Knowledge

Metal–ligand multiple bond

Source 📝

223:. Increasing the bond order to two by involving another lone pair changes the hybridization at the oxygen to an sp center with an expected expansion in the M-O-R bond angle and contraction in the M-O bond length. If all three lone pairs are included for a bond order of three than the M-O bond distance contracts further and since the oxygen is a sp center the M-O-R bond angle is 180˚ or linear. Similarly with the imidos are commonly referred to as either bent (sp) or linear (sp). Even the oxo can be sp or sp hybridized. The triply bonded oxo, similar to 249:
including the most common linear imidos with a six electron bonding interaction to the metal center. Similarly amido complexes are usually drawn with a single line even though most amido bonds involve four electrons. Alkoxides are generally drawn with a single bond although both two and four electron bonds are common. Oxo can be drawn with two lines regardless of whether four electrons or six are involved in the bond, although it is not uncommon to see six electron oxo bonds represented with three lines.
934: 57: 258:
oxidation state becomes more of a formalism with much of the positive charge distributed between the ligands. This distinction can be expressed by using a Roman numeral for the lower oxidation states in the upper right of the metal atomic symbol and an Arabic number with a plus sign for the higher oxidation states (see the example below). This formalism is not rigorously followed and the use of Roman numerals to represent higher oxidation states is common.
928: 940: 248:
Imido ligands, also known as imides or nitrenes, most commonly form "linear six electron bonds" with metal centers. Bent imidos are a rarity limited by complexes electron count, orbital bonding availability, or some similar phenomenon. It is common to draw only two lines of bonding for all imidos,
257:
There are two motifs to indicate a metal oxidation state based around the actual charge separation of the metal center. Oxidation states up to +3 are believed to be an accurate representation of the charge separation experienced by the metal center. For oxidation states of +4 and larger, the
214:
A ligand described in ionic terms can bond to a metal through however many lone pairs it has available. For example, many alkoxides use one of their three lone pairs to make a single bond to a metal center. In this situation the oxygen is sp
70:
is a formalism. Furthermore, the usage of multiple bonding is not uniform. Symmetry arguments suggest that most ligands engage metals via multiple bonds. The term 'metal–ligand multiple bond" is often reserved for ligands of the type
154:
N), and fluoride. For late transition metals, strong pi-donors form anti-bonding interactions with the filled d-levels, with consequences for spin state, redox potentials, and ligand exchange rates. Pi-donor ligands are low in the
282:"Metal–Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene, or Alkylidyne Ligands" W. A. Nugent and J. M. Mayer; Wiley-Interscience, New York, 1988. 390:
Aliaga-Alcalde, N.; George, S.D.; Mienert, B.; Bill, E.; Wieghardt, K.; Neese, F. "The Geometric and Electronic Structure of : A Genuine Iron(V) Species with a Ground-State Spin S=1/2"
330:
Rohde,J; In,J.; Lim, M.H.; Brennessel, W.W.; Bukowski, M.R.; Stubna, A.; Muonck, E.; Nam, W.; Que L. "Crystallographic and Spectroscopic Characterization of a Nonheme Fe(IV)O Complex"
142:, a pi-donor ligand is a kind of ligand endowed with filled non-bonding orbitals that overlap with metal-based orbitals. Their interaction is complementary to the behavior of 645: 150:
for the early transition metals is one consequence of this kind of bonding. Classic pi-donor ligands are oxide (O), nitride (N), imide (RN), alkoxide (RO), amide (R
307:; Johnson, A.M. "Experimental and Crystal Field Study of the Absorption Spectrum at 2000 to 8000 A of to Manganous Perchlorate in Aqueous Perchloric Acid" 1027: 66:
As a cautionary note, the classification of a metal–ligand bond as being "multiple" bond order is ambiguous and even arbitrary because
435: 1145: 1072: 753: 478: 202:
allow for many bonds between ligands and the metal center. A d metal center can accommodate up to 9 bonds without violating the
1067: 493: 367:"Spectroscopic and Quantum Chemical Characterization of the Electronic Structure and Bonding in a Non-Heme FeO Complex" 585: 992: 620: 615: 580: 44: 1176: 816: 630: 625: 610: 1007: 804: 794: 635: 287: 799: 428: 746: 686: 691: 1171: 1062: 1052: 1042: 1017: 987: 503: 833: 575: 539: 444: 421: 20: 1094: 997: 969: 739: 235:
at which point the oxygen no longer bears a partial positive charge and is reactive toward acid.
720: 605: 194:) ligands are generally assigned to high oxidation states with low d electron counts. The high 156: 139: 1138: 1099: 640: 216: 183: 1133: 1057: 948: 811: 770: 595: 458: 40: 231:
at the oxygen atom. When such a complex is reduced, the triple bond can be converted to a
8: 959: 823: 789: 715: 534: 508: 463: 220: 1123: 878: 529: 483: 354: 143: 1109: 898: 858: 848: 710: 681: 671: 600: 392: 369: 364: 340: 332: 309: 283: 56: 48: 1150: 890: 863: 676: 570: 473: 468: 404: 381: 347: 321: 304: 203: 199: 351: 228: 1128: 1002: 873: 549: 544: 224: 195: 43:
featuring multiply bonded ligands are of both scholarly and practical interest.
1037: 838: 666: 565: 488: 1165: 1086: 1046: 979: 933: 908: 781: 762: 661: 1032: 413: 408: 344: 191: 108: 1118: 868: 590: 232: 168: 325: 51:
reaction. Metal oxo intermediates are pervasive in oxidation catalysis.
358: 147: 67: 36: 16:
Chemical interaction of certain ligands with metals of bond order >1
385: 853: 828: 702: 498: 209: 60:
Most common classes of complexes showing metal–ligand multiple bonds
927: 731: 227:, is partially positive at the oxygen atom and unreactive toward 179: 171: 127: 28: 187: 175: 32: 297: 939: 646:
Arene complexes of univalent gallium, indium, and thallium
107:(n = 0, 1) where R is H or an organic substituent, or 206:, whereas a d species can only accommodate 6 bonds. 210:Reactivity explained through ligand hybridization 126:are not included in this classification, nor are 1163: 252: 198:stabilizes the highly reduced ligands. The low 162: 747: 429: 443: 754: 740: 530:Oxidative addition / reductive elimination 436: 422: 243: 1146:Polyhedral skeletal electron pair theory 479:Polyhedral skeletal electron pair theory 298:Further reading (specialized literature) 55: 278: 276: 1164: 735: 417: 27:describes the interaction of certain 586:Transition metal fullerene complexes 273: 133: 13: 761: 621:Transition metal carbyne complexes 616:Transition metal carbene complexes 581:Transition metal indenyl complexes 45:transition metal carbene complexes 14: 1188: 631:Transition metal alkyne complexes 626:Transition metal alkene complexes 938: 932: 926: 636:Transition-metal allyl complexes 611:Transition metal acyl complexes 363:Decker, A.; Rohde,J.; Que, L.; 238: 1: 352:10.1126/science.299.5609.1037 266: 253:Representing oxidation states 146:. The existence of terminal 7: 687:Shell higher olefin process 494:Dewar–Chatt–Duncanson model 163:Multiple bond stabilization 10: 1193: 844:Metal–ligand multiple bond 576:Cyclopentadienyl complexes 540:β-hydride elimination 514:Metal–ligand multiple bond 167:Metals bound to so-called 25:metal–ligand multiple bond 1108: 1085: 1016: 978: 958: 947: 924: 907: 889: 780: 769: 700: 654: 641:Transition metal carbides 558: 522: 451: 445:Organometallic chemistry 21:organometallic chemistry 606:Half sandwich compounds 244:Bonding representations 1177:Coordination chemistry 721:Bioinorganic chemistry 409:10.1002/anie.200462368 157:spectrochemical series 140:coordination chemistry 61: 41:Coordination complexes 692:Ziegler–Natta process 596:Metal tetranorbornyls 393:Angew. Chem. Int. Ed. 59: 834:Coordinate (dipolar) 701:Related branches of 459:Crystal field theory 1008:C–H···O interaction 790:Electron deficiency 716:Inorganic chemistry 535:Migratory insertion 509:Agostic interaction 464:Ligand field theory 326:10.1021/ja01557a001 221:valence bond theory 144:pi-acceptor ligands 993:Resonance-assisted 601:Sandwich compounds 559:Types of compounds 484:Isolobal principle 95:(n = 0, 1, 2) and 62: 39:greater than one. 1159: 1158: 1110:Electron counting 1081: 1080: 970:London dispersion 922: 921: 899:Metal aromaticity 729: 728: 711:Organic chemistry 682:Olefin metathesis 672:Grignard reaction 571:Grignard reagents 386:10.1021/ja0498033 370:J. Am. Chem. Soc. 310:J. Am. Chem. Soc. 49:olefin metathesis 1184: 1172:Chemical bonding 1151:Jemmis mno rules 1003:Dihydrogen bonds 956: 955: 942: 936: 930: 864:Hyperconjugation 778: 777: 756: 749: 742: 733: 732: 677:Monsanto process 474:d electron count 469:18-electron rule 438: 431: 424: 415: 414: 291: 280: 204:18 electron rule 200:d electron count 134:Pi-donor ligands 125: 124: 123: 114: 111:. Historically, 106: 105: 104: 94: 93: 92: 82: 81: 80: 1192: 1191: 1187: 1186: 1185: 1183: 1182: 1181: 1162: 1161: 1160: 1155: 1104: 1077: 1020: 1012: 974: 961: 951: 943: 937: 931: 918: 903: 885: 773: 765: 760: 730: 725: 696: 650: 566:Gilman reagents 554: 550:Carbometalation 545:Transmetalation 518: 447: 442: 300: 295: 294: 281: 274: 269: 255: 246: 241: 225:carbon monoxide 212: 196:oxidation state 165: 153: 136: 122: 120: 119: 118: 116: 112: 103: 100: 99: 98: 96: 91: 88: 87: 86: 84: 79: 76: 75: 74: 72: 17: 12: 11: 5: 1190: 1180: 1179: 1174: 1157: 1156: 1154: 1153: 1148: 1143: 1142: 1141: 1136: 1131: 1126: 1115: 1113: 1106: 1105: 1103: 1102: 1097: 1091: 1089: 1083: 1082: 1079: 1078: 1076: 1075: 1070: 1065: 1060: 1055: 1050: 1040: 1035: 1030: 1024: 1022: 1014: 1013: 1011: 1010: 1005: 1000: 995: 990: 984: 982: 976: 975: 973: 972: 966: 964: 953: 949:Intermolecular 945: 944: 925: 923: 920: 919: 917: 916: 913: 911: 905: 904: 902: 901: 895: 893: 887: 886: 884: 883: 882: 881: 876: 866: 861: 856: 851: 846: 841: 836: 831: 826: 821: 820: 819: 809: 808: 807: 802: 797: 786: 784: 775: 771:Intramolecular 767: 766: 763:Chemical bonds 759: 758: 751: 744: 736: 727: 726: 724: 723: 718: 713: 707: 705: 698: 697: 695: 694: 689: 684: 679: 674: 669: 667:Cativa process 664: 658: 656: 652: 651: 649: 648: 643: 638: 633: 628: 623: 618: 613: 608: 603: 598: 593: 588: 583: 578: 573: 568: 562: 560: 556: 555: 553: 552: 547: 542: 537: 532: 526: 524: 520: 519: 517: 516: 511: 506: 501: 496: 491: 486: 481: 476: 471: 466: 461: 455: 453: 449: 448: 441: 440: 433: 426: 418: 412: 411: 388: 361: 328: 299: 296: 293: 292: 271: 270: 268: 265: 264: 263: 254: 251: 245: 242: 240: 237: 229:Brønsted acids 211: 208: 164: 161: 151: 135: 132: 121: 101: 89: 77: 64: 63: 15: 9: 6: 4: 3: 2: 1189: 1178: 1175: 1173: 1170: 1169: 1167: 1152: 1149: 1147: 1144: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1124:Hückel's rule 1122: 1121: 1120: 1117: 1116: 1114: 1111: 1107: 1101: 1098: 1096: 1093: 1092: 1090: 1088: 1087:Bond cleavage 1084: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1053:Intercalation 1051: 1048: 1044: 1043:Metallophilic 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1025: 1023: 1019: 1015: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 985: 983: 981: 977: 971: 968: 967: 965: 963: 960:Van der Waals 957: 954: 950: 946: 941: 935: 929: 915: 914: 912: 910: 906: 900: 897: 896: 894: 892: 888: 880: 877: 875: 872: 871: 870: 867: 865: 862: 860: 857: 855: 852: 850: 847: 845: 842: 840: 837: 835: 832: 830: 827: 825: 822: 818: 815: 814: 813: 810: 806: 803: 801: 798: 796: 793: 792: 791: 788: 787: 785: 783: 779: 776: 772: 768: 764: 757: 752: 750: 745: 743: 738: 737: 734: 722: 719: 717: 714: 712: 709: 708: 706: 704: 699: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 662:Carbonylation 660: 659: 657: 653: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 567: 564: 563: 561: 557: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 527: 525: 521: 515: 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 489:π backbonding 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 456: 454: 450: 446: 439: 434: 432: 427: 425: 420: 419: 416: 410: 406: 403:, 2908–2912. 402: 398: 395: 394: 389: 387: 383: 380:, 5378–5379. 379: 375: 372: 371: 366: 365:Solomon, E.I. 362: 360: 356: 353: 349: 346: 342: 338: 335: 334: 329: 327: 323: 320:, 6471–6477. 319: 315: 312: 311: 306: 303:Heidt, L.J.; 302: 301: 289: 285: 279: 277: 272: 261: 260: 259: 250: 236: 234: 230: 226: 222: 219:according to 218: 207: 205: 201: 197: 193: 189: 185: 181: 177: 173: 170: 169:triply bonded 160: 158: 149: 145: 141: 131: 129: 110: 69: 58: 54: 53: 52: 50: 47:catalyze the 46: 42: 38: 34: 30: 26: 22: 1129:Baird's rule 849:Charge-shift 843: 812:Hypervalence 655:Applications 591:Metallocenes 513: 400: 396: 391: 377: 373: 368: 336: 331: 317: 313: 308: 305:Koster, G.F. 256: 247: 213: 166: 137: 109:pseudohalide 65: 24: 18: 1119:Aromaticity 1095:Heterolysis 1073:Salt bridge 1018:Noncovalent 988:Low-barrier 869:Aromaticity 859:Conjugation 839:Pi backbond 504:spin states 339:1037–1039. 239:Conventions 233:double bond 148:oxo ligands 1166:Categories 1047:aurophilic 1028:Mechanical 452:Principles 288:0471854409 267:References 217:hybridized 68:bond order 37:bond order 1139:spherical 1100:Homolysis 1063:Cation–pi 1038:Chalcogen 998:Symmetric 854:Hapticity 703:chemistry 523:Reactions 499:Hapticity 1068:Anion–pi 1058:Stacking 980:Hydrogen 891:Metallic 782:Covalent 774:(strong) 345:12586936 1033:Halogen 879:bicyclo 824:Agostic 359:3833551 337:VOL 299 333:Science 186:), and 184:nitrido 180:nitride 172:carbyne 128:halides 35:with a 31:with a 29:ligands 1134:Möbius 962:forces 952:(weak) 357:  343:  286:  1112:rules 1021:other 909:Ionic 817:3c–4e 805:8c–2e 800:4c–2e 795:3c–2e 355:JSTOR 188:oxide 176:imide 33:metal 874:homo 829:Bent 397:2005 374:2004 341:PMID 314:1959 284:ISBN 262:vs. 115:and 83:and 23:, a 405:doi 382:doi 378:126 348:doi 322:doi 192:oxo 138:In 19:In 1168:: 401:44 399:, 376:, 318:80 316:, 275:^ 178:, 174:, 159:. 130:. 117:NO 113:CO 97:OR 85:NR 73:CR 1049:) 1045:( 755:e 748:t 741:v 437:e 430:t 423:v 407:: 384:: 350:: 324:: 290:. 190:( 182:( 152:2 102:n 90:n 78:n

Index

organometallic chemistry
ligands
metal
bond order
Coordination complexes
transition metal carbene complexes
olefin metathesis

bond order
pseudohalide
halides
coordination chemistry
pi-acceptor ligands
oxo ligands
spectrochemical series
triply bonded
carbyne
imide
nitride
nitrido
oxide
oxo
oxidation state
d electron count
18 electron rule
hybridized
valence bond theory
carbon monoxide
Brønsted acids
double bond

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.