Knowledge

Metal–ligand multiple bond

Source 📝

234:. Increasing the bond order to two by involving another lone pair changes the hybridization at the oxygen to an sp center with an expected expansion in the M-O-R bond angle and contraction in the M-O bond length. If all three lone pairs are included for a bond order of three than the M-O bond distance contracts further and since the oxygen is a sp center the M-O-R bond angle is 180˚ or linear. Similarly with the imidos are commonly referred to as either bent (sp) or linear (sp). Even the oxo can be sp or sp hybridized. The triply bonded oxo, similar to 260:
including the most common linear imidos with a six electron bonding interaction to the metal center. Similarly amido complexes are usually drawn with a single line even though most amido bonds involve four electrons. Alkoxides are generally drawn with a single bond although both two and four electron bonds are common. Oxo can be drawn with two lines regardless of whether four electrons or six are involved in the bond, although it is not uncommon to see six electron oxo bonds represented with three lines.
945: 68: 269:
oxidation state becomes more of a formalism with much of the positive charge distributed between the ligands. This distinction can be expressed by using a Roman numeral for the lower oxidation states in the upper right of the metal atomic symbol and an Arabic number with a plus sign for the higher oxidation states (see the example below). This formalism is not rigorously followed and the use of Roman numerals to represent higher oxidation states is common.
939: 951: 259:
Imido ligands, also known as imides or nitrenes, most commonly form "linear six electron bonds" with metal centers. Bent imidos are a rarity limited by complexes electron count, orbital bonding availability, or some similar phenomenon. It is common to draw only two lines of bonding for all imidos,
268:
There are two motifs to indicate a metal oxidation state based around the actual charge separation of the metal center. Oxidation states up to +3 are believed to be an accurate representation of the charge separation experienced by the metal center. For oxidation states of +4 and larger, the
225:
A ligand described in ionic terms can bond to a metal through however many lone pairs it has available. For example, many alkoxides use one of their three lone pairs to make a single bond to a metal center. In this situation the oxygen is sp
81:
is a formalism. Furthermore, the usage of multiple bonding is not uniform. Symmetry arguments suggest that most ligands engage metals via multiple bonds. The term 'metal–ligand multiple bond" is often reserved for ligands of the type
165:
N), and fluoride. For late transition metals, strong pi-donors form anti-bonding interactions with the filled d-levels, with consequences for spin state, redox potentials, and ligand exchange rates. Pi-donor ligands are low in the
293:"Metal–Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene, or Alkylidyne Ligands" W. A. Nugent and J. M. Mayer; Wiley-Interscience, New York, 1988. 401:
Aliaga-Alcalde, N.; George, S.D.; Mienert, B.; Bill, E.; Wieghardt, K.; Neese, F. "The Geometric and Electronic Structure of : A Genuine Iron(V) Species with a Ground-State Spin S=1/2"
341:
Rohde,J; In,J.; Lim, M.H.; Brennessel, W.W.; Bukowski, M.R.; Stubna, A.; Muonck, E.; Nam, W.; Que L. "Crystallographic and Spectroscopic Characterization of a Nonheme Fe(IV)O Complex"
153:, a pi-donor ligand is a kind of ligand endowed with filled non-bonding orbitals that overlap with metal-based orbitals. Their interaction is complementary to the behavior of 656: 161:
for the early transition metals is one consequence of this kind of bonding. Classic pi-donor ligands are oxide (O), nitride (N), imide (RN), alkoxide (RO), amide (R
318:; Johnson, A.M. "Experimental and Crystal Field Study of the Absorption Spectrum at 2000 to 8000 A of to Manganous Perchlorate in Aqueous Perchloric Acid" 1038: 77:
As a cautionary note, the classification of a metal–ligand bond as being "multiple" bond order is ambiguous and even arbitrary because
17: 446: 1156: 1083: 764: 489: 213:
allow for many bonds between ligands and the metal center. A d metal center can accommodate up to 9 bonds without violating the
1078: 504: 378:"Spectroscopic and Quantum Chemical Characterization of the Electronic Structure and Bonding in a Non-Heme FeO Complex" 596: 1003: 631: 626: 591: 55: 1187: 827: 641: 636: 621: 1018: 815: 805: 646: 298: 810: 439: 757: 697: 702: 1182: 1073: 1063: 1053: 1028: 998: 514: 844: 586: 550: 455: 432: 31: 1105: 1008: 980: 750: 246:
at which point the oxygen no longer bears a partial positive charge and is reactive toward acid.
731: 616: 205:) ligands are generally assigned to high oxidation states with low d electron counts. The high 167: 150: 1149: 1110: 651: 227: 194: 1144: 1068: 959: 822: 781: 606: 469: 51: 242:
at the oxygen atom. When such a complex is reduced, the triple bond can be converted to a
8: 970: 834: 800: 726: 545: 519: 474: 231: 1134: 889: 540: 494: 365: 154: 1120: 909: 869: 859: 721: 692: 682: 611: 403: 380: 375: 351: 343: 320: 294: 67: 59: 1161: 901: 874: 687: 581: 484: 479: 415: 392: 358: 332: 315: 214: 210: 362: 239: 1139: 1013: 884: 560: 555: 235: 206: 54:
featuring multiply bonded ligands are of both scholarly and practical interest.
1048: 849: 677: 576: 499: 1176: 1097: 1057: 990: 944: 919: 792: 773: 672: 1043: 424: 419: 355: 202: 119: 1129: 879: 601: 243: 179: 336: 62:
reaction. Metal oxo intermediates are pervasive in oxidation catalysis.
369: 158: 78: 47: 27:
Chemical interaction of certain ligands with metals of bond order >1
396: 864: 839: 713: 509: 220: 71:
Most common classes of complexes showing metal–ligand multiple bonds
938: 742: 238:, is partially positive at the oxygen atom and unreactive toward 190: 182: 138: 39: 198: 186: 43: 308: 950: 657:
Arene complexes of univalent gallium, indium, and thallium
118:(n = 0, 1) where R is H or an organic substituent, or 217:, whereas a d species can only accommodate 6 bonds. 221:Reactivity explained through ligand hybridization 137:are not included in this classification, nor are 1174: 263: 209:stabilizes the highly reduced ligands. The low 173: 758: 440: 454: 765: 751: 541:Oxidative addition / reductive elimination 447: 433: 254: 1157:Polyhedral skeletal electron pair theory 490:Polyhedral skeletal electron pair theory 309:Further reading (specialized literature) 66: 289: 287: 14: 1175: 746: 428: 38:describes the interaction of certain 597:Transition metal fullerene complexes 284: 144: 24: 772: 632:Transition metal carbyne complexes 627:Transition metal carbene complexes 592:Transition metal indenyl complexes 56:transition metal carbene complexes 25: 1199: 642:Transition metal alkyne complexes 637:Transition metal alkene complexes 949: 943: 937: 647:Transition-metal allyl complexes 622:Transition metal acyl complexes 374:Decker, A.; Rohde,J.; Que, L.; 249: 13: 1: 363:10.1126/science.299.5609.1037 277: 264:Representing oxidation states 157:. The existence of terminal 7: 698:Shell higher olefin process 505:Dewar–Chatt–Duncanson model 174:Multiple bond stabilization 10: 1204: 855:Metal–ligand multiple bond 587:Cyclopentadienyl complexes 551:β-hydride elimination 525:Metal–ligand multiple bond 178:Metals bound to so-called 36:metal–ligand multiple bond 18:Metal ligand multiple bond 1119: 1096: 1027: 989: 969: 958: 935: 918: 900: 791: 780: 711: 665: 652:Transition metal carbides 569: 533: 462: 456:Organometallic chemistry 32:organometallic chemistry 617:Half sandwich compounds 255:Bonding representations 1188:Coordination chemistry 732:Bioinorganic chemistry 420:10.1002/anie.200462368 168:spectrochemical series 151:coordination chemistry 72: 52:Coordination complexes 703:Ziegler–Natta process 607:Metal tetranorbornyls 404:Angew. Chem. Int. Ed. 70: 845:Coordinate (dipolar) 712:Related branches of 470:Crystal field theory 1019:C–H···O interaction 801:Electron deficiency 727:Inorganic chemistry 546:Migratory insertion 520:Agostic interaction 475:Ligand field theory 337:10.1021/ja01557a001 232:valence bond theory 155:pi-acceptor ligands 1004:Resonance-assisted 612:Sandwich compounds 570:Types of compounds 495:Isolobal principle 106:(n = 0, 1, 2) and 73: 50:greater than one. 1170: 1169: 1121:Electron counting 1092: 1091: 981:London dispersion 933: 932: 910:Metal aromaticity 740: 739: 722:Organic chemistry 693:Olefin metathesis 683:Grignard reaction 582:Grignard reagents 397:10.1021/ja0498033 381:J. Am. Chem. Soc. 321:J. Am. Chem. Soc. 60:olefin metathesis 16:(Redirected from 1195: 1183:Chemical bonding 1162:Jemmis mno rules 1014:Dihydrogen bonds 967: 966: 953: 947: 941: 875:Hyperconjugation 789: 788: 767: 760: 753: 744: 743: 688:Monsanto process 485:d electron count 480:18-electron rule 449: 442: 435: 426: 425: 302: 291: 215:18 electron rule 211:d electron count 145:Pi-donor ligands 136: 135: 134: 125: 122:. Historically, 117: 116: 115: 105: 104: 103: 93: 92: 91: 21: 1203: 1202: 1198: 1197: 1196: 1194: 1193: 1192: 1173: 1172: 1171: 1166: 1115: 1088: 1031: 1023: 985: 972: 962: 954: 948: 942: 929: 914: 896: 784: 776: 771: 741: 736: 707: 661: 577:Gilman reagents 565: 561:Carbometalation 556:Transmetalation 529: 458: 453: 311: 306: 305: 292: 285: 280: 266: 257: 252: 236:carbon monoxide 223: 207:oxidation state 176: 164: 147: 133: 131: 130: 129: 127: 123: 114: 111: 110: 109: 107: 102: 99: 98: 97: 95: 90: 87: 86: 85: 83: 28: 23: 22: 15: 12: 11: 5: 1201: 1191: 1190: 1185: 1168: 1167: 1165: 1164: 1159: 1154: 1153: 1152: 1147: 1142: 1137: 1126: 1124: 1117: 1116: 1114: 1113: 1108: 1102: 1100: 1094: 1093: 1090: 1089: 1087: 1086: 1081: 1076: 1071: 1066: 1061: 1051: 1046: 1041: 1035: 1033: 1025: 1024: 1022: 1021: 1016: 1011: 1006: 1001: 995: 993: 987: 986: 984: 983: 977: 975: 964: 960:Intermolecular 956: 955: 936: 934: 931: 930: 928: 927: 924: 922: 916: 915: 913: 912: 906: 904: 898: 897: 895: 894: 893: 892: 887: 877: 872: 867: 862: 857: 852: 847: 842: 837: 832: 831: 830: 820: 819: 818: 813: 808: 797: 795: 786: 782:Intramolecular 778: 777: 774:Chemical bonds 770: 769: 762: 755: 747: 738: 737: 735: 734: 729: 724: 718: 716: 709: 708: 706: 705: 700: 695: 690: 685: 680: 678:Cativa process 675: 669: 667: 663: 662: 660: 659: 654: 649: 644: 639: 634: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 573: 571: 567: 566: 564: 563: 558: 553: 548: 543: 537: 535: 531: 530: 528: 527: 522: 517: 512: 507: 502: 497: 492: 487: 482: 477: 472: 466: 464: 460: 459: 452: 451: 444: 437: 429: 423: 422: 399: 372: 339: 310: 307: 304: 303: 282: 281: 279: 276: 275: 274: 265: 262: 256: 253: 251: 248: 240:Brønsted acids 222: 219: 175: 172: 162: 146: 143: 132: 112: 100: 88: 75: 74: 26: 9: 6: 4: 3: 2: 1200: 1189: 1186: 1184: 1181: 1180: 1178: 1163: 1160: 1158: 1155: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1135:Hückel's rule 1133: 1132: 1131: 1128: 1127: 1125: 1122: 1118: 1112: 1109: 1107: 1104: 1103: 1101: 1099: 1098:Bond cleavage 1095: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1064:Intercalation 1062: 1059: 1055: 1054:Metallophilic 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1036: 1034: 1030: 1026: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 996: 994: 992: 988: 982: 979: 978: 976: 974: 971:Van der Waals 968: 965: 961: 957: 952: 946: 940: 926: 925: 923: 921: 917: 911: 908: 907: 905: 903: 899: 891: 888: 886: 883: 882: 881: 878: 876: 873: 871: 868: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 841: 838: 836: 833: 829: 826: 825: 824: 821: 817: 814: 812: 809: 807: 804: 803: 802: 799: 798: 796: 794: 790: 787: 783: 779: 775: 768: 763: 761: 756: 754: 749: 748: 745: 733: 730: 728: 725: 723: 720: 719: 717: 715: 710: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 673:Carbonylation 671: 670: 668: 664: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 574: 572: 568: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 538: 536: 532: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 500:π backbonding 498: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 471: 468: 467: 465: 461: 457: 450: 445: 443: 438: 436: 431: 430: 427: 421: 417: 414:, 2908–2912. 413: 409: 406: 405: 400: 398: 394: 391:, 5378–5379. 390: 386: 383: 382: 377: 376:Solomon, E.I. 373: 371: 367: 364: 360: 357: 353: 349: 346: 345: 340: 338: 334: 331:, 6471–6477. 330: 326: 323: 322: 317: 314:Heidt, L.J.; 313: 312: 300: 296: 290: 288: 283: 272: 271: 270: 261: 247: 245: 241: 237: 233: 230:according to 229: 218: 216: 212: 208: 204: 200: 196: 192: 188: 184: 181: 180:triply bonded 171: 169: 160: 156: 152: 142: 140: 121: 80: 69: 65: 64: 63: 61: 58:catalyze the 57: 53: 49: 45: 41: 37: 33: 19: 1140:Baird's rule 860:Charge-shift 854: 823:Hypervalence 666:Applications 602:Metallocenes 524: 411: 407: 402: 388: 384: 379: 347: 342: 328: 324: 319: 316:Koster, G.F. 267: 258: 224: 177: 148: 120:pseudohalide 76: 35: 29: 1130:Aromaticity 1106:Heterolysis 1084:Salt bridge 1029:Noncovalent 999:Low-barrier 880:Aromaticity 870:Conjugation 850:Pi backbond 515:spin states 350:1037–1039. 250:Conventions 244:double bond 159:oxo ligands 1177:Categories 1058:aurophilic 1039:Mechanical 463:Principles 299:0471854409 278:References 228:hybridized 79:bond order 48:bond order 1150:spherical 1111:Homolysis 1074:Cation–pi 1049:Chalcogen 1009:Symmetric 865:Hapticity 714:chemistry 534:Reactions 510:Hapticity 1079:Anion–pi 1069:Stacking 991:Hydrogen 902:Metallic 793:Covalent 785:(strong) 356:12586936 1044:Halogen 890:bicyclo 835:Agostic 370:3833551 348:VOL 299 344:Science 197:), and 195:nitrido 191:nitride 183:carbyne 139:halides 46:with a 42:with a 40:ligands 1145:Möbius 973:forces 963:(weak) 368:  354:  297:  1123:rules 1032:other 920:Ionic 828:3c–4e 816:8c–2e 811:4c–2e 806:3c–2e 366:JSTOR 199:oxide 187:imide 44:metal 885:homo 840:Bent 408:2005 385:2004 352:PMID 325:1959 295:ISBN 273:vs. 126:and 94:and 34:, a 416:doi 393:doi 389:126 359:doi 333:doi 203:oxo 149:In 30:In 1179:: 412:44 410:, 387:, 329:80 327:, 286:^ 189:, 185:, 170:. 141:. 128:NO 124:CO 108:OR 96:NR 84:CR 1060:) 1056:( 766:e 759:t 752:v 448:e 441:t 434:v 418:: 395:: 361:: 335:: 301:. 201:( 193:( 163:2 113:n 101:n 89:n 20:)

Index

Metal ligand multiple bond
organometallic chemistry
ligands
metal
bond order
Coordination complexes
transition metal carbene complexes
olefin metathesis

bond order
pseudohalide
halides
coordination chemistry
pi-acceptor ligands
oxo ligands
spectrochemical series
triply bonded
carbyne
imide
nitride
nitrido
oxide
oxo
oxidation state
d electron count
18 electron rule
hybridized
valence bond theory
carbon monoxide
Brønsted acids

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.