Knowledge

Macdonald polynomials

Source 📝

165: 63: 22: 1526: 1779: 2670:
different to that in Haglund, Haiman, and Loehr's work, with many fewer terms (this formula is proved also in Macdonald's seminal work, Ch. VI (7.13)). While very useful for computation and interesting in its own right, their combinatorial formulas do not immediately imply positivity of the Kostka-Macdonald coefficients
3892:
In 1995, Macdonald introduced a non-symmetric analogue of the symmetric Macdonald polynomials, and the symmetric Macdonald polynomials can easily be recovered from the non-symmetric counterpart. In his original definition, he shows that the non-symmetric Macdonald polynomials are a unique family of
3915:
used the exclusion process to give a direct combinatorial characterization of both symmetric and nonsymmetric Macdonald polynomials. Their results differ from the earlier work of Haglund in part because they give a formula directly for the Macdonald polynomials rather than a transformation thereof.
1073:
is not totally ordered, and so has plenty of elements that are incomparable. Thus one must check that the corresponding polynomials are still orthogonal. The orthogonality can be proved by showing that the Macdonald polynomials are eigenvectors for an algebra of commuting self-adjoint operators
1289: 2669:
In 2005, J. Haglund, M. Haiman and N. Loehr gave the first proof of a combinatorial interpretation of the Macdonald polynomials. In 1988, I.G. Macdonald gave the second proof of a combinatorial interpretation of the Macdonald polynomials (equations (4.11) and (5.13)). Macdonald’s formula is
2939: 4244: 1569: 3405: 3916:
They develop the concept of a multiline queue, which is a matrix containing balls or empty cells together with a mapping between balls and their neighbors and a combinatorial labeling mechanism. The nonsymmetric Macdonald polynomial then satisfies:
820: 2426: 1551:
There are two other conjectures which together with the norm conjecture are collectively referred to as the Macdonald conjectures in this context: in addition to the formula for the norm, Macdonald conjectured a formula for the value of
901: 1081:
can be chosen to vary with the length of the root, giving a three-parameter family of Macdonald polynomials. One can also extend the definition to the nonreduced root system BC, in which case one obtains a six-parameter family (one
3547:
Note: The figure at right uses French notation for tableau, which is flipped vertically from the English notation used on the Knowledge page for Young diagrams. French notation is more commonly used in the study of Macdonald
1521:{\displaystyle \langle P_{\lambda },P_{\lambda }\rangle =\prod _{\alpha \in R,\alpha >0}\prod _{0<i<k}{1-q^{(\lambda +k\rho ,2\alpha /(\alpha ,\alpha ))+i} \over 1-q^{(\lambda +k\rho ,2\alpha /(\alpha ,\alpha ))-i}}.} 2200: 1003: 3999: 3789: 3030: 703: 2793: 4081: 3868: 4665:
Dean Jacqueline B. Lewis Memorial Lectures presented at Rutgers University, New Brunswick, NJ. University Lecture Series, 12. American Mathematical Society, Providence, RI, 1998. xvi+53 pp.
1774:{\displaystyle {\frac {P_{\lambda }(\dots ,q^{\mu _{i}}t^{\rho _{i}},\dots )}{P_{\lambda }(t^{\rho })}}={\frac {P_{\mu }(\dots ,q^{\lambda _{i}}t^{\rho _{i}},\dots )}{P_{\mu }(t^{\rho })}}.} 3607: 3109: 2083: 2956:
are certain combinatorial statistics (functions) defined on the filling σ. This formula expresses the Macdonald polynomials in infinitely many variables. To obtain the polynomials in
2758: 1860: 276:
in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable
2716: 3244: 3236: 3188: 1901: 714: 482: 2231:
elements of the diagram of the partition ÎŒ, regarded as a subset of the pairs of non-negative integers. For example, if ÎŒ is the partition 3 = 2 + 1 of
4073: 3047: 508: 3136: 2785: 2624: 1931: 3437: 2590: 2549: 2508: 2467: 4381:
Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. ISBN 0-19-853489-2
4028: 4287: 4048: 3634: 3457: 2266: 4267: 3515: 3486: 826: 3543: 2611: 4526:
Symmetric functions 2001: surveys of developments and perspectives, 1–64, NATO Sci. Ser. II Math. Phys. Chem., 74, Kluwer Acad. Publ., Dordrecht, 2002.
3050:
This depicts the arm and the leg of a square of a Young diagram. The arm is the number of squares to its right, and the leg is the number of squares above it.
1051:. The existence of polynomials with these properties is easy to show (for any inner product). A key property of the Macdonald polynomials is that they are 1094:. It is sometimes better to regard Macdonald polynomials as depending on a possibly non-reduced affine root system. In this case, there is one parameter 2094: 84: 77: 4645:
Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp.
1964:
with non-negative integer coefficients. These conjectures are now proved; the hardest and final step was proving the positivity, which was done by
939: 3922: 3642: 4308: 4394:
Corteel, Sylvie; Mandelshtam, Olya; Williams, Lauren (2018), "From multiline queues to Macdonald polynomials via the exclusion process",
3893:
polynomials orthogonal to a certain inner product, as well as satisfying a triangularity property when expanded in the monomial basis.
4691: 127: 2971: 2934:{\displaystyle {\widetilde {H}}_{\mu }(x;q,t)=\sum _{\sigma :\mu \to \mathbb {Z} _{+}}q^{inv(\sigma )}t^{maj(\sigma )}x^{\sigma }} 2654:. This immediately implies the Macdonald positivity conjecture because character multiplicities have to be non-negative integers. 99: 2657:
Ian Grojnowski and Mark Haiman found another proof of the Macdonald positivity conjecture by proving a positivity conjecture for
625: 4239:{\displaystyle P_{\lambda }({\textbf {x}};q,t)=\sum _{\mu }E_{\mu }(x_{1},...,x_{n};q,t)=\sum _{\mu }\sum _{Q}\mathrm {wt} (Q)} 2718:
as the give the decomposition of the Macdonald polynomials into monomial symmetric functions rather than into Schur functions.
35: 3899:
The non-symmetric Macdonald polynomials specialize to Demazure characters by taking q=t=0, and to key polynomials when q=t=∞.
4730: 106: 3800: 1123:
of the representations of the compact group of the root system, or the Schur functions in the case of root systems of type
2647:! conjecture implied that the Kostka–Macdonald coefficients were graded character multiplicities for the modules 113: 4670: 4650: 226: 208: 186: 146: 49: 4075:
is a weighting function mapping those queues to specific polynomials. The symmetric Macdonald polynomial satisfies:
3555: 3057: 179: 4777: 1074:
with 1-dimensional eigenspaces, and using the fact that eigenspaces for different eigenvalues must be orthogonal.
95: 4787: 3912: 1143: 2015: 455: 336:
is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as
341: 3896:
In 2007, Haglund, Haiman and Loehr gave a combinatorial formula for the non-symmetric Macdonald polynomials.
2727: 1956:-Kostka coefficients. Macdonald conjectured that the Kostka–Macdonald coefficients were polynomials in 1829: 1189: 3400:{\displaystyle J_{\lambda }(x;q,t)=\prod _{s\in D(\lambda )}(1-q^{a(s)}t^{1+l(s)})\cdot P_{\lambda }(x;q,t)} 2673: 1232:, which in turn include as special cases most of the named families of orthogonal polynomials in 1 variable. 1229: 345: 1796:, with the extension to the BC case following shortly thereafter via work of van Diejen, Noumi, and Sahi. 815:{\displaystyle \Delta =\prod _{\alpha \in R}{(e^{\alpha };q)_{\infty } \over (te^{\alpha };q)_{\infty }}.} 4782: 4725:, Cambridge Tracts in Mathematics, vol. 157, Cambridge: Cambridge University Press, pp. x+175, 4512: 3193: 3145: 1793: 1536: 511: 402: 1869: 461: 41: 4579: 1978:
It is still a central open problem in algebraic combinatorics to find a combinatorial formula for the
1539:. The conjecture had previously been proved case-by-case for all roots systems except those of type 4053: 1135: 487: 173: 120: 3114: 2763: 1909: 356:
are Macdonald polynomials of certain non-reduced root systems. They have deep relationships with
3874: 3413: 2555: 2514: 2473: 2432: 1259: 1091: 353: 73: 4306:
Haglund, J.; Haiman, M.; Loehr, N. (2005), "A combinatorial formula for Macdonald polynomials",
2421:{\displaystyle \Delta _{\mu }=x_{1}y_{2}+x_{2}y_{3}+x_{3}y_{1}-x_{2}y_{1}-x_{3}y_{2}-x_{1}y_{3}} 1047:
In other words, the Macdonald polynomials are obtained by orthogonalizing the obvious basis for
4584: 4007: 266: 190: 4521: 4272: 4033: 3612: 3442: 4420: 1069:〉 = 0 whenever λ â‰  ÎŒ. This is not a trivial consequence of the definition because 4740: 4714: 4676: 4656: 4635: 4530: 4473: 4349: 896:{\displaystyle \langle f,g\rangle =({\text{constant term of }}f{\overline {g}}\Delta )/|W|} 357: 269: 4252: 3491: 3462: 8: 2960:
variables, simply restrict the formula to fillings that only use the integers 1, 2, ...,
706: 4477: 4365:
Publ. I.R.M.A. Strasbourg, 1988, 372/S–20 Actes 20e SĂ©minaire Lotharingien, p. 131–171.
310:
orbits of roots in the affine root system. The Macdonald polynomials are polynomials in
4700: 4567: 4549: 4445: 4395: 4317: 3528: 2632: 2596: 1203: 365: 281: 4496: 4726: 4689:
Macdonald, I. G. (2000–2001), "Orthogonal polynomials associated with root systems",
4666: 4646: 4623: 4501: 4457: 4437: 4337: 4418:
Cherednik, Ivan (1995), "Double Affine Hecke Algebras and Macdonald's Conjectures",
4382: 1535:, and proved for all (reduced) root systems by Cherednik (1995) using properties of 4615: 4593: 4571: 4559: 4491: 4481: 4429: 4327: 1904: 1532: 273: 4598: 4563: 4332: 2195:{\displaystyle \Delta _{\mu }=\det(x_{i}^{p_{j}}y_{i}^{q_{j}})_{1\leq i,j,\leq n}} 4736: 4710: 4673: 4653: 4631: 4527: 4345: 2636: 1181: 1161:
orbits, which are the monomial symmetric functions when the root system has type
337: 2639:). Earlier results of Haiman and Garsia had already shown that this implied the 1098:
associated to each orbit of roots in the affine root system, plus one parameter
3908: 2658: 1998: 1785: 1120: 440: 361: 998:{\displaystyle P_{\lambda }=\sum _{\mu \leq \lambda }u_{\lambda \mu }m_{\mu }} 4771: 4627: 4441: 4341: 3881: 2945: 1991: 1969: 4486: 4505: 406: 3994:{\displaystyle E_{\lambda }({\textbf {x}};q,t)=\sum _{Q}\mathrm {wt} (Q)} 2002: 1965: 1866:
below) form an orthogonal basis of the space of symmetric functions over
1077:
In the case of non-simply-laced root systems (B, C, F, G), the parameter
528: 388: 240: 4705: 4554: 3902: 3784:{\displaystyle {\widetilde {H}}_{\mu }(x;q,t)=t^{-n(\mu )}J_{\mu }\left} 3111:
in the formula above are related to the classical Macdonald polynomials
1863: 4449: 556: 416: 369: 4517:
Current Developments in Mathematics 2002, no. 1 (2002), 39–111.
2664: 4761: 4322: 280:, but later realized that it is more natural to associate them with 4754: 4619: 4538:
Hilbert schemes, polygraphs, and the Macdonald positivity conjecture
4433: 1531:
This was conjectured by Macdonald (1982) as a generalization of the
62: 4523:
Notes on Macdonald polynomials and the geometry of Hilbert schemes.
4400: 531:: half the sum of the positive roots; this is a special element of 3880:
This formula can be used to prove Knop and Sahi's formula for the
612:
is an orbit sum; these elements form a basis for the subalgebra
4580:"Lectures on affine Hecke algebras and Macdonald's conjectures" 4366: 592:, and this is extended by linearity to the whole group algebra. 4606:
Macdonald, I. G. (1982), "Some conjectures for root systems",
2619:
Haiman's proof of the Macdonald positivity conjecture and the
1814:
the Macdonald polynomials are simply symmetric polynomials in
3025:{\displaystyle x_{1}^{\sigma _{1}}x_{2}^{\sigma _{2}}\cdots } 1784:
Again, these were proved for general reduced root systems by
541:
is a field of characteristic 0, usually the rational numbers.
284:
rather than finite root systems, in which case the variable
2253:) are (0, 0), (0, 1), (1, 0), and the space 1818:
variables with coefficients that are rational functions of
4393: 698:{\displaystyle (a;q)_{\infty }=\prod _{r\geq 0}(1-aq^{r})} 3046: 1283:, then the norm of the Macdonald polynomials is given by 1266: 3039:
is the number of boxes in the filling of Ό with content
4514:
Combinatorics, symmetric functions, and Hilbert schemes
1209:
For the non-reduced rank 1 affine root system of type (
4249:
where the outer sum is over all distinct compositions
3887: 1799: 1102:. The number of orbits of roots can vary from 1 to 5. 933:
are uniquely defined by the following two conditions:
4275: 4255: 4084: 4056: 4036: 4010: 3925: 3903:
Combinatorial formulae based on the exclusion process
3863:{\displaystyle n(\mu )=\sum _{i}\mu _{i}\cdot (i-1).} 3803: 3645: 3615: 3558: 3531: 3494: 3465: 3445: 3439:
is the collection of squares in the Young diagram of
3416: 3247: 3196: 3148: 3117: 3060: 2974: 2796: 2766: 2730: 2676: 2599: 2558: 2517: 2476: 2435: 2269: 2097: 2018: 1912: 1872: 1832: 1572: 1292: 942: 829: 717: 628: 490: 464: 4462:
Breakthroughs in the theory of Macdonald polynomials
1134:= 0 the Macdonald polynomials become the (rescaled) 2665:
Combinatorial formula for the Macdonald polynomials
4305: 4281: 4261: 4238: 4067: 4042: 4022: 3993: 3862: 3783: 3628: 3601: 3537: 3509: 3480: 3451: 3431: 3399: 3238:that clears the denominators of the coefficients: 3230: 3182: 3130: 3103: 3024: 2933: 2779: 2752: 2710: 2605: 2584: 2543: 2502: 2461: 2420: 2194: 2077: 1925: 1895: 1854: 1773: 1520: 1157:=1 the Macdonald polynomials become the sums over 997: 895: 814: 697: 502: 476: 4683:Affine Hecke algebras and orthogonal polynomials. 1235:For the non-reduced affine root system of type ( 4769: 4723:Affine Hecke algebras and orthogonal polynomials 2111: 520:is the set of dominant weights: the elements of 4663:Symmetric functions and orthogonal polynomials. 3138:via a sequence of transformations. First, the 1043:are orthogonal if λ < μ. 288:can be replaced by several different variables 4688: 3602:{\displaystyle {\widetilde {H}}_{\mu }(x;q,t)} 3104:{\displaystyle {\widetilde {H}}_{\mu }(x;q,t)} 2088:spanned by all higher partial derivatives of 1903:, and therefore can be expressed in terms of 535:in the interior of the positive Weyl chamber. 4455: 4309:Journal of the American Mathematical Society 1319: 1293: 842: 830: 1180:tend to 1 the Macdonald polynomials become 50:Learn how and when to remove these messages 2078:{\displaystyle D_{\mu }=C\,\Delta _{\mu }} 348:, which in turn include most of the named 4720: 4704: 4643:Symmetric functions and Hall polynomials. 4605: 4597: 4553: 4495: 4485: 4417: 4399: 4379:Symmetric functions and Hall polynomials. 4331: 4321: 2859: 2064: 1874: 1789: 352:orthogonal polynomials as special cases. 227:Learn how and when to remove this message 209:Learn how and when to remove this message 147:Learn how and when to remove this message 4577: 4355: 3045: 903:is the inner product of two elements of 172:This article includes a list of general 2753:{\displaystyle {\widetilde {H}}_{\mu }} 2623:! conjecture involved showing that the 1855:{\displaystyle {\widetilde {H}}_{\mu }} 510:is a nonnegative linear combination of 4770: 4692:SĂ©minaire Lotharingien de Combinatoire 4535: 4387: 4371: 4299: 3552:The transformed Macdonald polynomials 3142:of the Macdonald polynomials, denoted 3054:The transformed Macdonald polynomials 2711:{\displaystyle K_{\lambda \mu }(q,t),} 2616:which has dimension 6 = 3!. 1267:The Macdonald constant term conjecture 83:Please improve this article by adding 4608:SIAM Journal on Mathematical Analysis 4428:(1), Annals of Mathematics: 191–216, 1804:In the case of roots systems of type 1258:), the Macdonald polynomials are the 1228:), the Macdonald polynomials are the 1119:the Macdonald polynomials become the 3609:can then be defined in terms of the 2005:states that for each partition ÎŒ of 1202:, the Macdonald polynomials are the 272:in several variables, introduced by 158: 56: 15: 4363:A new class of symmetric functions. 4100: 3941: 3888:Non-symmetric Macdonald polynomials 3873:The bracket notation above denotes 3231:{\displaystyle P_{\lambda }(x;q,t)} 3183:{\displaystyle J_{\lambda }(x;q,t)} 1950:Kostka–Macdonald coefficients 1800:The Macdonald positivity conjecture 563:, with a basis of elements written 433:(the lattice spanned by the roots). 13: 4289:, and the inner sum is as before. 4223: 4220: 4061: 4058: 3978: 3975: 2271: 2099: 2066: 2052: 2039: 1862:of the Macdonald polynomials (see 869: 801: 767: 718: 646: 405:, to which corresponds a positive 178:it lacks sufficient corresponding 14: 4799: 4747: 2723:transformed Macdonald polynomials 1896:{\displaystyle \mathbb {Q} (q,t)} 477:{\displaystyle \mu \leq \lambda } 31:This article has multiple issues. 1985: 1948:) of these relations are called 1826:. A certain transformed version 1184:when the root system is of type 163: 61: 20: 4411: 2235: = 3 then the pairs ( 911:is a positive integer power of 39:or discuss these issues on the 4685:SĂ©minaire Bourbaki 797 (1995). 4233: 4227: 4193: 4143: 4117: 4095: 3988: 3982: 3958: 3936: 3854: 3842: 3813: 3807: 3706: 3700: 3683: 3665: 3596: 3578: 3504: 3498: 3475: 3469: 3426: 3420: 3394: 3376: 3360: 3355: 3349: 3330: 3324: 3307: 3302: 3296: 3276: 3258: 3225: 3207: 3177: 3159: 3098: 3080: 2916: 2910: 2891: 2885: 2854: 2834: 2816: 2702: 2690: 2162: 2114: 2061: 2035: 1890: 1878: 1762: 1749: 1734: 1685: 1663: 1650: 1635: 1586: 1501: 1498: 1486: 1457: 1433: 1430: 1418: 1389: 1192:for more general root systems. 1146:when the root system has type 1086:for each orbit of roots, plus 889: 881: 872: 848: 797: 774: 763: 743: 692: 670: 642: 629: 372:made by Macdonald about them. 1: 4599:10.1090/S0273-0979-97-00727-1 4564:10.1090/S0894-0347-01-00373-3 4333:10.1090/S0894-0347-05-00485-6 4292: 4068:{\displaystyle \mathrm {wt} } 524:in the positive Weyl chamber. 503:{\displaystyle \lambda -\mu } 375: 85:secondary or tertiary sources 4764:about Macdonald polynomials. 3131:{\displaystyle P_{\lambda }} 2944:where σ is a filling of the 2780:{\displaystyle P_{\lambda }} 1926:{\displaystyle s_{\lambda }} 1794:double affine Hecke algebras 1537:double affine Hecke algebras 864: 707:infinite q-Pochhammer symbol 7: 4753:Mike Zabrocki's page about 3545:, as shown in the figure. 3432:{\displaystyle D(\lambda )} 2643:! conjecture, and that the 2585:{\displaystyle x_{1}-x_{3}} 2544:{\displaystyle x_{3}-x_{2}} 2503:{\displaystyle y_{3}-y_{1}} 2462:{\displaystyle y_{2}-y_{3}} 1195:For the affine root system 1144:Hall–Littlewood polynomials 1105: 342:Hall–Littlewood polynomials 10: 4804: 4269:which are permutations of 4004:where the sum is over all 2625:isospectral Hilbert scheme 1279:for some positive integer 1012:is a rational function of 4721:Macdonald, I. G. (2003), 4030:multiline queues of type 4023:{\displaystyle L\times n} 2968:should be interpreted as 1190:Heckman–Opdam polynomials 1136:zonal spherical functions 380:First fix some notation: 4578:Kirillov, A. A. (1997), 4282:{\displaystyle \lambda } 4043:{\displaystyle \lambda } 3629:{\displaystyle J_{\mu }} 3452:{\displaystyle \lambda } 1230:Askey–Wilson polynomials 346:Askey–Wilson polynomials 4778:Algebraic combinatorics 4487:10.1073/pnas.0409705102 3875:plethystic substitution 1968:(2001), by proving the 1260:Koornwinder polynomials 1092:Koornwinder polynomials 456:ordering on the weights 429:is the root lattice of 391:in a real vector space 354:Koornwinder polynomials 306:), one for each of the 193:more precise citations. 96:"Macdonald polynomials" 4788:Orthogonal polynomials 4585:Bull. Amer. Math. Soc. 4536:Haiman, Mark (2001), " 4283: 4263: 4240: 4069: 4044: 4024: 3995: 3911:, O. Mandelshtam, and 3864: 3785: 3630: 3603: 3539: 3511: 3482: 3453: 3433: 3401: 3232: 3184: 3132: 3105: 3051: 3026: 2935: 2781: 2760:rather than the usual 2754: 2712: 2631:points in a plane was 2607: 2586: 2545: 2504: 2463: 2422: 2196: 2079: 1982:-Kostka coefficients. 1927: 1897: 1856: 1775: 1522: 999: 897: 853:constant term of  816: 699: 504: 478: 72:relies excessively on 4755:Macdonald polynomials 4421:Annals of Mathematics 4284: 4264: 4241: 4070: 4045: 4025: 3996: 3865: 3786: 3631: 3604: 3540: 3512: 3483: 3454: 3434: 3402: 3233: 3190:, is a re-scaling of 3185: 3133: 3106: 3049: 3027: 2936: 2782: 2755: 2713: 2608: 2587: 2546: 2505: 2464: 2423: 2197: 2080: 1928: 1898: 1864:Combinatorial formula 1857: 1776: 1523: 1000: 921:Macdonald polynomials 898: 817: 700: 616:of elements fixed by 505: 479: 364:, which were used to 358:affine Hecke algebras 270:symmetric polynomials 245:Macdonald polynomials 4273: 4262:{\displaystyle \mu } 4253: 4082: 4054: 4034: 4008: 3923: 3801: 3643: 3613: 3556: 3529: 3510:{\displaystyle l(s)} 3492: 3481:{\displaystyle a(s)} 3463: 3443: 3414: 3245: 3194: 3146: 3115: 3058: 2972: 2794: 2764: 2728: 2674: 2633:Cohen–Macaulay 2597: 2556: 2515: 2474: 2433: 2267: 2095: 2016: 1933:. The coefficients 1910: 1870: 1830: 1570: 1548:by several authors. 1290: 1142:-adic group, or the 940: 827: 715: 626: 488: 462: 4542:J. Amer. Math. Soc. 4478:2005PNAS..102.3891G 4460:(March 15, 2005), " 3018: 2996: 2160: 2138: 282:affine root systems 265:) are a family of 4783:Algebraic geometry 4458:Remmel, Jeffrey B. 4279: 4259: 4236: 4218: 4208: 4132: 4065: 4040: 4020: 3991: 3973: 3860: 3828: 3781: 3626: 3599: 3535: 3507: 3478: 3449: 3429: 3397: 3306: 3228: 3180: 3128: 3101: 3052: 3022: 2997: 2975: 2931: 2870: 2777: 2750: 2708: 2603: 2582: 2541: 2500: 2459: 2418: 2227:) run through the 2192: 2139: 2117: 2075: 1923: 1893: 1852: 1771: 1518: 1374: 1352: 1204:Rogers polynomials 995: 971: 893: 812: 739: 695: 669: 500: 474: 4732:978-0-521-82472-9 4681:Macdonald, I. G. 4661:Macdonald, I. G. 4641:Macdonald, I. G. 4472:(11): 3891–3894, 4456:Garsia, Adriano; 4424:, Second Series, 4377:Macdonald, I. G. 4361:Macdonald, I. G. 4209: 4199: 4123: 4102: 3964: 3943: 3819: 3752: 3656: 3569: 3538:{\displaystyle s} 3282: 3071: 2840: 2807: 2741: 2606:{\displaystyle 1} 1995:! conjecture 1973:! conjecture 1843: 1766: 1667: 1563:, and a symmetry 1513: 1353: 1325: 1138:for a semisimple 956: 867: 854: 807: 724: 654: 237: 236: 229: 219: 218: 211: 157: 156: 149: 131: 54: 4795: 4743: 4717: 4708: 4638: 4602: 4601: 4574: 4557: 4508: 4499: 4489: 4452: 4405: 4404: 4403: 4391: 4385: 4375: 4369: 4359: 4353: 4352: 4335: 4325: 4303: 4288: 4286: 4285: 4280: 4268: 4266: 4265: 4260: 4245: 4243: 4242: 4237: 4226: 4217: 4207: 4180: 4179: 4155: 4154: 4142: 4141: 4131: 4104: 4103: 4094: 4093: 4074: 4072: 4071: 4066: 4064: 4049: 4047: 4046: 4041: 4029: 4027: 4026: 4021: 4000: 3998: 3997: 3992: 3981: 3972: 3945: 3944: 3935: 3934: 3882:Jack polynomials 3869: 3867: 3866: 3861: 3838: 3837: 3827: 3790: 3788: 3787: 3782: 3780: 3776: 3775: 3774: 3753: 3751: 3750: 3749: 3727: 3720: 3719: 3710: 3709: 3664: 3663: 3658: 3657: 3649: 3635: 3633: 3632: 3627: 3625: 3624: 3608: 3606: 3605: 3600: 3577: 3576: 3571: 3570: 3562: 3544: 3542: 3541: 3536: 3516: 3514: 3513: 3508: 3487: 3485: 3484: 3479: 3458: 3456: 3455: 3450: 3438: 3436: 3435: 3430: 3406: 3404: 3403: 3398: 3375: 3374: 3359: 3358: 3334: 3333: 3305: 3257: 3256: 3237: 3235: 3234: 3229: 3206: 3205: 3189: 3187: 3186: 3181: 3158: 3157: 3137: 3135: 3134: 3129: 3127: 3126: 3110: 3108: 3107: 3102: 3079: 3078: 3073: 3072: 3064: 3031: 3029: 3028: 3023: 3017: 3016: 3015: 3005: 2995: 2994: 2993: 2983: 2940: 2938: 2937: 2932: 2930: 2929: 2920: 2919: 2895: 2894: 2869: 2868: 2867: 2862: 2815: 2814: 2809: 2808: 2800: 2786: 2784: 2783: 2778: 2776: 2775: 2759: 2757: 2756: 2751: 2749: 2748: 2743: 2742: 2734: 2717: 2715: 2714: 2709: 2689: 2688: 2612: 2610: 2609: 2604: 2591: 2589: 2588: 2583: 2581: 2580: 2568: 2567: 2550: 2548: 2547: 2542: 2540: 2539: 2527: 2526: 2509: 2507: 2506: 2501: 2499: 2498: 2486: 2485: 2468: 2466: 2465: 2460: 2458: 2457: 2445: 2444: 2427: 2425: 2424: 2419: 2417: 2416: 2407: 2406: 2394: 2393: 2384: 2383: 2371: 2370: 2361: 2360: 2348: 2347: 2338: 2337: 2325: 2324: 2315: 2314: 2302: 2301: 2292: 2291: 2279: 2278: 2201: 2199: 2198: 2193: 2191: 2190: 2159: 2158: 2157: 2147: 2137: 2136: 2135: 2125: 2107: 2106: 2084: 2082: 2081: 2076: 2074: 2073: 2060: 2059: 2047: 2046: 2028: 2027: 1932: 1930: 1929: 1924: 1922: 1921: 1902: 1900: 1899: 1894: 1877: 1861: 1859: 1858: 1853: 1851: 1850: 1845: 1844: 1836: 1780: 1778: 1777: 1772: 1767: 1765: 1761: 1760: 1748: 1747: 1737: 1727: 1726: 1725: 1724: 1710: 1709: 1708: 1707: 1684: 1683: 1673: 1668: 1666: 1662: 1661: 1649: 1648: 1638: 1628: 1627: 1626: 1625: 1611: 1610: 1609: 1608: 1585: 1584: 1574: 1533:Dyson conjecture 1527: 1525: 1524: 1519: 1514: 1512: 1511: 1510: 1485: 1444: 1443: 1442: 1417: 1376: 1373: 1351: 1318: 1317: 1305: 1304: 1248: 1247: 1220: 1219: 1182:Jack polynomials 1004: 1002: 1001: 996: 994: 993: 984: 983: 970: 952: 951: 907:, at least when 902: 900: 899: 894: 892: 884: 879: 868: 860: 855: 852: 821: 819: 818: 813: 808: 806: 805: 804: 789: 788: 772: 771: 770: 755: 754: 741: 738: 704: 702: 701: 696: 691: 690: 668: 650: 649: 587: 509: 507: 506: 501: 483: 481: 480: 475: 351: 338:Jack polynomials 232: 225: 214: 207: 203: 200: 194: 189:this article by 180:inline citations 167: 166: 159: 152: 145: 141: 138: 132: 130: 89: 65: 57: 46: 24: 23: 16: 4803: 4802: 4798: 4797: 4796: 4794: 4793: 4792: 4768: 4767: 4762:Haiman's papers 4750: 4733: 4706:math.QA/0011046 4620:10.1137/0513070 4614:(6): 988–1007, 4555:math.AG/0010246 4548:(4): 941–1006, 4434:10.2307/2118632 4414: 4409: 4408: 4392: 4388: 4376: 4372: 4360: 4356: 4304: 4300: 4295: 4274: 4271: 4270: 4254: 4251: 4250: 4219: 4213: 4203: 4175: 4171: 4150: 4146: 4137: 4133: 4127: 4099: 4098: 4089: 4085: 4083: 4080: 4079: 4057: 4055: 4052: 4051: 4035: 4032: 4031: 4009: 4006: 4005: 3974: 3968: 3940: 3939: 3930: 3926: 3924: 3921: 3920: 3905: 3890: 3833: 3829: 3823: 3802: 3799: 3798: 3767: 3763: 3742: 3738: 3731: 3726: 3725: 3721: 3715: 3711: 3693: 3689: 3659: 3648: 3647: 3646: 3644: 3641: 3640: 3620: 3616: 3614: 3611: 3610: 3572: 3561: 3560: 3559: 3557: 3554: 3553: 3530: 3527: 3526: 3493: 3490: 3489: 3464: 3461: 3460: 3444: 3441: 3440: 3415: 3412: 3411: 3370: 3366: 3339: 3335: 3320: 3316: 3286: 3252: 3248: 3246: 3243: 3242: 3201: 3197: 3195: 3192: 3191: 3153: 3149: 3147: 3144: 3143: 3122: 3118: 3116: 3113: 3112: 3074: 3063: 3062: 3061: 3059: 3056: 3055: 3037: 3011: 3007: 3006: 3001: 2989: 2985: 2984: 2979: 2973: 2970: 2969: 2925: 2921: 2900: 2896: 2875: 2871: 2863: 2858: 2857: 2844: 2810: 2799: 2798: 2797: 2795: 2792: 2791: 2771: 2767: 2765: 2762: 2761: 2744: 2733: 2732: 2731: 2729: 2726: 2725: 2721:Written in the 2681: 2677: 2675: 2672: 2671: 2667: 2659:LLT polynomials 2653: 2598: 2595: 2594: 2576: 2572: 2563: 2559: 2557: 2554: 2553: 2535: 2531: 2522: 2518: 2516: 2513: 2512: 2494: 2490: 2481: 2477: 2475: 2472: 2471: 2453: 2449: 2440: 2436: 2434: 2431: 2430: 2412: 2408: 2402: 2398: 2389: 2385: 2379: 2375: 2366: 2362: 2356: 2352: 2343: 2339: 2333: 2329: 2320: 2316: 2310: 2306: 2297: 2293: 2287: 2283: 2274: 2270: 2268: 2265: 2264: 2259: 2252: 2243: 2226: 2217: 2165: 2161: 2153: 2149: 2148: 2143: 2131: 2127: 2126: 2121: 2102: 2098: 2096: 2093: 2092: 2069: 2065: 2055: 2051: 2042: 2038: 2023: 2019: 2017: 2014: 2013: 1988: 1939: 1917: 1913: 1911: 1908: 1907: 1905:Schur functions 1873: 1871: 1868: 1867: 1846: 1835: 1834: 1833: 1831: 1828: 1827: 1813: 1802: 1756: 1752: 1743: 1739: 1738: 1720: 1716: 1715: 1711: 1703: 1699: 1698: 1694: 1679: 1675: 1674: 1672: 1657: 1653: 1644: 1640: 1639: 1621: 1617: 1616: 1612: 1604: 1600: 1599: 1595: 1580: 1576: 1575: 1573: 1571: 1568: 1567: 1558: 1547: 1481: 1456: 1452: 1445: 1413: 1388: 1384: 1377: 1375: 1357: 1329: 1313: 1309: 1300: 1296: 1291: 1288: 1287: 1269: 1257: 1246: 1241: 1240: 1239: 1227: 1218: 1215: 1214: 1213: 1201: 1121:Weyl characters 1108: 1068: 1061: 1042: 1035: 1026: 1011: 989: 985: 976: 972: 960: 947: 943: 941: 938: 937: 928: 888: 880: 875: 859: 851: 828: 825: 824: 800: 796: 784: 780: 773: 766: 762: 750: 746: 742: 740: 728: 716: 713: 712: 686: 682: 658: 645: 641: 627: 624: 623: 608: 600: 583: 489: 486: 485: 484:if and only if 463: 460: 459: 401:is a choice of 378: 362:Hilbert schemes 349: 330: 324: 304: 298: 252: 233: 222: 221: 220: 215: 204: 198: 195: 185:Please help to 184: 168: 164: 153: 142: 136: 133: 90: 88: 82: 78:primary sources 66: 25: 21: 12: 11: 5: 4801: 4791: 4790: 4785: 4780: 4766: 4765: 4758: 4749: 4748:External links 4746: 4745: 4744: 4731: 4718: 4686: 4679: 4659: 4639: 4603: 4592:(3): 251–292, 4575: 4533: 4518: 4509: 4453: 4413: 4410: 4407: 4406: 4386: 4370: 4354: 4316:(3): 735–761, 4297: 4296: 4294: 4291: 4278: 4258: 4247: 4246: 4235: 4232: 4229: 4225: 4222: 4216: 4212: 4206: 4202: 4198: 4195: 4192: 4189: 4186: 4183: 4178: 4174: 4170: 4167: 4164: 4161: 4158: 4153: 4149: 4145: 4140: 4136: 4130: 4126: 4122: 4119: 4116: 4113: 4110: 4107: 4097: 4092: 4088: 4063: 4060: 4039: 4019: 4016: 4013: 4002: 4001: 3990: 3987: 3984: 3980: 3977: 3971: 3967: 3963: 3960: 3957: 3954: 3951: 3948: 3938: 3933: 3929: 3904: 3901: 3889: 3886: 3871: 3870: 3859: 3856: 3853: 3850: 3847: 3844: 3841: 3836: 3832: 3826: 3822: 3818: 3815: 3812: 3809: 3806: 3792: 3791: 3779: 3773: 3770: 3766: 3762: 3759: 3756: 3748: 3745: 3741: 3737: 3734: 3730: 3724: 3718: 3714: 3708: 3705: 3702: 3699: 3696: 3692: 3688: 3685: 3682: 3679: 3676: 3673: 3670: 3667: 3662: 3655: 3652: 3623: 3619: 3598: 3595: 3592: 3589: 3586: 3583: 3580: 3575: 3568: 3565: 3534: 3525:of the square 3506: 3503: 3500: 3497: 3477: 3474: 3471: 3468: 3448: 3428: 3425: 3422: 3419: 3408: 3407: 3396: 3393: 3390: 3387: 3384: 3381: 3378: 3373: 3369: 3365: 3362: 3357: 3354: 3351: 3348: 3345: 3342: 3338: 3332: 3329: 3326: 3323: 3319: 3315: 3312: 3309: 3304: 3301: 3298: 3295: 3292: 3289: 3285: 3281: 3278: 3275: 3272: 3269: 3266: 3263: 3260: 3255: 3251: 3227: 3224: 3221: 3218: 3215: 3212: 3209: 3204: 3200: 3179: 3176: 3173: 3170: 3167: 3164: 3161: 3156: 3152: 3125: 3121: 3100: 3097: 3094: 3091: 3088: 3085: 3082: 3077: 3070: 3067: 3035: 3021: 3014: 3010: 3004: 3000: 2992: 2988: 2982: 2978: 2942: 2941: 2928: 2924: 2918: 2915: 2912: 2909: 2906: 2903: 2899: 2893: 2890: 2887: 2884: 2881: 2878: 2874: 2866: 2861: 2856: 2853: 2850: 2847: 2843: 2839: 2836: 2833: 2830: 2827: 2824: 2821: 2818: 2813: 2806: 2803: 2774: 2770: 2747: 2740: 2737: 2707: 2704: 2701: 2698: 2695: 2692: 2687: 2684: 2680: 2666: 2663: 2651: 2614: 2613: 2602: 2592: 2579: 2575: 2571: 2566: 2562: 2551: 2538: 2534: 2530: 2525: 2521: 2510: 2497: 2493: 2489: 2484: 2480: 2469: 2456: 2452: 2448: 2443: 2439: 2428: 2415: 2411: 2405: 2401: 2397: 2392: 2388: 2382: 2378: 2374: 2369: 2365: 2359: 2355: 2351: 2346: 2342: 2336: 2332: 2328: 2323: 2319: 2313: 2309: 2305: 2300: 2296: 2290: 2286: 2282: 2277: 2273: 2260:is spanned by 2257: 2248: 2239: 2222: 2213: 2205:has dimension 2203: 2202: 2189: 2186: 2183: 2180: 2177: 2174: 2171: 2168: 2164: 2156: 2152: 2146: 2142: 2134: 2130: 2124: 2120: 2116: 2113: 2110: 2105: 2101: 2086: 2085: 2072: 2068: 2063: 2058: 2054: 2050: 2045: 2041: 2037: 2034: 2031: 2026: 2022: 1999:Adriano Garsia 1987: 1984: 1937: 1920: 1916: 1892: 1889: 1886: 1883: 1880: 1876: 1849: 1842: 1839: 1808: 1801: 1798: 1782: 1781: 1770: 1764: 1759: 1755: 1751: 1746: 1742: 1736: 1733: 1730: 1723: 1719: 1714: 1706: 1702: 1697: 1693: 1690: 1687: 1682: 1678: 1671: 1665: 1660: 1656: 1652: 1647: 1643: 1637: 1634: 1631: 1624: 1620: 1615: 1607: 1603: 1598: 1594: 1591: 1588: 1583: 1579: 1556: 1543: 1529: 1528: 1517: 1509: 1506: 1503: 1500: 1497: 1494: 1491: 1488: 1484: 1480: 1477: 1474: 1471: 1468: 1465: 1462: 1459: 1455: 1451: 1448: 1441: 1438: 1435: 1432: 1429: 1426: 1423: 1420: 1416: 1412: 1409: 1406: 1403: 1400: 1397: 1394: 1391: 1387: 1383: 1380: 1372: 1369: 1366: 1363: 1360: 1356: 1350: 1347: 1344: 1341: 1338: 1335: 1332: 1328: 1324: 1321: 1316: 1312: 1308: 1303: 1299: 1295: 1268: 1265: 1264: 1263: 1253: 1242: 1233: 1225: 1216: 1207: 1199: 1193: 1166: 1151: 1128: 1107: 1104: 1066: 1059: 1045: 1044: 1040: 1033: 1028: 1024: 1009: 992: 988: 982: 979: 975: 969: 966: 963: 959: 955: 950: 946: 926: 917: 916: 891: 887: 883: 878: 874: 871: 866: 863: 858: 850: 847: 844: 841: 838: 835: 832: 822: 811: 803: 799: 795: 792: 787: 783: 779: 776: 769: 765: 761: 758: 753: 749: 745: 737: 734: 731: 727: 723: 720: 710: 694: 689: 685: 681: 678: 675: 672: 667: 664: 661: 657: 653: 648: 644: 640: 637: 634: 631: 621: 602: 598: 593: 572: 542: 536: 525: 515: 499: 496: 493: 473: 470: 467: 452: 441:weight lattice 434: 424: 410: 403:positive roots 396: 377: 374: 328: 322: 302: 296: 250: 235: 234: 217: 216: 171: 169: 162: 155: 154: 69: 67: 60: 55: 29: 28: 26: 19: 9: 6: 4: 3: 2: 4800: 4789: 4786: 4784: 4781: 4779: 4776: 4775: 4773: 4763: 4759: 4756: 4752: 4751: 4742: 4738: 4734: 4728: 4724: 4719: 4716: 4712: 4707: 4702: 4699:: Art. B45a, 4698: 4694: 4693: 4687: 4684: 4680: 4678: 4675: 4672: 4671:0-8218-0770-6 4668: 4664: 4660: 4658: 4655: 4652: 4651:0-19-853489-2 4648: 4644: 4640: 4637: 4633: 4629: 4625: 4621: 4617: 4613: 4609: 4604: 4600: 4595: 4591: 4587: 4586: 4581: 4576: 4573: 4569: 4565: 4561: 4556: 4551: 4547: 4543: 4539: 4534: 4532: 4529: 4525: 4524: 4520:Haiman, Mark 4519: 4516: 4515: 4510: 4507: 4503: 4498: 4493: 4488: 4483: 4479: 4475: 4471: 4467: 4463: 4459: 4454: 4451: 4447: 4443: 4439: 4435: 4431: 4427: 4423: 4422: 4416: 4415: 4402: 4397: 4390: 4384: 4380: 4374: 4368: 4364: 4358: 4351: 4347: 4343: 4339: 4334: 4329: 4324: 4319: 4315: 4311: 4310: 4302: 4298: 4290: 4276: 4256: 4230: 4214: 4210: 4204: 4200: 4196: 4190: 4187: 4184: 4181: 4176: 4172: 4168: 4165: 4162: 4159: 4156: 4151: 4147: 4138: 4134: 4128: 4124: 4120: 4114: 4111: 4108: 4105: 4090: 4086: 4078: 4077: 4076: 4037: 4017: 4014: 4011: 3985: 3969: 3965: 3961: 3955: 3952: 3949: 3946: 3931: 3927: 3919: 3918: 3917: 3914: 3910: 3900: 3897: 3894: 3885: 3883: 3878: 3876: 3857: 3851: 3848: 3845: 3839: 3834: 3830: 3824: 3820: 3816: 3810: 3804: 3797: 3796: 3795: 3777: 3771: 3768: 3764: 3760: 3757: 3754: 3746: 3743: 3739: 3735: 3732: 3728: 3722: 3716: 3712: 3703: 3697: 3694: 3690: 3686: 3680: 3677: 3674: 3671: 3668: 3660: 3653: 3650: 3639: 3638: 3637: 3636:'s. We have 3621: 3617: 3593: 3590: 3587: 3584: 3581: 3573: 3566: 3563: 3550: 3549: 3532: 3524: 3520: 3501: 3495: 3472: 3466: 3446: 3423: 3417: 3391: 3388: 3385: 3382: 3379: 3371: 3367: 3363: 3352: 3346: 3343: 3340: 3336: 3327: 3321: 3317: 3313: 3310: 3299: 3293: 3290: 3287: 3283: 3279: 3273: 3270: 3267: 3264: 3261: 3253: 3249: 3241: 3240: 3239: 3222: 3219: 3216: 3213: 3210: 3202: 3198: 3174: 3171: 3168: 3165: 3162: 3154: 3150: 3141: 3140:integral form 3123: 3119: 3095: 3092: 3089: 3086: 3083: 3075: 3068: 3065: 3048: 3044: 3042: 3038: 3019: 3012: 3008: 3002: 2998: 2990: 2986: 2980: 2976: 2967: 2963: 2959: 2955: 2951: 2947: 2946:Young diagram 2926: 2922: 2913: 2907: 2904: 2901: 2897: 2888: 2882: 2879: 2876: 2872: 2864: 2851: 2848: 2845: 2841: 2837: 2831: 2828: 2825: 2822: 2819: 2811: 2804: 2801: 2790: 2789: 2788: 2772: 2768: 2745: 2738: 2735: 2724: 2719: 2705: 2699: 2696: 2693: 2685: 2682: 2678: 2662: 2660: 2655: 2650: 2646: 2642: 2638: 2634: 2630: 2626: 2622: 2617: 2600: 2593: 2577: 2573: 2569: 2564: 2560: 2552: 2536: 2532: 2528: 2523: 2519: 2511: 2495: 2491: 2487: 2482: 2478: 2470: 2454: 2450: 2446: 2441: 2437: 2429: 2413: 2409: 2403: 2399: 2395: 2390: 2386: 2380: 2376: 2372: 2367: 2363: 2357: 2353: 2349: 2344: 2340: 2334: 2330: 2326: 2321: 2317: 2311: 2307: 2303: 2298: 2294: 2288: 2284: 2280: 2275: 2263: 2262: 2261: 2256: 2251: 2247: 2242: 2238: 2234: 2230: 2225: 2221: 2216: 2212: 2208: 2187: 2184: 2181: 2178: 2175: 2172: 2169: 2166: 2154: 2150: 2144: 2140: 2132: 2128: 2122: 2118: 2108: 2103: 2091: 2090: 2089: 2070: 2056: 2048: 2043: 2032: 2029: 2024: 2020: 2012: 2011: 2010: 2008: 2004: 2000: 1996: 1994: 1986:n! conjecture 1983: 1981: 1976: 1974: 1972: 1967: 1963: 1959: 1955: 1951: 1947: 1943: 1936: 1918: 1914: 1906: 1887: 1884: 1881: 1865: 1847: 1840: 1837: 1825: 1821: 1817: 1811: 1807: 1797: 1795: 1791: 1787: 1768: 1757: 1753: 1744: 1740: 1731: 1728: 1721: 1717: 1712: 1704: 1700: 1695: 1691: 1688: 1680: 1676: 1669: 1658: 1654: 1645: 1641: 1632: 1629: 1622: 1618: 1613: 1605: 1601: 1596: 1592: 1589: 1581: 1577: 1566: 1565: 1564: 1562: 1559:at the point 1555: 1549: 1546: 1542: 1538: 1534: 1515: 1507: 1504: 1495: 1492: 1489: 1482: 1478: 1475: 1472: 1469: 1466: 1463: 1460: 1453: 1449: 1446: 1439: 1436: 1427: 1424: 1421: 1414: 1410: 1407: 1404: 1401: 1398: 1395: 1392: 1385: 1381: 1378: 1370: 1367: 1364: 1361: 1358: 1354: 1348: 1345: 1342: 1339: 1336: 1333: 1330: 1326: 1322: 1314: 1310: 1306: 1301: 1297: 1286: 1285: 1284: 1282: 1278: 1274: 1261: 1256: 1252: 1245: 1238: 1234: 1231: 1224: 1212: 1208: 1205: 1198: 1194: 1191: 1187: 1183: 1179: 1175: 1171: 1167: 1164: 1160: 1156: 1152: 1149: 1145: 1141: 1137: 1133: 1129: 1126: 1122: 1118: 1114: 1110: 1109: 1103: 1101: 1097: 1093: 1089: 1085: 1080: 1075: 1072: 1065: 1058: 1054: 1050: 1039: 1032: 1029: 1023: 1019: 1015: 1008: 990: 986: 980: 977: 973: 967: 964: 961: 957: 953: 948: 944: 936: 935: 934: 932: 925: 922: 914: 910: 906: 885: 876: 861: 856: 845: 839: 836: 833: 823: 809: 793: 790: 785: 781: 777: 759: 756: 751: 747: 735: 732: 729: 725: 721: 711: 708: 687: 683: 679: 676: 673: 665: 662: 659: 655: 651: 638: 635: 632: 622: 619: 615: 611: 606: 597: 594: 591: 586: 581: 577: 573: 570: 566: 562: 558: 557:group algebra 554: 550: 546: 543: 540: 537: 534: 530: 526: 523: 519: 516: 513: 497: 494: 491: 471: 468: 465: 457: 453: 450: 446: 442: 438: 435: 432: 428: 425: 422: 418: 414: 411: 408: 404: 400: 397: 394: 390: 386: 383: 382: 381: 373: 371: 367: 363: 359: 355: 347: 343: 339: 335: 331: 321: 317: 313: 309: 305: 295: 291: 287: 283: 279: 275: 271: 268: 264: 260: 256: 249: 246: 242: 231: 228: 213: 210: 202: 192: 188: 182: 181: 175: 170: 161: 160: 151: 148: 140: 129: 126: 122: 119: 115: 112: 108: 105: 101: 98: â€“  97: 93: 92:Find sources: 86: 80: 79: 75: 70:This article 68: 64: 59: 58: 53: 51: 44: 43: 38: 37: 32: 27: 18: 17: 4722: 4696: 4690: 4682: 4662: 4642: 4611: 4607: 4589: 4583: 4545: 4541: 4537: 4522: 4513: 4511:Mark Haiman 4469: 4465: 4461: 4425: 4419: 4412:Bibliography 4389: 4378: 4373: 4362: 4357: 4323:math/0409538 4313: 4307: 4301: 4248: 4003: 3906: 3898: 3895: 3891: 3879: 3872: 3793: 3551: 3548:polynomials. 3546: 3522: 3518: 3409: 3139: 3053: 3040: 3033: 2965: 2961: 2957: 2953: 2949: 2948:of shape ÎŒ, 2943: 2722: 2720: 2668: 2656: 2648: 2644: 2640: 2628: 2620: 2618: 2615: 2254: 2249: 2245: 2240: 2236: 2232: 2228: 2223: 2219: 2214: 2210: 2206: 2204: 2087: 2006: 1992: 1989: 1979: 1977: 1970: 1961: 1957: 1953: 1949: 1945: 1941: 1934: 1823: 1819: 1815: 1809: 1805: 1803: 1783: 1560: 1553: 1550: 1544: 1540: 1530: 1280: 1276: 1272: 1270: 1254: 1250: 1243: 1236: 1222: 1210: 1196: 1185: 1177: 1173: 1169: 1162: 1158: 1154: 1147: 1139: 1131: 1124: 1116: 1112: 1099: 1095: 1087: 1083: 1078: 1076: 1070: 1063: 1056: 1052: 1048: 1046: 1037: 1030: 1025:λλ 1021: 1017: 1013: 1010:λμ 1006: 930: 923: 920: 918: 912: 908: 904: 617: 613: 609: 604: 595: 589: 584: 579: 575: 568: 564: 560: 552: 548: 544: 538: 532: 521: 517: 512:simple roots 448: 447:(containing 444: 436: 430: 426: 420: 412: 407:Weyl chamber 398: 392: 387:is a finite 384: 379: 333: 326: 319: 315: 311: 307: 300: 293: 289: 285: 277: 262: 258: 254: 247: 244: 238: 223: 205: 196: 177: 143: 134: 124: 117: 110: 103: 91: 71: 47: 40: 34: 33:Please help 30: 3913:L. Williams 3517:denote the 2964:. The term 2787:, they are 2003:Mark Haiman 1966:Mark Haiman 1090:) known as 529:Weyl vector 389:root system 370:conjectures 241:mathematics 191:introducing 4772:Categories 4401:1811.01024 4293:References 3909:S. Corteel 2637:Gorenstein 2635:(and even 2209:!, where ( 2009:the space 1168:If we put 1053:orthogonal 417:Weyl group 376:Definition 350:1-variable 314:variables 267:orthogonal 199:April 2014 174:references 137:April 2014 107:newspapers 74:references 36:improve it 4628:0036-1410 4442:0003-486X 4383:MR1354144 4367:eudml.org 4342:0894-0347 4277:λ 4257:μ 4211:∑ 4205:μ 4201:∑ 4139:μ 4129:μ 4125:∑ 4091:λ 4038:λ 4015:× 3966:∑ 3932:λ 3907:In 2018, 3849:− 3840:⋅ 3831:μ 3821:∑ 3811:μ 3769:− 3744:− 3736:− 3717:μ 3704:μ 3695:− 3661:μ 3654:~ 3622:μ 3574:μ 3567:~ 3447:λ 3424:λ 3372:λ 3364:⋅ 3314:− 3300:λ 3291:∈ 3284:∏ 3254:λ 3203:λ 3155:λ 3124:λ 3076:μ 3069:~ 3020:⋯ 3009:σ 2987:σ 2927:σ 2914:σ 2889:σ 2855:→ 2852:μ 2846:σ 2842:∑ 2812:μ 2805:~ 2773:λ 2746:μ 2739:~ 2686:μ 2683:λ 2570:− 2529:− 2488:− 2447:− 2396:− 2373:− 2350:− 2276:μ 2272:Δ 2185:≤ 2170:≤ 2104:μ 2100:Δ 2071:μ 2067:Δ 2053:∂ 2040:∂ 2025:μ 1919:λ 1848:μ 1841:~ 1792:), using 1786:Cherednik 1758:ρ 1745:μ 1732:… 1718:ρ 1701:λ 1689:… 1681:μ 1659:ρ 1646:λ 1633:… 1619:ρ 1602:μ 1590:… 1582:λ 1505:− 1496:α 1490:α 1479:α 1470:ρ 1461:λ 1450:− 1428:α 1422:α 1411:α 1402:ρ 1393:λ 1382:− 1355:∏ 1343:α 1334:∈ 1331:α 1327:∏ 1320:⟩ 1315:λ 1302:λ 1294:⟨ 991:μ 981:μ 978:λ 968:λ 965:≤ 962:μ 958:∑ 949:λ 870:Δ 865:¯ 843:⟩ 831:⟨ 802:∞ 786:α 768:∞ 752:α 733:∈ 730:α 726:∏ 719:Δ 677:− 663:≥ 656:∏ 647:∞ 555:) is the 527:ρ is the 498:μ 495:− 492:λ 472:λ 469:≤ 466:μ 332:), where 274:Macdonald 42:talk page 4760:Some of 4506:15753285 1812:−1 1176:and let 1106:Examples 929:for λ ∈ 567:for λ ∈ 368:several 4741:1976581 4715:1817334 4677:1488699 4657:1354144 4636:0674768 4572:9253880 4531:2059359 4474:Bibcode 4450:2118632 4350:2138143 3794:where 1788: ( 582:, then 439:is the 415:is the 187:improve 121:scholar 4739:  4729:  4713:  4669:  4649:  4634:  4626:  4570:  4504:  4497:554818 4494:  4448:  4440:  4348:  4340:  3459:, and 3410:where 3032:where 1188:, and 1041:μ 1034:λ 1005:where 705:, the 588:means 176:, but 123:  116:  109:  102:  94:  4701:arXiv 4568:S2CID 4550:arXiv 4446:JSTOR 4396:arXiv 4318:arXiv 1020:with 366:prove 325:,..., 299:,..., 128:JSTOR 114:books 4727:ISBN 4667:ISBN 4647:ISBN 4624:ISSN 4502:PMID 4466:PNAS 4438:ISSN 4338:ISSN 4050:and 3521:and 3488:and 2952:and 2001:and 1990:The 1960:and 1822:and 1790:1995 1368:< 1362:< 1346:> 1036:and 1027:= 1; 1016:and 919:The 603:λ ∈ 360:and 344:and 340:and 100:news 4616:doi 4594:doi 4560:doi 4540:", 4492:PMC 4482:doi 4470:102 4464:", 4430:doi 4426:141 4328:doi 3523:leg 3519:arm 2954:maj 2950:inv 2627:of 2112:det 1997:of 1952:or 1271:If 1153:If 1130:If 1111:If 1055:: 〈 601:= ÎŁ 574:If 559:of 454:An 443:of 419:of 239:In 76:to 4774:: 4737:MR 4735:, 4711:MR 4709:, 4697:45 4695:, 4674:MR 4654:MR 4632:MR 4630:, 4622:, 4612:13 4610:, 4590:34 4588:, 4582:, 4566:, 4558:, 4546:14 4544:, 4528:MR 4500:, 4490:, 4480:, 4468:, 4444:, 4436:, 4346:MR 4344:, 4336:, 4326:, 4314:18 4312:, 3884:. 3877:. 3043:. 2661:. 2244:, 2218:, 1980:qt 1975:. 1954:qt 1938:λΌ 1275:= 1249:, 1221:, 1172:= 1115:= 1062:, 578:= 547:= 458:: 451:). 318:=( 292:=( 257:; 243:, 87:. 45:. 4757:. 4703:: 4618:: 4596:: 4562:: 4552:: 4484:: 4476:: 4432:: 4398:: 4330:: 4320:: 4234:) 4231:Q 4228:( 4224:t 4221:w 4215:Q 4197:= 4194:) 4191:t 4188:, 4185:q 4182:; 4177:n 4173:x 4169:, 4166:. 4163:. 4160:. 4157:, 4152:1 4148:x 4144:( 4135:E 4121:= 4118:) 4115:t 4112:, 4109:q 4106:; 4101:x 4096:( 4087:P 4062:t 4059:w 4018:n 4012:L 3989:) 3986:Q 3983:( 3979:t 3976:w 3970:Q 3962:= 3959:) 3956:t 3953:, 3950:q 3947:; 3942:x 3937:( 3928:E 3858:. 3855:) 3852:1 3846:i 3843:( 3835:i 3825:i 3817:= 3814:) 3808:( 3805:n 3778:] 3772:1 3765:t 3761:, 3758:q 3755:; 3747:1 3740:t 3733:1 3729:X 3723:[ 3713:J 3707:) 3701:( 3698:n 3691:t 3687:= 3684:) 3681:t 3678:, 3675:q 3672:; 3669:x 3666:( 3651:H 3618:J 3597:) 3594:t 3591:, 3588:q 3585:; 3582:x 3579:( 3564:H 3533:s 3505:) 3502:s 3499:( 3496:l 3476:) 3473:s 3470:( 3467:a 3427:) 3421:( 3418:D 3395:) 3392:t 3389:, 3386:q 3383:; 3380:x 3377:( 3368:P 3361:) 3356:) 3353:s 3350:( 3347:l 3344:+ 3341:1 3337:t 3331:) 3328:s 3325:( 3322:a 3318:q 3311:1 3308:( 3303:) 3297:( 3294:D 3288:s 3280:= 3277:) 3274:t 3271:, 3268:q 3265:; 3262:x 3259:( 3250:J 3226:) 3223:t 3220:, 3217:q 3214:; 3211:x 3208:( 3199:P 3178:) 3175:t 3172:, 3169:q 3166:; 3163:x 3160:( 3151:J 3120:P 3099:) 3096:t 3093:, 3090:q 3087:; 3084:x 3081:( 3066:H 3041:i 3036:i 3034:σ 3013:2 3003:2 2999:x 2991:1 2981:1 2977:x 2966:x 2962:n 2958:n 2923:x 2917:) 2911:( 2908:j 2905:a 2902:m 2898:t 2892:) 2886:( 2883:v 2880:n 2877:i 2873:q 2865:+ 2860:Z 2849:: 2838:= 2835:) 2832:t 2829:, 2826:q 2823:; 2820:x 2817:( 2802:H 2769:P 2736:H 2706:, 2703:) 2700:t 2697:, 2694:q 2691:( 2679:K 2652:ÎŒ 2649:D 2645:n 2641:n 2629:n 2621:n 2601:1 2578:3 2574:x 2565:1 2561:x 2537:2 2533:x 2524:3 2520:x 2496:1 2492:y 2483:3 2479:y 2455:3 2451:y 2442:2 2438:y 2414:3 2410:y 2404:1 2400:x 2391:2 2387:y 2381:3 2377:x 2368:1 2364:y 2358:2 2354:x 2345:1 2341:y 2335:3 2331:x 2327:+ 2322:3 2318:y 2312:2 2308:x 2304:+ 2299:2 2295:y 2289:1 2285:x 2281:= 2258:ÎŒ 2255:D 2250:j 2246:q 2241:j 2237:p 2233:n 2229:n 2224:j 2220:q 2215:j 2211:p 2207:n 2188:n 2182:, 2179:j 2176:, 2173:i 2167:1 2163:) 2155:j 2151:q 2145:i 2141:y 2133:j 2129:p 2123:i 2119:x 2115:( 2109:= 2062:] 2057:y 2049:, 2044:x 2036:[ 2033:C 2030:= 2021:D 2007:n 1993:n 1971:n 1962:t 1958:q 1946:t 1944:, 1942:q 1940:( 1935:K 1915:s 1891:) 1888:t 1885:, 1882:q 1879:( 1875:Q 1838:H 1824:t 1820:q 1816:n 1810:n 1806:A 1769:. 1763:) 1754:t 1750:( 1741:P 1735:) 1729:, 1722:i 1713:t 1705:i 1696:q 1692:, 1686:( 1677:P 1670:= 1664:) 1655:t 1651:( 1642:P 1636:) 1630:, 1623:i 1614:t 1606:i 1597:q 1593:, 1587:( 1578:P 1561:t 1557:λ 1554:P 1545:n 1541:E 1516:. 1508:i 1502:) 1499:) 1493:, 1487:( 1483:/ 1476:2 1473:, 1467:k 1464:+ 1458:( 1454:q 1447:1 1440:i 1437:+ 1434:) 1431:) 1425:, 1419:( 1415:/ 1408:2 1405:, 1399:k 1396:+ 1390:( 1386:q 1379:1 1371:k 1365:i 1359:0 1349:0 1340:, 1337:R 1323:= 1311:P 1307:, 1298:P 1281:k 1277:q 1273:t 1262:. 1255:n 1251:C 1244:n 1237:C 1226:1 1223:C 1217:1 1211:C 1206:. 1200:1 1197:A 1186:A 1178:q 1174:q 1170:t 1165:. 1163:A 1159:W 1155:t 1150:. 1148:A 1140:p 1132:q 1127:. 1125:A 1117:t 1113:q 1100:q 1096:t 1088:q 1084:t 1079:t 1071:P 1067:ÎŒ 1064:P 1060:λ 1057:P 1049:A 1038:P 1031:P 1022:u 1018:t 1014:q 1007:u 987:m 974:u 954:= 945:P 931:P 927:λ 924:P 915:. 913:q 909:t 905:A 890:| 886:W 882:| 877:/ 873:) 862:g 857:f 849:( 846:= 840:g 837:, 834:f 810:. 798:) 794:q 791:; 782:e 778:t 775:( 764:) 760:q 757:; 748:e 744:( 736:R 722:= 709:. 693:) 688:r 684:q 680:a 674:1 671:( 666:0 660:r 652:= 643:) 639:q 636:; 633:a 630:( 620:. 618:W 614:A 610:e 607:ÎŒ 605:W 599:ÎŒ 596:m 590:e 585:f 580:e 576:f 571:. 569:P 565:e 561:P 553:P 551:( 549:F 545:A 539:F 533:P 522:P 518:P 514:. 449:Q 445:R 437:P 431:R 427:Q 423:. 421:R 413:W 409:. 399:R 395:. 393:V 385:R 334:n 329:n 327:x 323:1 320:x 316:x 312:n 308:k 303:k 301:t 297:1 294:t 290:t 286:t 278:t 263:q 261:, 259:t 255:x 253:( 251:λ 248:P 230:) 224:( 212:) 206:( 201:) 197:( 183:. 150:) 144:( 139:) 135:( 125:· 118:· 111:· 104:· 81:. 52:) 48:(

Index

improve it
talk page
Learn how and when to remove these messages

references
primary sources
secondary or tertiary sources
"Macdonald polynomials"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
references
inline citations
improve
introducing
Learn how and when to remove this message
Learn how and when to remove this message
mathematics
orthogonal
symmetric polynomials
Macdonald
affine root systems
Jack polynomials
Hall–Littlewood polynomials
Askey–Wilson polynomials
Koornwinder polynomials
affine Hecke algebras

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑