Knowledge

Mapping class group of a surface

Source đź“ť

3766:
The study of pseudo-Anosov diffeomorphisms of a surface is fundamental. They are the most interesting diffeomorphisms, since finite-order mapping classes are isotopic to isometries and thus well understood, and the study of reducible classes indeed essentially reduces to the study of mapping classes
4280:
This action, together with combinatorial and geometric properties of the curve complex, can be used to prove various properties of the mapping class group. In particular, it explains some of the hyperbolic properties of the mapping class group: while as mentioned in the previous section the mapping
4872:
One way to prove this theorem is to deduce it from the properties of the action of the mapping class group on the pants complex: the stabiliser of a vertex is seen to be finitely presented, and the action is cofinite. Since the complex is connected and simply connected it follows that the mapping
5761: 4639:
are contained in a subsurface homeomorphic to a torus then they intersect once, and if the surface is a four-holed sphere they intersect twice). Two distinct markings are joined by an edge if they differ by an "elementary move", and the full complex is obtained by adding all possible
4873:
class group must be finitely generated. There are other ways of getting finite presentations, but in practice the only one to yield explicit relations for all geni is that described in this paragraph with a slightly different complex instead of the curve complex, called the
4653:
The mapping class group is generated by the subset of Dehn twists about all simple closed curves on the surface. The Dehn–Lickorish theorem states that it is sufficient to select a finite number of those to generate the mapping class group. This generalises the fact that
1746:
A surface with punctures is a compact surface with a finite number of points removed ("punctures"). The mapping class group of such a surface is defined as above (note that the mapping classes are allowed to permute the punctures, but not the boundary components).
1740: 93:
The mapping class group appeared in the first half of the twentieth century. Its origins lie in the study of the topology of hyperbolic surfaces, and especially in the study of the intersections of closed curves on these surfaces. The earliest contributors were
2804:
This is an exact sequence relating the mapping class group of surfaces with the same genus and boundary but a different number of punctures. It is a fundamental tool which allows to use recursive arguments in the study of mapping class groups. It was proven by
2795:
is strictly larger than the image of the mapping class group via the morphism defined in the previous paragraph. The image is exactly those outer automorphisms which preserve each conjugacy class in the fundamental group corresponding to a boundary component.
4788: 2963: 6029: 1040: 573: 102:: Dehn proved finite generation of the group, and Nielsen gave a classification of mapping classes and proved that all automorphisms of the fundamental group of a surface can be represented by homeomorphisms (the Dehn–Nielsen–Baer theorem). 3770:
Pseudo-Anosov mapping classes are "generic" in the mapping class group in various ways. For example, a random walk on the mapping class group will end on a pseudo-Anosov element with a probability tending to 1 as the number of steps grows.
4864:
It is possible to prove that all relations between the Dehn twists in a generating set for the mapping class group can be written as combinations of a finite number among them. This means that the mapping class group of a surface is a
5468: 5303: 697: 5648: 361: 922: 6128:
whether the mapping class group is a linear group or not. Besides the symplectic representation on homology explained above there are other interesting finite-dimensional linear representations arising from
5360:
of closed curves induces a symplectic form on the first homology, which is preserved by the action of the mapping class group. The surjectivity is proven by showing that the images of Dehn twists generate
3588: 1175: 4055:
can be endowed. In particular, the TeichmĂĽller metric can be used to establish some large-scale properties of the mapping class group, for example that the maximal quasi-isometrically embedded flats in
4130:
of TeichmĂĽller space, and the Nielsen-Thurston classification of mapping classes can be seen in the dynamical properties of the action on TeichmĂĽller space together with its Thurston boundary. Namely:
1087: 1635: 1548: 2630: 5637: 5539: 5403: 5350: 3033: 1335: 4693: 3532: 1446: 1376: 966: 2514: 4497: 2761: 4543: 1643: 2713: 626: 3981: 2669: 1587: 446: 403: 198: 3643: 3365: 1941: 855: 2566: 1818: 3752:
The main content of the theorem is that a mapping class which is neither of finite order nor reducible must be pseudo-Anosov, which can be defined explicitly by dynamical properties.
6163: 5932: 5827: 5571: 5139: 5046: 4922: 4444: 4372: 4275: 4164: 4086: 4013: 3424: 4637: 2422: 4701: 5494:. It is a finitely generated, torsion-free subgroup and its study is of fundamental importance for its bearing on both the structure of the mapping class group itself (since the 2866: 2014: 3490:
is not null-homotopic this mapping class is nontrivial, and more generally the Dehn twists defined by two non-homotopic curves are distinct elements in the mapping class group.
2231: 1405: 1208: 1116: 754: 5900: 6199: 4189:
Pseudo-Anosov classes fix the two points on the boundary corresponding to their stable and unstable foliation and the action is minimal (has a dense orbit) on the boundary;
5937: 3296: 1840: 971: 4597: 4570: 1500: 1294: 494: 5791: 3392: 3250: 2061: 1867: 5175: 5087: 3942: 2314: 6095: 5853: 4825: 2534: 2464: 2334: 2251: 4121: 3673: 2858: 3886: 3700: 3199: 2361: 2278: 2182: 1248: 4854: 4053: 3834: 1268: 1228: 3607:
There is a classification of the mapping classes on a surface, originally due to Nielsen and rediscovered by Thurston, which can be stated as follows. An element
820: 6116:
Any subgroup which is not reducible (that is it does not preserve a set of isotopy class of disjoint simple closed curves) must contain a pseudo-Anosov element.
5198: 6056: 5492: 5238: 5218: 5010: 4990: 4970: 4950: 4412: 4340: 4316: 4243: 4223: 4184: 3906: 3854: 3802: 3743: 3723: 3488: 3468: 3444: 3316: 3270: 3219: 3172: 3152: 3132: 3112: 3092: 3053: 2989: 2832: 2789: 2155: 2135: 2111: 2034: 1474: 794: 774: 725: 486: 466: 258: 238: 218: 147: 6133:. The images of these representations are contained in arithmetic groups which are not symplectic, and this allows to construct many more finite quotients of 6801:. Mathematical Notes. Vol. 48. translated from the 1979 French original by Djun M. Kim and Dan Margalit. Princeton University Press. pp. xvi+254. 4277:
on the vertices carries over to the full complex. The action is not properly discontinuous (the stabiliser of a simple closed curve is an infinite group).
5411: 5246: 638: 822:. The latter is not orientation-preserving and we see that the mapping class group of the sphere is trivial, and its extended mapping class group is 5756:{\displaystyle \Phi _{n}:\operatorname {Mod} (S)\to \operatorname {Sp} _{2g}(\mathbb {Z} )\to \operatorname {Sp} _{2g}(\mathbb {Z} /n\mathbb {Z} )} 2791:
has a non-empty boundary (except in a finite number of cases). In this case the fundamental group is a free group and the outer automorphism group
2768:
The image of the mapping class group is an index 2 subgroup of the outer automorphism group, which can be characterised by its action on homology.
5639:, and then, for any nontrivial element of the Torelli group, constructing by geometric means subgroups of finite index which does not contain it. 266: 220:. This group has a natural topology, the compact-open topology. It can be defined easily by a distance function: if we are given a metric 866: 3540: 468:
which are isotopic to the identity. It is a normal subgroup of the group of positive homeomorphisms, and the mapping class group of
1121: 6168:
In the other direction there is a lower bound for the dimension of a (putative) faithful representation, which has to be at least
109:
who gave the subject a more geometric flavour and used this work to great effect in his program for the study of three-manifolds.
6581: 5863:
The mapping class group has only finitely many classes of finite groups, as follows from the fact that the finite-index subgroup
5855:(this follows easily from a classical result of Minkowski on linear groups and the fact that the Torelli group is torsion-free). 4134:
Finite-order elements fix a point inside TeichmĂĽller space (more concretely this means that any mapping class of finite order in
1045: 4319: 1592: 1505: 6862: 6806: 2574: 5598: 5500: 5364: 5311: 2994: 1299: 631:
This definition can also be made in the differentiable category: if we replace all instances of "homeomorphism" above with "
4657: 3496: 1410: 1340: 930: 5092:
The first homology of the mapping class group is finite and it follows that the first cohomology group is finite as well.
6787: 6693: 3602: 2469: 1735:{\displaystyle \operatorname {Mod} (S)=\operatorname {Homeo} ^{+}(S,\partial S)/\operatorname {Homeo} _{0}(S,\partial S)} 5573:
boil down to a statement about its Torelli subgroup) and applications to 3-dimensional topology and algebraic geometry.
4456: 4295: 2718: 4502: 2077:
Braid groups can be defined as the mapping class groups of a disc with punctures. More precisely, the braid group on
2679: 592: 6130: 3947: 2635: 1553: 412: 369: 164: 3610: 3321: 7136: 5902:
is torsion-free, as discussed in the previous paragraph. Moreover, this also implies that any finite subgroup of
1875: 4892:
There are other interesting systems of generators for the mapping class group besides Dehn twists. For example,
825: 2539: 1762: 1477: 6136: 6059: 5905: 5800: 5544: 5112: 5019: 4895: 4783:{\displaystyle {\begin{pmatrix}1&1\\0&1\end{pmatrix}},{\begin{pmatrix}1&0\\1&1\end{pmatrix}}} 4417: 4345: 4248: 4137: 4059: 4019: 3986: 3397: 99: 6594:; Farb, Benson (2004). "Every mapping class group is generated by 3 torsion elements and by 6 involutions". 4602: 4374:
extends to an action on this complex. This complex is quasi-isometric to TeichmĂĽller space endowed with the
2958:{\displaystyle 1\to \pi _{1}(S,x)\to \operatorname {Mod} (S\setminus \{x\})\to \operatorname {Mod} (S)\to 1} 6775: 6034:
A bound on the order of finite subgroups can also be obtained through geometric means. The solution to the
2366: 6974:
Masur, Howard A.; Minsky, Yair N. (2000). "Geometry of the complex of curves II: Hierarchical structure".
4801:
The smallest number of Dehn twists that can generate the mapping class group of a closed surface of genus
4386:
The stabilisers of the mapping class group's action on the curve and pants complexes are quite large. The
2671:. The Dehn–Nielsen–Baer theorem states that it is in addition surjective. In particular, it implies that: 7141: 6035: 1949: 7014: 2187: 1381: 1184: 1092: 730: 154: 6742:
Farb, Benson; Lubotzky, Alexander; Minsky, Yair (2001). "Rank-1 phenomena for mapping class groups".
6038:
implies that any such group is realised as the group of isometries of an hyperbolic surface of genus
6024:{\displaystyle \operatorname {Mod} (S)/\ker(\Phi _{3})\cong \operatorname {Sp} _{2g}(\mathbb {Z} /3)} 5866: 4375: 1035:{\displaystyle \Phi :\operatorname {SL} _{2}(\mathbb {Z} )\to \operatorname {Mod} (\mathbb {T} ^{2})} 6872:
Masbaum, Gregor; Reid, Alan W. (2012). "All finite groups are involved in the mapping class group".
6171: 4866: 4795: 2569: 568:{\displaystyle \operatorname {Mod} (S)=\operatorname {Homeo} ^{+}(S)/\operatorname {Homeo} _{0}(S)} 82: 3275: 1823: 6919:
Masur, Howard A.; Minsky, Yair N. (1999). "Geometry of the complex of curves. I. Hyperbolicity".
5587: 5013: 4575: 3944:
a homeomorphism, modulo a suitable equivalence relation. There is an obvious action of the group
4548: 1482: 1273: 70:(indeed, for arbitrary topological spaces) but the 2-dimensional setting is the most studied in 5769: 3370: 3228: 2039: 1845: 113: 5144: 5051: 3915: 3836:
is the space of marked complex (equivalently, conformal or complete hyperbolic) structures on
2283: 6065: 5832: 5241: 4804: 2519: 2427: 2319: 2236: 1756: 44: 4091: 3652: 2837: 7091: 7048: 6958: 6938: 6903: 6763: 6642: 6569: 4447: 3859: 3678: 3177: 2339: 2256: 2160: 1233: 4830: 4029: 3810: 3805: 1253: 1213: 8: 6703:
Eskin, Alex; Masur, Howard; Rafi, Kasra (2017). "Large-scale rank of TeichmĂĽller space".
5642:
An interesting class of finite-index subgroups is given by the kernels of the morphisms:
5357: 4599:, and this "minimally" (this is a technical condition which can be stated as follows: if 799: 63: 6942: 5180: 7052: 7026: 7001: 6983: 6962: 6928: 6907: 6881: 6730: 6712: 6621: 6603: 6041: 5477: 5223: 5203: 4995: 4975: 4955: 4935: 4397: 4325: 4301: 4228: 4208: 4169: 3891: 3839: 3787: 3728: 3708: 3473: 3453: 3429: 3301: 3255: 3204: 3157: 3137: 3117: 3097: 3077: 3038: 2974: 2817: 2774: 2140: 2120: 2096: 2019: 1637:
is the connected component of the identity. The mapping class group is then defined as
1459: 779: 759: 710: 471: 451: 406: 243: 223: 203: 132: 77:
The mapping class group of surfaces are related to various other groups, in particular
52: 28: 699:
induces an isomorphism between the quotients by their respective identity components.
7117: 7100: 6858: 6850: 6841: 6824: 6802: 6783: 6689: 6465: 5106: 4342:(isotopy classes of maximal systems of disjoint simple closed curves). The action of 4127: 4026:). It is compatible with various geometric structures (metric or complex) with which 3761: 7082: 7065: 7015:"A note on the abelianizations of finite-index subgroups of the mapping class group" 7005: 6966: 6911: 6734: 6625: 6548:
Birman, Joan (1969). "Mapping class groups and their relationship to braid groups".
4414:, which are acted upon by, and have trivial stabilisers in, the mapping class group 7112: 7077: 7056: 7036: 6993: 6946: 6891: 6836: 6820: 6751: 6722: 6666: 6617: 6613: 6557: 6106: 5495: 5353: 4881: 4880:
An example of a relation between Dehn twists occurring in this presentation is the
4281:
class group is not a hyperbolic group it has some properties reminiscent of those.
3222: 1502:
then the definition of the mapping class group needs to be more precise. The group
106: 7040: 6755: 3767:
on smaller surfaces which may themselves be either finite order or pseudo-Anosov.
7087: 7044: 6954: 6899: 6759: 6638: 6591: 6565: 5463:{\displaystyle \operatorname {Mod} (S)\to \operatorname {Sp} _{2g}(\mathbb {Z} )} 5298:{\displaystyle \operatorname {Mod} (S)\to \operatorname {GL} _{2g}(\mathbb {Z} )} 3909: 2114: 692:{\displaystyle \operatorname {Diff} ^{+}(S)\subset \operatorname {Homeo} ^{+}(S)} 150: 6414: 1178: 632: 6726: 1451: 7130: 6816: 4202: 925: 580: 158: 116:, where it provides a testing ground for various conjectures and techniques. 40: 6895: 112:
More recently the mapping class group has been by itself a central topic in
6825:"A presentation for the mapping class group of a closed orientable surface" 6561: 6125: 5581:
An example of application of the Torelli subgroup is the following result:
4225:
is a complex whose vertices are isotopy classes of simple closed curves on
2072: 71: 56: 6950: 6857:. Translations of Mathematical Monographs. American Mathematical Society. 6633:
Brock, Jeff (2002). "Pants decompositions and the Weil–Petersson metric".
6586:. Annals of Mathematics Studies. Vol. 82. Princeton University Press. 6318: 5595:
The proof proceeds first by using residual finiteness of the linear group
3534:
the Dehn twists correspond to unipotent matrices. For example, the matrix
2081:
strands is naturally isomorphic to the mapping class group of a disc with
6771: 6577: 6441: 4023: 2806: 78: 6246: 5308:
This map is in fact a surjection with image equal to the integer points
3035:
must be replaced by the finite-index subgroup of mapping classes fixing
1250:(proving in particular that it is injective) and it can be checked that 586:
If we modify the definition to include all homeomorphisms we obtain the
6997: 6671: 6654: 6110: 3069: 702: 48: 6655:"Die Gruppe der Abbildungsklassen: Das arithmetische Feld auf Flächen" 6988: 6933: 6608: 3593:
corresponds to the Dehn twist about a horizontal curve in the torus.
6477: 4643: 4284: 356:{\displaystyle \delta (f,g)=\sup _{x\in S}\left(d(f(x),g(x))\right)} 200:
the group of orientation-preserving, or positive, homeomorphisms of
6650: 6453: 6390: 628:, which contains the mapping class group as a subgroup of index 2. 95: 67: 20: 7031: 6886: 6717: 6342: 6306: 6282: 6258: 2536:, but only up to conjugation. Thus we get a well-defined map from 2466:
to be the element of the fundamental group associated to the loop
917:{\displaystyle \mathbb {T} ^{2}=\mathbb {R} ^{2}/\mathbb {Z} ^{2}} 105:
The Dehn–Nielsen theory was reinterpreted in the mid-seventies by
6513: 5576: 2792: 1589:
which restrict to the identity on the boundary, and the subgroup
6688:. translated and introduced by John Stillwell. Springer-Verlag. 6525: 6354: 2632:. This map is a morphism and its kernel is exactly the subgroup 47:) deformation. It is of fundamental importance for the study of 7101:"Mapping class group of a surface is generated by two elements" 6797:
Fathi, Albert; Laudenbach, François; Poénaru, Valentin (2012).
6217:
We describe here only "clean, complete" (in the terminology of
4018:
This action has many interesting properties; for example it is
3583:{\displaystyle {\begin{pmatrix}1&1\\0&1\end{pmatrix}}} 1550:
of homeomorphisms relative to the boundary is the subgroup of
7066:"On the geometry and dynamics of diffeomorphisms of surfaces" 6782:. Princeton Mathematical Series. Princeton University press. 4450:
complex which is quasi-isometric to the mapping class group.
4166:
can be realised as an isometry for some hyperbolic metric on
1170:{\displaystyle x+\mathbb {Z} ^{2}\mapsto Ax+\mathbb {Z} ^{2}} 861: 124: 6234: 6109:: that is, any subgroup of it either contains a non-abelian 5541:
is comparatively very well understood, a lot of facts about
776:
is isotopic to either the identity or to the restriction to
6501: 6489: 6402: 3705:
reducible: there exists a set of disjoint closed curves on
1452:
Mapping class group of surfaces with boundary and punctures
1082:{\displaystyle A\in \operatorname {SL} _{2}(\mathbb {Z} )} 6330: 4794:
In particular, the mapping class group of a surface is a
6294: 6113:
subgroup or it is virtually solvable (in fact abelian).
5095: 4927: 4446:. It is (in opposition to the curve or pants complex) a 3493:
In the mapping class group of the torus identified with
2066: 1630:{\displaystyle \operatorname {Homeo} _{0}(S,\partial S)} 1543:{\displaystyle \operatorname {Homeo} ^{+}(S,\partial S)} 6378: 4192:
Reducible classes do not act minimally on the boundary.
2625:{\displaystyle \operatorname {Out} (\pi _{1}(S,x_{0}))} 1378:. In the same way, the extended mapping class group of 7063: 7012: 6796: 6447: 6429: 6348: 6324: 6252: 5632:{\displaystyle \operatorname {Sp} _{2g}(\mathbb {Z} )} 5534:{\displaystyle \operatorname {Sp} _{2g}(\mathbb {Z} )} 5398:{\displaystyle \operatorname {Sp} _{2g}(\mathbb {Z} )} 5345:{\displaystyle \operatorname {Sp} _{2g}(\mathbb {Z} )} 4749: 4710: 3596: 3549: 3058: 3028:{\displaystyle \operatorname {Mod} (S\setminus \{x\})} 1330:{\displaystyle \operatorname {Mod} (\mathbb {T} ^{2})} 6174: 6139: 6068: 6044: 5940: 5908: 5869: 5835: 5803: 5772: 5651: 5601: 5547: 5503: 5480: 5414: 5367: 5314: 5249: 5226: 5206: 5183: 5147: 5115: 5054: 5022: 4998: 4978: 4958: 4938: 4898: 4833: 4807: 4704: 4688:{\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )} 4660: 4605: 4578: 4551: 4505: 4459: 4420: 4400: 4348: 4328: 4304: 4251: 4231: 4211: 4172: 4140: 4094: 4062: 4032: 3989: 3950: 3918: 3894: 3862: 3842: 3813: 3790: 3774: 3731: 3711: 3681: 3655: 3613: 3543: 3527:{\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )} 3499: 3476: 3456: 3432: 3400: 3373: 3324: 3304: 3278: 3258: 3231: 3207: 3180: 3160: 3140: 3120: 3100: 3080: 3041: 2997: 2977: 2869: 2840: 2820: 2777: 2721: 2682: 2638: 2577: 2542: 2522: 2472: 2430: 2369: 2342: 2322: 2286: 2259: 2239: 2190: 2163: 2143: 2123: 2099: 2042: 2022: 1952: 1878: 1848: 1826: 1765: 1646: 1595: 1556: 1508: 1485: 1462: 1441:{\displaystyle \operatorname {GL} _{2}(\mathbb {Z} )} 1413: 1384: 1371:{\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )} 1343: 1302: 1276: 1256: 1236: 1216: 1187: 1124: 1095: 1048: 974: 961:{\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )} 933: 869: 828: 802: 782: 762: 733: 713: 641: 595: 497: 474: 454: 448:. By definition it is equal to the homeomorphisms of 415: 372: 269: 246: 226: 206: 167: 135: 4924:
can be generated by two elements or by involutions.
3446:
made above, and the resulting element is called the
3225:
orientation. This is used to define a homeomorphism
1750: 703:
The mapping class groups of the sphere and the torus
366:
is a distance inducing the compact-open topology on
2509:{\displaystyle {\bar {\gamma }}*f(\alpha )*\gamma } 260:inducing its topology then the function defined by 51:via their embedded surfaces and is also studied in 6193: 6157: 6089: 6050: 6023: 5926: 5894: 5847: 5821: 5785: 5755: 5631: 5565: 5533: 5486: 5462: 5397: 5344: 5297: 5232: 5212: 5192: 5169: 5141:acts by automorphisms on the first homology group 5133: 5081: 5040: 5004: 4984: 4964: 4944: 4916: 4848: 4819: 4782: 4687: 4631: 4591: 4564: 4537: 4492:{\displaystyle \alpha _{1},\ldots ,\alpha _{\xi }} 4491: 4438: 4406: 4366: 4334: 4310: 4269: 4237: 4217: 4178: 4158: 4115: 4080: 4047: 4007: 3975: 3936: 3900: 3880: 3848: 3828: 3796: 3737: 3717: 3694: 3667: 3637: 3582: 3526: 3482: 3462: 3438: 3418: 3386: 3359: 3310: 3290: 3264: 3244: 3213: 3193: 3166: 3146: 3126: 3106: 3086: 3047: 3027: 2983: 2957: 2852: 2826: 2783: 2755: 2707: 2663: 2624: 2560: 2528: 2508: 2458: 2416: 2355: 2328: 2308: 2272: 2245: 2225: 2176: 2149: 2129: 2105: 2055: 2028: 2008: 1946:which is the identity on both boundary components 1935: 1861: 1834: 1812: 1734: 1629: 1581: 1542: 1494: 1468: 1440: 1399: 1370: 1329: 1288: 1262: 1242: 1222: 1202: 1169: 1110: 1081: 1034: 960: 916: 849: 814: 788: 768: 748: 719: 691: 635:" we obtain the same group, that is the inclusion 620: 567: 480: 460: 440: 397: 355: 252: 232: 212: 192: 141: 6366: 6270: 4644:Generators and relations for mapping class groups 4453:A marking is determined by a pants decomposition 4285:Other complexes with a mapping class group action 2771:The conclusion of the theorem does not hold when 2756:{\displaystyle \operatorname {Out} (\pi _{1}(S))} 7128: 7019:Proceedings of the American Mathematical Society 6062:then implies that the maximal order is equal to 4538:{\displaystyle \beta _{1},\ldots ,\beta _{\xi }} 3755: 2088: 292: 6815: 6408: 3114:and one chooses a closed tubular neighbourhood 43:of the surface viewed up to continuous (in the 6702: 6550:Communications on Pure and Applied Mathematics 6336: 5577:Residual finiteness and finite-index subgroups 4887: 4196: 3983:on such pairs, which descends to an action of 3779: 2715:is isomorphic to the outer automorphism group 2708:{\displaystyle \operatorname {Mod} ^{\pm }(S)} 621:{\displaystyle \operatorname {Mod} ^{\pm }(S)} 7070:Bulletin of the American Mathematical Society 6918: 6741: 6531: 6360: 6100: 4648: 3976:{\displaystyle \operatorname {Homeo} ^{+}(S)} 2991:itself has punctures the mapping class group 2664:{\displaystyle \operatorname {Homeo} _{0}(S)} 2516:. This automorphism depends on the choice of 1582:{\displaystyle \operatorname {Homeo} ^{+}(S)} 1177:. The action of diffeomorphisms on the first 441:{\displaystyle \operatorname {Homeo} _{0}(S)} 398:{\displaystyle \operatorname {Homeo} ^{+}(S)} 193:{\displaystyle \operatorname {Homeo} ^{+}(S)} 6871: 6770: 6519: 6483: 6471: 6459: 6396: 6312: 6288: 6264: 3638:{\displaystyle g\in \operatorname {Mod} (S)} 3360:{\displaystyle f^{-1}\circ \tau _{0}\circ f} 3019: 3013: 2925: 2919: 2809:in 1969. The exact statement is as follows. 2799: 2003: 1981: 1975: 1953: 1807: 1779: 6973: 6384: 6218: 1936:{\displaystyle \tau _{0}(z)=e^{2i\pi |z|}z} 6649: 6590: 6435: 6240: 850:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 125:Mapping class group of orientable surfaces 119: 7116: 7081: 7030: 6987: 6932: 6885: 6840: 6716: 6670: 6635:Complex Manifolds and Hyperbolic Geometry 6607: 6119: 6006: 5746: 5733: 5703: 5622: 5524: 5453: 5388: 5335: 5288: 4678: 4245:. The action of the mapping class groups 3517: 2561:{\displaystyle \operatorname {Homeo} (S)} 1828: 1813:{\displaystyle A_{0}=\{1\leq |z|\leq 2\}} 1431: 1387: 1361: 1314: 1190: 1157: 1133: 1098: 1072: 1019: 998: 951: 904: 887: 872: 843: 830: 736: 7098: 6420: 4859: 6855:Subgroups of TeichmĂĽller Modular Groups 6583:Braids, links, and mapping class groups 6158:{\displaystyle \operatorname {Mod} (S)} 5927:{\displaystyle \operatorname {Mod} (S)} 5822:{\displaystyle \operatorname {Mod} (S)} 5566:{\displaystyle \operatorname {Mod} (S)} 5177:. This is a free abelian group of rank 5134:{\displaystyle \operatorname {Mod} (S)} 5109:is functorial, the mapping class group 5100: 5041:{\displaystyle \operatorname {Mod} (S)} 4917:{\displaystyle \operatorname {Mod} (S)} 4439:{\displaystyle \operatorname {Mod} (S)} 4367:{\displaystyle \operatorname {Mod} (S)} 4270:{\displaystyle \operatorname {Mod} (S)} 4159:{\displaystyle \operatorname {Mod} (S)} 4081:{\displaystyle \operatorname {Mod} (S)} 4008:{\displaystyle \operatorname {Mod} (S)} 3419:{\displaystyle \operatorname {Mod} (S)} 7129: 6849: 6576: 6547: 6507: 6495: 6300: 6276: 4856:; this was proven later by Humphries. 4632:{\displaystyle \alpha _{i},\beta _{i}} 4499:and a collection of transverse curves 3094:is an oriented simple closed curve on 1476:is a compact surface with a non-empty 19:In mathematics, and more precisely in 6632: 6372: 6105:The mapping class groups satisfy the 5829:. It is a torsion-free group for all 5096:Subgroups of the mapping class groups 4928:Cohomology of the mapping class group 2417:{\displaystyle \in \pi _{1}(S,x_{0})} 2067:Braid groups and mapping class groups 968:. It is easy to construct a morphism 6683: 6677: 6349:Fathi, Laudenbach & PoĂ©naru 2012 6325:Fathi, Laudenbach & PoĂ©naru 2012 5356:. This comes from the fact that the 4318:is a complex whose vertices are the 3725:which is preserved by the action of 6976:Geometric & Functional Analysis 6686:Papers on group theory and topology 5858: 4381: 3649:of finite order (i.e. there exists 3597:The Nielsen–Thurston classification 3059:Elements of the mapping class group 2157:then we can define an automorphism 2009:{\displaystyle \{|z|=1\},\{|z|=2\}} 407:connected component of the identity 13: 5971: 5934:is a subgroup of the finite group 5880: 5774: 5653: 3775:Actions of the mapping class group 2036:is then generated by the class of 1842:. One can define a diffeomorphism 1723: 1687: 1618: 1531: 1486: 1283: 1277: 1257: 1237: 1217: 975: 14: 7153: 6637:. American Mathematical Society. 3856:. These are represented by pairs 3426:does not depend on the choice of 3282: 3010: 2916: 2676:The extended mapping class group 2226:{\displaystyle \pi _{1}(S,x_{0})} 1751:Mapping class group of an annulus 1296:are inverse isomorphisms between 924:is naturally identified with the 6780:A primer on mapping class groups 6474:, Theorem 6.15 and Theorem 6.12. 6131:topological quantum field theory 4390:is a complex whose vertices are 4289: 1400:{\displaystyle \mathbb {T} ^{2}} 1203:{\displaystyle \mathbb {T} ^{2}} 1111:{\displaystyle \mathbb {T} ^{2}} 749:{\displaystyle \mathbb {R} ^{3}} 7083:10.1090/s0273-0979-1988-15685-6 6211: 5895:{\displaystyle \ker(\Phi _{3})} 3804:(usually without boundary) the 3603:Nielsen–Thurston classification 860:The mapping class group of the 857:, the cyclic group of order 2. 6618:10.1016/j.jalgebra.2004.02.019 6194:{\displaystyle 2{\sqrt {g-1}}} 6152: 6146: 6084: 6072: 6018: 6002: 5980: 5967: 5953: 5947: 5921: 5915: 5889: 5876: 5816: 5810: 5750: 5729: 5710: 5707: 5699: 5680: 5677: 5671: 5626: 5618: 5560: 5554: 5528: 5520: 5457: 5449: 5430: 5427: 5421: 5392: 5384: 5339: 5331: 5292: 5284: 5265: 5262: 5256: 5164: 5158: 5128: 5122: 5035: 5029: 4911: 4905: 4682: 4674: 4640:higher-dimensional simplices. 4572:intersects at most one of the 4433: 4427: 4361: 4355: 4264: 4258: 4153: 4147: 4075: 4069: 4042: 4036: 4002: 3996: 3970: 3964: 3928: 3875: 3863: 3823: 3817: 3632: 3626: 3521: 3513: 3413: 3407: 3134:then there is a homeomorphism 3063: 3022: 3004: 2949: 2946: 2940: 2931: 2928: 2910: 2901: 2898: 2886: 2873: 2750: 2747: 2741: 2728: 2702: 2696: 2658: 2652: 2619: 2616: 2597: 2584: 2555: 2549: 2497: 2491: 2479: 2453: 2450: 2444: 2441: 2411: 2392: 2376: 2370: 2303: 2290: 2220: 2201: 1993: 1985: 1965: 1957: 1924: 1916: 1895: 1889: 1797: 1789: 1759:is homeomorphic to the subset 1729: 1714: 1693: 1678: 1659: 1653: 1624: 1609: 1576: 1570: 1537: 1522: 1435: 1427: 1365: 1357: 1324: 1309: 1143: 1076: 1068: 1029: 1014: 1005: 1002: 994: 955: 947: 686: 680: 661: 655: 615: 609: 562: 556: 535: 529: 510: 504: 435: 429: 392: 386: 345: 342: 336: 327: 321: 315: 285: 273: 187: 181: 1: 7064:Thurston, William P. (1988). 7041:10.1090/s0002-9939-09-10124-7 6756:10.1215/s0012-7094-01-10636-4 4695:is generated by the matrices 3756:Pseudo-Anosov diffeomorphisms 2860:. There is an exact sequence 2089:The Dehn–Nielsen–Baer theorem 2016:. The mapping class group of 796:of the symmetry in the plane 409:for this topology is denoted 66:can be defined for arbitrary 7118:10.1016/0040-9383(95)00037-2 6842:10.1016/0040-9383(80)90009-9 6337:Eskin, Masur & Rafi 2017 6228: 3291:{\displaystyle S\setminus A} 1835:{\displaystyle \mathbb {C} } 1089:induces a diffeomorphism of 756:. Then any homeomorphism of 588:extended mapping class group 7: 6799:Thurston's work on surfaces 6448:Proc. Amer. Math. Soc. 2010 6409:Hatcher & Thurston 1980 6253:Bull. Amer. Math. Soc. 1988 6036:Nielsen realisation problem 5586:The mapping class group is 5408:The kernel of the morphism 5240:. This action thus gives a 5012:punctures then the virtual 4888:Other systems of generators 4592:{\displaystyle \alpha _{i}} 4545:such that every one of the 4197:Action on the curve complex 3780:Action on TeichmĂĽller space 3394:in the mapping class group 3298:it is the identity, and on 10: 7158: 6540: 6101:General facts on subgroups 4649:The Dehn–Lickorish theorem 4565:{\displaystyle \beta _{i}} 4126:The action extends to the 3784:Given a punctured surface 3759: 3600: 3067: 2070: 1869:by the following formula: 1495:{\displaystyle \partial S} 1289:{\displaystyle \Pi ,\Phi } 88: 6744:Duke Mathematical Journal 6727:10.1215/00127094-0000006X 6705:Duke Mathematical Journal 6219:Masur & Minsky (2000) 5786:{\displaystyle \Phi _{n}} 3387:{\displaystyle \tau _{c}} 3245:{\displaystyle \tau _{c}} 3174:to the canonical annulus 2834:be a compact surface and 2800:The Birman exact sequence 2184:of the fundamental group 2056:{\displaystyle \tau _{0}} 1862:{\displaystyle \tau _{0}} 83:outer automorphism groups 37:TeichmĂĽller modular group 6921:Inventiones Mathematicae 6484:Farb & Margalit 2012 6472:Farb & Margalit 2012 6460:Farb & Margalit 2012 6397:Farb & Margalit 2012 6313:Farb & Margalit 2012 6289:Farb & Margalit 2012 6265:Farb & Margalit 2012 6204: 5170:{\displaystyle H_{1}(S)} 5082:{\displaystyle 4g-4+b+k} 4992:boundary components and 4867:finitely presented group 4796:finitely generated group 3937:{\displaystyle f:S\to X} 2570:outer automorphism group 2363:representing an element 2309:{\displaystyle f(x_{0})} 6896:10.2140/gt.2012.16.1393 6874:Geometry & Topology 6385:Masur & Minsky 2000 6090:{\displaystyle 84(g-1)} 5848:{\displaystyle n\geq 3} 5014:cohomological dimension 4820:{\displaystyle g\geq 2} 3201:defined above, sending 2529:{\displaystyle \gamma } 2459:{\displaystyle f_{*}()} 2329:{\displaystyle \alpha } 2246:{\displaystyle \gamma } 2233:as follows: fix a path 120:Definition and examples 31:, sometimes called the 7137:Geometric group theory 6562:10.1002/cpa.3160220206 6195: 6159: 6120:Linear representations 6091: 6052: 6025: 5928: 5896: 5849: 5823: 5787: 5757: 5633: 5567: 5535: 5488: 5464: 5399: 5346: 5299: 5234: 5214: 5194: 5171: 5135: 5083: 5042: 5006: 4986: 4966: 4952:is a surface of genus 4946: 4918: 4850: 4821: 4784: 4689: 4633: 4593: 4566: 4539: 4493: 4440: 4408: 4368: 4336: 4312: 4271: 4239: 4219: 4180: 4160: 4117: 4116:{\displaystyle 3g-3+k} 4082: 4049: 4020:properly discontinuous 4015:on TeichmĂĽller space. 4009: 3977: 3938: 3902: 3882: 3850: 3830: 3798: 3739: 3719: 3696: 3669: 3668:{\displaystyle n>0} 3639: 3584: 3528: 3484: 3464: 3440: 3420: 3388: 3361: 3312: 3292: 3266: 3246: 3215: 3195: 3168: 3148: 3128: 3108: 3088: 3049: 3029: 2985: 2959: 2854: 2853:{\displaystyle x\in S} 2828: 2785: 2757: 2709: 2665: 2626: 2562: 2530: 2510: 2460: 2418: 2357: 2330: 2310: 2274: 2247: 2227: 2178: 2151: 2137:is a homeomorphism of 2131: 2107: 2057: 2030: 2010: 1937: 1863: 1836: 1814: 1736: 1631: 1583: 1544: 1496: 1470: 1442: 1401: 1372: 1331: 1290: 1270:is injective, so that 1264: 1244: 1224: 1204: 1171: 1112: 1083: 1036: 962: 918: 851: 816: 790: 770: 750: 727:is the unit sphere in 721: 693: 622: 569: 482: 462: 442: 399: 357: 254: 234: 214: 194: 143: 114:geometric group theory 16:Concept in mathematics 7013:Putman, Andy (2010). 6951:10.1007/s002220050343 6522:, pp. 1393–1411. 6196: 6160: 6092: 6053: 6026: 5929: 5897: 5850: 5824: 5788: 5758: 5634: 5568: 5536: 5489: 5465: 5400: 5347: 5300: 5242:linear representation 5235: 5215: 5195: 5172: 5136: 5084: 5043: 5007: 4987: 4967: 4947: 4919: 4860:Finite presentability 4851: 4822: 4785: 4690: 4634: 4594: 4567: 4540: 4494: 4441: 4409: 4376:Weil–Petersson metric 4369: 4337: 4313: 4298:of a compact surface 4272: 4240: 4220: 4181: 4161: 4118: 4083: 4050: 4010: 3978: 3939: 3903: 3883: 3881:{\displaystyle (X,f)} 3851: 3831: 3799: 3740: 3720: 3697: 3695:{\displaystyle g^{n}} 3670: 3640: 3585: 3529: 3485: 3465: 3441: 3421: 3389: 3362: 3313: 3293: 3267: 3247: 3221:to a circle with the 3216: 3196: 3194:{\displaystyle A_{0}} 3169: 3149: 3129: 3109: 3089: 3050: 3030: 2986: 2960: 2855: 2829: 2786: 2758: 2710: 2666: 2627: 2563: 2531: 2511: 2461: 2419: 2358: 2356:{\displaystyle x_{0}} 2331: 2311: 2275: 2273:{\displaystyle x_{0}} 2248: 2228: 2179: 2177:{\displaystyle f_{*}} 2152: 2132: 2108: 2058: 2031: 2011: 1938: 1864: 1837: 1815: 1737: 1632: 1584: 1545: 1497: 1471: 1443: 1402: 1373: 1332: 1291: 1265: 1245: 1243:{\displaystyle \Phi } 1225: 1210:gives a left-inverse 1205: 1172: 1113: 1084: 1037: 963: 919: 852: 817: 791: 771: 751: 722: 694: 623: 570: 483: 463: 443: 400: 358: 255: 235: 215: 195: 144: 59:problems for curves. 45:compact-open topology 7099:Wajnryb, B. (1996). 6172: 6137: 6066: 6042: 5938: 5906: 5867: 5833: 5801: 5793:is usually called a 5770: 5649: 5599: 5545: 5501: 5478: 5412: 5365: 5312: 5247: 5224: 5204: 5181: 5145: 5113: 5101:The Torelli subgroup 5052: 5020: 4996: 4976: 4956: 4936: 4896: 4849:{\displaystyle 2g+1} 4831: 4805: 4702: 4658: 4603: 4576: 4549: 4503: 4457: 4418: 4398: 4346: 4326: 4320:pants decompositions 4302: 4249: 4229: 4209: 4170: 4138: 4092: 4060: 4048:{\displaystyle T(S)} 4030: 3987: 3948: 3916: 3892: 3860: 3840: 3829:{\displaystyle T(S)} 3811: 3788: 3729: 3709: 3679: 3653: 3611: 3541: 3497: 3474: 3454: 3430: 3398: 3371: 3322: 3302: 3276: 3256: 3229: 3205: 3178: 3158: 3138: 3118: 3098: 3078: 3039: 2995: 2975: 2867: 2838: 2818: 2775: 2719: 2680: 2636: 2575: 2540: 2520: 2470: 2428: 2367: 2340: 2320: 2284: 2257: 2237: 2188: 2161: 2141: 2121: 2097: 2040: 2020: 1950: 1876: 1846: 1824: 1763: 1644: 1593: 1554: 1506: 1483: 1460: 1411: 1382: 1341: 1300: 1274: 1263:{\displaystyle \Pi } 1254: 1234: 1223:{\displaystyle \Pi } 1214: 1185: 1122: 1093: 1046: 972: 931: 867: 826: 800: 780: 760: 731: 711: 639: 593: 495: 472: 452: 413: 370: 267: 244: 224: 204: 165: 133: 6943:1999InMat.138..103M 6534:, pp. 581–597. 6450:, pp. 753–758. 6426:, pp. 377–383. 6363:, pp. 103–149. 6303:, pp. 213–238. 6255:, pp. 417–431. 6243:, pp. 135–206. 5795:congruence subgroup 5358:intersection number 5220:is closed of genus 815:{\displaystyle z=0} 64:mapping class group 25:mapping class group 7142:Geometric topology 6998:10.1007/pl00001643 6684:Dehn, Max (1987). 6672:10.1007/bf02547712 6532:Duke Math. J. 2001 6361:Invent. Math. 1999 6191: 6155: 6087: 6048: 6021: 5924: 5892: 5845: 5819: 5783: 5753: 5629: 5563: 5531: 5484: 5460: 5395: 5342: 5295: 5230: 5210: 5193:{\displaystyle 2g} 5190: 5167: 5131: 5079: 5038: 5002: 4982: 4962: 4942: 4914: 4875:cut system complex 4846: 4817: 4780: 4774: 4735: 4685: 4629: 4589: 4562: 4535: 4489: 4436: 4404: 4364: 4332: 4308: 4267: 4235: 4215: 4176: 4156: 4113: 4078: 4045: 4005: 3973: 3934: 3898: 3878: 3846: 3826: 3794: 3735: 3715: 3692: 3665: 3635: 3580: 3574: 3524: 3480: 3460: 3436: 3416: 3384: 3357: 3308: 3288: 3262: 3242: 3211: 3191: 3164: 3144: 3124: 3104: 3084: 3045: 3025: 2981: 2971:In the case where 2955: 2850: 2824: 2781: 2753: 2705: 2661: 2622: 2558: 2526: 2506: 2456: 2414: 2353: 2326: 2306: 2270: 2243: 2223: 2174: 2147: 2127: 2103: 2053: 2026: 2006: 1933: 1859: 1832: 1810: 1732: 1627: 1579: 1540: 1492: 1466: 1456:In the case where 1438: 1397: 1368: 1327: 1286: 1260: 1240: 1220: 1200: 1167: 1108: 1079: 1032: 958: 914: 847: 812: 786: 766: 746: 717: 689: 618: 565: 478: 458: 438: 395: 353: 306: 250: 230: 210: 190: 139: 53:algebraic geometry 39:, is the group of 6864:978-1-4704-4526-3 6821:Thurston, William 6808:978-0-691-14735-2 6520:Geom. Topol. 2012 6189: 6051:{\displaystyle g} 5588:residually finite 5487:{\displaystyle S} 5233:{\displaystyle g} 5213:{\displaystyle S} 5107:singular homology 5005:{\displaystyle k} 4985:{\displaystyle b} 4965:{\displaystyle g} 4945:{\displaystyle S} 4407:{\displaystyle S} 4335:{\displaystyle S} 4311:{\displaystyle S} 4238:{\displaystyle S} 4218:{\displaystyle S} 4179:{\displaystyle S} 4128:Thurston boundary 4088:are of dimension 3901:{\displaystyle X} 3849:{\displaystyle S} 3806:TeichmĂĽller space 3797:{\displaystyle S} 3762:Pseudo-Anosov map 3748:or pseudo-Anosov. 3738:{\displaystyle g} 3718:{\displaystyle S} 3702:is the identity), 3483:{\displaystyle c} 3463:{\displaystyle c} 3439:{\displaystyle f} 3311:{\displaystyle A} 3265:{\displaystyle S} 3214:{\displaystyle c} 3167:{\displaystyle A} 3147:{\displaystyle f} 3127:{\displaystyle A} 3107:{\displaystyle S} 3087:{\displaystyle c} 3048:{\displaystyle x} 2984:{\displaystyle S} 2827:{\displaystyle S} 2784:{\displaystyle S} 2482: 2150:{\displaystyle S} 2130:{\displaystyle f} 2106:{\displaystyle S} 2029:{\displaystyle A} 1469:{\displaystyle S} 789:{\displaystyle S} 769:{\displaystyle S} 720:{\displaystyle S} 481:{\displaystyle S} 461:{\displaystyle S} 291: 253:{\displaystyle S} 233:{\displaystyle d} 213:{\displaystyle S} 142:{\displaystyle S} 7149: 7122: 7120: 7095: 7085: 7060: 7034: 7009: 6991: 6970: 6936: 6915: 6889: 6880:(3): 1393–1411. 6868: 6846: 6844: 6812: 6793: 6767: 6738: 6720: 6699: 6676:, translated in 6675: 6674: 6659:Acta Mathematica 6646: 6629: 6611: 6592:Brendle, Tara E. 6587: 6573: 6535: 6529: 6523: 6517: 6511: 6505: 6499: 6493: 6487: 6481: 6475: 6469: 6463: 6457: 6451: 6445: 6439: 6433: 6427: 6418: 6412: 6406: 6400: 6394: 6388: 6382: 6376: 6370: 6364: 6358: 6352: 6346: 6340: 6334: 6328: 6322: 6316: 6310: 6304: 6298: 6292: 6286: 6280: 6274: 6268: 6262: 6256: 6250: 6244: 6238: 6222: 6215: 6200: 6198: 6197: 6192: 6190: 6179: 6164: 6162: 6161: 6156: 6107:Tits alternative 6096: 6094: 6093: 6088: 6057: 6055: 6054: 6049: 6030: 6028: 6027: 6022: 6014: 6009: 5998: 5997: 5979: 5978: 5960: 5933: 5931: 5930: 5925: 5901: 5899: 5898: 5893: 5888: 5887: 5859:Finite subgroups 5854: 5852: 5851: 5846: 5828: 5826: 5825: 5820: 5792: 5790: 5789: 5784: 5782: 5781: 5762: 5760: 5759: 5754: 5749: 5741: 5736: 5725: 5724: 5706: 5695: 5694: 5661: 5660: 5638: 5636: 5635: 5630: 5625: 5614: 5613: 5572: 5570: 5569: 5564: 5540: 5538: 5537: 5532: 5527: 5516: 5515: 5496:arithmetic group 5493: 5491: 5490: 5485: 5469: 5467: 5466: 5461: 5456: 5445: 5444: 5404: 5402: 5401: 5396: 5391: 5380: 5379: 5354:symplectic group 5351: 5349: 5348: 5343: 5338: 5327: 5326: 5304: 5302: 5301: 5296: 5291: 5280: 5279: 5239: 5237: 5236: 5231: 5219: 5217: 5216: 5211: 5199: 5197: 5196: 5191: 5176: 5174: 5173: 5168: 5157: 5156: 5140: 5138: 5137: 5132: 5088: 5086: 5085: 5080: 5047: 5045: 5044: 5039: 5011: 5009: 5008: 5003: 4991: 4989: 4988: 4983: 4971: 4969: 4968: 4963: 4951: 4949: 4948: 4943: 4923: 4921: 4920: 4915: 4882:lantern relation 4855: 4853: 4852: 4847: 4826: 4824: 4823: 4818: 4789: 4787: 4786: 4781: 4779: 4778: 4740: 4739: 4694: 4692: 4691: 4686: 4681: 4670: 4669: 4638: 4636: 4635: 4630: 4628: 4627: 4615: 4614: 4598: 4596: 4595: 4590: 4588: 4587: 4571: 4569: 4568: 4563: 4561: 4560: 4544: 4542: 4541: 4536: 4534: 4533: 4515: 4514: 4498: 4496: 4495: 4490: 4488: 4487: 4469: 4468: 4445: 4443: 4442: 4437: 4413: 4411: 4410: 4405: 4388:markings complex 4382:Markings complex 4373: 4371: 4370: 4365: 4341: 4339: 4338: 4333: 4317: 4315: 4314: 4309: 4276: 4274: 4273: 4268: 4244: 4242: 4241: 4236: 4224: 4222: 4221: 4216: 4185: 4183: 4182: 4177: 4165: 4163: 4162: 4157: 4122: 4120: 4119: 4114: 4087: 4085: 4084: 4079: 4054: 4052: 4051: 4046: 4014: 4012: 4011: 4006: 3982: 3980: 3979: 3974: 3960: 3959: 3943: 3941: 3940: 3935: 3907: 3905: 3904: 3899: 3887: 3885: 3884: 3879: 3855: 3853: 3852: 3847: 3835: 3833: 3832: 3827: 3803: 3801: 3800: 3795: 3744: 3742: 3741: 3736: 3724: 3722: 3721: 3716: 3701: 3699: 3698: 3693: 3691: 3690: 3674: 3672: 3671: 3666: 3644: 3642: 3641: 3636: 3589: 3587: 3586: 3581: 3579: 3578: 3533: 3531: 3530: 3525: 3520: 3509: 3508: 3489: 3487: 3486: 3481: 3469: 3467: 3466: 3461: 3445: 3443: 3442: 3437: 3425: 3423: 3422: 3417: 3393: 3391: 3390: 3385: 3383: 3382: 3366: 3364: 3363: 3358: 3350: 3349: 3337: 3336: 3317: 3315: 3314: 3309: 3297: 3295: 3294: 3289: 3271: 3269: 3268: 3263: 3251: 3249: 3248: 3243: 3241: 3240: 3223:counterclockwise 3220: 3218: 3217: 3212: 3200: 3198: 3197: 3192: 3190: 3189: 3173: 3171: 3170: 3165: 3153: 3151: 3150: 3145: 3133: 3131: 3130: 3125: 3113: 3111: 3110: 3105: 3093: 3091: 3090: 3085: 3054: 3052: 3051: 3046: 3034: 3032: 3031: 3026: 2990: 2988: 2987: 2982: 2964: 2962: 2961: 2956: 2885: 2884: 2859: 2857: 2856: 2851: 2833: 2831: 2830: 2825: 2790: 2788: 2787: 2782: 2762: 2760: 2759: 2754: 2740: 2739: 2714: 2712: 2711: 2706: 2692: 2691: 2670: 2668: 2667: 2662: 2648: 2647: 2631: 2629: 2628: 2623: 2615: 2614: 2596: 2595: 2567: 2565: 2564: 2559: 2535: 2533: 2532: 2527: 2515: 2513: 2512: 2507: 2484: 2483: 2475: 2465: 2463: 2462: 2457: 2440: 2439: 2423: 2421: 2420: 2415: 2410: 2409: 2391: 2390: 2362: 2360: 2359: 2354: 2352: 2351: 2335: 2333: 2332: 2327: 2315: 2313: 2312: 2307: 2302: 2301: 2279: 2277: 2276: 2271: 2269: 2268: 2252: 2250: 2249: 2244: 2232: 2230: 2229: 2224: 2219: 2218: 2200: 2199: 2183: 2181: 2180: 2175: 2173: 2172: 2156: 2154: 2153: 2148: 2136: 2134: 2133: 2128: 2112: 2110: 2109: 2104: 2062: 2060: 2059: 2054: 2052: 2051: 2035: 2033: 2032: 2027: 2015: 2013: 2012: 2007: 1996: 1988: 1968: 1960: 1942: 1940: 1939: 1934: 1929: 1928: 1927: 1919: 1888: 1887: 1868: 1866: 1865: 1860: 1858: 1857: 1841: 1839: 1838: 1833: 1831: 1819: 1817: 1816: 1811: 1800: 1792: 1775: 1774: 1741: 1739: 1738: 1733: 1710: 1709: 1700: 1674: 1673: 1636: 1634: 1633: 1628: 1605: 1604: 1588: 1586: 1585: 1580: 1566: 1565: 1549: 1547: 1546: 1541: 1518: 1517: 1501: 1499: 1498: 1493: 1475: 1473: 1472: 1467: 1447: 1445: 1444: 1439: 1434: 1423: 1422: 1406: 1404: 1403: 1398: 1396: 1395: 1390: 1377: 1375: 1374: 1369: 1364: 1353: 1352: 1336: 1334: 1333: 1328: 1323: 1322: 1317: 1295: 1293: 1292: 1287: 1269: 1267: 1266: 1261: 1249: 1247: 1246: 1241: 1230:to the morphism 1229: 1227: 1226: 1221: 1209: 1207: 1206: 1201: 1199: 1198: 1193: 1176: 1174: 1173: 1168: 1166: 1165: 1160: 1142: 1141: 1136: 1117: 1115: 1114: 1109: 1107: 1106: 1101: 1088: 1086: 1085: 1080: 1075: 1064: 1063: 1041: 1039: 1038: 1033: 1028: 1027: 1022: 1001: 990: 989: 967: 965: 964: 959: 954: 943: 942: 923: 921: 920: 915: 913: 912: 907: 901: 896: 895: 890: 881: 880: 875: 856: 854: 853: 848: 846: 838: 833: 821: 819: 818: 813: 795: 793: 792: 787: 775: 773: 772: 767: 755: 753: 752: 747: 745: 744: 739: 726: 724: 723: 718: 698: 696: 695: 690: 676: 675: 651: 650: 627: 625: 624: 619: 605: 604: 574: 572: 571: 566: 552: 551: 542: 525: 524: 487: 485: 484: 479: 467: 465: 464: 459: 447: 445: 444: 439: 425: 424: 404: 402: 401: 396: 382: 381: 362: 360: 359: 354: 352: 348: 305: 259: 257: 256: 251: 239: 237: 236: 231: 219: 217: 216: 211: 199: 197: 196: 191: 177: 176: 148: 146: 145: 140: 7157: 7156: 7152: 7151: 7150: 7148: 7147: 7146: 7127: 7126: 7125: 6865: 6851:Ivanov, Nikolai 6809: 6790: 6789:978-069114794-9 6696: 6695:978-038796416-4 6578:Birman, Joan S. 6543: 6538: 6530: 6526: 6518: 6514: 6506: 6502: 6494: 6490: 6486:, Theorem 6.11. 6482: 6478: 6470: 6466: 6458: 6454: 6446: 6442: 6436:J. Algebra 2004 6434: 6430: 6419: 6415: 6407: 6403: 6395: 6391: 6383: 6379: 6371: 6367: 6359: 6355: 6347: 6343: 6335: 6331: 6323: 6319: 6311: 6307: 6299: 6295: 6287: 6283: 6275: 6271: 6263: 6259: 6251: 6247: 6241:Acta Math. 1938 6239: 6235: 6231: 6226: 6225: 6216: 6212: 6207: 6178: 6173: 6170: 6169: 6138: 6135: 6134: 6122: 6103: 6067: 6064: 6063: 6060:Hurwitz's bound 6043: 6040: 6039: 6010: 6005: 5990: 5986: 5974: 5970: 5956: 5939: 5936: 5935: 5907: 5904: 5903: 5883: 5879: 5868: 5865: 5864: 5861: 5834: 5831: 5830: 5802: 5799: 5798: 5777: 5773: 5771: 5768: 5767: 5745: 5737: 5732: 5717: 5713: 5702: 5687: 5683: 5656: 5652: 5650: 5647: 5646: 5621: 5606: 5602: 5600: 5597: 5596: 5579: 5546: 5543: 5542: 5523: 5508: 5504: 5502: 5499: 5498: 5479: 5476: 5475: 5452: 5437: 5433: 5413: 5410: 5409: 5387: 5372: 5368: 5366: 5363: 5362: 5334: 5319: 5315: 5313: 5310: 5309: 5287: 5272: 5268: 5248: 5245: 5244: 5225: 5222: 5221: 5205: 5202: 5201: 5182: 5179: 5178: 5152: 5148: 5146: 5143: 5142: 5114: 5111: 5110: 5103: 5098: 5053: 5050: 5049: 5021: 5018: 5017: 4997: 4994: 4993: 4977: 4974: 4973: 4957: 4954: 4953: 4937: 4934: 4933: 4930: 4897: 4894: 4893: 4890: 4862: 4832: 4829: 4828: 4806: 4803: 4802: 4773: 4772: 4767: 4761: 4760: 4755: 4745: 4744: 4734: 4733: 4728: 4722: 4721: 4716: 4706: 4705: 4703: 4700: 4699: 4677: 4665: 4661: 4659: 4656: 4655: 4651: 4646: 4623: 4619: 4610: 4606: 4604: 4601: 4600: 4583: 4579: 4577: 4574: 4573: 4556: 4552: 4550: 4547: 4546: 4529: 4525: 4510: 4506: 4504: 4501: 4500: 4483: 4479: 4464: 4460: 4458: 4455: 4454: 4419: 4416: 4415: 4399: 4396: 4395: 4384: 4347: 4344: 4343: 4327: 4324: 4323: 4303: 4300: 4299: 4292: 4287: 4250: 4247: 4246: 4230: 4227: 4226: 4210: 4207: 4206: 4199: 4171: 4168: 4167: 4139: 4136: 4135: 4093: 4090: 4089: 4061: 4058: 4057: 4031: 4028: 4027: 3988: 3985: 3984: 3955: 3951: 3949: 3946: 3945: 3917: 3914: 3913: 3910:Riemann surface 3893: 3890: 3889: 3861: 3858: 3857: 3841: 3838: 3837: 3812: 3809: 3808: 3789: 3786: 3785: 3782: 3777: 3764: 3758: 3730: 3727: 3726: 3710: 3707: 3706: 3686: 3682: 3680: 3677: 3676: 3654: 3651: 3650: 3612: 3609: 3608: 3605: 3599: 3573: 3572: 3567: 3561: 3560: 3555: 3545: 3544: 3542: 3539: 3538: 3516: 3504: 3500: 3498: 3495: 3494: 3475: 3472: 3471: 3455: 3452: 3451: 3431: 3428: 3427: 3399: 3396: 3395: 3378: 3374: 3372: 3369: 3368: 3367:. The class of 3345: 3341: 3329: 3325: 3323: 3320: 3319: 3318:it is equal to 3303: 3300: 3299: 3277: 3274: 3273: 3272:as follows: on 3257: 3254: 3253: 3236: 3232: 3230: 3227: 3226: 3206: 3203: 3202: 3185: 3181: 3179: 3176: 3175: 3159: 3156: 3155: 3139: 3136: 3135: 3119: 3116: 3115: 3099: 3096: 3095: 3079: 3076: 3075: 3072: 3066: 3061: 3040: 3037: 3036: 2996: 2993: 2992: 2976: 2973: 2972: 2880: 2876: 2868: 2865: 2864: 2839: 2836: 2835: 2819: 2816: 2815: 2802: 2776: 2773: 2772: 2735: 2731: 2720: 2717: 2716: 2687: 2683: 2681: 2678: 2677: 2643: 2639: 2637: 2634: 2633: 2610: 2606: 2591: 2587: 2576: 2573: 2572: 2541: 2538: 2537: 2521: 2518: 2517: 2474: 2473: 2471: 2468: 2467: 2435: 2431: 2429: 2426: 2425: 2405: 2401: 2386: 2382: 2368: 2365: 2364: 2347: 2343: 2341: 2338: 2337: 2321: 2318: 2317: 2316:and for a loop 2297: 2293: 2285: 2282: 2281: 2264: 2260: 2258: 2255: 2254: 2238: 2235: 2234: 2214: 2210: 2195: 2191: 2189: 2186: 2185: 2168: 2164: 2162: 2159: 2158: 2142: 2139: 2138: 2122: 2119: 2118: 2098: 2095: 2094: 2091: 2075: 2069: 2047: 2043: 2041: 2038: 2037: 2021: 2018: 2017: 1992: 1984: 1964: 1956: 1951: 1948: 1947: 1923: 1915: 1905: 1901: 1883: 1879: 1877: 1874: 1873: 1853: 1849: 1847: 1844: 1843: 1827: 1825: 1822: 1821: 1796: 1788: 1770: 1766: 1764: 1761: 1760: 1753: 1705: 1701: 1696: 1669: 1665: 1645: 1642: 1641: 1600: 1596: 1594: 1591: 1590: 1561: 1557: 1555: 1552: 1551: 1513: 1509: 1507: 1504: 1503: 1484: 1481: 1480: 1461: 1458: 1457: 1454: 1430: 1418: 1414: 1412: 1409: 1408: 1391: 1386: 1385: 1383: 1380: 1379: 1360: 1348: 1344: 1342: 1339: 1338: 1318: 1313: 1312: 1301: 1298: 1297: 1275: 1272: 1271: 1255: 1252: 1251: 1235: 1232: 1231: 1215: 1212: 1211: 1194: 1189: 1188: 1186: 1183: 1182: 1161: 1156: 1155: 1137: 1132: 1131: 1123: 1120: 1119: 1102: 1097: 1096: 1094: 1091: 1090: 1071: 1059: 1055: 1047: 1044: 1043: 1023: 1018: 1017: 997: 985: 981: 973: 970: 969: 950: 938: 934: 932: 929: 928: 908: 903: 902: 897: 891: 886: 885: 876: 871: 870: 868: 865: 864: 842: 834: 829: 827: 824: 823: 801: 798: 797: 781: 778: 777: 761: 758: 757: 740: 735: 734: 732: 729: 728: 712: 709: 708: 705: 671: 667: 646: 642: 640: 637: 636: 600: 596: 594: 591: 590: 547: 543: 538: 520: 516: 496: 493: 492: 473: 470: 469: 453: 450: 449: 420: 416: 414: 411: 410: 377: 373: 371: 368: 367: 311: 307: 295: 268: 265: 264: 245: 242: 241: 225: 222: 221: 205: 202: 201: 172: 168: 166: 163: 162: 134: 131: 130: 127: 122: 91: 55:in relation to 17: 12: 11: 5: 7155: 7145: 7144: 7139: 7124: 7123: 7111:(2): 377–383. 7096: 7076:(2): 417–431. 7061: 7025:(2): 753–758. 7010: 6982:(4): 902–974. 6971: 6927:(1): 103–149. 6916: 6869: 6863: 6847: 6835:(3): 221–237. 6817:Hatcher, Allen 6813: 6807: 6794: 6788: 6768: 6750:(3): 581–597. 6739: 6700: 6694: 6681: 6647: 6630: 6588: 6574: 6556:(2): 213–238. 6544: 6542: 6539: 6537: 6536: 6524: 6512: 6500: 6488: 6476: 6464: 6462:, Theorem 6.4. 6452: 6440: 6428: 6413: 6401: 6399:, Theorem 4.1. 6389: 6377: 6365: 6353: 6341: 6329: 6317: 6315:, Theorem 4.6. 6305: 6293: 6291:, Theorem 8.1. 6281: 6269: 6267:, Theorem 2.5. 6257: 6245: 6232: 6230: 6227: 6224: 6223: 6209: 6208: 6206: 6203: 6188: 6185: 6182: 6177: 6154: 6151: 6148: 6145: 6142: 6121: 6118: 6102: 6099: 6086: 6083: 6080: 6077: 6074: 6071: 6047: 6020: 6017: 6013: 6008: 6004: 6001: 5996: 5993: 5989: 5985: 5982: 5977: 5973: 5969: 5966: 5963: 5959: 5955: 5952: 5949: 5946: 5943: 5923: 5920: 5917: 5914: 5911: 5891: 5886: 5882: 5878: 5875: 5872: 5860: 5857: 5844: 5841: 5838: 5818: 5815: 5812: 5809: 5806: 5780: 5776: 5766:The kernel of 5764: 5763: 5752: 5748: 5744: 5740: 5735: 5731: 5728: 5723: 5720: 5716: 5712: 5709: 5705: 5701: 5698: 5693: 5690: 5686: 5682: 5679: 5676: 5673: 5670: 5667: 5664: 5659: 5655: 5628: 5624: 5620: 5617: 5612: 5609: 5605: 5593: 5592: 5578: 5575: 5562: 5559: 5556: 5553: 5550: 5530: 5526: 5522: 5519: 5514: 5511: 5507: 5483: 5470:is called the 5459: 5455: 5451: 5448: 5443: 5440: 5436: 5432: 5429: 5426: 5423: 5420: 5417: 5394: 5390: 5386: 5383: 5378: 5375: 5371: 5341: 5337: 5333: 5330: 5325: 5322: 5318: 5294: 5290: 5286: 5283: 5278: 5275: 5271: 5267: 5264: 5261: 5258: 5255: 5252: 5229: 5209: 5189: 5186: 5166: 5163: 5160: 5155: 5151: 5130: 5127: 5124: 5121: 5118: 5102: 5099: 5097: 5094: 5078: 5075: 5072: 5069: 5066: 5063: 5060: 5057: 5037: 5034: 5031: 5028: 5025: 5001: 4981: 4961: 4941: 4929: 4926: 4913: 4910: 4907: 4904: 4901: 4889: 4886: 4861: 4858: 4845: 4842: 4839: 4836: 4816: 4813: 4810: 4792: 4791: 4777: 4771: 4768: 4766: 4763: 4762: 4759: 4756: 4754: 4751: 4750: 4748: 4743: 4738: 4732: 4729: 4727: 4724: 4723: 4720: 4717: 4715: 4712: 4711: 4709: 4684: 4680: 4676: 4673: 4668: 4664: 4650: 4647: 4645: 4642: 4626: 4622: 4618: 4613: 4609: 4586: 4582: 4559: 4555: 4532: 4528: 4524: 4521: 4518: 4513: 4509: 4486: 4482: 4478: 4475: 4472: 4467: 4463: 4448:locally finite 4435: 4432: 4429: 4426: 4423: 4403: 4383: 4380: 4363: 4360: 4357: 4354: 4351: 4331: 4307: 4291: 4288: 4286: 4283: 4266: 4263: 4260: 4257: 4254: 4234: 4214: 4198: 4195: 4194: 4193: 4190: 4187: 4175: 4155: 4152: 4149: 4146: 4143: 4112: 4109: 4106: 4103: 4100: 4097: 4077: 4074: 4071: 4068: 4065: 4044: 4041: 4038: 4035: 4004: 4001: 3998: 3995: 3992: 3972: 3969: 3966: 3963: 3958: 3954: 3933: 3930: 3927: 3924: 3921: 3897: 3877: 3874: 3871: 3868: 3865: 3845: 3825: 3822: 3819: 3816: 3793: 3781: 3778: 3776: 3773: 3760:Main article: 3757: 3754: 3750: 3749: 3746: 3734: 3714: 3703: 3689: 3685: 3664: 3661: 3658: 3634: 3631: 3628: 3625: 3622: 3619: 3616: 3601:Main article: 3598: 3595: 3591: 3590: 3577: 3571: 3568: 3566: 3563: 3562: 3559: 3556: 3554: 3551: 3550: 3548: 3523: 3519: 3515: 3512: 3507: 3503: 3479: 3459: 3435: 3415: 3412: 3409: 3406: 3403: 3381: 3377: 3356: 3353: 3348: 3344: 3340: 3335: 3332: 3328: 3307: 3287: 3284: 3281: 3261: 3239: 3235: 3210: 3188: 3184: 3163: 3143: 3123: 3103: 3083: 3068:Main article: 3065: 3062: 3060: 3057: 3044: 3024: 3021: 3018: 3015: 3012: 3009: 3006: 3003: 3000: 2980: 2969: 2968: 2967: 2966: 2954: 2951: 2948: 2945: 2942: 2939: 2936: 2933: 2930: 2927: 2924: 2921: 2918: 2915: 2912: 2909: 2906: 2903: 2900: 2897: 2894: 2891: 2888: 2883: 2879: 2875: 2872: 2849: 2846: 2843: 2823: 2801: 2798: 2780: 2766: 2765: 2752: 2749: 2746: 2743: 2738: 2734: 2730: 2727: 2724: 2704: 2701: 2698: 2695: 2690: 2686: 2660: 2657: 2654: 2651: 2646: 2642: 2621: 2618: 2613: 2609: 2605: 2602: 2599: 2594: 2590: 2586: 2583: 2580: 2557: 2554: 2551: 2548: 2545: 2525: 2505: 2502: 2499: 2496: 2493: 2490: 2487: 2481: 2478: 2455: 2452: 2449: 2446: 2443: 2438: 2434: 2413: 2408: 2404: 2400: 2397: 2394: 2389: 2385: 2381: 2378: 2375: 2372: 2350: 2346: 2325: 2305: 2300: 2296: 2292: 2289: 2267: 2263: 2242: 2222: 2217: 2213: 2209: 2206: 2203: 2198: 2194: 2171: 2167: 2146: 2126: 2102: 2090: 2087: 2071:Main article: 2068: 2065: 2050: 2046: 2025: 2005: 2002: 1999: 1995: 1991: 1987: 1983: 1980: 1977: 1974: 1971: 1967: 1963: 1959: 1955: 1944: 1943: 1932: 1926: 1922: 1918: 1914: 1911: 1908: 1904: 1900: 1897: 1894: 1891: 1886: 1882: 1856: 1852: 1830: 1809: 1806: 1803: 1799: 1795: 1791: 1787: 1784: 1781: 1778: 1773: 1769: 1752: 1749: 1744: 1743: 1731: 1728: 1725: 1722: 1719: 1716: 1713: 1708: 1704: 1699: 1695: 1692: 1689: 1686: 1683: 1680: 1677: 1672: 1668: 1664: 1661: 1658: 1655: 1652: 1649: 1626: 1623: 1620: 1617: 1614: 1611: 1608: 1603: 1599: 1578: 1575: 1572: 1569: 1564: 1560: 1539: 1536: 1533: 1530: 1527: 1524: 1521: 1516: 1512: 1491: 1488: 1465: 1453: 1450: 1437: 1433: 1429: 1426: 1421: 1417: 1394: 1389: 1367: 1363: 1359: 1356: 1351: 1347: 1326: 1321: 1316: 1311: 1308: 1305: 1285: 1282: 1279: 1259: 1239: 1219: 1197: 1192: 1179:homology group 1164: 1159: 1154: 1151: 1148: 1145: 1140: 1135: 1130: 1127: 1105: 1100: 1078: 1074: 1070: 1067: 1062: 1058: 1054: 1051: 1031: 1026: 1021: 1016: 1013: 1010: 1007: 1004: 1000: 996: 993: 988: 984: 980: 977: 957: 953: 949: 946: 941: 937: 911: 906: 900: 894: 889: 884: 879: 874: 845: 841: 837: 832: 811: 808: 805: 785: 765: 743: 738: 716: 704: 701: 688: 685: 682: 679: 674: 670: 666: 663: 660: 657: 654: 649: 645: 633:diffeomorphism 617: 614: 611: 608: 603: 599: 577: 576: 564: 561: 558: 555: 550: 546: 541: 537: 534: 531: 528: 523: 519: 515: 512: 509: 506: 503: 500: 477: 457: 437: 434: 431: 428: 423: 419: 394: 391: 388: 385: 380: 376: 364: 363: 351: 347: 344: 341: 338: 335: 332: 329: 326: 323: 320: 317: 314: 310: 304: 301: 298: 294: 290: 287: 284: 281: 278: 275: 272: 249: 229: 209: 189: 186: 183: 180: 175: 171: 138: 126: 123: 121: 118: 90: 87: 41:homeomorphisms 15: 9: 6: 4: 3: 2: 7154: 7143: 7140: 7138: 7135: 7134: 7132: 7119: 7114: 7110: 7106: 7102: 7097: 7093: 7089: 7084: 7079: 7075: 7071: 7067: 7062: 7058: 7054: 7050: 7046: 7042: 7038: 7033: 7028: 7024: 7020: 7016: 7011: 7007: 7003: 6999: 6995: 6990: 6985: 6981: 6977: 6972: 6968: 6964: 6960: 6956: 6952: 6948: 6944: 6940: 6935: 6930: 6926: 6922: 6917: 6913: 6909: 6905: 6901: 6897: 6893: 6888: 6883: 6879: 6875: 6870: 6866: 6860: 6856: 6852: 6848: 6843: 6838: 6834: 6830: 6826: 6822: 6818: 6814: 6810: 6804: 6800: 6795: 6791: 6785: 6781: 6777: 6776:Margalit, Dan 6773: 6769: 6765: 6761: 6757: 6753: 6749: 6745: 6740: 6736: 6732: 6728: 6724: 6719: 6714: 6710: 6706: 6701: 6697: 6691: 6687: 6682: 6679: 6673: 6668: 6664: 6661:(in German). 6660: 6656: 6652: 6648: 6644: 6640: 6636: 6631: 6627: 6623: 6619: 6615: 6610: 6605: 6601: 6597: 6593: 6589: 6585: 6584: 6579: 6575: 6571: 6567: 6563: 6559: 6555: 6551: 6546: 6545: 6533: 6528: 6521: 6516: 6509: 6504: 6497: 6492: 6485: 6480: 6473: 6468: 6461: 6456: 6449: 6444: 6437: 6432: 6425: 6423: 6417: 6410: 6405: 6398: 6393: 6386: 6381: 6374: 6369: 6362: 6357: 6350: 6345: 6338: 6333: 6326: 6321: 6314: 6309: 6302: 6297: 6290: 6285: 6278: 6273: 6266: 6261: 6254: 6249: 6242: 6237: 6233: 6220: 6214: 6210: 6202: 6186: 6183: 6180: 6175: 6166: 6149: 6143: 6140: 6132: 6127: 6126:open question 6117: 6114: 6112: 6108: 6098: 6081: 6078: 6075: 6069: 6061: 6045: 6037: 6032: 6015: 6011: 5999: 5994: 5991: 5987: 5983: 5975: 5964: 5961: 5957: 5950: 5944: 5941: 5918: 5912: 5909: 5884: 5873: 5870: 5856: 5842: 5839: 5836: 5813: 5807: 5804: 5796: 5778: 5742: 5738: 5726: 5721: 5718: 5714: 5696: 5691: 5688: 5684: 5674: 5668: 5665: 5662: 5657: 5645: 5644: 5643: 5640: 5615: 5610: 5607: 5603: 5591: 5589: 5584: 5583: 5582: 5574: 5557: 5551: 5548: 5517: 5512: 5509: 5505: 5497: 5481: 5473: 5472:Torelli group 5446: 5441: 5438: 5434: 5424: 5418: 5415: 5406: 5381: 5376: 5373: 5369: 5359: 5355: 5328: 5323: 5320: 5316: 5306: 5281: 5276: 5273: 5269: 5259: 5253: 5250: 5243: 5227: 5207: 5187: 5184: 5161: 5153: 5149: 5125: 5119: 5116: 5108: 5093: 5090: 5076: 5073: 5070: 5067: 5064: 5061: 5058: 5055: 5032: 5026: 5023: 5015: 4999: 4979: 4959: 4939: 4925: 4908: 4902: 4899: 4885: 4883: 4878: 4876: 4870: 4868: 4857: 4843: 4840: 4837: 4834: 4814: 4811: 4808: 4799: 4797: 4775: 4769: 4764: 4757: 4752: 4746: 4741: 4736: 4730: 4725: 4718: 4713: 4707: 4698: 4697: 4696: 4671: 4666: 4662: 4641: 4624: 4620: 4616: 4611: 4607: 4584: 4580: 4557: 4553: 4530: 4526: 4522: 4519: 4516: 4511: 4507: 4484: 4480: 4476: 4473: 4470: 4465: 4461: 4451: 4449: 4430: 4424: 4421: 4401: 4393: 4389: 4379: 4377: 4358: 4352: 4349: 4329: 4321: 4305: 4297: 4296:pants complex 4290:Pants complex 4282: 4278: 4261: 4255: 4252: 4232: 4212: 4205:of a surface 4204: 4203:curve complex 4191: 4188: 4173: 4150: 4144: 4141: 4133: 4132: 4131: 4129: 4124: 4110: 4107: 4104: 4101: 4098: 4095: 4072: 4066: 4063: 4039: 4033: 4025: 4021: 4016: 3999: 3993: 3990: 3967: 3961: 3956: 3952: 3931: 3925: 3922: 3919: 3911: 3895: 3872: 3869: 3866: 3843: 3820: 3814: 3807: 3791: 3772: 3768: 3763: 3753: 3747: 3732: 3712: 3704: 3687: 3683: 3662: 3659: 3656: 3648: 3647: 3646: 3629: 3623: 3620: 3617: 3614: 3604: 3594: 3575: 3569: 3564: 3557: 3552: 3546: 3537: 3536: 3535: 3510: 3505: 3501: 3491: 3477: 3457: 3449: 3433: 3410: 3404: 3401: 3379: 3375: 3354: 3351: 3346: 3342: 3338: 3333: 3330: 3326: 3305: 3285: 3279: 3259: 3237: 3233: 3224: 3208: 3186: 3182: 3161: 3141: 3121: 3101: 3081: 3071: 3056: 3042: 3016: 3007: 3001: 2998: 2978: 2952: 2943: 2937: 2934: 2922: 2913: 2907: 2904: 2895: 2892: 2889: 2881: 2877: 2870: 2863: 2862: 2861: 2847: 2844: 2841: 2821: 2812: 2811: 2810: 2808: 2797: 2794: 2778: 2769: 2764: 2744: 2736: 2732: 2725: 2722: 2699: 2693: 2688: 2684: 2674: 2673: 2672: 2655: 2649: 2644: 2640: 2611: 2607: 2603: 2600: 2592: 2588: 2581: 2578: 2571: 2552: 2546: 2543: 2523: 2503: 2500: 2494: 2488: 2485: 2476: 2447: 2436: 2432: 2406: 2402: 2398: 2395: 2387: 2383: 2379: 2373: 2348: 2344: 2323: 2298: 2294: 2287: 2265: 2261: 2240: 2215: 2211: 2207: 2204: 2196: 2192: 2169: 2165: 2144: 2124: 2116: 2100: 2086: 2084: 2080: 2074: 2064: 2048: 2044: 2023: 2000: 1997: 1989: 1978: 1972: 1969: 1961: 1930: 1920: 1912: 1909: 1906: 1902: 1898: 1892: 1884: 1880: 1872: 1871: 1870: 1854: 1850: 1804: 1801: 1793: 1785: 1782: 1776: 1771: 1767: 1758: 1748: 1726: 1720: 1717: 1711: 1706: 1702: 1697: 1690: 1684: 1681: 1675: 1670: 1666: 1662: 1656: 1650: 1647: 1640: 1639: 1638: 1621: 1615: 1612: 1606: 1601: 1597: 1573: 1567: 1562: 1558: 1534: 1528: 1525: 1519: 1514: 1510: 1489: 1479: 1463: 1449: 1424: 1419: 1415: 1392: 1354: 1349: 1345: 1319: 1306: 1303: 1280: 1195: 1180: 1162: 1152: 1149: 1146: 1138: 1128: 1125: 1103: 1065: 1060: 1056: 1052: 1049: 1024: 1011: 1008: 991: 986: 982: 978: 944: 939: 935: 927: 926:modular group 909: 898: 892: 882: 877: 863: 858: 839: 835: 809: 806: 803: 783: 763: 741: 714: 707:Suppose that 700: 683: 677: 672: 668: 664: 658: 652: 647: 643: 634: 629: 612: 606: 601: 597: 589: 584: 582: 559: 553: 548: 544: 539: 532: 526: 521: 517: 513: 507: 501: 498: 491: 490: 489: 488:is the group 475: 455: 432: 426: 421: 417: 408: 389: 383: 378: 374: 349: 339: 333: 330: 324: 318: 312: 308: 302: 299: 296: 288: 282: 279: 276: 270: 263: 262: 261: 247: 227: 207: 184: 178: 173: 169: 160: 156: 152: 136: 117: 115: 110: 108: 103: 101: 100:Jakob Nielsen 97: 86: 84: 80: 75: 73: 69: 65: 60: 58: 54: 50: 46: 42: 38: 34: 33:modular group 30: 26: 22: 7108: 7104: 7073: 7069: 7022: 7018: 6989:math/9807150 6979: 6975: 6934:math/9804098 6924: 6920: 6877: 6873: 6854: 6832: 6828: 6798: 6779: 6772:Farb, Benson 6747: 6743: 6708: 6704: 6685: 6662: 6658: 6634: 6609:math/0307039 6599: 6595: 6582: 6553: 6549: 6527: 6515: 6510:, Theorem 1. 6503: 6498:, Theorem 4. 6491: 6479: 6467: 6455: 6443: 6431: 6421: 6416: 6404: 6392: 6380: 6368: 6356: 6344: 6332: 6327:, Chapter 9. 6320: 6308: 6296: 6284: 6272: 6260: 6248: 6236: 6213: 6167: 6123: 6115: 6104: 6033: 5862: 5794: 5765: 5641: 5594: 5585: 5580: 5471: 5407: 5307: 5104: 5091: 5048:is equal to 4931: 4891: 4879: 4874: 4871: 4863: 4800: 4793: 4652: 4452: 4391: 4387: 4385: 4293: 4279: 4200: 4125: 4022:(though not 4017: 3783: 3769: 3765: 3751: 3606: 3592: 3492: 3447: 3073: 2970: 2813: 2803: 2770: 2767: 2675: 2092: 2082: 2078: 2076: 2073:Braid groups 1945: 1754: 1745: 1455: 859: 706: 630: 587: 585: 578: 365: 161:surface and 128: 111: 104: 92: 79:braid groups 76: 72:group theory 61: 36: 32: 24: 18: 6665:: 135–206. 6508:Ivanov 1992 6496:Ivanov 1992 6301:Birman 1969 6277:Birman 1974 6221:) markings. 3645:is either: 3064:Dehn twists 2807:Joan Birman 2085:punctures. 49:3-manifolds 7131:Categories 6596:J. Algebra 6373:Brock 2002 3675:such that 3448:Dehn twist 3070:Dehn twist 579:This is a 159:orientable 7032:0812.0017 6887:1106.4261 6718:1307.3733 6678:Dehn 1987 6651:Dehn, Max 6229:Citations 6184:− 6144:⁡ 6124:It is an 6079:− 6000:⁡ 5984:≅ 5972:Φ 5965:⁡ 5945:⁡ 5913:⁡ 5881:Φ 5874:⁡ 5840:≥ 5808:⁡ 5775:Φ 5727:⁡ 5711:→ 5697:⁡ 5681:→ 5669:⁡ 5654:Φ 5616:⁡ 5552:⁡ 5518:⁡ 5447:⁡ 5431:→ 5419:⁡ 5382:⁡ 5329:⁡ 5282:⁡ 5266:→ 5254:⁡ 5120:⁡ 5062:− 5027:⁡ 4903:⁡ 4812:≥ 4672:⁡ 4621:β 4608:α 4581:α 4554:β 4531:ξ 4527:β 4520:… 4508:β 4485:ξ 4481:α 4474:… 4462:α 4425:⁡ 4353:⁡ 4256:⁡ 4145:⁡ 4102:− 4067:⁡ 3994:⁡ 3962:⁡ 3929:→ 3624:⁡ 3618:∈ 3511:⁡ 3405:⁡ 3376:τ 3352:∘ 3343:τ 3339:∘ 3331:− 3283:∖ 3234:τ 3011:∖ 3002:⁡ 2950:→ 2938:⁡ 2932:→ 2917:∖ 2908:⁡ 2902:→ 2878:π 2874:→ 2845:∈ 2733:π 2726:⁡ 2694:⁡ 2689:± 2650:⁡ 2589:π 2582:⁡ 2547:⁡ 2524:γ 2504:γ 2501:∗ 2495:α 2486:∗ 2480:¯ 2477:γ 2448:α 2437:∗ 2384:π 2380:∈ 2374:α 2336:based at 2324:α 2241:γ 2193:π 2170:∗ 2045:τ 1913:π 1881:τ 1851:τ 1802:≤ 1786:≤ 1724:∂ 1712:⁡ 1688:∂ 1676:⁡ 1651:⁡ 1619:∂ 1607:⁡ 1568:⁡ 1532:∂ 1520:⁡ 1487:∂ 1425:⁡ 1355:⁡ 1307:⁡ 1284:Φ 1278:Π 1258:Π 1238:Φ 1218:Π 1144:↦ 1066:⁡ 1053:∈ 1012:⁡ 1006:→ 992:⁡ 976:Φ 945:⁡ 678:⁡ 665:⊂ 653:⁡ 607:⁡ 602:± 581:countable 554:⁡ 527:⁡ 502:⁡ 427:⁡ 384:⁡ 300:∈ 271:δ 179:⁡ 151:connected 68:manifolds 7105:Topology 7006:14834205 6967:16199015 6912:17330187 6853:(1992). 6829:Topology 6823:(1980). 6778:(2012). 6735:15393033 6653:(1938). 6626:14784932 6580:(1974). 6422:Topology 4392:markings 2253:between 1478:boundary 1042:: every 107:Thurston 96:Max Dehn 21:topology 7092:0956596 7057:2047111 7049:2557192 6959:1714338 6939:Bibcode 6904:2967055 6764:1813237 6643:1940162 6570:0243519 6541:Sources 5352:of the 2793:Out(Fn) 2568:to the 2424:define 1757:annulus 583:group. 89:History 29:surface 7090:  7055:  7047:  7004:  6965:  6957:  6910:  6902:  6861:  6805:  6786:  6762:  6733:  6692:  6641:  6624:  6568:  3888:where 3450:about 2115:closed 405:. The 155:closed 57:moduli 23:, the 7053:S2CID 7027:arXiv 7002:S2CID 6984:arXiv 6963:S2CID 6929:arXiv 6908:S2CID 6882:arXiv 6731:S2CID 6713:arXiv 6711:(8). 6622:S2CID 6604:arXiv 6205:Notes 4972:with 3953:Homeo 3908:is a 3470:. If 3154:from 2641:Homeo 2544:Homeo 1703:Homeo 1667:Homeo 1598:Homeo 1559:Homeo 1511:Homeo 862:torus 669:Homeo 545:Homeo 518:Homeo 418:Homeo 375:Homeo 170:Homeo 149:be a 27:of a 6859:ISBN 6803:ISBN 6784:ISBN 6690:ISBN 6424:1996 6111:free 4294:The 4201:The 4024:free 3912:and 3660:> 2814:Let 2280:and 2117:and 1755:Any 1337:and 1118:via 644:Diff 129:Let 98:and 81:and 62:The 7113:doi 7078:doi 7037:doi 7023:138 6994:doi 6947:doi 6925:138 6892:doi 6837:doi 6752:doi 6748:106 6723:doi 6709:166 6667:doi 6614:doi 6600:278 6558:doi 6141:Mod 5962:ker 5942:Mod 5910:Mod 5871:ker 5805:Mod 5797:of 5666:Mod 5549:Mod 5474:of 5416:Mod 5251:Mod 5200:if 5117:Mod 5105:As 5024:Mod 5016:of 4932:If 4900:Mod 4827:is 4422:Mod 4394:of 4350:Mod 4322:of 4253:Mod 4142:Mod 4064:Mod 3991:Mod 3621:Mod 3402:Mod 3252:of 3074:If 2999:Mod 2935:Mod 2905:Mod 2723:Out 2685:Mod 2579:Out 2113:is 2093:If 1820:of 1648:Mod 1407:is 1304:Mod 1181:of 1009:Mod 598:Mod 499:Mod 293:sup 240:on 35:or 7133:: 7109:35 7107:. 7103:. 7088:MR 7086:. 7074:19 7072:. 7068:. 7051:. 7045:MR 7043:. 7035:. 7021:. 7017:. 7000:. 6992:. 6980:10 6978:. 6961:. 6955:MR 6953:. 6945:. 6937:. 6923:. 6906:. 6900:MR 6898:. 6890:. 6878:16 6876:. 6833:19 6831:. 6827:. 6819:; 6774:; 6760:MR 6758:. 6746:. 6729:. 6721:. 6707:. 6663:69 6657:. 6639:MR 6620:. 6612:. 6602:. 6598:. 6566:MR 6564:. 6554:22 6552:. 6201:. 6165:. 6097:. 6070:84 6058:. 6031:. 5988:Sp 5715:Sp 5685:Sp 5604:Sp 5590:. 5506:Sp 5435:Sp 5405:. 5370:Sp 5317:Sp 5305:. 5270:GL 5089:. 4884:. 4877:. 4869:. 4798:. 4663:SL 4378:. 4186:); 4123:. 3502:SL 3055:. 2763:. 2063:. 1448:. 1416:GL 1346:SL 1057:SL 983:SL 936:SL 157:, 153:, 85:. 74:. 7121:. 7115:: 7094:. 7080:: 7059:. 7039:: 7029:: 7008:. 6996:: 6986:: 6969:. 6949:: 6941:: 6931:: 6914:. 6894:: 6884:: 6867:. 6845:. 6839:: 6811:. 6792:. 6766:. 6754:: 6737:. 6725:: 6715:: 6698:. 6680:. 6669:: 6645:. 6628:. 6616:: 6606:: 6572:. 6560:: 6438:. 6411:. 6387:. 6375:. 6351:. 6339:. 6279:. 6187:1 6181:g 6176:2 6153:) 6150:S 6147:( 6085:) 6082:1 6076:g 6073:( 6046:g 6019:) 6016:3 6012:/ 6007:Z 6003:( 5995:g 5992:2 5981:) 5976:3 5968:( 5958:/ 5954:) 5951:S 5948:( 5922:) 5919:S 5916:( 5890:) 5885:3 5877:( 5843:3 5837:n 5817:) 5814:S 5811:( 5779:n 5751:) 5747:Z 5743:n 5739:/ 5734:Z 5730:( 5722:g 5719:2 5708:) 5704:Z 5700:( 5692:g 5689:2 5678:) 5675:S 5672:( 5663:: 5658:n 5627:) 5623:Z 5619:( 5611:g 5608:2 5561:) 5558:S 5555:( 5529:) 5525:Z 5521:( 5513:g 5510:2 5482:S 5458:) 5454:Z 5450:( 5442:g 5439:2 5428:) 5425:S 5422:( 5393:) 5389:Z 5385:( 5377:g 5374:2 5340:) 5336:Z 5332:( 5324:g 5321:2 5293:) 5289:Z 5285:( 5277:g 5274:2 5263:) 5260:S 5257:( 5228:g 5208:S 5188:g 5185:2 5165:) 5162:S 5159:( 5154:1 5150:H 5129:) 5126:S 5123:( 5077:k 5074:+ 5071:b 5068:+ 5065:4 5059:g 5056:4 5036:) 5033:S 5030:( 5000:k 4980:b 4960:g 4940:S 4912:) 4909:S 4906:( 4844:1 4841:+ 4838:g 4835:2 4815:2 4809:g 4790:. 4776:) 4770:1 4765:1 4758:0 4753:1 4747:( 4742:, 4737:) 4731:1 4726:0 4719:1 4714:1 4708:( 4683:) 4679:Z 4675:( 4667:2 4625:i 4617:, 4612:i 4585:i 4558:i 4523:, 4517:, 4512:1 4477:, 4471:, 4466:1 4434:) 4431:S 4428:( 4402:S 4362:) 4359:S 4356:( 4330:S 4306:S 4265:) 4262:S 4259:( 4233:S 4213:S 4174:S 4154:) 4151:S 4148:( 4111:k 4108:+ 4105:3 4099:g 4096:3 4076:) 4073:S 4070:( 4043:) 4040:S 4037:( 4034:T 4003:) 4000:S 3997:( 3971:) 3968:S 3965:( 3957:+ 3932:X 3926:S 3923:: 3920:f 3896:X 3876:) 3873:f 3870:, 3867:X 3864:( 3844:S 3824:) 3821:S 3818:( 3815:T 3792:S 3745:; 3733:g 3713:S 3688:n 3684:g 3663:0 3657:n 3633:) 3630:S 3627:( 3615:g 3576:) 3570:1 3565:0 3558:1 3553:1 3547:( 3522:) 3518:Z 3514:( 3506:2 3478:c 3458:c 3434:f 3414:) 3411:S 3408:( 3380:c 3355:f 3347:0 3334:1 3327:f 3306:A 3286:A 3280:S 3260:S 3238:c 3209:c 3187:0 3183:A 3162:A 3142:f 3122:A 3102:S 3082:c 3043:x 3023:) 3020:} 3017:x 3014:{ 3008:S 3005:( 2979:S 2965:. 2953:1 2947:) 2944:S 2941:( 2929:) 2926:} 2923:x 2920:{ 2914:S 2911:( 2899:) 2896:x 2893:, 2890:S 2887:( 2882:1 2871:1 2848:S 2842:x 2822:S 2779:S 2751:) 2748:) 2745:S 2742:( 2737:1 2729:( 2703:) 2700:S 2697:( 2659:) 2656:S 2653:( 2645:0 2620:) 2617:) 2612:0 2608:x 2604:, 2601:S 2598:( 2593:1 2585:( 2556:) 2553:S 2550:( 2498:) 2492:( 2489:f 2454:) 2451:] 2445:[ 2442:( 2433:f 2412:) 2407:0 2403:x 2399:, 2396:S 2393:( 2388:1 2377:] 2371:[ 2349:0 2345:x 2304:) 2299:0 2295:x 2291:( 2288:f 2266:0 2262:x 2221:) 2216:0 2212:x 2208:, 2205:S 2202:( 2197:1 2166:f 2145:S 2125:f 2101:S 2083:n 2079:n 2049:0 2024:A 2004:} 2001:2 1998:= 1994:| 1990:z 1986:| 1982:{ 1979:, 1976:} 1973:1 1970:= 1966:| 1962:z 1958:| 1954:{ 1931:z 1925:| 1921:z 1917:| 1910:i 1907:2 1903:e 1899:= 1896:) 1893:z 1890:( 1885:0 1855:0 1829:C 1808:} 1805:2 1798:| 1794:z 1790:| 1783:1 1780:{ 1777:= 1772:0 1768:A 1742:. 1730:) 1727:S 1721:, 1718:S 1715:( 1707:0 1698:/ 1694:) 1691:S 1685:, 1682:S 1679:( 1671:+ 1663:= 1660:) 1657:S 1654:( 1625:) 1622:S 1616:, 1613:S 1610:( 1602:0 1577:) 1574:S 1571:( 1563:+ 1538:) 1535:S 1529:, 1526:S 1523:( 1515:+ 1490:S 1464:S 1436:) 1432:Z 1428:( 1420:2 1393:2 1388:T 1366:) 1362:Z 1358:( 1350:2 1325:) 1320:2 1315:T 1310:( 1281:, 1196:2 1191:T 1163:2 1158:Z 1153:+ 1150:x 1147:A 1139:2 1134:Z 1129:+ 1126:x 1104:2 1099:T 1077:) 1073:Z 1069:( 1061:2 1050:A 1030:) 1025:2 1020:T 1015:( 1003:) 999:Z 995:( 987:2 979:: 956:) 952:Z 948:( 940:2 910:2 905:Z 899:/ 893:2 888:R 883:= 878:2 873:T 844:Z 840:2 836:/ 831:Z 810:0 807:= 804:z 784:S 764:S 742:3 737:R 715:S 687:) 684:S 681:( 673:+ 662:) 659:S 656:( 648:+ 616:) 613:S 610:( 575:. 563:) 560:S 557:( 549:0 540:/ 536:) 533:S 530:( 522:+ 514:= 511:) 508:S 505:( 476:S 456:S 436:) 433:S 430:( 422:0 393:) 390:S 387:( 379:+ 350:) 346:) 343:) 340:x 337:( 334:g 331:, 328:) 325:x 322:( 319:f 316:( 313:d 309:( 303:S 297:x 289:= 286:) 283:g 280:, 277:f 274:( 248:S 228:d 208:S 188:) 185:S 182:( 174:+ 137:S

Index

topology
surface
homeomorphisms
compact-open topology
3-manifolds
algebraic geometry
moduli
mapping class group
manifolds
group theory
braid groups
outer automorphism groups
Max Dehn
Jakob Nielsen
Thurston
geometric group theory
connected
closed
orientable
connected component of the identity
countable
diffeomorphism
torus
modular group
homology group
boundary
annulus
Braid groups
closed
outer automorphism group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑