Knowledge

Magnetoplasmadynamic thruster

Source 📝

315: 1446: 195: 54:
and fed into an acceleration chamber, where the magnetic and electric fields are created using a power source. The particles are then propelled by the Lorentz force resulting from the interaction between the current flowing through the plasma and the magnetic field (which is either externally applied
66:
There are two main types of MPD thrusters, applied-field and self-field. Applied-field thrusters have magnetic rings surrounding the exhaust chamber to produce the magnetic field, while self-field thrusters have a cathode extending through the middle of the chamber. Applied fields are necessary at
202:
MPD thruster technology has been explored academically, but commercial interest has been low due to several remaining problems. One small problem is that power requirements on the order of hundreds of kilowatts are required for optimum performance. Current interplanetary spacecraft power systems
20: 218:. It was to power a communication satellite which was in the end not approved. Nuclear reactors supplying kilowatts of electrical power (of the order of ten times more than current RTG power supplies) have been orbited by the USSR: 351: 182:), by far the highest for any form of electric propulsion, and nearly as high as many interplanetary chemical rockets. This would allow use of electric propulsion on missions which require quick 369:
An MPD thruster was tested on board the Japanese Space Flyer Unit as part of EPEX (Electric Propulsion Experiment) that was launched March 18, 1995 and retrieved by space shuttle mission
172:, triple the value of current xenon-based ion thrusters, and about 25 times better than liquid rockets. MPD technology also has the potential for thrust levels of up to 200 newtons (N) ( 635:"Developments in the nuclear field will be actively applied ... also for creating propellant devices capable of ensuring space flights even to other planets", from the November 2009 290:). The use of lithium and barium propellant mixtures and multi-channel hollow cathodes has been shown in the laboratory to be a promising solution for the cathode erosion problem. 373:
January 20, 1996. To date, it is the only operational MPD thruster to have flown in space as a propulsion system. Experimental prototypes were first flown on Soviet spacecraft.
55:
or induced by the current) out through the exhaust chamber. Unlike chemical propulsion, there is no combustion of fuel. As with other electric propulsion variations, both
43:(the force on a charged particle by an electromagnetic field) to generate thrust. It is sometimes referred to as Lorentz Force Accelerator (LFA) or (mostly in Japan) MPD 146: 214:
A project to produce a space-going nuclear reactor designed to generate 600 kilowatts of electrical power began in 1963 and ran for most of the 1960s in the
121:
One potential application of magnetoplasmadynamic thrusters is the main propulsion engine for heavy cargo and piloted space vehicles (example engine
780: 753: 1176: 331: 1294: 530:
Kurchatov Institute with Roskosmos renewed the work over developing nuclear energy sources for interplanetary flights, June 2009, (in Russian
335: 327: 286:
Another problem with MPD technology has been the degradation of cathodes due to evaporation driven by high current densities (in excess of
739: 478: 915: 662:
Sankaran, K.; Cassady, L.; Kodys, A.D.; Choueiri, E.Y. (2015). "A Survey of Propulsion Options for Cargo and Piloted Missions to Mars".
302:, Japan, Germany, and Italy. Experimental prototypes were first flown on Soviet spacecraft and, most recently, in 1996, on the Japanese 36: 1192: 229:
Plans to develop a megawatt-scale nuclear reactor for the use aboard a crewed spaceship were announced in 2009 by Russian nuclear
506: 583: 558: 204: 1475: 773: 1097: 542: 1171: 608:
Kurchatov Institute with Roskosmos renewed the work over developing nuclear energy sources for interplanetary flights
343: 118:
40–60 percent. However, additional research has shown that exhaust velocities can exceed 100 kilometers per second.
717: 636: 1470: 1197: 1062: 766: 1301: 1156: 1125: 198:
CGI rendering of Princeton University's lithium-fed self-field MPD thruster (from Popular Mechanics magazine)
186:
maneuvers (such as capturing into orbit around another planet), but with many times greater fuel efficiency.
306:, which demonstrated the successful operation of a quasi-steady pulsed MPD thruster in space. Research at 279:
to each other produces an estimated conversion efficiency of 59% and a predicted power density of up to
211:
reactor was expected to generate power in the hundreds of kilowatts range but was discontinued in 2005.
422: 1256: 1115: 359: 307: 242: 1289: 1048: 1022: 964: 948: 938: 707:"Current Advances in Optimization of Operative Regimes of Steady State Applied Field MPD Thrusters" 366:), has resolved many problems related to the performance, stability and lifetime of MPD thrusters. 283:. This would be sufficient to power a MPD upper stage, perhaps to lift satellites from LEO to GEO. 260:
on the ground to beam power to the MPD-powered spacecraft, where it is converted to electricity by
1221: 1345: 1318: 1273: 1261: 1241: 1007: 969: 943: 381: 323: 1396: 1246: 1146: 888: 736: 482: 417: 67:
lower power levels, where self-field configurations are too weak. Various propellants such as
981: 974: 789: 427: 363: 223: 149: 194: 1092: 1087: 991: 905: 407: 397: 347: 124: 8: 1251: 1236: 1151: 1038: 1017: 986: 510: 384:
reached a thruster efficiency of 61.99% in 2019, corresponding to a specific impulse of I
264: 253: 230: 1450: 1416: 1381: 687: 249: 208: 519: 1445: 1411: 1366: 1266: 1166: 868: 842: 679: 619: 354:(EPPDyL) (where MPD thruster research has continued uninterrupted since 1967), and 1431: 1421: 1371: 1077: 830: 691: 671: 587: 562: 515: 339: 303: 103: 56: 479:"Choueiri, Edgar Y. (2009). New dawn of electric rocket. Next-Generation Thruster" 1043: 847: 813: 743: 546: 451: 257: 238: 99: 737:
Choueiri, Edgar Y. (2009). New dawn of electric rocket. Next-Generation Thruster
539: 377: 319: 1376: 1311: 1012: 852: 95: 749:
Search engine for a large archive of technical papers on MPD thruster research
1464: 1386: 1306: 1161: 1130: 910: 900: 895: 818: 808: 412: 111: 40: 675: 1391: 1350: 1323: 1082: 878: 873: 748: 683: 402: 311: 299: 160:
In theory, MPD thrusters could produce extremely high specific impulses (I
1406: 1401: 1207: 706: 650:
The Space Elevator: A revolutionary Earth-to-space transportation system.
758: 620:
Roskosmos prepared a project of a crewed spaceship with a nuclear engine
607: 1426: 883: 115: 298:
Research on MPD thrusters has been carried out in the US, the former
252:, is to beam power from the ground. This plan utilizes 5 200 kW 234: 207:
and solar arrays) are incapable of producing that much power. NASA's
84: 80: 1202: 835: 272: 183: 91:
have been used, with lithium generally being the best performer.
88: 51: 825: 803: 432: 370: 219: 107: 60: 44: 76: 68: 705:
Boxberger, Adam; Behnke, Alexander; Herdrich, Georg (2019).
661: 19: 623: 355: 267:. The tuning of the laser wavelength of 0.840 micrometres ( 261: 215: 72: 316:
National Aerospace University, Kharkiv Aviation Institute
63:
increase with power input, while thrust per watt drops.
704: 473: 471: 376:
The applied-field MPD thruster in development at the
127: 714:
International Electric Propulsion Conference (IEPC)
540:
Global Communications Satellite Using Nuclear Power
468: 140: 16:Form of electrically powered spacecraft propulsion 1462: 164:) with an exhaust velocity of up to and beyond 774: 352:Electric Propulsion and Plasma Dynamics Lab 781: 767: 664:Annals of the New York Academy of Sciences 559:"The USSR/Russia – RORSAT, Topaz, And RTG" 501: 499: 98:magnetoplasmadynamic thrusters have input 37:electrically powered spacecraft propulsion 788: 1193:Atmosphere-breathing electric propulsion 193: 18: 496: 271:per photon) and the photovoltaic panel 1463: 648:Edwards, Bradley C. Westling, Eric A. 205:radioisotope thermoelectric generators 762: 754:MPD - MagnetoPlasmaDynamic Propulsion 237:, and confirmed by Russian President 241:in his November 2009 address to the 652:2002, 2003 BC Edwards, Houston, TX. 175: 29:magnetoplasmadynamic (MPD) thruster 13: 1098:Field-emission electric propulsion 23:An MPD thruster during test firing 14: 1487: 1172:Microwave electrothermal thruster 730: 520:10.1038/scientificamerican0209-58 344:University of Southern California 50:Generally, a gaseous material is 1444: 723:from the original on 2022-10-09. 698: 655: 642: 637:Address to the Federal Assembly 629: 388:= 4665 s and 2.75 N of thrust. 1302:Pulsed nuclear thermal rocket‎ 1198:High Power Electric Propulsion 613: 601: 576: 551: 533: 524: 444: 189: 1: 1157:Helicon double-layer thruster 1126:Electrodeless plasma thruster 1121:Magnetoplasmadynamic thruster 438: 155: 106:15–60 kilometers per second, 626:, October 2009, (in Russian) 7: 1476:Magnetic propulsion devices 507:New dawn of electric rocket 391: 293: 10: 1492: 505:Choueiri, Edgar Y. (2009) 423:Solar panels on spacecraft 378:Institute of Space Systems 320:Institute of Space Systems 248:Another plan, proposed by 1442: 1359: 1338: 1282: 1229: 1220: 1185: 1139: 1116:Pulsed inductive thruster 1108: 1070: 1061: 1031: 1000: 957: 931: 924: 861: 796: 610:, June 2009, (in Russian) 360:Jet Propulsion Laboratory 308:Moscow Aviation Institute 256:at 0.84 micrometres with 1290:Nuclear pulse propulsion 1049:Electric-pump-fed engine 949:Hybrid-propellant rocket 939:Liquid-propellant rocket 233:, national space agency 1346:Beam-powered propulsion 1319:Fission-fragment rocket 1274:Nuclear photonic rocket 1242:Nuclear electric rocket 1008:Staged combustion cycle 944:Solid-propellant rocket 676:10.1196/annals.1311.027 382:University of Stuttgart 324:University of Stuttgart 1397:Non-rocket spacelaunch 1247:Nuclear thermal rocket 1147:Pulsed plasma thruster 418:Pulsed plasma thruster 199: 142: 24: 1471:Spacecraft propulsion 1063:Electrical propulsion 790:Spacecraft propulsion 428:Spacecraft propulsion 364:Glenn Research Center 197: 150:human mission to Mars 143: 141:{\displaystyle a^{2}} 22: 1295:Antimatter-catalyzed 1093:Hall-effect thruster 906:Solar thermal rocket 408:Magnetohydrodynamics 398:Hall effect thruster 348:Princeton University 254:free electron lasers 125: 1237:Direct Fusion Drive 1152:Vacuum arc thruster 1039:Pressure-fed engine 1018:Gas-generator cycle 925:Chemical propulsion 862:Physical propulsion 511:Scientific American 265:photovoltaic panels 231:Kurchatov Institute 102:100–500 kilowatts, 1451:Spaceflight portal 1417:Reactionless drive 1382:Aerogravity assist 1222:Nuclear propulsion 742:2016-10-18 at the 545:2008-07-09 at the 250:Bradley C. Edwards 209:Project Prometheus 200: 138: 25: 1458: 1457: 1412:Atmospheric entry 1367:Orbital mechanics 1334: 1333: 1216: 1215: 1167:Resistojet rocket 1057: 1056: 1032:Intake mechanisms 965:Liquid propellant 869:Cold gas thruster 716:. IEPC-2019-585. 1483: 1448: 1432:Alcubierre drive 1422:Field propulsion 1372:Orbital maneuver 1360:Related concepts 1227: 1226: 1078:Colloid thruster 1068: 1067: 929: 928: 831:Specific impulse 783: 776: 769: 760: 759: 725: 724: 722: 711: 702: 696: 695: 659: 653: 646: 640: 633: 627: 617: 611: 605: 599: 598: 596: 595: 586:. Archived from 580: 574: 573: 571: 570: 561:. Archived from 555: 549: 537: 531: 528: 522: 503: 494: 493: 491: 490: 481:. Archived from 475: 466: 465: 463: 462: 456:history.nasa.gov 448: 340:Osaka University 304:Space Flyer Unit 289: 282: 278: 270: 243:Federal Assembly 181: 180: 171: 169: 147: 145: 144: 139: 137: 136: 104:exhaust velocity 57:specific impulse 1491: 1490: 1486: 1485: 1484: 1482: 1481: 1480: 1461: 1460: 1459: 1454: 1438: 1355: 1330: 1278: 1212: 1181: 1135: 1109:Electromagnetic 1104: 1053: 1044:Pump-fed engine 1027: 996: 953: 920: 857: 848:Rocket equation 814:Reaction engine 792: 787: 744:Wayback Machine 733: 728: 720: 709: 703: 699: 660: 656: 647: 643: 634: 630: 618: 614: 606: 602: 593: 591: 582: 581: 577: 568: 566: 557: 556: 552: 547:Wayback Machine 538: 534: 529: 525: 504: 497: 488: 486: 477: 476: 469: 460: 458: 450: 449: 445: 441: 394: 387: 296: 287: 280: 276: 268: 258:adaptive optics 239:Dmitry Medvedev 192: 179: 173: 167: 165: 163: 158: 132: 128: 126: 123: 122: 39:which uses the 35:) is a form of 17: 12: 11: 5: 1489: 1479: 1478: 1473: 1456: 1455: 1443: 1440: 1439: 1437: 1436: 1435: 1434: 1429: 1419: 1414: 1409: 1404: 1399: 1394: 1389: 1384: 1379: 1377:Gravity assist 1374: 1369: 1363: 1361: 1357: 1356: 1354: 1353: 1348: 1342: 1340: 1339:External power 1336: 1335: 1332: 1331: 1329: 1328: 1327: 1326: 1316: 1315: 1314: 1312:Bussard ramjet 1304: 1299: 1298: 1297: 1286: 1284: 1280: 1279: 1277: 1276: 1271: 1270: 1269: 1264: 1259: 1254: 1244: 1239: 1233: 1231: 1224: 1218: 1217: 1214: 1213: 1211: 1210: 1205: 1200: 1195: 1189: 1187: 1183: 1182: 1180: 1179: 1174: 1169: 1164: 1159: 1154: 1149: 1143: 1141: 1140:Electrothermal 1137: 1136: 1134: 1133: 1128: 1123: 1118: 1112: 1110: 1106: 1105: 1103: 1102: 1101: 1100: 1095: 1090: 1080: 1074: 1072: 1065: 1059: 1058: 1055: 1054: 1052: 1051: 1046: 1041: 1035: 1033: 1029: 1028: 1026: 1025: 1020: 1015: 1013:Expander cycle 1010: 1004: 1002: 998: 997: 995: 994: 989: 984: 982:Monopropellant 979: 978: 977: 972: 961: 959: 955: 954: 952: 951: 946: 941: 935: 933: 926: 922: 921: 919: 918: 913: 908: 903: 898: 893: 892: 891: 881: 876: 871: 865: 863: 859: 858: 856: 855: 853:Thermal rocket 850: 845: 840: 839: 838: 833: 823: 822: 821: 816: 806: 800: 798: 794: 793: 786: 785: 778: 771: 763: 757: 756: 751: 746: 732: 731:External links 729: 727: 726: 697: 670:(1): 450–467. 654: 641: 628: 612: 600: 575: 550: 532: 523: 495: 467: 442: 440: 437: 436: 435: 430: 425: 420: 415: 410: 405: 400: 393: 390: 385: 295: 292: 191: 188: 177: 161: 157: 154: 135: 131: 96:Edgar Choueiri 15: 9: 6: 4: 3: 2: 1488: 1477: 1474: 1472: 1469: 1468: 1466: 1453: 1452: 1447: 1441: 1433: 1430: 1428: 1425: 1424: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1387:Oberth effect 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1364: 1362: 1358: 1352: 1349: 1347: 1344: 1343: 1341: 1337: 1325: 1322: 1321: 1320: 1317: 1313: 1310: 1309: 1308: 1307:Fusion rocket 1305: 1303: 1300: 1296: 1293: 1292: 1291: 1288: 1287: 1285: 1281: 1275: 1272: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1249: 1248: 1245: 1243: 1240: 1238: 1235: 1234: 1232: 1230:Closed system 1228: 1225: 1223: 1219: 1209: 1206: 1204: 1201: 1199: 1196: 1194: 1191: 1190: 1188: 1184: 1178: 1175: 1173: 1170: 1168: 1165: 1163: 1162:Arcjet rocket 1160: 1158: 1155: 1153: 1150: 1148: 1145: 1144: 1142: 1138: 1132: 1131:Plasma magnet 1129: 1127: 1124: 1122: 1119: 1117: 1114: 1113: 1111: 1107: 1099: 1096: 1094: 1091: 1089: 1086: 1085: 1084: 1081: 1079: 1076: 1075: 1073: 1071:Electrostatic 1069: 1066: 1064: 1060: 1050: 1047: 1045: 1042: 1040: 1037: 1036: 1034: 1030: 1024: 1023:Tap-off cycle 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1005: 1003: 999: 993: 992:Tripropellant 990: 988: 985: 983: 980: 976: 973: 971: 968: 967: 966: 963: 962: 960: 956: 950: 947: 945: 942: 940: 937: 936: 934: 930: 927: 923: 917: 914: 912: 911:Photon rocket 909: 907: 904: 902: 901:Magnetic sail 899: 897: 896:Electric sail 894: 890: 887: 886: 885: 882: 880: 877: 875: 872: 870: 867: 866: 864: 860: 854: 851: 849: 846: 844: 841: 837: 834: 832: 829: 828: 827: 824: 820: 819:Reaction mass 817: 815: 812: 811: 810: 809:Rocket engine 807: 805: 802: 801: 799: 795: 791: 784: 779: 777: 772: 770: 765: 764: 761: 755: 752: 750: 747: 745: 741: 738: 735: 734: 719: 715: 708: 701: 693: 689: 685: 681: 677: 673: 669: 665: 658: 651: 645: 638: 632: 625: 621: 616: 609: 604: 590:on 2012-03-05 589: 585: 579: 565:on 2012-03-05 564: 560: 554: 548: 544: 541: 536: 527: 521: 517: 513: 512: 508: 502: 500: 485:on 2016-10-18 484: 480: 474: 472: 457: 453: 452:"PROPELLANTS" 447: 443: 434: 431: 429: 426: 424: 421: 419: 416: 414: 413:Magnetic sail 411: 409: 406: 404: 401: 399: 396: 395: 389: 383: 379: 374: 372: 367: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 325: 321: 317: 313: 309: 305: 301: 291: 288:100 A/cm 284: 281:540 kW/m 274: 266: 263: 259: 255: 251: 246: 244: 240: 236: 232: 227: 225: 221: 217: 212: 210: 206: 196: 187: 185: 153: 151: 133: 129: 119: 117: 113: 109: 105: 101: 97: 94:According to 92: 90: 86: 82: 78: 74: 70: 64: 62: 58: 53: 48: 46: 42: 41:Lorentz force 38: 34: 30: 21: 1449: 1392:Space launch 1324:Fission sail 1252:Radioisotope 1120: 1083:Ion thruster 1001:Power cycles 987:Bipropellant 879:Steam rocket 874:Water rocket 713: 700: 667: 663: 657: 649: 644: 631: 615: 603: 592:. Retrieved 588:the original 578: 567:. Retrieved 563:the original 553: 535: 526: 509: 487:. Retrieved 483:the original 459:. Retrieved 455: 446: 403:Ion thruster 375: 368: 332:Centrospazio 312:RKK Energiya 300:Soviet Union 297: 285: 277:1.43 eV 269:1.48 eV 247: 228: 213: 201: 159: 120: 93: 65: 49: 32: 28: 26: 1407:Aerocapture 1402:Aerobraking 1283:Open system 1267:"Lightbulb" 1208:Mass driver 958:Propellants 889:Diffractive 514:300, 58–65 336:Alta S.p.A. 190:Development 1465:Categories 1427:Warp drive 1257:Salt-water 975:Hypergolic 884:Solar sail 594:2008-05-28 569:2008-05-28 489:2016-10-18 461:2022-11-05 439:References 156:Advantages 116:efficiency 970:Cryogenic 358:centers ( 235:Roskosmos 203:(such as 170: m/s 85:hydrazine 1262:Gas core 797:Concepts 740:Archived 718:Archived 684:15220162 543:Archived 392:See also 294:Research 174:45  81:hydrogen 1351:Tethers 1203:MagBeam 1088:Gridded 843:Staging 836:Delta-v 692:1405279 584:"TOPAZ" 380:of the 322:of the 273:bandgap 184:delta-v 112:newtons 110:2.5–25 89:lithium 52:ionized 1177:VASIMR 826:Thrust 804:Rocket 690:  682:  433:VASIMR 371:STS-72 222:; and 220:RORSAT 108:thrust 87:, and 61:thrust 45:arcjet 1186:Other 932:State 721:(PDF) 710:(PDF) 688:S2CID 224:TOPAZ 100:power 77:argon 69:xenon 916:WINE 680:PMID 668:1017 624:RIAN 362:and 356:NASA 328:ISAS 262:GaAs 216:USSR 148:for 114:and 73:neon 59:and 33:MPDT 672:doi 516:doi 350:'s 275:of 168:000 166:110 152:). 1467:: 712:. 686:. 678:. 666:. 622:, 498:^ 470:^ 454:. 386:sp 346:, 342:, 338:, 334:, 330:, 326:, 318:, 314:, 310:, 245:. 226:. 176:lb 162:sp 83:, 79:, 75:, 71:, 47:. 27:A 782:e 775:t 768:v 694:. 674:: 639:. 597:. 572:. 518:: 492:. 464:. 178:F 134:2 130:a 31:(

Index


electrically powered spacecraft propulsion
Lorentz force
arcjet
ionized
specific impulse
thrust
xenon
neon
argon
hydrogen
hydrazine
lithium
Edgar Choueiri
power
exhaust velocity
thrust
newtons
efficiency
human mission to Mars
delta-v

radioisotope thermoelectric generators
Project Prometheus
USSR
RORSAT
TOPAZ
Kurchatov Institute
Roskosmos
Dmitry Medvedev

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.