Knowledge

Superlens

Source 📝

1736:
as hyperlenses. It has been shown that even imperfect negative index flat lenses assisted with plasmon injection scheme can enable subdiffraction imaging of objects which is otherwise not possible due to the losses and noise. Although plasmon injection scheme was originally conceptualized for plasmonic metamaterials, the concept is general and applicable to all types electromagnetic modes. The main idea of the scheme is the coherent superposition of the lossy modes in the metamaterial with an appropriately structured external auxiliary field. This auxiliary field accounts for the losses in the metamaterial, hence effectively reduces the losses experienced by the signal beam or object field in the case of a metamaterial lens. The plasmon injection scheme can be implemented either physically or equivalently through deconvolution post-processing method. However, the physical implementation has shown to be more effective than the deconvolution. Physical construction of convolution and selective amplification of the spatial frequencies within a narrow bandwidth are the keys to the physical implementation of the plasmon injection scheme. This loss compensation scheme is ideally suited especially for metamaterial lenses since it does not require gain medium, nonlinearity, or any interaction with phonons. Experimental demonstration of the plasmon injection scheme has not yet been shown partly because the theory is rather new.
1492:. Indeed, no such material exists naturally and construction of the required metamaterials is non-trivial. Furthermore, it was shown that the parameters of the material are extremely sensitive (the index must equal −1); small deviations make the subwavelength resolution unobservable. Due to the resonant nature of metamaterials, on which many (proposed) implementations of superlenses depend, metamaterials are highly dispersive. The sensitive nature of the superlens to the material parameters causes superlenses based on metamaterials to have a limited usable frequency range. This initial theoretical superlens design consisted of a metamaterial that compensated for wave decay and reconstructs images in the near field. Both propagating and evanescent waves could contribute to the resolution of the image. 1496:
with a negative permeability at the frequency of visible light is difficult. Metals are then a good alternative as they have negative permittivity (but not negative permeability). Pendry suggested using silver due to its relatively low loss at the predicted wavelength of operation (356 nm). In 2003 Pendry's theory was first experimentally demonstrated at RF/microwave frequencies. In 2005, two independent groups verified Pendry's lens at UV range, both using thin layers of silver illuminated with UV light to produce "photographs" of objects smaller than the wavelength. Negative refraction of visible light was experimentally verified in an
1745: 1452: 1976:
the gratings has been used as the ultimate resolution test, as there is a concrete limit for the ability of a conventional (far field) lens to image a periodic object – in this case the image is a diffraction grating. For normal-incidence illumination the minimum spatial period that can be resolved with wavelength λ through a medium with refractive index n is λ/n. Zero contrast would therefore be expected in any (conventional) far-field image below this limit, no matter how good the imaging resist might be.
139: 413: 614:
and evanescent components, which advance parallel to the interface. As both the propagating and the smaller evanescent waves advance in a direction parallel to the medium interface, evanescent waves decay in the direction of propagation. Ordinary (positive index) optical elements can refocus the propagating components, but the exponentially decaying inhomogeneous components are always lost, leading to the diffraction limit for focusing to an image.
1889:
Objects also emit evanescent waves that carry details of the object, but are unobtainable with conventional optics. Such evanescent waves decay exponentially and thus never become part of the image resolution, an optics threshold known as the diffraction limit. Breaking this diffraction limit, and capturing evanescent waves are critical to the creation of a 100-percent perfect representation of an object.
2538: 2145:, proteins, DNA molecules and many other samples are hard to observe with a regular (optical) microscope. The lens previously demonstrated with negative refractive index material, a thin planar superlens, does not provide magnification beyond the diffraction limit of conventional microscopes. Therefore, images smaller than the conventional diffraction limit will still be unavailable. 428:. Subwavelength imaging can be defined as optical microscopy with the ability to see details of an object or organism below the wavelength of visible light (see discussion in the above sections). In other words, to have the capability to observe, in real time, below 200 nanometers. Optical microscopy is a non-invasive technique and technology because everyday light is the 2254:
radiation, and evanescent waves to construct the image. Super-resolution imaging was demonstrated over a distance of 6 times the wavelength (λ), in the far-field, with a resolution of at least λ/4. This is a significant improvement over previous research and demonstration of other near field and far field imaging, including nanohole arrays discussed below.
1543:
The imaging performance of such isotropic negative dielectric constant slab lenses were also analyzed with respect to the slab material and thickness. Subwavelength imaging opportunities with planar uniaxial anisotropic lenses, where the dielectric tensor components are of the opposite sign, have also been studied as a function of the structure parameters.
322: 1980:
periods above the diffraction limit (243 nm) are well resolved. The key results of this experiment are super-imaging of the sub-diffraction limit for 200 nm and 170 nm periods. In both cases the gratings are resolved, even though the contrast is diminished, but this gives experimental confirmation of Pendry's superlensing proposal.
1926:
goal of a 100-percent perfect image will persist. However, many scientists believe that a true perfect lens is not possible because there will always be some energy absorption loss as the waves pass through any known material. In comparison, the superlens image is substantially better than the one created without the silver superlens.
168: 2301:
themselves to other nanomaterials, the dots' optical properties change in unique ways in each case. Furthermore, evidence was discovered that quantum dot optical properties are altered as the nanoscale environment changes, offering greater possibility of using quantum dots to sense the local biochemical environment inside cells.
2285:
thousands of times smaller than a cell, have a variety of applications. One type of nanoparticle called a quantum dot glows when exposed to light. These semiconductor particles can be coated with organic materials, which are tailored to be attracted to specific proteins within the part of a cell a scientist wishes to examine.
2307:
The abstract from the related published research paper states (in part): Results are presented regarding the dynamic fluorescence properties of bioconjugated nanocrystals or quantum dots (QDs) in different chemical and physical environments. A variety of QD samples was prepared and compared: isolated
2292:
The research focused primarily on characterizing quantum dot properties, contrasting them with other imaging techniques. In one example, quantum dots were designed to target a specific type of human red blood cell protein that forms part of a network structure in the cell's inner membrane. When these
2114:
In 2010, a spherical hyperlens for two dimensional imaging at visible frequencies was demonstrated experimentally. The spherical hyperlens was based on silver and titanium oxide in alternating layers and had strong anisotropic hyperbolic dispersion allowing super-resolution with visible spectrum. The
2086:
Upon illumination, the scattered evanescent field from the object enters the anisotropic medium and propagates along the radial direction. Combined with another effect of the metamaterial, a magnified image at the outer diffraction limit-boundary of the hyperlens occurs. Once the magnified feature is
1877:
In 2005, a coherent, high-resolution image was produced (based on the 2003 results). A thinner slab of silver (35 nm) was better for sub–diffraction-limited imaging, which results in one-sixth of the illumination wavelength. This type of lens was used to compensate for wave decay and reconstruct
1542:
succeeded with a near field superlens. Other groups followed. Two developments in superlens research were reported in 2008. In the second case, a metamaterial was formed from silver nanowires which were electrochemically deposited in porous aluminium oxide. The material exhibited negative refraction.
642:
The performance limitation of conventional lenses is due to the diffraction limit. Following Pendry (2000), the diffraction limit can be understood as follows. Consider an object and a lens placed along the z-axis so the rays from the object are traveling in the +z direction. The field emanating from
613:
The original problem of the perfect lens: The general expansion of an EM field emanating from a source consists of both propagating waves and near-field or evanescent waves. An example of a 2-D line source with an electric field which has S-polarization will have plane waves consisting of propagating
2300:
Research efforts revealed that as the membrane proteins bunch up, the quantum dots attached to them are induced to cluster themselves and glow more brightly, permitting real time observation as the clustering of proteins progresses. More broadly, the research discovered that when quantum dots attach
2222:
For example, other point sources were similarly displaced from x' to x' + δx', from x^ to x^ + δx^, and from x^^ to x^^ + δx^^, and so on. Instead of functioning as a light concentrator, this performs the function of conventional lens imaging with a 1 to 1 correspondence, albeit with a point source.
2221:
is displayed a few tens of wavelengths from the array, on the other side of the array (the image plane). Also this type of array exhibited a 1 to 1 linear displacement, – from the location of the point source to its respective, parallel, location on the image plane. In other words, from x to x + δx.
1988:
Gradient Index (GRIN) – The larger range of material response available in metamaterials should lead to improved GRIN lens design. In particular, since the permittivity and permeability of a metamaterial can be adjusted independently, metamaterial GRIN lenses can presumably be better matched to free
1975:
The image fidelity is much improved over earlier results of the previous experimental lens stack. Imaging of sub-micrometre features has been greatly improved by using thinner silver and spacer layers, and by reducing the surface roughness of the lens stack. The ability of the silver lenses to image
1735:
An effective approach for the compensation of losses in metamaterials, called plasmon injection scheme, has been recently proposed. The plasmon injection scheme has been applied theoretically to imperfect negative index flat lenses with reasonable material losses and in the presence of noise as well
377:
radiation. As implied by its description, the far field escapes beyond the object. It is then easily captured and manipulated by a conventional glass lens. However, useful (nanometer-sized) resolution details are not observed, because they are hidden in the near field. They remain localized, staying
1550:
frequencies (Nielsen, R. B.; 2010). Furthermore, as dispersive materials, these are limited to functioning at a single wavelength. Proposed solutions are metal–dielectric composites (MDCs) and multilayer lens structures. The multi-layer superlens appears to have better subwavelength resolution than
1495:
Pendry also suggested that a lens having only one negative parameter would form an approximate superlens, provided that the distances involved are also very small and provided that the source polarization is appropriate. For visible light this is a useful substitute, since engineering metamaterials
621:
on the order of one wavelength due to the so-called diffraction limit. This limit hinders imaging very small objects, such as individual atoms, which are much smaller than the wavelength of visible light. A superlens is able to beat the diffraction limit. An example is the initial lens described by
577:
combined a transparent grating having 50 nm lines and spaces (the "metamaterial") with a conventional microscope immersion objective. The resulting "superlens" resolved a silicon sample also having 50 nm lines and spaces, far beyond the classical diffraction limit imposed by the illumination having
2166:
This began with a proposal by Pendry, in 2003. Magnifying the image required a new design concept in which the surface of the negatively refracting lens is curved. One cylinder touches another cylinder, resulting in a curved cylindrical lens which reproduced the contents of the smaller cylinder in
2148:
Another approach achieving super-resolution at visible wavelength is recently developed spherical hyperlens based on silver and titanium oxide alternating layers. It has strong anisotropic hyperbolic dispersion allowing super-resolution with converting evanescent waves into propagating waves. This
2110:
The optical hyperlens shows a notable potential for applications, such as real-time biomolecular imaging and nanolithography. Such a lens could be used to watch cellular processes that have been impossible to see. Conversely, it could be used to project an image with extremely fine features onto a
2094:
In a control experiment, the line pair object was imaged without the hyperlens. The line pair could not be resolved because of the diffraction limit of the (optical) aperture was limited to 260 nm. Because the hyperlens supports the propagation of a very broad spectrum of wave vectors, it can
1944:
In February 2004, an electromagnetic radiation focusing system, based on a negative index metamaterial plate, accomplished subwavelength imaging in the microwave domain. This showed that obtaining separated images at much less than the wavelength of light is possible. Also, in 2004, a silver layer
1925:
The key to the superlens is its ability to significantly enhance and recover the evanescent waves that carry information at very small scales. This enables imaging well below the diffraction limit. No lens is yet able to completely reconstitute all the evanescent waves emitted by an object, so the
1921:
By designing the thin metal slab so that the surface current oscillations (the surface plasmons) match the evanescent waves from the object, the superlens is able to substantially enhance the amplitude of the field. Superlensing results from the enhancement of evanescent waves by surface plasmons.
1892:
In addition, conventional optical materials suffer a diffraction limit because only the propagating components are transmitted (by the optical material) from a light source. The non-propagating components, the evanescent waves, are not transmitted. Moreover, lenses that improve image resolution by
1888:
Conventional lenses, whether man-made or natural, create images by capturing the propagating light waves all objects emit and then bending them. The angle of the bend is determined by the index of refraction and has always been positive until the fabrication of artificial negative index materials.
2090:
The hyperlens magnifies the object by transforming the scattered evanescent waves into propagating waves in the anisotropic medium, projecting a spatial resolution high-resolution image into the far field. This type of metamaterials-based lens, paired with a conventional optical lens is therefore
2052:
With conventional optical lenses, the far field is a limit that is too distant for evanescent waves to arrive intact. When imaging an object, this limits the optical resolution of lenses to the order of the wavelength of light. These non-propagating waves carry detailed information in the form of
1901:
also has limitations when compared to the potential of a working superlens. Scanning electron and atomic force microscopes are now used to capture detail down to a few nanometers. However, such microscopes create images by scanning objects point by point, which means they are typically limited to
1979:
The (super) lens stack here results in a computational result of a diffraction-limited resolution of 243 nm. Gratings with periods from 500 nm down to 170 nm are imaged, with the depth of the modulation in the resist reducing as the grating period reduces. All of the gratings with
1806:
Simply put, as the field pattern is transferred from the input to the output face of a slab, so the image information is transported across each layer. This was experimentally demonstrated. To test the two-dimensional imaging performance of the material, an antenna was constructed from a pair of
1714:
This study agrees that any deviation from conditions where ε=μ=−1 results in the normal, conventional, imperfect image that degrades exponentially i.e., the diffraction limit. The perfect lens solution in the absence of losses is again, not practical, and can lead to paradoxical interpretations.
2288:
Notably, quantum dots last longer than many organic dyes and fluorescent proteins that were previously used to illuminate the interiors of cells. They also have the advantage of monitoring changes in cellular processes while most high-resolution techniques like electron microscopy only provide
2253:
The metamaterial nanolens was constructed of millions of nanowires at 20 nanometers in diameter. These were precisely aligned and a packaged configuration was applied. The lens is able to depict a clear, high-resolution image of nano-sized objects because it uses both normal propagating EM
1632:
demonstrated that Pendry's theory behind the perfect lens was not exactly correct. The analysis of the focusing of the evanescent spectrum (equations 13–21 in reference) was flawed. In addition, this applies to only one (theoretical) instance, and that is one particular medium that is lossless,
1917:
and infrared regime provided the realization of a possible metamaterial superlens. However, in the near field, the electric and magnetic responses of materials are decoupled. Therefore, for transverse magnetic (TM) waves, only the permittivity needed to be considered. Noble metals, then become
1905:
With current optical microscopes, scientists can only make out relatively large structures within a cell, such as its nucleus and mitochondria. With a superlens, optical microscopes could one day reveal the movements of individual proteins traveling along the microtubules that make up a cell's
1726:
is possible with current technologies. Negative refractive indices have been demonstrated in structured metamaterials. Such materials can be engineered to have tunable material parameters, and so achieve the optimal conditions. Losses up to microwave frequencies can be minimized in structures
2284:
A joint research team, working at the National Institute of Standards and Technology (NIST) and the National Institute of Allergy and Infectious Diseases (NIAID), has discovered a method of using nanoparticles to illuminate the cellular interior to reveal these slow processes. Nanoparticles,
2157:
By 2008 the diffraction limit has been surpassed and lateral imaging resolutions of 20 to 50 nm have been achieved by several "super-resolution" far-field microscopy techniques, including stimulated emission depletion (STED) and its related RESOLFT (reversible saturable optically linear
2280:
When observing the complex processes in a living cell, significant processes (changes) or details are easy to overlook. This can more easily occur when watching changes that take a long time to unfold and require high-spatial-resolution imaging. However, recent research offers a solution to
2177:
In 2007, a superlens utilizing coordinate transformation was again the subject. However, in addition to image transfer other useful operations were discussed; translation, rotation, mirroring and inversion as well as the superlens effect. Furthermore, elements that perform magnification are
1811:
tuned to 21.5 MHz, was positioned on top of it. The material does indeed act as an image transfer device for the magnetic field. The shape of the antenna is faithfully reproduced in the output plane, both in the distribution of the peak intensity, and in the "valleys" that bound the M.
1672:
at the time (2001), the DNG slab acts like a converter from a pulsed cylindrical wave to a pulsed beam. Furthermore, in reality (in practice), a DNG medium must be and is dispersive and lossy, which can have either desirable or undesirable effects, depending on the research or application.
1558:
While the evolution of nanofabrication techniques continues to push the limits in fabrication of nanostructures, surface roughness remains an inevitable source of concern in the design of nano-photonic devices. The impact of this surface roughness on the effective dielectric constants and
1906:
skeleton, the researchers said. Optical microscopes can capture an entire frame with a single snapshot in a fraction of a second. With superlenses this opens up nanoscale imaging to living materials, which can help biologists better understand cell structure and function in real time.
2296:
Because the clustering mechanism is not well understood, it was decided to examine it with the quantum dots. If a technique could be developed to visualize the clustering, then the progress of a malaria infection could be understood, which has several distinct developmental stages.
2106:
lens. That lens will exhibit three-dimensional capability. Near-field optical microscopy uses a tip to scan an object. In contrast, this optical hyperlens magnifies an image that is sub-diffraction-limited. The magnified sub-diffraction image is then projected into the far field.
1616:, and their refractive index is −1 relative to the surrounding medium. Theoretically, this would be a breakthrough in that the optical version resolves objects as minuscule as nanometers across. Pendry predicted that Double negative metamaterials (DNG) with a refractive index of 378:
much closer to the light emitting object, unable to travel, and unable to be captured by the conventional lens. Controlling the near field radiation, for high resolution, can be accomplished with a new class of materials not easily obtained in nature. These are unlike familiar
51:
that limits the fineness of their resolution depending on the illumination wavelength and the numerical aperture (NA) of the objective lens. Many lens designs have been proposed that go beyond the diffraction limit in some way, but constraints and obstacles face each of them.
2293:
proteins cluster together in a healthy cell, the network provides mechanical flexibility to the cell so it can squeeze through narrow capillaries and other tight spaces. But when the cell gets infected with the malaria parasite, the structure of the network protein changes.
104:, which is also limited because these use conventional lenses. Hence, the principles governing a superlens show that it has potential for imaging DNA molecules, cellular protein processes, and aiding in the manufacture of even smaller computer chips and microelectronics. 2178:
described, which are free from geometric aberrations, on both the input and output sides while utilizing free space sourcing (rather than waveguide). These magnifying elements also operate in the near and far field, transferring the image from near field to far field.
2920: 2091:
able to reveal patterns too small to be discerned with an ordinary optical microscope. In one experiment, the lens was able to distinguish two 35-nanometer lines etched 150 nanometers apart. Without the metamaterials, the microscope showed only one thick line.
1472:. However, if the interface is between a material with a positive index of refraction and another material with a negative index of refraction, the wave will appear on the same side of the normal. Pendry's idea of a perfect lens is a flat material where 240:, which tabulates to 200 nanometers. Therefore, conventional lenses, which literally construct an image of an object by using "ordinary" light waves, discard information that produces very fine, and minuscule details of the object that are contained in 845: 1575:) lenses. Pendry proposed that a thin slab of negative refractive metamaterial might overcome known problems with common lenses to achieve a "perfect" lens that would focus the entire spectrum, both the propagating as well as the evanescent spectra. 486:
in use. A photon is the minimum unit of light. While previously thought to be physically impossible, subwavelength imaging has been made possible through the development of metamaterials. This is generally accomplished using a layer of metal such as
5988:
Milton, Graeme W.; Nicorovici, Nicolae-Alexandru P.; McPhedran, Ross C.; Podolskiy, Viktor A. (2005-12-08). "A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance".
1426: 2158:
fluorescent transitions) microscopy; saturated structured illumination microscopy (SSIM) ; stochastic optical reconstruction microscopy (STORM); photoactivated localization microscopy (PALM); and other methods using similar principles.
1025: 1760:"μ" an index of refraction "n" is derived. The index of refraction determines how light is bent on traversing from one material to another. In 2003, it was suggested that a metamaterial constructed with alternating, parallel, layers of 2001:
Imaging was experimentally demonstrated in the far field, taking the next step after near-field experiments. The key element is termed as a far-field superlens (FSL) which consists of a conventional superlens and a nanoscale coupler.
1873:
occurs, under the appropriate conditions. This demonstration provided direct evidence that the foundation of superlensing is solid, and suggested the path that will enable the observation of superlensing at optical wavelengths.
1249: 300:
Live biological cells in particular generally lack sufficient contrast to be studied successfully, because the internal structures of the cell are mostly colorless and transparent. The most common way to increase contrast is to
2271:
Theoretically it appears possible to transport a complex electromagnetic image through a tiny subwavelength hole with diameter considerably smaller than the diameter of the image, without losing the subwavelength details.
1997:
In 2005, a group proposed a theoretical way to overcome the near-field limitation using a new device termed a far-field superlens (FSL), which is a properly designed periodically corrugated metallic slab-based superlens.
585:
demonstrated negative index metamaterial came into existence in 2000–2001. The effectiveness of electron-beam lithography was also being researched at the beginning of the new millennium for nanometer-scale applications.
565:
features having dimensions much smaller than that of the vacuum wavelength of the exposing light. In 1981 two different techniques of contact imaging of planar (flat) submicroscopic metal patterns with blue light (400
2262:
2009–12. The light transmission properties of holey metal films in the metamaterial limit, where the unit length of the periodic structures is much smaller than the operating wavelength, are analyzed theoretically.
1186:
components of the wave, which contain information about the high-frequency (small-scale) features of the object being imaged. The highest resolution that can be obtained can be expressed in terms of the wavelength:
2010:
An approach is presented for subwavelength focusing of microwaves using both a time-reversal mirror placed in the far field and a random distribution of scatterers placed in the near field of the focusing point.
1952:
In early 2005, feature resolution was achieved with a different silver layer. Though this was not an actual image, it was intended. Dense feature resolution down to 250 nm was produced in a 50 nm thick
1807:
anti-parallel wires in the shape of the letter M. This generated a line of magnetic flux, so providing a characteristic field pattern for imaging. It was placed horizontally, and the material, consisting of 271
1142: 2229:
of conventional lenses can be reliably produced. Notable applications for this technology arise when conventional optics is not suitable for the task at hand. For example, this technology is better suited for
2087:
larger than (beyond) the diffraction limit, it can then be imaged with a conventional optical microscope, thus demonstrating magnification and projection of a sub-diffraction-limited image into the far field.
1455:
a) When a wave strikes a positive refraction index material from a vacuum. b) When a wave strikes a negative-refraction-index material from a vacuum. c) When an object is placed in front of an object with
597:
of light. Its derivative technologies such as evanescent near-field lithography, near-field interference lithography, and phase-shifting mask lithography were developed to overcome the diffraction limit.
1731:
elements. Furthermore, consideration of alternate structures may lead to configurations of left-handed materials that can achieve subwavelength focusing. Such structures were being studied at the time.
4134: 1850:
In 2003, a group of researchers showed that optical evanescent waves would be enhanced as they passed through a silver metamaterial lens. This was referred to as a diffraction-free lens. Although a
2019:
Once capability for near-field imaging was demonstrated, the next step was to project a near-field image into the far-field. This concept, including technique and materials, is dubbed "hyperlens".
1291: 2115:
resolution was 160 nm in the visible spectrum. It will enable biological imaging at the cellular and DNA level, with a strong benefit of magnifying sub-diffraction resolution into far-field.
2542: 1968:
Building on this prior research, super resolution was achieved at optical frequencies using a 50 nm flat silver layer. The capability of resolving an image beyond the diffraction limit, for
1718:
It was determined that although resonant surface plasmons are undesirable for imaging, these turn out to be essential for recovery of decaying evanescent waves. This analysis discovered that
171:
Schematic depictions and images of commonly used metallic nanoprobes that can be used to see a sample in nanometer resolution. Notice that the tips of the three nanoprobes are 100 nanometers.
2281:
scrutinize activities that occur over hours or even days inside cells, potentially solving many of the mysteries associated with molecular-scale events occurring in these tiny organisms.
2225:
However, resolution of more complicated structures can be achieved as constructions of multiple point sources. The fine details, and brighter image, that are normally associated with the
1571:
is determined by and limited to the wavelength of light. Around the year 2000, a slab of negative index metamaterial was theorized to create a lens with capabilities beyond conventional (
1488:
would do the job. The experimental realization of such a lens took, however, some more time, because it is not that easy to fabricate metamaterials with both negative permittivity and
2304:
Some concerns remain over toxicity and other properties. However, the overall findings indicate that quantum dots could be a valuable tool to investigate dynamic cellular processes.
119:. In contrast, a superlens captures propagating light waves and waves that stay on top of the surface of an object, which, alternatively, can be studied as both the far field and the 1680:
showed it to be in error while using the lossless, dispersionless DNG as the subject. This analysis mathematically demonstrated that subtleties of evanescent waves, restriction to a
64:
reported that conventional lenses are incapable of capturing some fine details of any given image. The superlens is intended to capture such details. This limitation of conventional
1476:=−1. Such a lens allows near-field rays, which normally decay due to the diffraction limit, to focus once within the lens and once outside the lens, allowing subwavelength imaging. 518:
in each instance. This compensates for the swiftly decaying evanescent waves. Prior to metamaterials, numerous other techniques had been proposed and even demonstrated for creating
4534:
Shivanand; Ludwig, Alon; Webb, K.J. (2012). "Impact of surface roughness on the effective dielectric constants and subwavelength image resolution of metal–insulator stack lenses".
2141:. Advancement in spatial resolution is key. Conventional optical microscopy is limited by a diffraction limit which is on the order of 200 nanometers (wavelength). This means that 1949:
near-field imaging. Super high resolution was not achieved, but this was intended. The silver layer was too thick to allow significant enhancements of evanescent field components.
2072:
direction of the layered metamaterial. On a microscopic level the large spatial frequency waves propagate through coupled surface plasmon excitations between the metallic layers.
1684:
slab and absorption had led to inconsistencies and divergencies that contradict the basic mathematical properties of scattered wave fields. For example, this analysis stated that
416:
The "Electrocomposeur" was an electron-beam lithography machine (electron microscope) designed for mask writing. It was developed in the early 1970s and deployed in the mid 1970s.
191:, image production and resolution depends on the length of a wave of visible light. However, with a superlens, this limitation may be removed, and a new class of image generated. 661: 1609:
imaging that compensates for wave decay and reconstructs images in the near-field. In addition, both propagating and evanescent waves contribute to the resolution of the image.
2206:
to form subwavelength spots (hot spots). The distances for the spots was a few tens of wavelengths on the other side of the array, or, in other words, opposite the side of the
443:) patterns that were too small to be observed with an ordinary optical microscope. This has potential applications not only for observing a whole living cell, or for observing 2167:
magnified but undistorted form outside the larger cylinder. Coordinate transformations are required to curve the original perfect lens into the cylindrical, lens structure.
1803:) – close to 21.3 MHz – is determined by the construction of the roll. Damping is achieved by the inherent resistance of the layers and the lossy part of permittivity. 175:
An image of an object can be defined as a tangible or visible representation of the features of that object. A requirement for image formation is interaction with fields of
1443:
is oriented perpendicularly to the direction of growth. For traveling waves inside a perfect lens, the Poynting vector points in direction opposite to the phase velocity.
915: 5206: 5049:
A. Ghoshroy, W. Adams, X. Zhang, and D. O. Guney, Active plasmon injection scheme for subdiffraction imaging with imperfect negative index flat lens, arXiv: 1706.03886
3319: 2083:(at 35 nanometers thick) deposited on a half-cylindrical cavity, and fabricated on a quartz substrate. The radial and tangential permittivities have different signs. 1695:
A third analysis of Pendry's perfect lens concept, published in 2003, used the recent demonstration of negative refraction at microwave frequencies as confirming the
1318: 1989:
space. The GRIN lens is constructed by using a slab of NIM with a variable index of refraction in the y direction, perpendicular to the direction of propagation z.
1172: 1059: 923: 875: 6246:
Casse, B. D. F.; Lu, W. T.; Huang, Y. J.; Gultepe, E.; Menon, L.; Sridhar, S. (2010). "Super-resolution imaging using a three-dimensional metamaterials nanolens".
2057:, and overcome limitations. Therefore, projecting image details, normally limited by diffraction into the far field does require recovery of the evanescent waves. 1703:
that a planar DNG metamaterial would refocus the far field radiation of a point source. However, the perfect lens would require significantly different values for
2289:
images of cellular processes frozen at one moment. Using quantum dots, cellular processes involving the dynamic motions of proteins, are observable (elucidated).
1823:
are largely decoupled. This allows for nearly independent manipulation of the electric field with the permittivity and the magnetic field with the permeability.
6479: 4786: 4994:
Adams, W.; Sadatgol, M.; Zhang, X.; Guney, D. O. (2016). "Bringing the 'perfect lens' into focus by near-perfect compensation of losses without gain media".
4173: 6598:" – A lens able to focus 10 times more intensely than any conventional design could significantly enhance wireless power transmission and photolithography ( 593:
Advanced deep UV photolithography can now offer sub-100 nm resolution, yet the minimum feature size and spacing between patterns are determined by the
6560: 1193: 1620:, can act, at least in principle, as a "perfect lens" allowing imaging resolution which is limited not by the wavelength, but rather by material quality. 5064:"Analytical description of inverse filter emulating the plasmon injection loss compensation scheme and implementation for ultrahigh-resolution hyperlens" 2469: 1881:
Objects were imaged as small as 40 nm across. In 2005 the imaging resolution limit for optical microscopes was at about one tenth the diameter of a
6435: 1518:
In 2004, the first superlens with a negative refractive index provided resolution three times better than the diffraction limit and was demonstrated at
1965:), the study noted that resolution improvements could be expected for imaging through silver lenses, rather than another method of near field imaging. 581:
Since at least 1998 near field optical lithography was designed to create nanometer-scale features. Research on this technology continued as the first
5338: 4586: 2134:
In 2007 researchers demonstrated super imaging using materials, which create negative refractive index and lensing is achieved in the visible range.
499:. There is a subtle interplay between propagating waves, evanescent waves, near field imaging and far field imaging discussed in the sections below. 2149:
method is non-fluorescence based super-resolution imaging, which results in real-time imaging without any reconstruction of images and information.
1842:. So, the field pattern should be transferred from the input to the output face of a slab of material without degradation of the image information. 1435:, so with proper lens thickness, all components of the angular spectrum can be transmitted through the lens undistorted. There are no problems with 432:. Imaging below the optical limit in optical microscopy (subwavelength) can be engineered for the cellular level, and nanometer level in principle. 4930:
Sadatgol, M.; Ozdemir, S. K.; Yang, L.; Guney, D. O. (2015). "Plasmon injection to compensate and control losses in negative index metamaterials".
2576: 2111:
photoresist as a first step in photolithography, a process used to make computer chips. The hyperlens also has applications for DVD technology.
2246:
In 2010, a nano-wire array prototype, described as a three-dimensional (3D) metamaterial-nanolens, consisting of bulk nanowires deposited in a
400:, obtains its properties from its artificially larger structure. This has resulted in novel properties, and novel responses, which allow for 5744: 574: 2717: 617:
A superlens is a lens which is capable of subwavelength imaging, allowing for magnification of near field rays. Conventional lenses have a
1067: 6553: 6148: 1649:
However, the final intuitive result of this theory that both the propagating and evanescent waves are focused, resulting in a converging
1551:
the single layer superlens. Losses are less of a concern with the multi-layer system, but so far it appears to be impractical because of
5656:
Wang, Junxia; Yang Xu Hongsheng Chen; Zhang, Baile (2012). "Ultraviolet dielectric hyperlens with layered graphene and boron nitride".
1865:
surfaces. However, the use of surface plasmons to reconstruct evanescent components was not tried until Pendry's recent proposal (see "
313:, apparent structural details that are caused by the processing of the specimen and are thus not a legitimate feature of the specimen. 6574: 2853: 1830:. Therefore, the transverse (perpendicular) components of the EM field which radiate the material, that is the wavevector components k 1756:
Pendry's theoretical lens was designed to focus both propagating waves and the near-field evanescent waves. From permittivity "ε" and
570:) were demonstrated. One demonstration resulted in an image resolution of 100 nm and the other a resolution of 50 to 70 nm. 115:. These are waves that travel from a light source or an object to a lens, or the human eye. This can alternatively be studied as the 4756: 3374: 6595: 3991:
Zhang, Yong; Fluegel, B.; Mascarenhas, A. (2003). "Total Negative Refraction in Real Crystals for Ballistic Electrons and Light".
3163: 6293:"Light transmission properties of holey metal films in the metamaterial limit: effective medium theory and subwavelength imaging" 1507:
It was discovered that a simple superlens design for microwaves could use an array of parallel conducting wires. This structure
1692:, is always present in practice, and absorption tends to transform amplified waves into decaying ones inside this medium (DNG). 1668:, Pendry's perfect lens effect cannot be realized. As a result, the perfect lens effect does not exist in general. According to 5256:
Lagarkov, A. N.; V. N. Kissel (2004-02-18). "Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate".
4499:
A.V. Kildishev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, V.M. Shalaev, J. Opt. Soc. Am. B 23, 423 (2006)
2124: 1854:, high-resolution, image was not intended, nor achieved, regeneration of the evanescent field was experimentally demonstrated. 1752:
which behaves as a magnetic faceplate, transferring a magnetic field distribution faithfully from the input to the output face.
1685: 1661: 527: 6394:"Probing dynamic fluorescence properties of single and clustered quantum dots toward quantitative biomedical imaging of cells" 5821:
Rho, Junsuk; Ye, Ziliang; Xiong, Yi; Yin, Xiaobo; Liu, Zhaowei; Choi, Hyeunseok; Bartal, Guy; Zhang, Xiang (1 December 2010).
2181:
The cylindrical magnifying superlens was experimentally demonstrated in 2007 by two groups, Liu et al. and Smolyaninov et al.
6542: 6493: 4077:
Grbic, A.; Eleftheriades, G. V. (2004). "Overcoming the Diffraction Limit with a Planar Left-handed Transmission-line Lens".
3644: 3214: 3169: 6584: 6528: 6514: 5239: 5171: 4723: 1508: 1257: 6392:
Kang, Hyeong-Gon; Tokumasu, Fuyuki; Clarke, Matthew; Zhou, Zhenping; Tang, Jianyong; Nguyen, Tinh; Hwang, Jeeseong (2010).
3352: 4453:
Liu, Huikan; Shivanand; Webb, K.J. (2008). "Subwavelength imaging opportunities with planar uniaxial anisotropic lenses".
3038:
Savo, S.; Andreone, A.; Di Gennaro, E. (2009). "Superlensing properties of one-dimensional dielectric photonic crystals".
80:
cannot be resolved with the highest powered conventional microscopes. This limitation extends to the minute processes of
6457: 6214: 1460:=−1, light from it is refracted so it focuses once inside the lens and once outside. This allows subwavelength imaging. 2170:
This was followed by a 36-page conceptual and mathematical proof in 2005, that the cylindrical superlens works in the
354:
to the width of a pencil used to draw the ordinary images. The limit intrudes in all kinds of ways. For example, the
6089:
Tsang, Mankei; Psaltis, Demetri (2008). "Magnifying perfect lens and superlens design by coordinate transformation".
5543:
Jacob, Z.; Alekseyev, L.; Narimanov, E. (2005). "Optical Hyperlens: Far-field imaging beyond the diffraction limit".
3012: 2650: 6476: 4837: 4409:
Shivanand; Liu, Huikan; Webb, K.J. (2008). "Imaging performance of an isotropic negative dielectric constant slab".
3940:
Fang, Nicholas; Lee, H; Sun, C; Zhang, X (2005). "Sub–Diffraction-Limited Optical Imaging with a Silver Superlens".
3230:
Synge, E.H. (1928). "A suggested method for extending the microscopic resolution into the ultramicroscopic region".
6667: 5490:
Geoffroy, Lerosey; et al. (2007-02-27). "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal".
2918:, Dennis Gabor, "Improvements in or relating to optical systems composed of lenticules", published 1941 605:
proposed using a metamaterial lens to achieve nanometer-scaled imaging for focusing below the wavelength of light.
482:
technique which allows visualization of features on the viewed object which are smaller than the wavelength of the
5395:"Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit" 350:
simply because it interacts with various wavelengths of light. At the same time, the wavelength of light can be
1878:
images in the near-field. Prior attempts to create a working superlens used a slab of silver that was too thick.
1578:
A slab of silver was proposed as the metamaterial. More specifically, such silver thin film can be regarded as a
1489: 6462: 4864:
Shelby, R. A.; Smith, D. R.; Schultz, S. (2001). "Experimental Verification of a Negative Index of Refraction".
1484:
Superlens construction was at one time thought to be impossible. In 2000, Pendry claimed that a simple slab of
4661:
Smolyaninov, Igor I.; Hung, YJ; Davis, CC (2007-03-27). "Magnifying Superlens in the Visible Frequency Range".
4133:
Nielsen, R. B.; Thoreson, M. D.; Chen, W.; Kristensen, A.; Hvam, J. M.; Shalaev, V. M.; Boltasseva, A. (2010).
4042:
Belov, Pavel; Simovski, Constantin (2005). "Canalization of subwavelength images by electromagnetic crystals".
1885:. With the silver superlens this results in a resolution of one hundredth of the diameter of a red blood cell. 1699:
of the fundamental concept of the perfect lens. In addition, this demonstration was thought to be experimental
6625: 4293:
Valentine, J.; et al. (2008). "Three-dimensional optical metamaterial with a negative refractive index".
4190:
Fang, N.; Lee, H; Sun, C; Zhang, X (2005). "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens".
2882: 1673:
Consequently, Pendry's perfect lens effect is inaccessible with any metamaterial designed to be a DNG medium.
1665: 5931: 840:{\displaystyle E(x,y,z,t)=\sum _{k_{x},k_{y}}A(k_{x},k_{y})e^{i\left(k_{z}z+k_{y}y+k_{x}x-\omega t\right)},} 5605: 5369: 4635: 2512: 2347: 2137:
Continual improvements in optical microscopy are needed to keep up with the progress in nanotechnology and
1601:
Therefore, a type of lens was proposed, consisting of a metal film metamaterial. When illuminated near its
209:
combined with optical microscopy are beginning to allow increased feature resolution (see sections below).
6606: 3199: 1719: 1591: 1579: 519: 436: 5302:; Melville, David O. S. (2005-01-20). "Imaging through planar silver lenses in the optical near field". 244:. These dimensions are less than 200 nanometers. For this reason, conventional optical systems, such as 6443: 2507: 1512: 3284:
Smith, H.I. (1974). "Fabrication techniques for surface-acoustic-wave and thin-film optical devices".
2037:
In February 2018, a mid-infrared (~5–25 μm) hyperlens was introduced, made from a variably doped
2915: 2777:
Kawata, S.; Inouye, Y.; Verma, P. (2009). "Plasmonics for near-field nano-imaging and superlensing".
2625: 1897:
are limited by the availability of high-index materials, and point by point subwavelength imaging of
1808: 1749: 542: 515: 366: 194: 5772: 4888: 4370: 6662: 3372:
Fischer, U. Ch.; Zingsheim, H. P. (1981). "Submicroscopic pattern replication with visible light".
2327: 1870: 1722:
has a significant effect on the recovery of types of evanescent components. In addition, achieving
17: 5801: 3796:(2006). "Veselago's lens consisting of left-handed materials with arbitrary index of refraction". 2935: 1559:
subwavelength image resolution of multilayer metal–insulator stack lenses has also been studied.
228:, half way in between, is around 500 nanometers. Microscopy takes into account parameters such as 6215:"Northeastern physicists develop 3D metamaterial nanolens that achieves super-resolution imaging" 5606:"Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations" 5214: 4794: 4241:
Jeppesen, C.; Nielsen, R. B.; Boltasseva, A.; Xiao, S.; Mortensen, N. A.; Kristensen, A. (2009).
4079: 3591: 3523:
Fang, N.; et al. (2005). "Sub–Diffraction-Limited Optical Imaging with a Silver Superlens".
3465: 3286: 2745: 2584: 2435: 2389: 2367: 2352: 1744: 1612:
Pendry suggested that left-handed slabs allow "perfect imaging" if they are completely lossless,
880: 648: 644: 587: 523: 268: 1653:
within the slab and another convergence (focal point) beyond the slab turned out to be correct.
1421:{\displaystyle k'_{z}=-{\sqrt {{\frac {\omega ^{2}}{c^{2}}}-\left(k_{x}^{2}+k_{y}^{2}\right)}}.} 6657: 6567: 5767: 5394: 4883: 4365: 4346:
Yao, J.; et al. (2008). "Optical Negative Refraction in Bulk Metamaterials of Nanowires".
2462: 2362: 2322: 2235: 2044:
The capability of a metamaterial-hyperlens for sub-diffraction-limited imaging is shown below.
1969: 1436: 6187: 2936:"Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance" 1020:{\displaystyle k_{z}={\sqrt {{\frac {\omega ^{2}}{c^{2}}}-\left(k_{x}^{2}+k_{y}^{2}\right)}}.} 6469: 3589:
Garcia, N.; Nieto-Vesperinas, M. (2002). "Left-Handed Materials Do Not Make a Perfect Lens".
2517: 2404: 2399: 2372: 2342: 2337: 2332: 2060:
In essence steps leading up to this investigation and demonstration was the employment of an
1862: 1757: 1497: 1465: 631: 362:
that are smaller than the wavelength of the laser. This limits the storage capacity of DVDs.
310: 5872:"Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy" 5116:"Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires" 6345: 6304: 6255: 6163: 6108: 6045: 5998: 5946: 5883: 5834: 5759: 5690: 5620: 5562: 5501: 5454: 5409: 5353: 5311: 5265: 5223: 5129: 5075: 5013: 4949: 4875: 4813: 4680: 4603: 4544: 4463: 4419: 4357: 4304: 4257: 4199: 4149: 4088: 4051: 4000: 3949: 3904: 3805: 3746: 3683: 3600: 3534: 3474: 3422: 3383: 3336: 3119: 3059: 2949: 2864: 2788: 2729: 2665: 2593: 2394: 2384: 1708: 1587: 1485: 1150: 1037: 853: 201:. Optical microscopy, on the other hand cannot, being limited to some value just above 200 143: 5823:"Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies" 3457: 1869:" above). By studying films of varying thickness it has been noted that a rapidly growing 526:, is given credit for conceiving and developing the idea for what would ultimately become 8: 6317: 6292: 3793: 3789: 2226: 2171: 2079:
optical hyperlens. The hyperlens consisted of a curved periodic stack of thin silver and
2065: 1939: 1914: 1898: 1894: 1851: 1789: 1689: 1657: 1531: 538: 444: 429: 421: 6349: 6308: 6259: 6167: 6112: 6049: 6002: 5950: 5887: 5838: 5763: 5694: 5679:"Ultra low-loss super-resolution with extremely anisotropic semiconductor metamaterials" 5624: 5566: 5505: 5458: 5413: 5357: 5315: 5269: 5227: 5133: 5079: 5017: 4953: 4879: 4817: 4760: 4684: 4607: 4548: 4467: 4423: 4361: 4308: 4261: 4242: 4203: 4153: 4092: 4055: 4004: 3953: 3908: 3809: 3750: 3687: 3604: 3538: 3478: 3426: 3387: 3340: 3123: 3063: 2953: 2792: 2733: 2669: 2597: 236:
of the observed material. This combination defines the resolution cutoff, or microscopy
6575:
Initial page describes first demonstration of negative refraction in a natural material
6124: 6098: 6071: 6014: 5904: 5871: 5793: 5657: 5586: 5552: 5525: 5029: 5003: 4973: 4939: 4909: 4829: 4803: 4704: 4670: 4627: 4522:
E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, Electron. Lett. 37, 1243 (2001)
4391: 4328: 4223: 4165: 4112: 4024: 3973: 3770: 3736: 3709: 3624: 3558: 3174: 3083: 3049: 2965: 2617: 2054: 1613: 618: 562: 401: 374: 302: 188: 147: 120: 100:
continue to be manufactured at progressively smaller scales. This requires specialized
69: 48: 1918:
natural selections for superlensing because negative permittivity is easily achieved.
1857:
By 2003 it was known for decades that evanescent waves could be enhanced by producing
557:
substrate. The shared technological goals of the metamaterial lens and the variety of
6413: 6361: 6179: 6063: 6018: 5964: 5909: 5852: 5785: 5578: 5517: 5492: 5472: 5281: 5147: 5033: 4965: 4901: 4866: 4696: 4619: 4594: 4560: 4479: 4435: 4383: 4348: 4320: 4275: 4215: 4104: 4016: 3965: 3922: 3856: 3762: 3701: 3616: 3550: 3525: 3438: 3210: 3137: 3075: 2823: 2681: 2609: 2005: 1910: 1769: 1586:. Through a conventional lens the phase remains consistent, but the evanescent waves 1523: 1451: 1244:{\displaystyle k_{\text{max}}\approx {\frac {\omega }{c}}={\frac {2\pi }{\lambda }},} 1183: 594: 590:
was shown to have desirable advantages for nanometer-scaled research and technology.
546: 496: 439:
lens coupled with a conventional optical lens could manipulate visible light to see (
420:
This has led to the desire to view live biological cell interactions in a real time,
383: 339: 309:, but often this involves killing and fixing the sample. Staining may also introduce 213: 198: 151: 44: 6075: 5590: 5529: 5323: 4833: 4708: 4631: 4395: 4169: 4116: 4028: 3774: 3713: 3628: 2621: 167: 6451: 6405: 6357: 6353: 6312: 6271: 6263: 6171: 6128: 6116: 6053: 6006: 5954: 5899: 5891: 5842: 5797: 5777: 5708: 5698: 5636: 5628: 5570: 5509: 5462: 5443:"Experimental studies of far-field superlens for sub-diffractional optical imaging" 5417: 5361: 5319: 5273: 5231: 5137: 5083: 5021: 4977: 4961: 4957: 4913: 4893: 4821: 4688: 4611: 4552: 4471: 4427: 4375: 4332: 4312: 4295: 4265: 4227: 4207: 4157: 4096: 4059: 4008: 3977: 3957: 3912: 3846: 3837: 3813: 3754: 3691: 3608: 3562: 3542: 3482: 3430: 3391: 3344: 3295: 3266: 3239: 3127: 3110: 3087: 3067: 2969: 2957: 2940: 2897: 2832: 2796: 2779: 2737: 2673: 2601: 2502: 2357: 2207: 2068:
dispersion. The effect was such that ordinary evanescent waves propagate along the
1723: 1602: 1572: 554: 460: 440: 276: 233: 221: 180: 108: 97: 81: 6539: 6490: 5277: 4100: 4012: 3648: 3612: 3209:. Progress In Optics series. Vol. 50. Amsterdam: Elsevier. pp. 142–150. 2986: 2837: 2818: 2308:
individual QDs, QD aggregates, and QDs conjugated to other nanoscale materials...
6652: 6626:"New, revolutionary metalens focuses entire visible spectrum into a single point" 6588: 6581: 6546: 6532: 6525: 6518: 6511: 6497: 6483: 5299: 5181: 4733: 3888: 3817: 3410: 2038: 1728: 1606: 1598:. Furthermore, as the evanescent waves are now amplified, the phase is reversed. 1539: 1535: 1440: 479: 464: 241: 101: 3696: 3671: 2901: 2605: 2217:
nanoholes in a metal screen. More than concentrating hot spots, an image of the
1034:
direction. All of the components of the angular spectrum of the image for which
6439: 6120: 5632: 5120: 5025: 4615: 4536: 4455: 4411: 4063: 3040: 2409: 2195: 1935: 1882: 1820: 1816: 1650: 1552: 1534:. Instead, a thin silver film was used to enhance the evanescent modes through 1469: 627: 622:
Pendry, which uses a slab of material with a negative index of refraction as a
249: 202: 89: 6333: 4161: 3270: 3243: 2880: 2213:
In June 2008, this was followed by the demonstrated capability of an array of
1696: 6646: 5176: 4787:"Limitations on subdiffraction imaging with a negative refractive index slab" 4728: 3442: 2881:
Anantha, S. Ramakrishna; J.B. Pendry; M.C.K. Wiltshire; W.J. Stewart (2003).
2800: 2492: 2487: 2214: 2027: 1858: 1785: 1773: 1583: 1582:. As light moves away (propagates) from the source, it acquires an arbitrary 1567:
When the world is observed through conventional lenses, the sharpness of the
475: 468: 396: 331: 229: 138: 93: 65: 36: 6222: 5895: 5781: 5513: 5421: 5088: 5063: 4897: 4692: 4379: 4211: 3961: 3546: 3411:"Super-resolution through illumination by diffraction-born evanescent waves" 2210:. The quasi-periodic array of nanoholes functioned as a light concentrator. 1902:
non-living samples, and image capture times can take up to several minutes.
1815:
A consistent characteristic of the very near (evanescent) field is that the
6417: 6365: 6183: 6067: 6010: 5968: 5913: 5856: 5789: 5713: 5582: 5521: 5476: 5285: 5151: 4969: 4905: 4700: 4623: 4564: 4483: 4439: 4387: 4324: 4279: 4219: 4108: 4020: 3969: 3926: 3917: 3892: 3860: 3766: 3705: 3620: 3554: 3327: 3299: 3141: 3079: 3017: 2685: 2613: 2218: 2138: 1958: 1796: 1772:. It is an effective medium made up of a multi-layer stack, which exhibits 1704: 261: 127: 85: 77: 40: 6276: 2689: 6561:
Optimizing the superlens: Manipulating geometry to enhance the resolution
6058: 6033: 5959: 5927: 5574: 5467: 5442: 5142: 5115: 4808: 4587:"Wave propagation in media having negative permittivity and permeability" 4556: 4475: 4431: 4270: 3758: 3071: 2497: 2099: 2061: 2023: 1954: 1827: 1309: 1296:
A superlens overcomes the limit. A Pendry-type superlens has an index of
602: 558: 534: 293: 282: 6618:
Ultraviolet dielectric hyperlens with layered graphene and boron nitride
5745:"Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects" 5557: 4675: 4316: 3741: 3257:
Synge, E.H. (1932). "An application of piezoelectricity to microscopy".
2069: 1061:
is real are transmitted and re-focused by an ordinary lens. However, if
412: 130:
to describe something quite different: a compound lenslet array system.
5847: 5822: 3458:"Light-coupling masks for lensless, sub-wavelength optical lithography" 2247: 2203: 1946: 652: 582: 495:
a few atoms thick, which acts as a superlens, or by means of 1D and 2D
456: 370: 245: 237: 206: 184: 61: 6267: 6175: 5703: 5678: 5641: 5365: 5339:"Simulation and testing of a graded negative index of refraction lens" 5235: 4825: 4135:"Toward superlensing with metal–dielectric composites and multilayers" 3348: 2741: 2161: 1300:=−1 (ε=−1, μ=−1), and in such a material, transport of energy in the + 1030:
Only the positive square root is taken as the energy is going in the +
5677:
Hart, William S; Bak, Alexey O; Phillips, Chris C (7 February 2018).
4513:
Z. Jacob, L.V. Alekseyev, E. Narimanov, Opt. Express 14, 8247 (2006)
3486: 3434: 3395: 3195: 2961: 2677: 2266: 2257: 2103: 2026:(1200–1400 THz) hyperlens can be created using alternating layers of 1595: 1519: 1175: 637: 623: 567: 391: 351: 286: 155: 116: 6409: 6393: 6290: 3851: 3832: 3132: 3105: 1137:{\displaystyle k_{x}^{2}+k_{y}^{2}>{\frac {\omega ^{2}}{c^{2}}},} 365:
Thus, when an object emits or reflects light there are two types of
6398:
Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
5008: 4944: 2152: 2095:
magnify arbitrary objects with sub-diffraction-limited resolution.
2031: 1700: 1629: 1547: 176: 6617: 6504: 6103: 5987: 5820: 5662: 3313: 3311: 3309: 3054: 2006:
Focusing beyond the diffraction limit with far-field time reversal
6568:
Now you see it, now you don't: cloaking device is not just sci-fi
4496:
W. Cai, D.A. Genov, V.M. Shalaev, Phys. Rev. B 72, 193101 (2005)
3727:
Podolskiy, V.A.; Narimanov, EE (2005). "Near-sighted superlens".
2080: 2076: 2075:
In 2007, just such an anisotropic metamaterial was employed as a
1681: 1677: 1439:, as evanescent waves carry none in the direction of growth: the 483: 448: 404:
that surpass the limitations imposed by the wavelength of light.
343: 253: 6465:– "The Perfect Lens: Resolution Beyond the Limits of Wavelength' 4292: 537:
fabrication techniques were presented. These proposals included
514:) are able to reconstruct nanometer sized images by producing a 224:
has a range that extends from 390 nanometers to 750 nanometers.
47:. The diffraction limit is a feature of conventional lenses and 6291:
Jung, J. and; L. Martín-Moreno; F J García-Vidal (2009-12-09).
5655: 5336: 4519:
B. Wood, J.B. Pendry, D.P. Tsai, Phys. Rev. B 74, 115116 (2006)
3306: 2129: 1546:
The superlens has not yet been demonstrated at visible or near-
1468:
of two materials, the wave appears on the opposite side of the
492: 347: 6031: 3787: 285:
limits the object, or cell's, resolution to approximately 200
4784: 4240: 4132: 2231: 2199: 2142: 1845: 1633:
nondispersive and the constituent parameters are defined as:
1568: 1174:
becomes imaginary, and the wave is an evanescent wave, whose
379: 355: 257: 225: 217: 73: 5113: 4502:
L. Shi, L. Gao, S. He, B. Li, Phys. Rev. B 76, 045116 (2007)
3584: 3582: 3580: 3578: 3576: 3574: 3572: 1623: 4715: 2047: 1962: 1669: 1645:=−1, which in turn results in a negative refraction of n=−1 488: 387: 126:
In the early 20th century the term "superlens" was used by
112: 5489: 4580: 4578: 4576: 4574: 4243:"Thin film Ag superlens towards lab-on-a-chip integration" 3455: 1446: 435:
For example, in 2007 a technique was demonstrated where a
358:
used in a digital video system cannot read details from a
5870:
Huang, Bo; Wang, W.; Bates, M.; Zhuang, X. (2008-02-08).
5165: 5163: 5161: 3569: 3449: 2098:
Although this work appears to be limited by being only a
1739: 550: 452: 359: 326: 306: 6209: 6207: 4929: 3893:"Super-resolution imaging through a planar silver layer" 2819:"Introduction to special issue – Lights, Camera, Action" 2718:"Creating a 'Perfect' Lens for Super-Resolution Imaging" 1594:
slab, normally decaying evanescent waves are contrarily
626:. In theory, a perfect lens would be capable of perfect 5603: 5542: 5207:"Rapid growth of evanescent wave by a silver superlens" 5109: 5107: 5105: 5103: 5101: 5099: 4993: 4656: 4654: 4652: 4650: 4648: 4571: 3990: 3317: 2546: 2174:. The debate over the perfect lens is discussed first. 1795:
Like a conventional lens, the z-direction is along the
1431:
For large angular frequencies, the evanescent wave now
459:
domain, it could be used to improve the first steps of
6391: 6142: 6140: 6138: 5158: 3588: 3037: 2275: 1286:{\displaystyle \Delta x_{\text{min}}\approx \lambda .} 321: 6204: 6032:
Schurig, D.; J. B. Pendry; D. R. Smith (2007-10-24).
5434: 5200: 5198: 2981: 2979: 1321: 1260: 1196: 1153: 1070: 1040: 926: 883: 856: 664: 6334:"Transporting an Image through a Subwavelength Hole" 6332:
Silveirinha, Mário G.; Engheta, Nader (2009-03-13).
5869: 5604:
Salandrino, Alessandro; Nader Engheta (2006-08-16).
5392: 5255: 5096: 4660: 4645: 3367: 3365: 2041:
multilayer, which offered drastically lower losses.
608: 6245: 6146: 6135: 4533: 3103: 2993:. Research Laboratory of Electronics. 13 March 2007 2570: 2568: 2566: 2564: 2562: 2560: 2558: 2556: 2470:
Metamaterials: Physics and Engineering Explorations
2202:screen, were able to focus the optical energy of a 2162:
Cylindrical superlens via coordinate transformation
248:, have been unable to accurately image very small, 6331: 5863: 5483: 5249: 5195: 4863: 4516:P.A. Belov, Y. Hao, Phys. Rev. B 73, 113110 (2006) 4076: 3726: 3004: 2976: 2812: 2810: 2267:Transporting an image through a subwavelength hole 2258:Light transmission properties of holey metal films 1768:materials, would be a more effective design for a 1711:than the demonstrated negative refractive sample. 1420: 1285: 1243: 1166: 1136: 1053: 1019: 909: 869: 839: 638:The diffraction limit as restriction on resolution 330:(digital versatile disc). A laser is employed for 6219:prototype super-resolution metamaterial nanonlens 5440: 5292: 5062:Zhang, Xu; Adams, Wyatt; Guney, Durdu O. (2017). 4780: 4778: 3362: 3277: 3200:"Adapted from "The History of Near-field Optics"" 2987:"Prof. Sir John Pendry, Imperial College, London" 2776: 2648: 2184: 1838:, are decoupled from the longitudinal component k 541:to create a pattern in relief, photolithography, 6644: 6325: 4584: 4452: 4408: 3371: 3106:"Imaging by Flat Lens using Negative Refraction" 2553: 2153:Super resolution far-field microscopy techniques 630:– meaning that it could perfectly reproduce the 267:The limitations of standard optical microscopy ( 232:, distance from the object to the lens, and the 5920: 5676: 5597: 5298: 5204: 5061: 4189: 3939: 3886: 3522: 3518: 3516: 3157: 3155: 3153: 3151: 2807: 2772: 2770: 2768: 2766: 2764: 2762: 2651:"Superlenses to overcome the diffraction limit" 1676:Another analysis, in 2002, of the perfect lens 1538:coupling. Almost at the same time Melville and 1479: 342:is pervasive throughout our society and in the 179:. Furthermore, the level of feature detail, or 6387: 6385: 6383: 6381: 6379: 6377: 6375: 6241: 6239: 6221:. Nanotechwire.com. 2010-01-18. Archived from 5816: 5814: 5742: 5738: 5736: 5734: 5732: 5730: 5728: 5726: 5724: 5386: 4775: 3882: 3880: 3878: 3876: 3874: 3872: 3870: 3642: 3514: 3512: 3510: 3508: 3506: 3504: 3502: 3500: 3498: 3496: 2547:National Institute of Standards and Technology 2118: 1784:=0. The effective refractive indices are then 502: 275:The technique can only image dark or strongly 6477:Superlenses to overcome the diffraction limit 6025: 4345: 4041: 3720: 3232:Philosophical Magazine and Journal of Science 1983: 373:. These are the near field radiation and the 92:in their natural environments. Additionally, 6088: 5393:Durant, Stéphane; et al. (2005-12-02). 4286: 4128: 4126: 3148: 2914: 2759: 2130:Super-imaging in the visible frequency range 6554:Materials with negative index of refraction 6372: 6236: 5811: 5721: 3867: 3824: 3493: 3256: 3229: 2189: 1182:axis. This results in the loss of the high- 467:, essential for manufacturing ever smaller 292:Out-of-focus light from points outside the 212:One definition of being constrained by the 6596:Simple 'superlens' sharpens focusing power 6034:"Transformation-designed optical elements" 4183: 3672:"Negative refraction makes a perfect lens" 3663: 3099: 3097: 2816: 2577:"Negative Refraction Makes a Perfect Lens" 1929: 1846:Optical superlens with silver metamaterial 643:the object can be written in terms of its 6563:" by V.A. Podolskiy and Nicholas A. Kuhta 6316: 6275: 6102: 6057: 5981: 5958: 5903: 5846: 5771: 5712: 5702: 5661: 5640: 5556: 5536: 5466: 5141: 5114:Wiltshire, M. c. k.; et al. (2003). 5087: 5007: 4943: 4887: 4807: 4674: 4369: 4269: 4123: 3933: 3916: 3850: 3781: 3740: 3695: 3635: 3131: 3053: 2933: 2836: 2711: 2709: 1624:Other studies concerning the perfect lens 1464:Normally, when a wave passes through the 6284: 5441:Liu, Zhaowei; et al. (2007-05-22). 4859: 4857: 3830: 3375:Journal of Vacuum Science and Technology 3164:"Superlenses and Smaller Computer Chips" 2927: 2102:hyperlens, the next step is to design a 2048:Sub-diffraction imaging in the far field 1743: 1511:to be able to improve the resolution of 1450: 1178:decays as the wave propagates along the 634:of the source plane at the image plane. 411: 407: 346:. It is one of the fundamental tools of 320: 305:the different structures with selective 166: 137: 3318:Srituravanich, W.; et al. (2004). 3194: 3188: 3094: 2715: 2642: 1447:Effects of negative index of refraction 522:. As far back as 1928, Irish physicist 14: 6645: 6623: 5926: 5337:Greegor RB, et al. (2005-08-25). 5330: 4754: 4585:Ziolkowski, R. W.; Heyman, E. (2001). 3669: 3647:. Institute of Physics. Archived from 3408: 3250: 3223: 3161: 3010: 2851: 2706: 2574: 2125:Near-field scanning optical microscope 1992: 1972:, is defined here as superresolution. 1799:of the roll. The resonant frequency (w 1740:Near-field imaging with magnetic wires 1660:has a large negative index or becomes 528:near-field scanning optical microscopy 394:units. The new material class, termed 216:, is a resolution cut off at half the 5057: 5055: 5045: 5043: 4989: 4987: 4925: 4923: 4854: 3283: 3170:Massachusetts Institute of Technology 2250:substrate was fabricated and tested. 1748:A prism composed of high performance 1526:superlens was demonstrated by N.Fang 386:, which derive their properties from 107:Conventional lenses capture only the 6470:Surface plasmon subwavelength optics 6147:Huang FM, et al. (2008-06-24). 5169: 4757:"Collection of photonics references" 4721: 2316: 2022:In May 2012, calculations showed an 316: 2649:Zhang, Xiang; Liu, Zhaowei (2008). 2276:Nanoparticle imaging – quantum dots 24: 6582:Negative-index materials made easy 6512:Superlens microscope gets up close 5991:Proceedings of the Royal Society A 5743:Liu, Z; et al. (2007-03-27). 5052: 5040: 4984: 4920: 4755:Pendry, J. B. (18 February 2005). 1261: 455:move in and out of cells. In the 162: 146:is a conventional optical system. 25: 6679: 6428: 4785:Smith, D.R.; et al. (2003). 2194:Work in 2007 demonstrated that a 1562: 609:Analysis of the diffraction limit 6540:Superlens breaks optical barrier 6463:Professor Sir John Pendry at MIT 3645:"Breaking the diffraction limit" 3456:Schmid, H.; et al. (1998). 3104:Parimi, P.; et al. (2003). 2716:Aguirre, Edwin L. (2012-09-18). 2541: This article incorporates 2536: 1522:frequencies. In 2005, the first 6609:" by Stefan W. Hell. Vol. 316. 6082: 5670: 5649: 4748: 4527: 4507: 4490: 4446: 4402: 4339: 4234: 4070: 4035: 3984: 3643:David R. Smith (May 10, 2004). 3402: 3031: 2852:Pendry, John (September 2004). 1530:, but the lens did not rely on 553:bombardment, on an appropriate 6500:" Overview of superlens theory 6358:10.1103/PhysRevLett.102.103902 6318:10.1088/1367-2630/11/12/123013 4962:10.1103/physrevlett.115.035502 3409:Guerra, John M. (1995-06-26). 3168:Technology Review magazine of 2908: 2874: 2845: 2185:Nano-optics with metamaterials 757: 731: 692: 668: 252:structures or nanometer-sized 68:has inhibited progress in the 13: 1: 6491:Breaking the diffracion limit 5278:10.1103/PhysRevLett.92.077401 5205:Liu, Z.; et al. (2003). 4101:10.1103/PhysRevLett.92.117403 4013:10.1103/PhysRevLett.91.157404 3613:10.1103/PhysRevLett.88.207403 3013:"Cornering The Terahertz Gap" 2854:"Manipulating the Near Field" 2838:10.1126/science.316.5828.1143 2531: 1605:, the lens could be used for 185:length of a wave of radiation 6624:Andrei, Mihai (2018-01-04). 5932:"Perfect cylindrical lenses" 3833:"Metamaterials: Ideal focus" 3818:10.1016/j.optcom.2006.02.013 3162:Bullis, Kevin (2007-03-27). 3011:Yeager, A. (28 March 2009). 2817:Vinson, V; Chin, G. (2007). 2513:Sergei Tretyakov (scientist) 2348:Negative index metamaterials 2014: 1826:Furthermore, this is highly 1480:Development and construction 7: 6607:Far-Field Optical Nanoscopy 6436:The Quest for the Superlens 3697:10.1103/PhysRevLett.85.3966 3320:"Plasmonic Nanolithography" 2902:10.1080/0950034021000020824 2861:Optics & Photonics News 2606:10.1103/PhysRevLett.85.3966 2311: 2241: 2119:Plasmon-assisted microscopy 910:{\displaystyle k_{x},k_{y}} 520:super-resolution microscopy 503:Early subwavelength imaging 154:that is a little above 200 10: 6684: 6149:"Nanohole Array as a Lens" 6121:10.1103/PhysRevB.77.035122 5633:10.1103/PhysRevB.74.075103 4722:Dumé, B. (21 April 2005). 4616:10.1103/PhysRevE.64.056625 4064:10.1103/PhysRevB.71.193105 2122: 1984:Negative index GRIN lenses 1957:using illumination from a 1933: 578:650 nm wavelength in air. 533:In 1974 proposals for two- 55: 6505:Flat Superlens Simulation 5324:10.1088/1464-4258/7/2/023 5170:Dumé, B. (4 April 2005). 4162:10.1007/s00340-010-4065-z 3271:10.1080/14786443209461931 3244:10.1080/14786440808564615 2198:array of nanoholes, in a 543:electron-beam lithography 516:negative refractive index 367:electromagnetic radiation 195:Electron beam lithography 177:electromagnetic radiation 133: 5172:"Superlens breakthrough" 5026:10.1088/1367-2630/aa4f9e 4724:"Superlens breakthrough" 2890:Journal of Modern Optics 2883:"Imaging the Near Field" 2801:10.1038/nphoton.2009.111 2722:Journal of Nanophotonics 2482:Metamaterials scientists 2328:History of metamaterials 2238:circuits, and so forth. 2227:high numerical apertures 2190:Nanohole array as a lens 1871:transmission coefficient 1724:subwavelength resolution 1720:metamaterial periodicity 6668:21st century in science 6338:Physical Review Letters 6248:Applied Physics Letters 5896:10.1126/science.1153529 5782:10.1126/science.1137368 5514:10.1126/science.1134824 5422:10.1364/JOSAB.23.002383 5346:Applied Physics Letters 5215:Applied Physics Letters 5089:10.1364/josab.34.001310 4932:Physical Review Letters 4898:10.1126/science.1058847 4795:Applied Physics Letters 4693:10.1126/science.1138746 4380:10.1126/science.1157566 4212:10.1126/science.1108759 4080:Physical Review Letters 3993:Physical Review Letters 3962:10.1126/science.1108759 3592:Physical Review Letters 3547:10.1126/science.1108759 3466:Applied Physics Letters 3415:Applied Physics Letters 3287:Proceedings of the IEEE 3205:. In Wolf, Emil (ed.). 2585:Physical Review Letters 2436:Metamaterials (journal) 2390:Terahertz metamaterials 2368:Plasmonic metamaterials 2353:Nonlinear metamaterials 1930:50-nm flat silver layer 1312:to have opposite sign: 1304:direction requires the 645:angular spectrum method 524:Edward Hutchinson Synge 269:bright-field microscopy 6526:Superlens breakthrough 6297:New Journal of Physics 6011:10.1098/rspa.2005.1570 5807:on September 20, 2009. 4996:New Journal of Physics 3918:10.1364/OPEX.13.002127 3670:Pendry, J. B. (2000). 3300:10.1109/PROC.1974.9627 2934:Lauterbur, P. (1973). 2575:Pendry, J. B. (2000). 2543:public domain material 2463:Metamaterials Handbook 2363:Photonic metamaterials 2323:Acoustic metamaterials 1753: 1461: 1437:conservation of energy 1422: 1287: 1245: 1168: 1138: 1055: 1021: 911: 871: 841: 417: 335: 296:reduces image clarity. 271:) lie in three areas: 172: 159: 6458:Subwavelength imaging 5827:Nature Communications 4179:on September 8, 2014. 2518:Richard W. Ziolkowski 2405:Tunable metamaterials 2400:Transformation optics 2373:Seismic metamaterials 2343:Metamaterial cloaking 2338:Metamaterial antennas 2333:Metamaterial absorber 2123:Further information: 1961:. Using simulations ( 1934:Further information: 1758:magnetic permeability 1747: 1688:, which is linked to 1504:) bicrystal in 2003. 1498:yttrium orthovanadate 1454: 1423: 1288: 1246: 1169: 1167:{\displaystyle k_{z}} 1139: 1056: 1054:{\displaystyle k_{z}} 1022: 912: 872: 870:{\displaystyle k_{z}} 842: 632:electromagnetic field 426:subwavelength imaging 415: 408:Subwavelength imaging 369:associated with this 324: 256:, such as individual 170: 141: 96:and the interrelated 6059:10.1364/OE.15.014772 5960:10.1364/OE.11.000755 5575:10.1364/OE.14.008247 5468:10.1364/OE.15.006947 5143:10.1364/OE.11.000709 4557:10.1364/OL.37.004317 4476:10.1364/OL.33.002568 4432:10.1364/OL.33.002562 4271:10.1364/OE.17.022543 3831:Brumfiel, G (2009). 3759:10.1364/OL.30.000075 3651:on February 28, 2009 3072:10.1364/OE.17.019848 2395:Theories of cloaking 2385:Split-ring resonator 2064:metamaterial with a 1707:, permeability, and 1486:left-handed material 1319: 1258: 1194: 1151: 1068: 1038: 924: 881: 854: 662: 478:has become a unique 187:. For example, with 144:binocular microscope 72:. This is because a 6556:" by V.A. Podolskiy 6448:Scientific American 6350:2009PhRvL.102j3902S 6309:2009NJPh...11l3013J 6260:2010ApPhL..96b3114C 6168:2008NanoL...8.2469H 6113:2008PhRvB..77c5122T 6050:2007OExpr..1514772S 6003:2005RSPSA.461.3999M 5951:2003OExpr..11..755P 5888:2008Sci...319..810H 5839:2010NatCo...1..143R 5764:2007Sci...315.1686L 5695:2018AIPA....8b5203H 5625:2006PhRvB..74g5103S 5567:2006OExpr..14.8247J 5506:2007Sci...315.1120L 5500:(5815): 1120–1122. 5459:2007OExpr..15.6947L 5414:2006JOSAB..23.2383D 5358:2005ApPhL..87i1114G 5316:2005JOptA...7S.176B 5270:2004PhRvL..92g7401L 5228:2003ApPhL..83.5184L 5134:2003OExpr..11..709W 5080:2017JOSAB..34.1310Z 5018:2016NJPh...18l5004A 4954:2015PhRvL.115c5502S 4880:2001Sci...292...77S 4818:2003ApPhL..82.1506S 4685:2007Sci...315.1699S 4669:(5819): 1699–1701. 4608:2001PhRvE..64e6625Z 4549:2012OptL...37.4317S 4468:2008OptL...33.2568L 4424:2008OptL...33.2562S 4362:2008Sci...321..930Y 4317:10.1038/nature07247 4309:2008Natur.455..376V 4262:2009OExpr..1722543J 4204:2005Sci...308..534F 4177:(Free PDF download) 4154:2010ApPhB.100...93N 4093:2004PhRvL..92k7403G 4056:2005PhRvB..71s3105B 4005:2003PhRvL..91o7404Z 3954:2005Sci...308..534F 3909:2005OExpr..13.2127M 3810:2006OptCo.264..130T 3751:2005OptL...30...75P 3688:2000PhRvL..85.3966P 3605:2002PhRvL..88t7403G 3539:2005Sci...308..534F 3479:1998ApPhL..72.2379S 3427:1995ApPhL..66.3555G 3388:1981JVST...19..881F 3341:2004NanoL...4.1085S 3124:2003Natur.426..404P 3064:2009OExpr..1719848S 3048:(22): 19848–19856. 2954:1973Natur.242..190L 2793:2009NaPho...3..388K 2734:2010JNano...4d3514K 2693:(Free PDF download) 2670:2008NatMa...7..435Z 2598:2000PhRvL..85.3966P 2449:Metamaterials books 2208:incident plane wave 1993:Far-field superlens 1940:Fresnel diffraction 1899:electron microscopy 1895:index of refraction 1709:spatial periodicity 1658:metamaterial medium 1588:decay exponentially 1532:negative refraction 1407: 1389: 1334: 1103: 1085: 1006: 988: 588:Imprint lithography 508:Metamaterial lenses 437:metamaterials-based 430:transmission medium 424:, and the need for 422:natural environment 218:wavelength of light 70:biological sciences 6587:2010-01-17 at the 6545:2012-01-13 at the 6531:2012-01-19 at the 6517:2012-01-19 at the 6496:2009-02-28 at the 6482:2011-07-20 at the 5848:10.1038/ncomms1148 5402:J. Opt. Soc. Am. B 5304:J. Opt. Soc. Am. A 5300:Blaikie, Richard J 5068:J. Opt. Soc. Am. B 4736:on 19 January 2012 3358:on April 15, 2010. 3207:Progress in Optics 2172:quasistatic regime 2055:spatial resolution 1828:anisotropic system 1754: 1462: 1418: 1393: 1375: 1322: 1283: 1241: 1164: 1134: 1089: 1071: 1051: 1017: 992: 974: 907: 867: 837: 727: 601:In the year 2000, 445:cellular processes 418: 336: 277:refracting objects 214:resolution barrier 197:can overcome this 189:optical microscopy 183:, is limited to a 173: 160: 148:Spatial resolution 6450:. July 2006. PDF 6268:10.1063/1.3291677 6176:10.1021/nl801476v 6091:Physical Review B 5882:(5864): 810–813. 5704:10.1063/1.5013084 5551:(18): 8247–8256. 5453:(11): 6947–6954. 5408:(11): 2383–2392. 5366:10.1063/1.2037202 5245:on June 24, 2010. 5236:10.1063/1.1636250 4826:10.1063/1.1554779 4802:(10): 1506–1508. 4641:on July 17, 2010. 4595:Physical Review E 4303:(7211): 376–379. 4198:(5721): 534–537. 4142:Applied Physics B 4044:Physical Review B 3948:(5721): 534–537. 3887:Melville, David; 3845:(7246): 504–505. 3682:(18): 3966–3969. 3533:(5721): 534–537. 3421:(26): 3555–3557. 3349:10.1021/nl049573q 3294:(10): 1361–1387. 3216:978-0-444-53023-3 3198:(November 2007). 2948:(5394): 190–191. 2742:10.1117/1.3484153 2592:(18): 3966–3969. 2528: 2527: 2423:Academic journals 1970:far-field imaging 1945:was used for sub- 1911:magnetic coupling 1770:metamaterial lens 1614:impedance matched 1413: 1365: 1308:component of the 1271: 1236: 1218: 1204: 1184:angular-frequency 1129: 1012: 964: 877:is a function of 698: 595:diffraction limit 563:optically resolve 547:X-ray lithography 497:photonic crystals 402:details of images 338:The conventional 317:Conventional lens 254:organisms in vivo 152:diffraction limit 150:is confined by a 102:optical equipment 84:moving alongside 82:cellular proteins 45:diffraction limit 43:to go beyond the 16:(Redirected from 6675: 6639: 6637: 6636: 6602:, 24 April 2008) 6452:Imperial College 6422: 6421: 6389: 6370: 6369: 6329: 6323: 6322: 6320: 6288: 6282: 6281: 6279: 6243: 6234: 6233: 6231: 6230: 6211: 6202: 6201: 6199: 6198: 6192: 6186:. Archived from 6162:(8): 2469–2472. 6153: 6144: 6133: 6132: 6106: 6086: 6080: 6079: 6061: 6044:(22): 14772–82. 6029: 6023: 6022: 5985: 5979: 5978: 5976: 5975: 5962: 5936: 5924: 5918: 5917: 5907: 5867: 5861: 5860: 5850: 5818: 5809: 5808: 5806: 5800:. Archived from 5775: 5749: 5740: 5719: 5718: 5716: 5706: 5674: 5668: 5667: 5665: 5653: 5647: 5646: 5644: 5610: 5601: 5595: 5594: 5560: 5540: 5534: 5533: 5487: 5481: 5480: 5470: 5438: 5432: 5431: 5429: 5428: 5399: 5390: 5384: 5383: 5381: 5380: 5375:on June 18, 2010 5374: 5368:. Archived from 5343: 5334: 5328: 5327: 5310:(2): S176–S183. 5296: 5290: 5289: 5253: 5247: 5246: 5244: 5238:. Archived from 5211: 5202: 5193: 5192: 5190: 5189: 5180:. Archived from 5167: 5156: 5155: 5145: 5111: 5094: 5093: 5091: 5059: 5050: 5047: 5038: 5037: 5011: 4991: 4982: 4981: 4947: 4927: 4918: 4917: 4891: 4861: 4852: 4851: 4849: 4848: 4842: 4836:. Archived from 4811: 4809:cond-mat/0206568 4791: 4782: 4773: 4772: 4770: 4768: 4759:. Archived from 4752: 4746: 4745: 4743: 4741: 4732:. Archived from 4719: 4713: 4712: 4678: 4658: 4643: 4642: 4640: 4634:. Archived from 4591: 4582: 4569: 4568: 4531: 4525: 4511: 4505: 4494: 4488: 4487: 4450: 4444: 4443: 4406: 4400: 4399: 4373: 4343: 4337: 4336: 4290: 4284: 4283: 4273: 4256:(25): 22543–52. 4247: 4238: 4232: 4231: 4187: 4181: 4180: 4178: 4172:. Archived from 4139: 4130: 4121: 4120: 4074: 4068: 4067: 4039: 4033: 4032: 3988: 3982: 3981: 3937: 3931: 3930: 3920: 3903:(6): 2127–2134. 3889:Blaikie, Richard 3884: 3865: 3864: 3854: 3828: 3822: 3821: 3790:Veretennicoff, I 3785: 3779: 3778: 3744: 3724: 3718: 3717: 3699: 3667: 3661: 3660: 3658: 3656: 3639: 3633: 3632: 3586: 3567: 3566: 3520: 3491: 3490: 3487:10.1063/1.121362 3462: 3453: 3447: 3446: 3435:10.1063/1.113814 3406: 3400: 3399: 3396:10.1116/1.571227 3369: 3360: 3359: 3357: 3351:. Archived from 3335:(6): 1085–1088. 3324: 3315: 3304: 3303: 3281: 3275: 3274: 3254: 3248: 3247: 3227: 3221: 3220: 3204: 3192: 3186: 3185: 3183: 3182: 3173:. Archived from 3159: 3146: 3145: 3135: 3101: 3092: 3091: 3057: 3035: 3029: 3028: 3026: 3025: 3008: 3002: 3001: 2999: 2998: 2991:Colloquia Series 2983: 2974: 2973: 2962:10.1038/242190a0 2931: 2925: 2924: 2923: 2919: 2912: 2906: 2905: 2896:(9): 1419–1430. 2887: 2878: 2872: 2871: 2869: 2863:. Archived from 2858: 2849: 2843: 2842: 2840: 2814: 2805: 2804: 2780:Nature Photonics 2774: 2757: 2756: 2754: 2753: 2744:. Archived from 2713: 2704: 2703: 2701: 2700: 2694: 2688:. Archived from 2678:10.1038/nmat2141 2658:Nature Materials 2655: 2646: 2640: 2639: 2637: 2636: 2630: 2624:. Archived from 2581: 2572: 2540: 2539: 2503:Vladimir Shalaev 2358:Photonic crystal 2317: 1792:, respectively. 1670:FDTD simulations 1603:plasma frequency 1592:metamaterial DNG 1427: 1425: 1424: 1419: 1414: 1412: 1408: 1406: 1401: 1388: 1383: 1366: 1364: 1363: 1354: 1353: 1344: 1342: 1330: 1292: 1290: 1289: 1284: 1273: 1272: 1269: 1250: 1248: 1247: 1242: 1237: 1232: 1224: 1219: 1211: 1206: 1205: 1202: 1173: 1171: 1170: 1165: 1163: 1162: 1143: 1141: 1140: 1135: 1130: 1128: 1127: 1118: 1117: 1108: 1102: 1097: 1084: 1079: 1060: 1058: 1057: 1052: 1050: 1049: 1026: 1024: 1023: 1018: 1013: 1011: 1007: 1005: 1000: 987: 982: 965: 963: 962: 953: 952: 943: 941: 936: 935: 916: 914: 913: 908: 906: 905: 893: 892: 876: 874: 873: 868: 866: 865: 846: 844: 843: 838: 833: 832: 831: 827: 814: 813: 798: 797: 782: 781: 756: 755: 743: 742: 726: 725: 724: 712: 711: 461:photolithography 242:evanescent waves 234:refractive index 222:visible spectrum 207:new technologies 199:resolution limit 181:image resolution 98:microelectronics 21: 6683: 6682: 6678: 6677: 6676: 6674: 6673: 6672: 6663:2000 in science 6643: 6642: 6634: 6632: 6589:Wayback Machine 6547:Wayback Machine 6533:Wayback Machine 6519:Wayback Machine 6498:Wayback Machine 6484:Wayback Machine 6431: 6426: 6425: 6410:10.1002/wnan.62 6390: 6373: 6330: 6326: 6289: 6285: 6244: 6237: 6228: 6226: 6213: 6212: 6205: 6196: 6194: 6190: 6151: 6145: 6136: 6087: 6083: 6030: 6026: 5997:(2064): 3999 . 5986: 5982: 5973: 5971: 5934: 5925: 5921: 5868: 5864: 5819: 5812: 5804: 5773:10.1.1.708.3342 5747: 5741: 5722: 5675: 5671: 5654: 5650: 5608: 5602: 5598: 5558:physics/0607277 5541: 5537: 5488: 5484: 5439: 5435: 5426: 5424: 5397: 5391: 5387: 5378: 5376: 5372: 5341: 5335: 5331: 5297: 5293: 5258:Phys. Rev. Lett 5254: 5250: 5242: 5209: 5203: 5196: 5187: 5185: 5168: 5159: 5112: 5097: 5060: 5053: 5048: 5041: 4992: 4985: 4928: 4921: 4889:10.1.1.119.1617 4862: 4855: 4846: 4844: 4840: 4789: 4783: 4776: 4766: 4764: 4763:on 3 March 2016 4753: 4749: 4739: 4737: 4720: 4716: 4676:physics/0610230 4659: 4646: 4638: 4589: 4583: 4572: 4532: 4528: 4512: 4508: 4495: 4491: 4462:(21): 2568–70. 4451: 4447: 4407: 4403: 4371:10.1.1.716.4426 4344: 4340: 4291: 4287: 4245: 4239: 4235: 4188: 4184: 4176: 4137: 4131: 4124: 4075: 4071: 4040: 4036: 3989: 3985: 3938: 3934: 3885: 3868: 3852:10.1038/459504a 3829: 3825: 3786: 3782: 3742:physics/0403139 3725: 3721: 3676:Phys. Rev. Lett 3668: 3664: 3654: 3652: 3640: 3636: 3587: 3570: 3521: 3494: 3460: 3454: 3450: 3407: 3403: 3370: 3363: 3355: 3322: 3316: 3307: 3282: 3278: 3255: 3251: 3238:(35): 356–362. 3228: 3224: 3217: 3202: 3193: 3189: 3180: 3178: 3160: 3149: 3133:10.1038/426404a 3102: 3095: 3036: 3032: 3023: 3021: 3009: 3005: 2996: 2994: 2985: 2984: 2977: 2932: 2928: 2921: 2913: 2909: 2885: 2879: 2875: 2867: 2856: 2850: 2846: 2815: 2808: 2775: 2760: 2751: 2749: 2714: 2707: 2698: 2696: 2692: 2653: 2647: 2643: 2634: 2632: 2628: 2579: 2573: 2554: 2537: 2534: 2529: 2476: 2378: 2314: 2278: 2269: 2260: 2244: 2192: 2187: 2164: 2155: 2132: 2127: 2121: 2050: 2039:indium arsenide 2017: 2008: 1995: 1986: 1942: 1932: 1893:increasing the 1848: 1841: 1837: 1833: 1821:magnetic fields 1802: 1783: 1779: 1742: 1729:superconducting 1644: 1640: 1626: 1607:superresolution 1565: 1536:surface plasmon 1503: 1482: 1449: 1441:Poynting vector 1402: 1397: 1384: 1379: 1374: 1370: 1359: 1355: 1349: 1345: 1343: 1341: 1326: 1320: 1317: 1316: 1268: 1264: 1259: 1256: 1255: 1225: 1223: 1210: 1201: 1197: 1195: 1192: 1191: 1158: 1154: 1152: 1149: 1148: 1123: 1119: 1113: 1109: 1107: 1098: 1093: 1080: 1075: 1069: 1066: 1065: 1045: 1041: 1039: 1036: 1035: 1001: 996: 983: 978: 973: 969: 958: 954: 948: 944: 942: 940: 931: 927: 925: 922: 921: 901: 897: 888: 884: 882: 879: 878: 861: 857: 855: 852: 851: 809: 805: 793: 789: 777: 773: 772: 768: 764: 760: 751: 747: 738: 734: 720: 716: 707: 703: 702: 663: 660: 659: 640: 611: 539:contact imaging 505: 465:nanolithography 410: 319: 250:nanometer-sized 165: 163:Image formation 136: 58: 23: 22: 15: 12: 11: 5: 6681: 6671: 6670: 6665: 6660: 6655: 6641: 6640: 6621: 6620:", 22 May 2012 6614: 6603: 6592: 6578: 6571: 6564: 6557: 6550: 6536: 6522: 6508: 6501: 6487: 6473: 6466: 6460: 6455: 6444:David R. Smith 6440:John B. Pendry 6430: 6429:External links 6427: 6424: 6423: 6371: 6344:(10): 103902. 6324: 6303:(12): 123013. 6283: 6277:2047/d20002681 6235: 6203: 6134: 6081: 6038:Optics Express 6024: 5980: 5939:Optics Express 5930:(2003-04-07). 5919: 5862: 5810: 5758:(5819): 1686. 5720: 5669: 5648: 5596: 5545:Optics Express 5535: 5482: 5447:Optics Express 5433: 5385: 5329: 5291: 5264:(7): 077401 . 5248: 5194: 5157: 5128:(7): 709–715. 5121:Optics Express 5095: 5051: 5039: 5002:(12): 125004. 4983: 4919: 4874:(5514): 77–9. 4853: 4774: 4747: 4714: 4644: 4570: 4543:(20): 4317–9. 4526: 4524: 4523: 4520: 4517: 4506: 4504: 4503: 4500: 4489: 4445: 4418:(21): 2562–4. 4401: 4338: 4285: 4250:Optics Express 4233: 4182: 4122: 4087:(11): 117403. 4069: 4050:(19): 193105. 4034: 3999:(15): 157404. 3983: 3932: 3897:Optics Express 3891:(2005-03-21). 3866: 3823: 3804:(1): 130–134. 3794:Vandersande, G 3780: 3719: 3662: 3634: 3599:(20): 207403. 3568: 3492: 3448: 3401: 3361: 3305: 3276: 3249: 3222: 3215: 3196:Novotny, Lukas 3187: 3147: 3093: 3041:Optics Express 3030: 3003: 2975: 2926: 2907: 2873: 2870:on 2008-02-21. 2844: 2831:(5828): 1143. 2806: 2787:(7): 388–394. 2758: 2705: 2664:(6): 435–441. 2641: 2551: 2550: 2533: 2530: 2526: 2525: 2521: 2520: 2515: 2510: 2508:David R. Smith 2505: 2500: 2495: 2490: 2478: 2474: 2473: 2466: 2458: 2457: 2456: 2455: 2454: 2453: 2452: 2451: 2439: 2438: 2432: 2431: 2430: 2429: 2428: 2427: 2426: 2425: 2413: 2412: 2410:Plasmonic lens 2407: 2402: 2397: 2392: 2387: 2380: 2376: 2375: 2370: 2365: 2360: 2355: 2350: 2345: 2340: 2335: 2330: 2325: 2315: 2313: 2310: 2277: 2274: 2268: 2265: 2259: 2256: 2243: 2240: 2196:quasi-periodic 2191: 2188: 2186: 2183: 2163: 2160: 2154: 2151: 2131: 2128: 2120: 2117: 2049: 2046: 2016: 2013: 2007: 2004: 1994: 1991: 1985: 1982: 1936:Fresnel number 1931: 1928: 1883:red blood cell 1859:excited states 1847: 1844: 1839: 1835: 1831: 1800: 1781: 1777: 1764:materials and 1741: 1738: 1647: 1646: 1642: 1638: 1625: 1622: 1590:. In the flat 1573:positive index 1564: 1563:Perfect lenses 1561: 1501: 1481: 1478: 1448: 1445: 1429: 1428: 1417: 1411: 1405: 1400: 1396: 1392: 1387: 1382: 1378: 1373: 1369: 1362: 1358: 1352: 1348: 1340: 1337: 1333: 1329: 1325: 1294: 1293: 1282: 1279: 1276: 1267: 1263: 1252: 1251: 1240: 1235: 1231: 1228: 1222: 1217: 1214: 1209: 1200: 1161: 1157: 1145: 1144: 1133: 1126: 1122: 1116: 1112: 1106: 1101: 1096: 1092: 1088: 1083: 1078: 1074: 1048: 1044: 1028: 1027: 1016: 1010: 1004: 999: 995: 991: 986: 981: 977: 972: 968: 961: 957: 951: 947: 939: 934: 930: 904: 900: 896: 891: 887: 864: 860: 848: 847: 836: 830: 826: 823: 820: 817: 812: 808: 804: 801: 796: 792: 788: 785: 780: 776: 771: 767: 763: 759: 754: 750: 746: 741: 737: 733: 730: 723: 719: 715: 710: 706: 701: 697: 694: 691: 688: 685: 682: 679: 676: 673: 670: 667: 639: 636: 610: 607: 583:experimentally 504: 501: 469:computer chips 447:, such as how 409: 406: 318: 315: 298: 297: 290: 280: 164: 161: 135: 132: 94:computer chips 57: 54: 9: 6: 4: 3: 2: 6680: 6669: 6666: 6664: 6661: 6659: 6658:Metamaterials 6656: 6654: 6651: 6650: 6648: 6631: 6627: 6622: 6619: 6615: 6613:. 25 May 2007 6612: 6608: 6604: 6601: 6600:New Scientist 6597: 6593: 6590: 6586: 6583: 6579: 6576: 6572: 6569: 6565: 6562: 6558: 6555: 6551: 6548: 6544: 6541: 6537: 6534: 6530: 6527: 6523: 6520: 6516: 6513: 6509: 6506: 6502: 6499: 6495: 6492: 6488: 6485: 6481: 6478: 6474: 6471: 6467: 6464: 6461: 6459: 6456: 6453: 6449: 6445: 6441: 6437: 6433: 6432: 6419: 6415: 6411: 6407: 6403: 6399: 6395: 6388: 6386: 6384: 6382: 6380: 6378: 6376: 6367: 6363: 6359: 6355: 6351: 6347: 6343: 6339: 6335: 6328: 6319: 6314: 6310: 6306: 6302: 6298: 6294: 6287: 6278: 6273: 6269: 6265: 6261: 6257: 6254:(2): 023114. 6253: 6249: 6242: 6240: 6225:on 2016-03-04 6224: 6220: 6216: 6210: 6208: 6193:on 2012-03-01 6189: 6185: 6181: 6177: 6173: 6169: 6165: 6161: 6157: 6150: 6143: 6141: 6139: 6130: 6126: 6122: 6118: 6114: 6110: 6105: 6100: 6097:(3): 035122. 6096: 6092: 6085: 6077: 6073: 6069: 6065: 6060: 6055: 6051: 6047: 6043: 6039: 6035: 6028: 6020: 6016: 6012: 6008: 6004: 6000: 5996: 5992: 5984: 5970: 5966: 5961: 5956: 5952: 5948: 5945:(7): 755–60. 5944: 5940: 5933: 5929: 5923: 5915: 5911: 5906: 5901: 5897: 5893: 5889: 5885: 5881: 5877: 5873: 5866: 5858: 5854: 5849: 5844: 5840: 5836: 5832: 5828: 5824: 5817: 5815: 5803: 5799: 5795: 5791: 5787: 5783: 5779: 5774: 5769: 5765: 5761: 5757: 5753: 5746: 5739: 5737: 5735: 5733: 5731: 5729: 5727: 5725: 5715: 5714:10044/1/56578 5710: 5705: 5700: 5696: 5692: 5689:(2): 025203. 5688: 5684: 5680: 5673: 5664: 5659: 5652: 5643: 5638: 5634: 5630: 5626: 5622: 5619:(7): 075103. 5618: 5614: 5607: 5600: 5592: 5588: 5584: 5580: 5576: 5572: 5568: 5564: 5559: 5554: 5550: 5546: 5539: 5531: 5527: 5523: 5519: 5515: 5511: 5507: 5503: 5499: 5495: 5494: 5486: 5478: 5474: 5469: 5464: 5460: 5456: 5452: 5448: 5444: 5437: 5423: 5419: 5415: 5411: 5407: 5403: 5396: 5389: 5371: 5367: 5363: 5359: 5355: 5352:(9): 091114. 5351: 5347: 5340: 5333: 5325: 5321: 5317: 5313: 5309: 5305: 5301: 5295: 5287: 5283: 5279: 5275: 5271: 5267: 5263: 5259: 5252: 5241: 5237: 5233: 5229: 5225: 5221: 5217: 5216: 5208: 5201: 5199: 5184:on 2012-01-19 5183: 5179: 5178: 5177:Physics World 5173: 5166: 5164: 5162: 5153: 5149: 5144: 5139: 5135: 5131: 5127: 5123: 5122: 5117: 5110: 5108: 5106: 5104: 5102: 5100: 5090: 5085: 5081: 5077: 5073: 5069: 5065: 5058: 5056: 5046: 5044: 5035: 5031: 5027: 5023: 5019: 5015: 5010: 5005: 5001: 4997: 4990: 4988: 4979: 4975: 4971: 4967: 4963: 4959: 4955: 4951: 4946: 4941: 4938:(3): 035502. 4937: 4933: 4926: 4924: 4915: 4911: 4907: 4903: 4899: 4895: 4890: 4885: 4881: 4877: 4873: 4869: 4868: 4860: 4858: 4843:on 2016-03-03 4839: 4835: 4831: 4827: 4823: 4819: 4815: 4810: 4805: 4801: 4797: 4796: 4788: 4781: 4779: 4762: 4758: 4751: 4735: 4731: 4730: 4729:Physics World 4725: 4718: 4710: 4706: 4702: 4698: 4694: 4690: 4686: 4682: 4677: 4672: 4668: 4664: 4657: 4655: 4653: 4651: 4649: 4637: 4633: 4629: 4625: 4621: 4617: 4613: 4609: 4605: 4602:(5): 056625. 4601: 4597: 4596: 4588: 4581: 4579: 4577: 4575: 4566: 4562: 4558: 4554: 4550: 4546: 4542: 4539: 4538: 4530: 4521: 4518: 4515: 4514: 4510: 4501: 4498: 4497: 4493: 4485: 4481: 4477: 4473: 4469: 4465: 4461: 4458: 4457: 4449: 4441: 4437: 4433: 4429: 4425: 4421: 4417: 4414: 4413: 4405: 4397: 4393: 4389: 4385: 4381: 4377: 4372: 4367: 4363: 4359: 4356:(5891): 930. 4355: 4351: 4350: 4342: 4334: 4330: 4326: 4322: 4318: 4314: 4310: 4306: 4302: 4298: 4297: 4289: 4281: 4277: 4272: 4267: 4263: 4259: 4255: 4251: 4244: 4237: 4229: 4225: 4221: 4217: 4213: 4209: 4205: 4201: 4197: 4193: 4186: 4175: 4171: 4167: 4163: 4159: 4155: 4151: 4148:(1): 93–100. 4147: 4143: 4136: 4129: 4127: 4118: 4114: 4110: 4106: 4102: 4098: 4094: 4090: 4086: 4082: 4081: 4073: 4065: 4061: 4057: 4053: 4049: 4045: 4038: 4030: 4026: 4022: 4018: 4014: 4010: 4006: 4002: 3998: 3994: 3987: 3979: 3975: 3971: 3967: 3963: 3959: 3955: 3951: 3947: 3943: 3936: 3928: 3924: 3919: 3914: 3910: 3906: 3902: 3898: 3894: 3890: 3883: 3881: 3879: 3877: 3875: 3873: 3871: 3862: 3858: 3853: 3848: 3844: 3840: 3839: 3834: 3827: 3819: 3815: 3811: 3807: 3803: 3799: 3795: 3791: 3784: 3776: 3772: 3768: 3764: 3760: 3756: 3752: 3748: 3743: 3738: 3734: 3730: 3723: 3715: 3711: 3707: 3703: 3698: 3693: 3689: 3685: 3681: 3677: 3673: 3666: 3650: 3646: 3638: 3630: 3626: 3622: 3618: 3614: 3610: 3606: 3602: 3598: 3594: 3593: 3585: 3583: 3581: 3579: 3577: 3575: 3573: 3564: 3560: 3556: 3552: 3548: 3544: 3540: 3536: 3532: 3528: 3527: 3519: 3517: 3515: 3513: 3511: 3509: 3507: 3505: 3503: 3501: 3499: 3497: 3488: 3484: 3480: 3476: 3472: 3468: 3467: 3459: 3452: 3444: 3440: 3436: 3432: 3428: 3424: 3420: 3416: 3412: 3405: 3397: 3393: 3389: 3385: 3381: 3377: 3376: 3368: 3366: 3354: 3350: 3346: 3342: 3338: 3334: 3330: 3329: 3321: 3314: 3312: 3310: 3301: 3297: 3293: 3289: 3288: 3280: 3272: 3268: 3264: 3260: 3253: 3245: 3241: 3237: 3233: 3226: 3218: 3212: 3208: 3201: 3197: 3191: 3177:on 2011-06-07 3176: 3172: 3171: 3165: 3158: 3156: 3154: 3152: 3143: 3139: 3134: 3129: 3125: 3121: 3118:(6965): 404. 3117: 3113: 3112: 3107: 3100: 3098: 3089: 3085: 3081: 3077: 3073: 3069: 3065: 3061: 3056: 3051: 3047: 3043: 3042: 3034: 3020: 3019: 3014: 3007: 2992: 2988: 2982: 2980: 2971: 2967: 2963: 2959: 2955: 2951: 2947: 2943: 2942: 2937: 2930: 2917: 2911: 2903: 2899: 2895: 2891: 2884: 2877: 2866: 2862: 2855: 2848: 2839: 2834: 2830: 2826: 2825: 2820: 2813: 2811: 2802: 2798: 2794: 2790: 2786: 2782: 2781: 2773: 2771: 2769: 2767: 2765: 2763: 2748:on 2016-03-04 2747: 2743: 2739: 2735: 2731: 2728:(1): 043514. 2727: 2723: 2719: 2712: 2710: 2695:on 2012-10-18 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2652: 2645: 2631:on 2016-04-18 2627: 2623: 2619: 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2586: 2578: 2571: 2569: 2567: 2565: 2563: 2561: 2559: 2557: 2552: 2549: 2548: 2545:from the 2544: 2524: 2519: 2516: 2514: 2511: 2509: 2506: 2504: 2501: 2499: 2496: 2494: 2493:Ulf Leonhardt 2491: 2489: 2488:Nader Engheta 2486: 2485: 2484: 2483: 2479: 2477: 2472: 2471: 2467: 2465: 2464: 2460: 2459: 2450: 2447: 2446: 2445: 2444: 2443: 2442: 2441: 2440: 2437: 2434: 2433: 2424: 2421: 2420: 2419: 2418: 2417: 2416: 2415: 2414: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2386: 2383: 2382: 2381: 2379: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2356: 2354: 2351: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2320: 2319: 2318: 2309: 2305: 2302: 2298: 2294: 2290: 2286: 2282: 2273: 2264: 2255: 2251: 2249: 2239: 2237: 2233: 2232:X-ray imaging 2228: 2223: 2220: 2216: 2215:quasi-crystal 2211: 2209: 2205: 2201: 2197: 2182: 2179: 2175: 2173: 2168: 2159: 2150: 2146: 2144: 2140: 2135: 2126: 2116: 2112: 2108: 2105: 2101: 2096: 2092: 2088: 2084: 2082: 2078: 2073: 2071: 2067: 2063: 2058: 2056: 2045: 2042: 2040: 2035: 2033: 2029: 2028:boron nitride 2025: 2020: 2012: 2003: 1999: 1990: 1981: 1977: 1973: 1971: 1966: 1964: 1960: 1956: 1950: 1948: 1941: 1937: 1927: 1923: 1919: 1916: 1912: 1907: 1903: 1900: 1896: 1890: 1886: 1884: 1879: 1875: 1872: 1868: 1864: 1860: 1855: 1853: 1843: 1829: 1824: 1822: 1818: 1813: 1810: 1804: 1798: 1793: 1791: 1787: 1786:perpendicular 1775: 1774:birefringence 1771: 1767: 1763: 1759: 1751: 1746: 1737: 1733: 1730: 1725: 1721: 1716: 1712: 1710: 1706: 1702: 1698: 1693: 1691: 1687: 1683: 1679: 1674: 1671: 1667: 1663: 1659: 1654: 1652: 1636: 1635: 1634: 1631: 1621: 1619: 1615: 1610: 1608: 1604: 1599: 1597: 1593: 1589: 1585: 1581: 1576: 1574: 1570: 1560: 1556: 1554: 1549: 1544: 1541: 1537: 1533: 1529: 1525: 1521: 1516: 1514: 1510: 1505: 1499: 1493: 1491: 1487: 1477: 1475: 1471: 1467: 1459: 1453: 1444: 1442: 1438: 1434: 1415: 1409: 1403: 1398: 1394: 1390: 1385: 1380: 1376: 1371: 1367: 1360: 1356: 1350: 1346: 1338: 1335: 1331: 1327: 1323: 1315: 1314: 1313: 1311: 1307: 1303: 1299: 1280: 1277: 1274: 1265: 1254: 1253: 1238: 1233: 1229: 1226: 1220: 1215: 1212: 1207: 1198: 1190: 1189: 1188: 1185: 1181: 1177: 1159: 1155: 1131: 1124: 1120: 1114: 1110: 1104: 1099: 1094: 1090: 1086: 1081: 1076: 1072: 1064: 1063: 1062: 1046: 1042: 1033: 1014: 1008: 1002: 997: 993: 989: 984: 979: 975: 970: 966: 959: 955: 949: 945: 937: 932: 928: 920: 919: 918: 902: 898: 894: 889: 885: 862: 858: 834: 828: 824: 821: 818: 815: 810: 806: 802: 799: 794: 790: 786: 783: 778: 774: 769: 765: 761: 752: 748: 744: 739: 735: 728: 721: 717: 713: 708: 704: 699: 695: 689: 686: 683: 680: 677: 674: 671: 665: 658: 657: 656: 654: 650: 649:superposition 646: 635: 633: 629: 625: 620: 615: 606: 604: 599: 596: 591: 589: 584: 579: 576: 571: 569: 564: 560: 556: 552: 548: 544: 540: 536: 531: 529: 525: 521: 517: 513: 509: 500: 498: 494: 490: 485: 481: 477: 476:subwavelength 472: 470: 466: 462: 458: 454: 450: 446: 442: 438: 433: 431: 427: 423: 414: 405: 403: 399: 398: 397:metamaterials 393: 389: 385: 381: 376: 372: 368: 363: 361: 357: 353: 349: 345: 341: 333: 332:data transfer 329: 328: 323: 314: 312: 308: 304: 295: 291: 288: 284: 281: 278: 274: 273: 272: 270: 265: 263: 262:DNA molecules 259: 255: 251: 247: 243: 239: 238:optical limit 235: 231: 230:lens aperture 227: 223: 219: 215: 210: 208: 204: 200: 196: 192: 190: 186: 182: 178: 169: 157: 153: 149: 145: 140: 131: 129: 124: 122: 118: 114: 110: 105: 103: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 53: 50: 46: 42: 41:metamaterials 38: 34: 30: 19: 6633:. Retrieved 6629: 6610: 6599: 6472:" 2009-12-05 6447: 6404:(1): 48–58. 6401: 6397: 6341: 6337: 6327: 6300: 6296: 6286: 6251: 6247: 6227:. Retrieved 6223:the original 6218: 6195:. Retrieved 6188:the original 6159: 6155: 6094: 6090: 6084: 6041: 6037: 6027: 5994: 5990: 5983: 5972:. Retrieved 5942: 5938: 5928:Pendry, John 5922: 5879: 5875: 5865: 5830: 5826: 5802:the original 5755: 5751: 5686: 5683:AIP Advances 5682: 5672: 5651: 5616: 5613:Phys. Rev. B 5612: 5599: 5548: 5544: 5538: 5497: 5491: 5485: 5450: 5446: 5436: 5425:. Retrieved 5405: 5401: 5388: 5377:. Retrieved 5370:the original 5349: 5345: 5332: 5307: 5303: 5294: 5261: 5257: 5251: 5240:the original 5222:(25): 5184. 5219: 5213: 5186:. Retrieved 5182:the original 5175: 5125: 5119: 5071: 5067: 4999: 4995: 4935: 4931: 4871: 4865: 4845:. Retrieved 4838:the original 4799: 4793: 4765:. Retrieved 4761:the original 4750: 4738:. Retrieved 4734:the original 4727: 4717: 4666: 4662: 4636:the original 4599: 4593: 4540: 4535: 4529: 4509: 4492: 4459: 4454: 4448: 4415: 4410: 4404: 4353: 4347: 4341: 4300: 4294: 4288: 4253: 4249: 4236: 4195: 4191: 4185: 4174:the original 4145: 4141: 4084: 4078: 4072: 4047: 4043: 4037: 3996: 3992: 3986: 3945: 3941: 3935: 3900: 3896: 3842: 3836: 3826: 3801: 3797: 3788:Tassin, P.; 3783: 3732: 3728: 3722: 3679: 3675: 3665: 3653:. Retrieved 3649:the original 3637: 3596: 3590: 3530: 3524: 3470: 3464: 3451: 3418: 3414: 3404: 3379: 3373: 3353:the original 3332: 3328:Nano Letters 3326: 3291: 3285: 3279: 3262: 3258: 3252: 3235: 3234:. Series 7. 3231: 3225: 3206: 3190: 3179:. Retrieved 3175:the original 3167: 3115: 3109: 3045: 3039: 3033: 3022:. Retrieved 3018:Science News 3016: 3006: 2995:. Retrieved 2990: 2945: 2939: 2929: 2910: 2893: 2889: 2876: 2865:the original 2860: 2847: 2828: 2822: 2784: 2778: 2750:. Retrieved 2746:the original 2725: 2721: 2697:. Retrieved 2690:the original 2661: 2657: 2644: 2633:. Retrieved 2626:the original 2589: 2583: 2535: 2522: 2481: 2480: 2475: 2468: 2461: 2448: 2422: 2377: 2306: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2270: 2261: 2252: 2245: 2236:nano-optical 2224: 2219:point source 2212: 2193: 2180: 2176: 2169: 2165: 2156: 2147: 2139:microbiology 2136: 2133: 2113: 2109: 2097: 2093: 2089: 2085: 2074: 2059: 2051: 2043: 2036: 2021: 2018: 2009: 2000: 1996: 1987: 1978: 1974: 1967: 1959:mercury lamp 1951: 1943: 1924: 1920: 1909:Advances of 1908: 1904: 1891: 1887: 1880: 1876: 1867:Perfect lens 1866: 1856: 1849: 1825: 1814: 1805: 1794: 1765: 1761: 1755: 1734: 1717: 1713: 1705:permittivity 1694: 1675: 1655: 1648: 1627: 1617: 1611: 1600: 1577: 1566: 1557: 1545: 1527: 1517: 1506: 1494: 1490:permeability 1483: 1473: 1463: 1457: 1432: 1430: 1305: 1301: 1297: 1295: 1179: 1146: 1031: 1029: 849: 641: 616: 612: 600: 592: 580: 572: 532: 511: 507: 506: 474:Focusing at 473: 434: 425: 419: 395: 364: 337: 325: 299: 279:effectively. 266: 211: 193: 174: 128:Dennis Gabor 125: 106: 86:microtubules 78:DNA molecule 59: 32: 28: 26: 6630:ZME Science 5074:(6): 1310. 3838:Nature News 3798:Opt. Commun 3735:(1): 75–7. 3473:(19): 237. 3265:(83): 297. 3259:Philos. Mag 2498:John Pendry 2100:cylindrical 2062:anisotropic 2024:ultraviolet 1955:photoresist 1809:Swiss rolls 1750:Swiss rolls 1656:If the DNG 1651:focal point 1580:metasurface 1555:mis-match. 1310:wave vector 653:plane waves 603:John Pendry 575:John Guerra 559:lithography 535:dimensional 512:Superlenses 294:focal plane 283:Diffraction 246:microscopes 226:Green light 205:. However, 109:propagating 90:living cell 49:microscopes 39:which uses 6647:Categories 6635:2018-01-05 6229:2010-01-20 6197:2009-12-21 5974:2009-11-04 5833:(9): 143. 5642:1808/21743 5427:2009-10-26 5379:2009-11-01 5188:2009-11-10 5009:1607.07464 4945:1506.06282 4847:2009-11-01 4767:11 January 4537:Opt. Lett. 4456:Opt. Lett. 4412:Opt. Lett. 3382:(4): 881. 3181:2010-01-13 3024:2010-03-02 2997:2010-04-07 2752:2013-06-02 2699:2013-06-03 2635:2009-11-14 2532:References 2248:dielectric 2204:plane wave 2077:magnifying 2066:hyperbolic 1947:micrometre 1727:utilizing 1690:dispersion 1686:absorption 1666:dispersive 1524:near field 619:resolution 457:technology 382:, such as 371:phenomenon 340:glass lens 287:nanometers 203:nanometers 156:nanometers 121:near field 62:Ernst Abbe 33:super lens 6507:" EM Talk 6156:Nano Lett 6104:0708.0262 6019:120546522 5768:CiteSeerX 5663:1205.4823 5034:119268393 4884:CiteSeerX 4366:CiteSeerX 3729:Opt. Lett 3443:0003-6951 3055:0907.3821 2916:GB 541753 2104:spherical 2015:Hyperlens 1863:interface 1697:viability 1641:=μ(ω) / μ 1596:amplified 1553:impedance 1520:microwave 1515:imaging. 1509:was shown 1466:interface 1368:− 1347:ω 1339:− 1278:λ 1275:≈ 1262:Δ 1234:λ 1230:π 1213:ω 1208:≈ 1176:amplitude 1111:ω 967:− 946:ω 822:ω 819:− 700:∑ 624:flat lens 573:In 1995, 441:nanoscale 392:molecular 375:far field 352:analogous 311:artifacts 117:far field 29:superlens 6585:Archived 6543:Archived 6529:Archived 6515:Archived 6494:Archived 6480:Archived 6418:20049830 6366:19392114 6184:18572971 6076:16247289 6068:19550757 5969:19461787 5914:18174397 5857:21266993 5790:17379801 5591:11542914 5583:19529199 5530:16152502 5522:17322059 5477:19547010 5286:14995884 5152:19461782 4970:26230802 4906:11292865 4834:39687616 4709:11806529 4701:17379804 4632:38798156 4624:11736134 4565:23233908 4484:18978923 4440:18978921 4396:20978013 4388:18703734 4325:18690249 4280:20052179 4220:15845849 4170:39903291 4117:17693868 4109:15089166 4029:36997903 4021:14611495 3970:15845849 3927:19495100 3861:19478762 3775:15680137 3767:15648643 3714:25803316 3706:11041972 3629:32561041 3621:12005605 3555:15845849 3142:14647372 3080:19997206 2686:18497850 2622:25803316 2614:11041972 2312:See also 2242:Nanolens 2032:graphene 1852:coherent 1817:electric 1790:parallel 1701:evidence 1637:ε(ω) / ε 1630:research 1628:Further 1548:infrared 1332:′ 449:proteins 384:crystals 344:sciences 60:In 1873 18:Metalens 6611:Science 6346:Bibcode 6305:Bibcode 6256:Bibcode 6164:Bibcode 6129:9517825 6109:Bibcode 6046:Bibcode 5999:Bibcode 5947:Bibcode 5905:2633023 5884:Bibcode 5876:Science 5835:Bibcode 5798:5917552 5760:Bibcode 5752:Science 5691:Bibcode 5621:Bibcode 5563:Bibcode 5502:Bibcode 5493:Science 5455:Bibcode 5410:Bibcode 5354:Bibcode 5312:Bibcode 5266:Bibcode 5224:Bibcode 5130:Bibcode 5076:Bibcode 5014:Bibcode 4978:2876786 4950:Bibcode 4914:9321456 4876:Bibcode 4867:Science 4814:Bibcode 4681:Bibcode 4663:Science 4604:Bibcode 4545:Bibcode 4464:Bibcode 4420:Bibcode 4358:Bibcode 4349:Science 4333:4314138 4305:Bibcode 4258:Bibcode 4228:1085807 4200:Bibcode 4192:Science 4150:Bibcode 4089:Bibcode 4052:Bibcode 4001:Bibcode 3978:1085807 3950:Bibcode 3942:Science 3905:Bibcode 3806:Bibcode 3747:Bibcode 3684:Bibcode 3655:May 31, 3601:Bibcode 3563:1085807 3535:Bibcode 3526:Science 3475:Bibcode 3423:Bibcode 3384:Bibcode 3337:Bibcode 3120:Bibcode 3088:2217980 3060:Bibcode 2970:4176060 2950:Bibcode 2824:Science 2789:Bibcode 2730:Bibcode 2666:Bibcode 2594:Bibcode 2143:viruses 2081:alumina 1913:in the 1861:at the 1678:concept 1540:Blaikie 647:, as a 561:aim to 484:photons 480:imaging 258:viruses 220:. The 56:History 35:, is a 6653:Lenses 6416:  6364:  6182:  6127:  6074:  6066:  6017:  5967:  5912:  5902:  5855:  5796:  5788:  5770:  5589:  5581:  5528:  5520:  5475:  5284:  5150:  5032:  4976:  4968:  4912:  4904:  4886:  4832:  4740:31 May 4707:  4699:  4630:  4622:  4563:  4482:  4438:  4394:  4386:  4368:  4331:  4323:  4296:Nature 4278:  4226:  4218:  4168:  4115:  4107:  4027:  4019:  3976:  3968:  3925:  3859:  3773:  3765:  3712:  3704:  3627:  3619:  3561:  3553:  3441:  3213:  3140:  3111:Nature 3086:  3078:  2968:  2941:Nature 2922:  2684:  2620:  2612:  2523: 2070:radial 1682:finite 1528:et al. 1470:normal 850:where 555:planar 493:silver 388:atomic 380:solids 348:optics 134:Theory 111:light 66:lenses 6438:" by 6191:(PDF) 6152:(PDF) 6125:S2CID 6099:arXiv 6072:S2CID 6015:S2CID 5935:(PDF) 5805:(PDF) 5794:S2CID 5748:(PDF) 5658:arXiv 5609:(PDF) 5587:S2CID 5553:arXiv 5526:S2CID 5398:(PDF) 5373:(PDF) 5342:(PDF) 5243:(PDF) 5210:(PDF) 5030:S2CID 5004:arXiv 4974:S2CID 4940:arXiv 4910:S2CID 4841:(PDF) 4830:S2CID 4804:arXiv 4790:(PDF) 4705:S2CID 4671:arXiv 4639:(PDF) 4628:S2CID 4590:(PDF) 4392:S2CID 4329:S2CID 4246:(PDF) 4224:S2CID 4166:S2CID 4138:(PDF) 4113:S2CID 4025:S2CID 3974:S2CID 3771:S2CID 3737:arXiv 3710:S2CID 3625:S2CID 3559:S2CID 3461:(PDF) 3356:(PDF) 3323:(PDF) 3203:(PDF) 3084:S2CID 3050:arXiv 2966:S2CID 2886:(PDF) 2868:(PDF) 2857:(PDF) 2654:(PDF) 2629:(PDF) 2618:S2CID 2580:(PDF) 2234:, or 2200:metal 2053:high 1834:and k 1780:=∞, n 1662:lossy 1584:phase 1569:image 1433:grows 1147:then 628:focus 549:, or 356:laser 303:stain 260:, or 113:waves 88:of a 74:virus 31:, or 6442:and 6414:PMID 6362:PMID 6180:PMID 6064:PMID 5965:PMID 5910:PMID 5853:PMID 5786:PMID 5579:PMID 5518:PMID 5473:PMID 5282:PMID 5148:PMID 4966:PMID 4902:PMID 4769:2011 4742:2009 4697:PMID 4620:PMID 4561:PMID 4480:PMID 4436:PMID 4384:PMID 4321:PMID 4276:PMID 4216:PMID 4105:PMID 4017:PMID 3966:PMID 3923:PMID 3857:PMID 3763:PMID 3702:PMID 3657:2009 3617:PMID 3551:PMID 3439:ISSN 3211:ISBN 3138:PMID 3076:PMID 2682:PMID 2610:PMID 2030:and 1963:FDTD 1938:and 1819:and 1797:axis 1788:and 1766:n=+1 1762:n=−1 1618:n=−1 1500:(YVO 1105:> 489:gold 463:and 453:fats 451:and 390:and 307:dyes 142:The 37:lens 6446:. 6406:doi 6354:doi 6342:102 6313:doi 6272:hdl 6264:doi 6172:doi 6117:doi 6054:doi 6007:doi 5995:461 5955:doi 5900:PMC 5892:doi 5880:319 5843:doi 5778:doi 5756:315 5709:hdl 5699:doi 5637:hdl 5629:doi 5571:doi 5510:doi 5498:315 5463:doi 5418:doi 5362:doi 5320:doi 5274:doi 5232:doi 5138:doi 5084:doi 5022:doi 4958:doi 4936:115 4894:doi 4872:292 4822:doi 4689:doi 4667:315 4612:doi 4553:doi 4472:doi 4428:doi 4376:doi 4354:321 4313:doi 4301:455 4266:doi 4208:doi 4196:308 4158:doi 4146:100 4097:doi 4060:doi 4009:doi 3958:doi 3946:308 3913:doi 3847:doi 3843:459 3814:doi 3802:264 3755:doi 3692:doi 3609:doi 3543:doi 3531:308 3483:doi 3431:doi 3392:doi 3345:doi 3296:doi 3267:doi 3240:doi 3128:doi 3116:426 3068:doi 2958:doi 2946:242 2898:doi 2833:doi 2829:316 2797:doi 2738:doi 2674:doi 2602:doi 1915:THz 1776:, n 1664:or 1513:MRI 1270:min 1203:max 651:of 551:ion 491:or 360:DVD 327:DVD 76:or 6649:: 6628:. 6412:. 6400:. 6396:. 6374:^ 6360:. 6352:. 6340:. 6336:. 6311:. 6301:11 6299:. 6295:. 6270:. 6262:. 6252:96 6250:. 6238:^ 6217:. 6206:^ 6178:. 6170:. 6158:. 6154:. 6137:^ 6123:. 6115:. 6107:. 6095:77 6093:. 6070:. 6062:. 6052:. 6042:15 6040:. 6036:. 6013:. 6005:. 5993:. 5963:. 5953:. 5943:11 5941:. 5937:. 5908:. 5898:. 5890:. 5878:. 5874:. 5851:. 5841:. 5829:. 5825:. 5813:^ 5792:. 5784:. 5776:. 5766:. 5754:. 5750:. 5723:^ 5707:. 5697:. 5685:. 5681:. 5635:. 5627:. 5617:74 5615:. 5611:. 5585:. 5577:. 5569:. 5561:. 5549:14 5547:. 5524:. 5516:. 5508:. 5496:. 5471:. 5461:. 5451:15 5449:. 5445:. 5416:. 5406:23 5404:. 5400:. 5360:. 5350:87 5348:. 5344:. 5318:. 5306:. 5280:. 5272:. 5262:92 5260:. 5230:. 5220:83 5218:. 5212:. 5197:^ 5174:. 5160:^ 5146:. 5136:. 5126:11 5124:. 5118:. 5098:^ 5082:. 5072:34 5070:. 5066:. 5054:^ 5042:^ 5028:. 5020:. 5012:. 5000:18 4998:. 4986:^ 4972:. 4964:. 4956:. 4948:. 4934:. 4922:^ 4908:. 4900:. 4892:. 4882:. 4870:. 4856:^ 4828:. 4820:. 4812:. 4800:82 4798:. 4792:. 4777:^ 4726:. 4703:. 4695:. 4687:. 4679:. 4665:. 4647:^ 4626:. 4618:. 4610:. 4600:64 4598:. 4592:. 4573:^ 4559:. 4551:. 4541:37 4478:. 4470:. 4460:33 4434:. 4426:. 4416:33 4390:. 4382:. 4374:. 4364:. 4352:. 4327:. 4319:. 4311:. 4299:. 4274:. 4264:. 4254:17 4252:. 4248:. 4222:. 4214:. 4206:. 4194:. 4164:. 4156:. 4144:. 4140:. 4125:^ 4111:. 4103:. 4095:. 4085:92 4083:. 4058:. 4048:71 4046:. 4023:. 4015:. 4007:. 3997:91 3995:. 3972:. 3964:. 3956:. 3944:. 3921:. 3911:. 3901:13 3899:. 3895:. 3869:^ 3855:. 3841:. 3835:. 3812:. 3800:. 3792:; 3769:. 3761:. 3753:. 3745:. 3733:30 3731:. 3708:. 3700:. 3690:. 3680:85 3678:. 3674:. 3623:. 3615:. 3607:. 3597:88 3595:. 3571:^ 3557:. 3549:. 3541:. 3529:. 3495:^ 3481:. 3471:73 3469:. 3463:. 3437:. 3429:. 3419:66 3417:. 3413:. 3390:. 3380:19 3378:. 3364:^ 3343:. 3331:. 3325:. 3308:^ 3292:62 3290:. 3263:13 3261:. 3166:. 3150:^ 3136:. 3126:. 3114:. 3108:. 3096:^ 3082:. 3074:. 3066:. 3058:. 3046:17 3044:. 3015:. 2989:. 2978:^ 2964:. 2956:. 2944:. 2938:. 2894:50 2892:. 2888:. 2859:. 2827:. 2821:. 2809:^ 2795:. 2783:. 2761:^ 2736:. 2724:. 2720:. 2708:^ 2680:. 2672:. 2660:. 2656:. 2616:. 2608:. 2600:. 2590:85 2588:. 2582:. 2555:^ 2034:. 917:: 655:: 568:nm 545:, 530:. 471:. 264:. 123:. 27:A 6638:. 6616:" 6605:" 6594:" 6591:" 6580:" 6577:" 6573:" 6570:" 6566:" 6559:" 6552:" 6549:" 6538:" 6535:" 6524:" 6521:" 6510:" 6503:" 6489:" 6486:" 6475:" 6468:" 6454:. 6434:" 6420:. 6408:: 6402:2 6368:. 6356:: 6348:: 6321:. 6315:: 6307:: 6280:. 6274:: 6266:: 6258:: 6232:. 6200:. 6174:: 6166:: 6160:8 6131:. 6119:: 6111:: 6101:: 6078:. 6056:: 6048:: 6021:. 6009:: 6001:: 5977:. 5957:: 5949:: 5916:. 5894:: 5886:: 5859:. 5845:: 5837:: 5831:1 5780:: 5762:: 5717:. 5711:: 5701:: 5693:: 5687:8 5666:. 5660:: 5645:. 5639:: 5631:: 5623:: 5593:. 5573:: 5565:: 5555:: 5532:. 5512:: 5504:: 5479:. 5465:: 5457:: 5430:. 5420:: 5412:: 5382:. 5364:: 5356:: 5326:. 5322:: 5314:: 5308:7 5288:. 5276:: 5268:: 5234:: 5226:: 5191:. 5154:. 5140:: 5132:: 5092:. 5086:: 5078:: 5036:. 5024:: 5016:: 5006:: 4980:. 4960:: 4952:: 4942:: 4916:. 4896:: 4878:: 4850:. 4824:: 4816:: 4806:: 4771:. 4744:. 4711:. 4691:: 4683:: 4673:: 4614:: 4606:: 4567:. 4555:: 4547:: 4486:. 4474:: 4466:: 4442:. 4430:: 4422:: 4398:. 4378:: 4360:: 4335:. 4315:: 4307:: 4282:. 4268:: 4260:: 4230:. 4210:: 4202:: 4160:: 4152:: 4119:. 4099:: 4091:: 4066:. 4062:: 4054:: 4031:. 4011:: 4003:: 3980:. 3960:: 3952:: 3929:. 3915:: 3907:: 3863:. 3849:: 3820:. 3816:: 3808:: 3777:. 3757:: 3749:: 3739:: 3716:. 3694:: 3686:: 3659:. 3641:" 3631:. 3611:: 3603:: 3565:. 3545:: 3537:: 3489:. 3485:: 3477:: 3445:. 3433:: 3425:: 3398:. 3394:: 3386:: 3347:: 3339:: 3333:4 3302:. 3298:: 3273:. 3269:: 3246:. 3242:: 3236:6 3219:. 3184:. 3144:. 3130:: 3122:: 3090:. 3070:: 3062:: 3052:: 3027:. 3000:. 2972:. 2960:: 2952:: 2904:. 2900:: 2841:. 2835:: 2803:. 2799:: 2791:: 2785:3 2755:. 2740:: 2732:: 2726:4 2702:. 2676:: 2668:: 2662:7 2638:. 2604:: 2596:: 1840:z 1836:y 1832:x 1801:0 1782:x 1778:2 1643:0 1639:0 1502:4 1474:n 1458:n 1416:. 1410:) 1404:2 1399:y 1395:k 1391:+ 1386:2 1381:x 1377:k 1372:( 1361:2 1357:c 1351:2 1336:= 1328:z 1324:k 1306:z 1302:z 1298:n 1281:. 1266:x 1239:, 1227:2 1221:= 1216:c 1199:k 1180:z 1160:z 1156:k 1132:, 1125:2 1121:c 1115:2 1100:2 1095:y 1091:k 1087:+ 1082:2 1077:x 1073:k 1047:z 1043:k 1032:z 1015:. 1009:) 1003:2 998:y 994:k 990:+ 985:2 980:x 976:k 971:( 960:2 956:c 950:2 938:= 933:z 929:k 903:y 899:k 895:, 890:x 886:k 863:z 859:k 835:, 829:) 825:t 816:x 811:x 807:k 803:+ 800:y 795:y 791:k 787:+ 784:z 779:z 775:k 770:( 766:i 762:e 758:) 753:y 749:k 745:, 740:x 736:k 732:( 729:A 722:y 718:k 714:, 709:x 705:k 696:= 693:) 690:t 687:, 684:z 681:, 678:y 675:, 672:x 669:( 666:E 510:( 334:. 289:. 158:. 20:)

Index

Metalens
lens
metamaterials
diffraction limit
microscopes
Ernst Abbe
lenses
biological sciences
virus
DNA molecule
cellular proteins
microtubules
living cell
computer chips
microelectronics
optical equipment
propagating
waves
far field
near field
Dennis Gabor

binocular microscope
Spatial resolution
diffraction limit
nanometers

electromagnetic radiation
image resolution
length of a wave of radiation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.