-pool agent 654: 652: 651: 646: 630:Larmor frequency 627: 625: 624: 619: 607: 605: 604: 599: 597: 596: 580: 578: 577: 572: 570: 569: 550: 548: 547: 542: 540: 539: 519: 517: 516: 511: 509: 508: 496: 495: 464: 462: 461: 456: 454: 453: 437: 435: 434: 429: 410: 408: 407: 402: 387: 386: 383: 364: 362: 361: 356: 354: 353: 350: 320:(upper) and the 203:edit on Wikidata 195: 165: 148:Circle of Willis 144: 132: 131: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 2776: 2775: 2771: 2770: 2769: 2767: 2766: 2765: 2746: 2745: 2744: 2739: 2709: 2688: 2665: 2617:Medical imaging 2607: 2583:Vascular access 2549: 2527:Aortic aneurysm 2521: 2488: 2455: 2417:Vascular bypass 2398: 2389: 2384: 2354: 2349: 2331: 2310: 2282: 2230: 2216:PET mammography 2187: 2150: 2136:Gallium-67 scan 2131:Octreotide scan 2119: 2027: 1878: 1790: 1750: 1673: 1654:High-resolution 1619: 1583:Skeletal survey 1549:Cholangiography 1462: 1453: 1451:Medical imaging 1448: 1418: 1413: 1384:Cholangiography 1345: 1338: 1296: 1291: 1290: 1247: 1243: 1195: 1191: 1160: 1156: 1116: 1110: 1106: 1097: 1095: 1093:www.cis.rit.edu 1087: 1086: 1082: 1050: 1044: 1040: 980: 973: 942: 938: 933: 916: 892:atherosclerosis 887: 852: 806: 773: 766: 758: 737: 729: 722: 677: 670: 661: 637: 634: 633: 613: 610: 609: 592: 588: 586: 583: 582: 565: 561: 556: 553: 552: 535: 531: 529: 526: 525: 504: 500: 491: 487: 473: 470: 469: 449: 445: 443: 440: 439: 420: 417: 416: 382: 378: 373: 370: 369: 349: 345: 343: 340: 339: 332: 299: 282: 274: 266: 259:to shorten the 253:contrast agents 241: 206: 191: 161: 151: 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 2774: 2764: 2763: 2758: 2741: 2740: 2738: 2737: 2732: 2727: 2721: 2719: 2715: 2714: 2711: 2710: 2708: 2707: 2702: 2696: 2694: 2690: 2689: 2687: 2686: 2681: 2675: 2673: 2667: 2666: 2664: 2663: 2662: 2661: 2656: 2651: 2646: 2641: 2630: 2628: 2619: 2613: 2612: 2609: 2608: 2606: 2605: 2603:Vascular snare 2600: 2595: 2590: 2585: 2580: 2579: 2578: 2568: 2563: 2557: 2555: 2551: 2550: 2548: 2547: 2542: 2536: 2534: 2523: 2522: 2520: 2519: 2514: 2509: 2507:Venous cutdown 2503: 2501: 2490: 2489: 2487: 2486: 2484:Vein stripping 2481: 2476: 2471: 2465: 2463: 2461:Venous disease 2457: 2456: 2454: 2453: 2452: 2451: 2441: 2440: 2439: 2432:Endarterectomy 2429: 2424: 2419: 2413: 2411: 2402: 2391: 2390: 2383: 2382: 2375: 2368: 2360: 2351: 2350: 2348: 2347: 2336: 2333: 2332: 2330: 2329: 2324: 2318: 2316: 2312: 2311: 2309: 2308: 2303: 2298: 2292: 2290: 2284: 2283: 2281: 2280: 2275: 2273:Endomicroscopy 2270: 2265: 2264: 2263: 2252: 2250: 2240: 2239: 2236: 2235: 2232: 2231: 2229: 2228: 2223: 2218: 2213: 2208: 2202: 2200: 2189: 2188: 2186: 2185: 2179: 2177: 2163: 2156: 2155: 2152: 2151: 2149: 2148: 2143: 2138: 2133: 2127: 2125: 2121: 2120: 2118: 2117: 2112: 2107: 2102: 2097: 2092: 2087: 2082: 2077: 2072: 2067: 2062: 2057: 2051: 2045: 2035: 2029: 2028: 2026: 2025: 2024: 2023: 2018: 2008: 2003: 1998: 1993: 1988: 1987: 1986: 1981: 1971: 1966: 1961: 1956: 1951: 1946: 1945: 1944: 1939: 1934: 1929: 1919: 1918: 1917: 1912: 1907: 1902: 1897: 1888: 1886: 1880: 1879: 1877: 1876: 1871: 1870: 1869: 1864: 1859: 1849: 1844: 1839: 1834: 1833: 1832: 1822: 1817: 1816: 1815: 1804: 1802: 1796: 1795: 1792: 1791: 1789: 1788: 1783: 1778: 1773: 1768: 1762: 1760: 1756: 1755: 1752: 1751: 1749: 1748: 1747: 1746: 1736: 1731: 1726: 1725: 1724: 1719: 1709: 1708: 1707: 1697: 1696: 1695: 1690: 1681: 1679: 1675: 1674: 1672: 1671: 1666: 1661: 1656: 1651: 1646: 1640: 1638: 1631: 1625: 1624: 1621: 1620: 1618: 1617: 1612: 1607: 1602: 1601: 1600: 1595: 1585: 1580: 1575: 1570: 1565: 1560: 1555: 1546: 1533: 1524: 1519: 1514: 1513: 1512: 1502: 1497: 1492: 1487: 1481: 1475: 1466: 1455: 1454: 1447: 1446: 1439: 1432: 1424: 1415: 1414: 1412: 1411: 1406: 1401: 1396: 1391: 1386: 1381: 1376: 1371: 1366: 1361: 1356: 1350: 1347: 1346: 1337: 1336: 1329: 1322: 1314: 1308: 1307: 1295: 1294:External links 1292: 1289: 1288: 1241: 1189: 1154: 1127:(4): 588–593. 1104: 1080: 1061:(2): 433–441. 1038: 971: 935: 934: 932: 929: 928: 927: 922: 915: 912: 886: 883: 851: 848: 847: 846: 840: 834: 829: 823: 817: 805: 802: 771: 764: 757: 754: 736: 733: 727: 720: 689:kidney failure 675: 668: 660: 657: 644: 641: 617: 595: 591: 568: 564: 560: 538: 534: 522: 521: 507: 503: 499: 494: 490: 486: 483: 480: 477: 452: 448: 427: 424: 413: 412: 400: 397: 394: 391: 381: 377: 348: 328:Main article: 298: 295: 281: 278: 272: 264: 240: 237: 208: 207: 200: 197: 196: 189: 183: 182: 173: 167: 166: 159: 153: 152: 145: 137: 136: 128: 127: 42: 40: 33: 26: 18:MR angiography 9: 6: 4: 3: 2: 2773: 2762: 2759: 2757: 2754: 2753: 2751: 2736: 2733: 2731: 2728: 2726: 2723: 2722: 2720: 2716: 2706: 2703: 2701: 2698: 2697: 2695: 2691: 2685: 2682: 2680: 2677: 2676: 2674: 2672: 2668: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2636: 2635: 2632: 2631: 2629: 2627: 2623: 2620: 2618: 2614: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2577: 2574: 2573: 2572: 2569: 2567: 2564: 2562: 2559: 2558: 2556: 2552: 2546: 2543: 2541: 2538: 2537: 2535: 2532: 2528: 2524: 2518: 2515: 2513: 2510: 2508: 2505: 2504: 2502: 2499: 2495: 2491: 2485: 2482: 2480: 2479:Sclerotherapy 2477: 2475: 2474:Laser surgery 2472: 2470: 2467: 2466: 2464: 2462: 2458: 2450: 2447: 2446: 2445: 2442: 2438: 2435: 2434: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2414: 2412: 2410: 2406: 2403: 2401: 2396: 2392: 2388: 2381: 2376: 2374: 2369: 2367: 2362: 2361: 2358: 2346: 2338: 2337: 2334: 2328: 2325: 2323: 2320: 2319: 2317: 2313: 2307: 2304: 2302: 2299: 2297: 2294: 2293: 2291: 2289: 2285: 2279: 2276: 2274: 2271: 2269: 2266: 2262: 2259: 2258: 2257: 2254: 2253: 2251: 2249: 2245: 2241: 2227: 2224: 2222: 2219: 2217: 2214: 2212: 2209: 2207: 2204: 2203: 2201: 2198: 2194: 2190: 2184: 2181: 2180: 2178: 2175: 2171: 2167: 2164: 2162: 2157: 2147: 2144: 2142: 2141:Ga-68-DOTATOC 2139: 2137: 2134: 2132: 2129: 2128: 2126: 2122: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2056: 2053: 2052: 2049: 2046: 2044: 2039: 2036: 2034: 2030: 2022: 2019: 2017: 2014: 2013: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1985: 1982: 1980: 1977: 1976: 1975: 1972: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1954:Intravascular 1952: 1950: 1947: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1924: 1923: 1920: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1892: 1890: 1889: 1887: 1885: 1881: 1875: 1874:Synthetic MRI 1872: 1868: 1865: 1863: 1860: 1858: 1855: 1854: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1831: 1828: 1827: 1826: 1823: 1821: 1818: 1814: 1811: 1810: 1809: 1806: 1805: 1803: 1801: 1797: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1763: 1761: 1757: 1745: 1742: 1741: 1740: 1737: 1735: 1732: 1730: 1727: 1723: 1720: 1718: 1715: 1714: 1713: 1710: 1706: 1703: 1702: 1701: 1698: 1694: 1691: 1689: 1686: 1685: 1683: 1682: 1680: 1676: 1670: 1667: 1665: 1664:Electron beam 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1641: 1639: 1635: 1632: 1630: 1626: 1616: 1615:Orbital x-ray 1613: 1611: 1608: 1606: 1603: 1599: 1596: 1594: 1591: 1590: 1589: 1586: 1584: 1581: 1579: 1576: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1550: 1547: 1545: 1541: 1537: 1534: 1532: 1528: 1525: 1523: 1520: 1518: 1515: 1511: 1510:Bronchography 1508: 1507: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1482: 1479: 1476: 1474: 1470: 1467: 1465: 1460: 1456: 1452: 1445: 1440: 1438: 1433: 1431: 1426: 1425: 1422: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1351: 1348: 1344: 1343: 1335: 1330: 1328: 1323: 1321: 1316: 1315: 1312: 1305: 1301: 1298: 1297: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1245: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1201: 1193: 1185: 1181: 1177: 1173: 1170:(4): 761–76. 1169: 1165: 1158: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1115: 1108: 1094: 1090: 1084: 1076: 1072: 1068: 1064: 1060: 1056: 1049: 1042: 1035: 1029: 1025: 1020: 1015: 1011: 1007: 1002: 997: 993: 989: 985: 978: 976: 967: 963: 959: 955: 951: 947: 940: 936: 926: 923: 921: 918: 917: 911: 907: 905: 901: 895: 893: 882: 880: 876: 872: 871: 866: 856: 850:Visualization 844: 841: 838: 835: 833: 830: 827: 824: 821: 820:Maxwell terms 818: 815: 812: 811: 810: 801: 799: 794: 792: 788: 783: 779: 775: 770: 763: 753: 746: 741: 732: 726: 719: 713: 710: 704: 702: 697: 692: 690: 686: 682: 674: 667: 656: 631: 615: 593: 589: 566: 562: 536: 532: 505: 501: 492: 488: 484: 481: 468: 467: 466: 450: 446: 398: 395: 392: 389: 379: 375: 368: 367: 366: 346: 337: 331: 323: 319: 318:celiac artery 315: 311: 307: 303: 294: 290: 288: 277: 271: 267: 263: 258: 254: 250: 246: 236: 234: 230: 226: 222: 218: 214: 204: 198: 194: 190: 188: 184: 181: 177: 174: 172: 168: 164: 160: 158: 154: 149: 143: 138: 133: 124: 121: 113: 110:December 2014 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: â€“  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 2735:Toe pressure 2658: 2566:Cardioplegia 2322:Acute stroke 2288:Thermography 2043:scintigraphy 2033:Radionuclide 2021:pre-hospital 1867:Tractography 1836: 1786:Radiodensity 1688:calcium scan 1649:Quantitative 1393: 1340: 1258: 1254: 1244: 1203: 1199: 1192: 1167: 1163: 1157: 1124: 1120: 1107: 1096:. Retrieved 1092: 1089:"CHAPTER-13" 1083: 1058: 1054: 1041: 991: 987: 949: 945: 939: 908: 896: 888: 885:Clinical use 875:QuickTime VR 868: 861: 842: 836: 831: 826:Acceleration 825: 819: 813: 807: 797: 795: 784: 780: 776: 768: 761: 759: 750: 724: 717: 714: 705: 693: 672: 665: 662: 523: 414: 333: 310:MRI sequence 291: 283: 269: 261: 242: 216: 212: 211: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 2679:Portography 2644:Aortography 2626:Angiography 2512:Arteriotomy 2427:Atherectomy 2422:Angioplasty 2211:Cardiac PET 1984:renal tract 1959:Gynecologic 1891:Techniques 1862:restriction 1837:Angiography 1820:Neurography 1766:Fluoroscopy 1712:Angiography 1693:angiography 1637:Techniques: 1598:Aortography 1588:Angiography 1568:Cystography 1558:Mammography 1500:Myelography 1495:Sialography 1464:radiography 1354:Angiography 1342:Angiography 365:, is null: 314:dissections 239:Acquisition 187:MedlinePlus 2750:Categories 2725:Angioscopy 2693:Ultrasound 2671:Venography 2531:dissection 2517:Phlebotomy 2124:Full body: 1910:endoscopic 1884:Ultrasound 1813:functional 1610:Lymphogram 1605:Venography 1573:Arthrogram 1098:2020-04-13 931:References 257:gadolinium 229:occlusions 80:newspapers 2327:Pregnancy 2206:Brain PET 2174:gamma ray 2110:DMSA scan 1964:Obstetric 1857:diffusion 1852:Sequences 1830:perfusion 1722:Pulmonary 1669:Cone beam 1563:Pyelogram 1275:0361-803X 1220:0938-7994 1055:Radiology 1034:CC-BY-2.0 1010:1532-429X 994:(1): 19. 865:rendering 804:Artifacts 709:artifacts 643:Φ 640:Δ 616:γ 559:Δ 498:Δ 485:γ 479:Φ 476:Δ 426:Φ 423:Δ 376:∫ 233:aneurysms 2494:Arterial 2444:Stenting 2395:Vascular 2345:Category 2197:positron 1717:Coronary 1228:23591617 1184:23088949 1028:21388544 966:22548929 914:See also 245:arteries 225:stenosis 2244:Optical 2226:PET-MRI 2006:Carotid 2001:Scrotal 1895:doppler 1825:Cardiac 1734:Thyroid 1678:Targets 1629:CT scan 1283:8249741 1236:2635492 1149:8700276 1141:6736356 1075:3966130 1019:3060856 628:is the 316:of the 163:D018810 94:scholar 2500:access 2498:venous 2221:PET-CT 1996:Breast 1991:Rectal 1915:duplex 1847:Breast 1684:Heart 1306:(MeSH) 1281:  1273:  1234:  1226:  1218:  1182:  1147:  1139:  1073:  1026:  1016:  1008:  964:  193:007269 96:  89:  82:  75:  67:  2554:Other 2248:Laser 2170:SPECT 1979:renal 1808:Brain 1759:Other 1459:X-ray 1232:S2CID 1145:S2CID 1117:(PDF) 1051:(PDF) 336:phase 249:veins 201:[ 180:3-828 176:3-808 101:JSTOR 87:books 2496:and 2397:and 2016:FAST 1729:Head 1279:PMID 1271:ISSN 1224:PMID 1216:ISSN 1180:PMID 1137:PMID 1071:PMID 1024:PMID 1006:ISSN 962:PMID 687:and 247:and 157:MeSH 73:news 2193:PET 2161:ECT 2159:3D/ 2041:2D/ 1942:ICE 1937:TEE 1932:TTE 1800:MRI 1531:DXR 1527:DXA 1522:KUB 1517:AXR 1505:CXR 1263:doi 1259:161 1208:doi 1172:doi 1129:doi 1063:doi 1059:154 1014:PMC 996:doi 954:doi 520:(2) 411:(1) 384:bip 351:bip 231:, 217:MRA 56:by 2752:: 2529:/ 2199:): 2176:): 1905:3D 1473:2D 1277:. 1269:. 1257:. 1253:. 1230:. 1222:. 1214:. 1204:23 1202:. 1178:. 1168:20 1166:. 1143:. 1135:. 1123:. 1119:. 1091:. 1069:. 1057:. 1053:. 1022:. 1012:. 1004:. 992:13 990:. 986:. 974:^ 960:. 950:22 948:. 767:, 723:, 691:. 671:, 608:. 178:, 2533:: 2379:e 2372:t 2365:v 2246:/ 2195:( 2172:( 1551:/ 1542:/ 1538:/ 1529:/ 1461:/ 1443:e 1436:t 1429:v 1333:e 1326:t 1319:v 1285:. 1265:: 1238:. 1210:: 1186:. 1174:: 1151:. 1131:: 1125:8 1101:. 1077:. 1065:: 1036:) 1032:( 1030:. 998:: 968:. 956:: 772:2 769:T 765:1 762:T 747:. 728:2 725:T 721:1 718:T 676:2 673:T 669:1 666:T 594:x 590:v 567:1 563:m 537:x 533:v 506:1 502:m 493:x 489:v 482:= 451:x 447:v 399:0 396:= 393:t 390:d 380:G 347:G 273:1 270:T 265:1 262:T 215:( 205:] 150:. 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

MR angiography

verification
improve this article
adding citations to reliable sources
"Magnetic resonance angiography"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

Circle of Willis
MeSH
D018810
OPS-301 code
3-808
3-828
MedlinePlus
007269
edit on Wikidata
magnetic resonance imaging
stenosis
occlusions
aneurysms
arteries
veins
contrast agents
gadolinium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑