Knowledge

Metatranscriptomics

Source đź“ť

419:
detectable on the RNA level. These altered expression profiles are potentially the result of changes in the gut environment in patients with IBD, which include increased levels of inflammation, higher concentrations of oxygen and a diminished mucous layer. Metatranscriptomics has the advantage of allowing researchers to skip the assaying of biochemical products in situ (like mucus or oxygen) and enables evaluation of effects of environmental changes on microbial expression patterns in vivo for large human populations. In addition, it can be coupled with
394:
learnt about the microbiome community in the last years, the wide diversity of microorganisms and molecules in the gut requires new tools to enable new discoveries. By focusing on changes in the expression of the genes, metatrascriptomics can generate a more dynamic picture of the state and activity of the microbiome than metagenomics. It has been observed that metatranscriptomic functional profiles are more variable than what might have been reckoned only by metagenomic information. This suggests that non-housekeeping genes are not stably expressed
302:, is demonstrably well-suited for quantification of basal transcriptional activity of microbial community members. Depending on environmental conditions, the number of transcripts per cell varies for most genes. An exception to this are housekeeping genes that are expressed constitutively and with low variability under different conditions. Thus, the abundance of transcripts from such genes strongly correlate with the abundance of active cells in a community. 234:(HMP), implementing a “tiered search” approach. In the first tier, HUMAnN2 screens DNA or RNA reads with MetaPhlAn2 in order to identify already-known microbes and constructing a sample-specific database by merging pangenomes of annotated species; in the second tier, the algorithm performs a mapping of the reads against the assembled pangenome database; in the third tier, non-aligned reads are used for a translated search against a protein database. 251:
reads). For the taxonomic analysis, sequences are mapped against 16S rRNA Greengenes v13.5 database using SOAP2, while for functional analysis sequences are mapped against a functional database such as MetaHIT-2014 always by using SOAP2 tool. This pipeline is highly flexible, since it offers the possibility to use third-party tools and improve single modules as long as the general structure is preserved.
412:
more pronounced variations in patient with IBD. The functional potential of an organism, meaning the genes and pathways encoded in its genome, provides only indirect information about the level or extent of activation of such functions. So, the measurement of functional activity (gene expression) is critical to understand the mechanism of the gut microbiome dysbiosis.
110:(different extraction methods for different kinds of samples have been reported in the literature), mRNA enrichment, cDNA synthesis and preparation of metatranscriptomic libraries, sequencing and data processing and analysis. mRNA enrichment is one of the most technically challenging steps, for which different strategies have been proposed: 314:. In particular, microarrays have been used to measure microbial transcription levels, to detect new transcripts and to obtain information about the structure of mRNAs (for instance, the UTR boundaries). Recently, it has also been used to find new regulatory ncRNA. However, microarrays are affected by some pitfalls: 208:
A quantitative pipeline for transcriptomic analysis was developed by Li and Dewey and called RSEM (RNA-Seq by Expectation Maximization). It can work as stand-alone software or as a plug-in for Trinity. RSEM starts with a reference transcriptome or assembly along with RNA-Seq reads generated from the
418:
A metatranscriptomics analysis measuring the functional activity of the gut microbiome reveals insights only partially observable in metagenomic functional potential, including disease-linked observations for IBD. It has been reported that many IBD-specific signals are either more pronounced or only
411:
in patients with IBD but microbial taxonomic profiles can be highly different among patients, making it difficult to implicate specific microbial species or strains in disease onset and progression. In addition, the gut microbiome composition presents a high variability over time among people, with
221:
The use of computational analysis tools has become more important as DNA sequencing capabilities have grown, particularly in metagenomic and metatranscriptomic analysis, which can generate a huge volume of data. Many different bioinformatic pipelines have been developed for these purposes, often as
276:
This pipeline does not have an official name and is usually referred to using the first author of the article in which it is described. This algorithm foresees the implementation of alignment tools such as BLAST and MegaBLAST. Reads are clustered in groups of identical sequences and then processed
263:
server for metagenomics. This pipeline is simple to use, requires low technical preparation and computational power and can be applied to a wide range of microbes. First, sequences from raw sequencing data are filtered for quality and then submitted to MG-RAST (which performs further steps such as
393:
has emerged in recent years as an important player in human health. Its prevalent functions are related to the fermentation of indigestible food components, competitions with pathogen, strengthening of the intestinal barrier, stimulation and regulation of the immune system. Although much has been
250:
for taxonomy and mRNA for gene expression levels. The pipeline is divided in 4 major steps. Firstly, paired-end reads are filtered for quality control purposes, then sorted and filtered for taxonomic analysis (by removal of tRNA sequences) or functional analysis (by removal of both tRNA and rRNA
105:
are the preferred techniques in metatranscriptomics. The protocol that is used to perform a metatranscriptome analysis may vary depending on the type of sample that needs to be analysed. Indeed, many different protocols have been developed for studying the metatranscriptome of microbial samples.
54:
has been defined as a microbial community occupying a well-defined habitat. These communities are ubiquitous and can play a key role in maintenance of the characteristics of their environment, and an imbalance in these communities can negatively affect the activities of the setting in which they
285:
sequences. Remaining reads are then mapped to NCBI databases using BLAST and MegaBLAST, then classified by their bitscore. Sequences with higher bitscores are used to predict phylogenetic origin and function, and lower-score reads are aligned with the more sensitive BLASTX and eventually can be
423:
to associate modulation of activity with the disease progression. Indeed, it has been shown that while a particular path may remain stable over time at the genomic level, the corresponding expression varies with the disease severity. This suggests that microbial dysbiosis affect the gut health
205:, in comparison with other de novo transcriptome assemblers, was reported to recover more full-length transcripts over a broad range of expression levels, with a sensitivity similar to methods that rely on genome alignments. This is particularly important in the absence of a reference genome. 502:
Dual RNA-Seq: this technique allows the simultaneous study of both host and pathogen transcriptomes as well. It is possible to monitor the expression of genes at different time points of the infection process; in this way could it be possible to study the changes in cellular networks in both
37:
focuses on studying the genomic content and on identifying which microbes are present within a community, metatranscriptomics can be used to study the diversity of the active genes within such community, to quantify their expression levels and to monitor how these levels change in different
328:
RNA-Seq can overcome these limitations: it does not require any previous knowledge about the genomes that have to be analysed and it provides high throughput validation of genes prediction, structure, expression. Thus, by combining the two approaches it is possible to have a more complete
347:
Experimental issues can affect the quantification of differences in expression among multiple samples: They can influence integrity and input RNA, as well as the amount of rRNA remaining in the samples, size section and gene models. Moreover, molecular base techniques are very prone to
448:
Examples of techniques applied: Microarrays: allow the monitoring of changes in the expression levels of many genes in parallel for both host and pathogen. First microarray approaches have shown the first global analysis of gene expression changes in pathogens such as
404:(IBD) is a group of chronic diseases of the digestive tract that affects millions of people worldwide. Several human genetic mutations have been linked to an increased susceptibility to IBD, but additional factors are needed for the full development of the disease. 358:
Generally, large populations of cells are exploited in metatranscriptomic analysis, so it is difficult to resolve important variances that can exist between subpopulations. High variability in pathogen populations was demonstrated to affect disease progression and
892:
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (August 2013).
76:
Since metatranscriptomics focuses on what genes are expressed, it enables the characterization of the active functional profile of the entire microbial community. The overview of the gene expression in a given sample is obtained by capturing the total
161:
The first strategy maps reads to reference genomes in databases, to collect information that is useful to deduce the relative expression of the single genes. Metatranscriptomic reads are mapped against databases using alignment tools, such as
490:
Require the pathogen and host cells to be physically separated before gene expression analysis (eukaryotic cells’ transcriptomes are larger in comparison to the pathogens’ ones, so could happen that the signal from pathogens’ RNAs is
212:
Although both Trinity and RSEM were designed for transcriptomic datasets (i.e., obtained from a single organism), it may be possible to apply them to metatranscriptomic data (i.e., obtained from a whole microbial community).
443:
Identify host-specific biological processes and interactions For this purpose, it's important to develop new technologies which allow the detection, at the same time, of changes in the expression levels of some
67:
profile by analysing which genes are expressed by the community. It is possible to infer what genes are expressed under specific conditions, and this can be done using functional annotations of expressed genes.
427:
Some technical limitations of the RNA measurements in stool are related to the fact that the extracted RNA can be degraded and, if not, it still represents only the organisms presents in the stool sample.
437:
Directed culturing: has been used to understand nutritional preferences of organisms in order to allow the preparation of a proper culture medium, resulting in a successful isolation of microbes in vitro.
351:
Difficulties in differentiating between host and microbial RNA, although commercial kits for microbial enrichment are available. This may also be done in silico if a reference genome is available for the
415:
Alterations in transcriptional activity in IBD, established on the rRNA expression, indicate that some bacterial populations are active in patients with IBD, while other groups are inactive or latent.
424:
through changing in the transcriptional programmes in a stable community. In this way, metatranscriptomic profiling emerges as an important tool for understanding the mechanisms of that relationship.
2044:
Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA, Bramer LM, D'Amato M, Bonfiglio F, McDonald D, Gonzalez A, McClure EE, Dunklebarger MF, Knight R, Jansson JK (February 2017).
38:
conditions (e.g., physiological vs. pathological conditions in an organism). The advantage of metatranscriptomics is that it can provide information about differences in the active functions of
477:, as the effects of bacterial infection on the expression of various host factor. Anyway, the detection through microarrays of both organisms at the same time could be problematic. Problems: 539:
Despite the increasing sensitivity and depth of sequencing now available, there are still few published RNA-Seq studies concerning the response of the mammalian host cell to the infection.
440:
Identify potential virulence factors: through comparative transcriptomics, in order to compare different transcriptional responses of related strains or species after specific stimuli.
469:, revealing the strategies that are used by these microorganisms to adapt to the host. In addition, microarrays only provide the first global insights about the host 1939:
Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, Giannoukos G, Boylan MR, Ciulla D, Gevers D, Izard J, Garrett WS, Chan AT, Huttenhower C (June 2014).
757:
Dumont MG, Pommerenke B, Casper P (October 2013). "Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment".
1600:
LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (April 2013). "Bacteria as vitamin suppliers to their host: a gut microbiota perspective".
338:
With its dominating abundance, ribosomal RNA strongly reduces the coverage of mRNA (usually the main focus of transcriptomic studies) in the total collected RNA.
366:
Both for microarray and RNA-Seq, it is difficult to set a real threshold to classify genes as “expressed”, due to the high dynamic range in gene expression.
193:
The second strategy retrieves the abundance in the expression of the different genes by assembling metatranscriptomic reads into longer fragments called
209:
sample and calculates normalized transcript abundance (meaning the number of RNA-Seq reads cor-responding to each reference transcriptome or assembly).
1341:
Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson KS, Knight R, Caporaso JG, Segata N, Huttenhower C (November 2018).
268:
sequences and use of sBLAT on each cluster to detect the best matches). Matches are then aggregated for taxonomic and functional analysis purposes.
1737:
Abreu MT (February 2010). "Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function".
182:. The final analysis of the results is carried out depending on the aim of the study. One of the latest metatranscriptomics techniques is 986:
Leimena MM, Ramiro-Garcia J, Davids M, van den Bogert B, Smidt H, Smid EJ, Boekhorst J, Zoetendal EG, Schaap PJ, Kleerebezem M (2013).
520:
Moreover, RNA-Seq is an important approach for identifying coregulated genes, enabling the organization of pathogen genomes into
190:
microbes in lake sediment. The limitation of this strategy is its reliance on the information of reference genomes in databases.
474: 1090:"Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis" 1039:"Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis" 895:"De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis" 2340: 988:"A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets" 198: 1880:
Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, Jiménez-Hernández N, Pérez-Cobas AE, Latorre A, Moya A (March 2011).
2345: 2095:"Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn's Disease" 400:
One example of metatranscriptomic application is in the study of the gut microbiome in inflammatory bowel disease.
55:
reside. To study these communities, and to then determine their impact and correlation with their niche, different
1694:
Kamada N, Seo SU, Chen GY, Núñez G (May 2013). "Role of the gut microbiota in immunity and inflammatory disease".
1302:"Bioinformatics tools for quantitative and functional metagenome and metatranscriptome data analysis in microbes" 259:
This pipeline is designed specifically for metatranscriptomics data analysis, by working in conjunction with the
2144:"Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients" 1555:
Karasov WH, MartĂ­nez del Rio C, Caviedes-Vidal E (2011). "Ecological physiology of diet and digestive systems".
163: 2279:
Saliba AE, C Santos S, Vogel J (February 2017). "New RNA-seq approaches for the study of bacterial pathogens".
230:
HUMAnN2 is a bioinformatic pipeline designed from the previous HUMAnN software, which was developed during the
510:
Probe-independent approach (RNA-seq provides transcript information without prior knowledge of mRNA sequences)
341:
Extraction of high-quality RNA from some biological or environmental samples (such as feces) can be difficult.
2233: 222:
open source platforms such as HUMAnN and the more recent HUMAnN2, MetaTrans, SAMSA, Leimena-2013 and mOTUs2.
503:
organisms starting from the initial contact until the manipulation of the host (interplay host-patogen).
102: 1390:
Martinez X, Pozuelo M, Pascal V, Campos D, Gut I, Gut M, Azpiroz F, Guarner F, Manichanh C (May 2016).
1243:"Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing" 401: 98: 1780:
Sommer F, Bäckhed F (April 2013). "The gut microbiota--masters of host development and physiology".
1237:
Xiong X, Frank DN, Robertson CE, Hung SS, Markle J, Canty AJ, McCoy KD, Macpherson AJ, Poussier P,
231: 2330: 369:
The presence of mRNA is not always associated with the actual presence of the respective protein.
1141:"Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis" 843:"Rsem: accurate transcript quantification from RNA-seq data with or without a reference genome" 183: 516:
Possibility of studying the expression levels of even unknown genes under different conditions
2350: 2093:
Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, et al. (October 2015).
1139:
Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, Frias-Lopez J (August 2014).
533: 458: 167: 39: 142:
The last two strategies are not recommended as they have been reported to be highly biased.
1952: 1893: 1836: 1511: 1403: 1254: 470: 462: 454: 1568: 8: 466: 1956: 1897: 1840: 1515: 1407: 1258: 792:
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. (May 2011).
2261: 2209: 2184: 2119: 2094: 2070: 2045: 1975: 1940: 1916: 1881: 1857: 1824: 1805: 1762: 1719: 1671: 1646: 1532: 1499: 1475: 1448: 1424: 1391: 1367: 1342: 1277: 1242: 1214: 1189: 1165: 1140: 1116: 1089: 1065: 1038: 1014: 987: 919: 894: 869: 842: 818: 793: 724: 628: 603: 529: 420: 407:
Regarding the relationship between IBD and gut microbiome, it is known that there is a
243: 82: 2335: 2306: 2265: 2253: 2214: 2165: 2124: 2075: 2021: 1980: 1921: 1862: 1797: 1754: 1723: 1711: 1676: 1627: 1582: 1537: 1480: 1429: 1372: 1323: 1282: 1219: 1170: 1121: 1070: 1019: 965: 924: 874: 823: 774: 716: 633: 580: 299: 247: 1809: 1766: 960: 943: 728: 97:
can be exploited to determine the gene expression profiles of some model organisms,
2296: 2288: 2245: 2204: 2196: 2155: 2114: 2106: 2065: 2057: 2011: 1970: 1960: 1911: 1901: 1852: 1844: 1789: 1746: 1703: 1666: 1658: 1617: 1609: 1572: 1564: 1527: 1519: 1470: 1460: 1419: 1411: 1362: 1354: 1313: 1272: 1262: 1209: 1201: 1160: 1152: 1111: 1101: 1060: 1050: 1009: 999: 955: 914: 906: 864: 854: 813: 805: 766: 708: 679: 623: 615: 572: 525: 187: 129: 2016: 1999: 1906: 1647:"The gut microbiota: a major player in the toxicity of environmental pollutants?" 1613: 1267: 1238: 794:"Full-length transcriptome assembly from RNA-Seq data without a reference genome" 524:. Indeed, genome annotation has been done for some eukaryotic pathogens, such as 450: 2110: 1945:
Proceedings of the National Academy of Sciences of the United States of America
1662: 1523: 744:
Field Guidelines for Genetic Experimental Designs in High-Throughput Sequencing
390: 384: 157:
performs de novo assembly of the reads into transcript contigs and supercontigs
107: 2292: 2142:
Rehman A, Lepage P, Nolte A, Hellmig S, Schreiber S, Ott SJ (September 2010).
2061: 1465: 1358: 1106: 1055: 742:
Peimbert M, Alcaraz LD (2016). "A Hitchhiker's Guide to Metatranscriptomics".
576: 59:
approaches have been used. While metagenomics can help researchers generate a
2324: 1037:
Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J (December 2015).
1004: 859: 344:
Instability of mRNA that compromises sample integrity even before sequencing.
282: 246:
to improve efficiency. Data is obtained from paired-end RNA-Seq, mainly from
171: 115: 1965: 1882:"Metatranscriptomic approach to analyze the functional human gut microbiota" 1848: 1500:"Microbial abundance, activity and population genomic profiling with mOTUs2" 1190:"Metatranscriptomics of the human oral microbiome during health and disease" 770: 699:
Apirion D, Miczak A (February 1993). "RNA processing in prokaryotic cells".
684: 667: 2310: 2257: 2218: 2169: 2160: 2143: 2128: 2079: 2025: 1984: 1925: 1866: 1801: 1758: 1715: 1680: 1631: 1586: 1541: 1484: 1433: 1376: 1327: 1286: 1223: 1188:
Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M (April 2014).
1174: 1125: 1074: 1023: 969: 928: 910: 878: 827: 778: 712: 637: 584: 311: 278: 186:(SIP), which has been used to retrieve specific targeted transcriptomes of 122: 34: 1343:"Species-level functional profiling of metagenomes and metatranscriptomes" 1205: 1156: 720: 563:
Filiatrault MJ (October 2011). "Progress in prokaryotic transcriptomics".
286:
aligned in protein databases so that their function can be characterized.
2043: 1318: 1301: 599: 2301: 2249: 1793: 985: 310:
Another method that can be exploited for metatranscriptomic purposes is
2200: 1577: 619: 265: 179: 94: 51: 1622: 1415: 1554: 809: 668:"Metatranscriptomics: eavesdropping on complex microbial communities" 487:
Need of expensive chips (with the proper design; high-density arrays)
408: 360: 2185:"Interaction of microbes with mucus and mucins: recent developments" 2046:"Dynamics of the human gut microbiome in inflammatory bowel disease" 1750: 1707: 1088:
Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J (2015).
1300:
Niu SY, Yang J, McDermaid A, Zhao J, Kang Y, Ma Q (November 2018).
121:
using a 5-3 exonuclease to degrade processed RNAs (mostly rRNA and
27: 597: 941: 395: 260: 202: 136: 1941:"Relating the metatranscriptome and metagenome of the human gut" 355:
Transcriptome reference databases are limited in their coverage.
1879: 1340: 942:
De Bona F, Ossowski S, Schneeberger K, Rätsch G (August 2008).
891: 655:. Manchester, UK: Manchester University Press. pp. 161–87. 521: 194: 1087: 1036: 495: 56: 1449:"SAMSA: a comprehensive metatranscriptome analysis pipeline" 1392:"MetaTrans: an open-source pipeline for metatranscriptomics" 1997: 1938: 1825:"Interactions between the microbiota and the immune system" 1447:
Westreich ST, Korf I, Mills DA, Lemay DG (September 2016).
1389: 175: 170:. Then, the results are annotated using resources, such as 81:
of the microbiome and performing whole-metatranscriptomics
78: 23: 1644: 1599: 1138: 481:
Probe selection (hundreds of millions of different probes)
30:
within natural environments, i.e., the metatranscriptome.
2182: 295: 2141: 2092: 791: 135:
using antibodies to capture mRNAs that bind to specific
128:
adding poly(A) to mRNAs by using a polyA polymerase (in
1998:
Burisch J, Jess T, Martinato M, Lakatos PL (May 2013).
1822: 1446: 1236: 756: 63:
profile of the sample, metatranscriptomics provides a
2231: 1187: 42:
that would otherwise appear to have similar make-up.
2232:
Westermann AJ, Gorski SA, Vogel J (September 2012).
2000:"The burden of inflammatory bowel disease in Europe" 1299: 944:"Optimal spliced alignments of short sequence reads" 2278: 604:"Use of Metatranscriptomics in Microbiome Research" 2039: 2037: 2035: 1823:Hooper LV, Littman DR, Macpherson AJ (June 2012). 1693: 558: 556: 554: 552: 494:Loss of RNA molecules during the eukaryotic cells 2322: 2183:Naughton J, Duggan G, Bourke B, Clyne M (2014). 650: 106:Generally, the steps include sample harvesting, 16:Techniques used to study microbe gene expression 2032: 741: 549: 150:A typical metatranscriptome analysis pipeline: 1645:Claus SP, Guillou H, Ellero-Simatos S (2016). 1779: 698: 264:quality control, gene calling, clustering of 2272: 2176: 2135: 2086: 1991: 1932: 1873: 1816: 1773: 1730: 1687: 1638: 1593: 1548: 1230: 1181: 1132: 1081: 935: 885: 785: 750: 591: 562: 329:representation of bacterial transcriptome. 981: 979: 692: 2300: 2208: 2159: 2118: 2069: 2015: 1974: 1964: 1915: 1905: 1856: 1670: 1621: 1576: 1531: 1474: 1464: 1423: 1366: 1317: 1276: 1266: 1213: 1164: 1115: 1105: 1064: 1054: 1013: 1003: 959: 918: 868: 858: 817: 683: 627: 145: 1497: 653:Mycoparasitism and Plant Disease Control 976: 840: 378: 88: 22:is the set of techniques used to study 2323: 298:profiler, which is based on essential 242:MetaTrans is a pipeline that exploits 1736: 1569:10.1146/annurev-physiol-012110-142152 665: 651:Whipps JM, Lewis K, Cooke RC (1988). 507:Potential: No need of expensive chips 598:Bashiardes S, Zilberman-Schapira G, 154:maps reads to a reference genome, or 2234:"Dual RNA-seq of pathogen and host" 608:Bioinformatics and Biology Insights 13: 759:Environmental Microbiology Reports 14: 2362: 216: 2004:Journal of Crohn's & Colitis 1602:Current Opinion in Biotechnology 324:prior knowledge of gene targets. 2281:Current Opinion in Microbiology 2225: 2148:Journal of Medical Microbiology 1491: 1440: 1383: 1334: 1293: 1030: 565:Current Opinion in Microbiology 373: 271: 45: 1498:Milanese, et al. (2019). 834: 735: 659: 644: 332: 305: 197:using different software. The 1: 961:10.1093/bioinformatics/btn300 746:. Springer. pp. 313–342. 542: 118:through Ribosomal RNA capture 2017:10.1016/j.crohns.2013.01.010 1907:10.1371/journal.pone.0017447 1782:Nature Reviews. Microbiology 1651:npj Biofilms and Microbiomes 1614:10.1016/j.copbio.2012.08.005 1268:10.1371/journal.pone.0036009 237: 7: 2238:Nature Reviews Microbiology 1557:Annual Review of Physiology 1306:Briefings in Bioinformatics 318:requirement of probe design 103:third-generation sequencing 71: 10: 2367: 2341:Environmental microbiology 2111:10.1016/j.chom.2015.09.008 1739:Nature Reviews. Immunology 1696:Nature Reviews. Immunology 1663:10.1038/npjbiofilms.2016.3 1524:10.1038/s41467-019-08844-4 402:Inflammatory bowel disease 382: 225: 99:next-generation sequencing 2293:10.1016/j.mib.2017.01.001 2062:10.1038/nmicrobiol.2017.4 1466:10.1186/s12859-016-1270-8 1359:10.1038/s41592-018-0176-y 1107:10.1186/s13073-015-0153-3 1056:10.1186/s13073-015-0153-3 577:10.1016/j.mib.2011.07.023 289: 277:for in-silico removal of 1005:10.1186/1471-2164-14-530 860:10.1186/1471-2105-12-323 431: 254: 232:Human Microbiome Project 2346:Microbiology techniques 2099:Cell Host & Microbe 1966:10.1073/pnas.1319284111 1849:10.1126/science.1223490 841:Li B, Dewey CN (2011). 771:10.1111/1758-2229.12078 685:10.1128/microbe.4.329.1 2161:10.1099/jmm.0.021170-0 1241:, Parkinson J (2012). 911:10.1038/nprot.2013.084 713:10.1002/bies.950150207 471:innate immune response 184:stable isotope probing 146:Computational analysis 1504:Nature Communications 1206:10.1128/mBio.01012-14 1157:10.1038/ismej.2014.23 534:Plasmodium falciparum 459:Chlamydia trachomatis 421:longitudinal sampling 40:microbial communities 798:Nature Biotechnology 463:Chlamydia pneumoniae 455:Borrelia burgdorferi 379:Human gut microbiome 89:Tools and techniques 2250:10.1038/nrmicro2852 2050:Nature Microbiology 1957:2014PNAS..111E2329F 1898:2011PLoSO...617447G 1841:2012Sci...336.1268H 1794:10.1038/nrmicro2974 1516:2019NatCo..10.1014M 1408:2016NatSR...626447M 1259:2012PLoSO...736009X 484:Cross-hybridization 467:Salmonella enterica 20:Metatranscriptomics 2201:10.4161/gmic.26680 1453:BMC Bioinformatics 1396:Scientific Reports 1319:10.1093/bib/bbx051 847:BMC Bioinformatics 620:10.4137/BBI.S34610 530:Trypanosoma brucei 312:tiling microarrays 300:housekeeping genes 83:shotgun sequencing 2154:(Pt 9): 1114–22. 1835:(6086): 1268–73. 1416:10.1038/srep26447 666:Moran MA (2009). 513:High sensitivity. 2358: 2315: 2314: 2304: 2276: 2270: 2269: 2229: 2223: 2222: 2212: 2180: 2174: 2173: 2163: 2139: 2133: 2132: 2122: 2090: 2084: 2083: 2073: 2041: 2030: 2029: 2019: 1995: 1989: 1988: 1978: 1968: 1951:(22): E2329–38. 1936: 1930: 1929: 1919: 1909: 1877: 1871: 1870: 1860: 1820: 1814: 1813: 1777: 1771: 1770: 1734: 1728: 1727: 1691: 1685: 1684: 1674: 1642: 1636: 1635: 1625: 1597: 1591: 1590: 1580: 1552: 1546: 1545: 1535: 1495: 1489: 1488: 1478: 1468: 1444: 1438: 1437: 1427: 1387: 1381: 1380: 1370: 1338: 1332: 1331: 1321: 1312:(6): 1415–1429. 1297: 1291: 1290: 1280: 1270: 1234: 1228: 1227: 1217: 1200:(2): e01012–14. 1185: 1179: 1178: 1168: 1145:The ISME Journal 1136: 1130: 1129: 1119: 1109: 1085: 1079: 1078: 1068: 1058: 1034: 1028: 1027: 1017: 1007: 983: 974: 973: 963: 939: 933: 932: 922: 899:Nature Protocols 889: 883: 882: 872: 862: 838: 832: 831: 821: 810:10.1038/nbt.1883 789: 783: 782: 754: 748: 747: 739: 733: 732: 696: 690: 689: 687: 672:Microbe Magazine 663: 657: 656: 648: 642: 641: 631: 595: 589: 588: 560: 526:Candida albicans 199:Trinity software 2366: 2365: 2361: 2360: 2359: 2357: 2356: 2355: 2321: 2320: 2319: 2318: 2277: 2273: 2230: 2226: 2181: 2177: 2140: 2136: 2091: 2087: 2042: 2033: 1996: 1992: 1937: 1933: 1878: 1874: 1821: 1817: 1778: 1774: 1751:10.1038/nri2707 1735: 1731: 1708:10.1038/nri3430 1692: 1688: 1643: 1639: 1598: 1594: 1553: 1549: 1496: 1492: 1445: 1441: 1388: 1384: 1353:(11): 962–968. 1339: 1335: 1298: 1294: 1235: 1231: 1186: 1182: 1137: 1133: 1094:Genome Medicine 1086: 1082: 1043:Genome Medicine 1035: 1031: 984: 977: 954:(16): i174–80. 940: 936: 905:(8): 1494–512. 890: 886: 839: 835: 790: 786: 755: 751: 740: 736: 697: 693: 664: 660: 649: 645: 596: 592: 561: 550: 545: 451:Vibrio cholerae 434: 387: 381: 376: 335: 321:low sensitivity 308: 292: 274: 257: 240: 228: 219: 148: 91: 74: 48: 17: 12: 11: 5: 2364: 2354: 2353: 2348: 2343: 2338: 2333: 2331:Bioinformatics 2317: 2316: 2271: 2244:(9): 618–630. 2224: 2175: 2134: 2105:(4): 489–500. 2085: 2031: 1990: 1931: 1872: 1815: 1772: 1729: 1686: 1637: 1592: 1547: 1490: 1439: 1382: 1347:Nature Methods 1333: 1292: 1229: 1180: 1151:(8): 1659–72. 1131: 1080: 1029: 975: 948:Bioinformatics 934: 884: 833: 784: 749: 734: 691: 658: 643: 590: 547: 546: 544: 541: 518: 517: 514: 511: 508: 500: 499: 492: 488: 485: 482: 446: 445: 441: 438: 433: 430: 391:gut microbiome 385:Gut microbiota 380: 377: 375: 372: 371: 370: 367: 364: 356: 353: 349: 345: 342: 339: 334: 331: 326: 325: 322: 319: 307: 304: 291: 288: 273: 270: 256: 253: 244:multithreading 239: 236: 227: 224: 218: 217:Bioinformatics 215: 159: 158: 155: 147: 144: 140: 139: 133: 126: 119: 108:RNA extraction 90: 87: 73: 70: 47: 44: 26:expression of 15: 9: 6: 4: 3: 2: 2363: 2352: 2349: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2328: 2326: 2312: 2308: 2303: 2298: 2294: 2290: 2286: 2282: 2275: 2267: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2235: 2228: 2220: 2216: 2211: 2206: 2202: 2198: 2194: 2190: 2186: 2179: 2171: 2167: 2162: 2157: 2153: 2149: 2145: 2138: 2130: 2126: 2121: 2116: 2112: 2108: 2104: 2100: 2096: 2089: 2081: 2077: 2072: 2067: 2063: 2059: 2055: 2051: 2047: 2040: 2038: 2036: 2027: 2023: 2018: 2013: 2010:(4): 322–37. 2009: 2005: 2001: 1994: 1986: 1982: 1977: 1972: 1967: 1962: 1958: 1954: 1950: 1946: 1942: 1935: 1927: 1923: 1918: 1913: 1908: 1903: 1899: 1895: 1892:(3): e17447. 1891: 1887: 1883: 1876: 1868: 1864: 1859: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1819: 1811: 1807: 1803: 1799: 1795: 1791: 1788:(4): 227–38. 1787: 1783: 1776: 1768: 1764: 1760: 1756: 1752: 1748: 1745:(2): 131–44. 1744: 1740: 1733: 1725: 1721: 1717: 1713: 1709: 1705: 1702:(5): 321–35. 1701: 1697: 1690: 1682: 1678: 1673: 1668: 1664: 1660: 1656: 1652: 1648: 1641: 1633: 1629: 1624: 1619: 1615: 1611: 1607: 1603: 1596: 1588: 1584: 1579: 1574: 1570: 1566: 1562: 1558: 1551: 1543: 1539: 1534: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1494: 1486: 1482: 1477: 1472: 1467: 1462: 1458: 1454: 1450: 1443: 1435: 1431: 1426: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1386: 1378: 1374: 1369: 1364: 1360: 1356: 1352: 1348: 1344: 1337: 1329: 1325: 1320: 1315: 1311: 1307: 1303: 1296: 1288: 1284: 1279: 1274: 1269: 1264: 1260: 1256: 1253:(4): e36009. 1252: 1248: 1244: 1240: 1233: 1225: 1221: 1216: 1211: 1207: 1203: 1199: 1195: 1191: 1184: 1176: 1172: 1167: 1162: 1158: 1154: 1150: 1146: 1142: 1135: 1127: 1123: 1118: 1113: 1108: 1103: 1099: 1095: 1091: 1084: 1076: 1072: 1067: 1062: 1057: 1052: 1048: 1044: 1040: 1033: 1025: 1021: 1016: 1011: 1006: 1001: 997: 993: 989: 982: 980: 971: 967: 962: 957: 953: 949: 945: 938: 930: 926: 921: 916: 912: 908: 904: 900: 896: 888: 880: 876: 871: 866: 861: 856: 852: 848: 844: 837: 829: 825: 820: 815: 811: 807: 804:(7): 644–52. 803: 799: 795: 788: 780: 776: 772: 768: 765:(5): 757–64. 764: 760: 753: 745: 738: 730: 726: 722: 718: 714: 710: 707:(2): 113–20. 706: 702: 695: 686: 681: 678:(7): 329–34. 677: 673: 669: 662: 654: 647: 639: 635: 630: 625: 621: 617: 613: 609: 605: 601: 594: 586: 582: 578: 574: 571:(5): 579–86. 570: 566: 559: 557: 555: 553: 548: 540: 537: 535: 531: 527: 523: 515: 512: 509: 506: 505: 504: 497: 493: 489: 486: 483: 480: 479: 478: 476: 472: 468: 464: 460: 456: 452: 442: 439: 436: 435: 429: 425: 422: 416: 413: 410: 405: 403: 398: 397: 392: 386: 368: 365: 362: 357: 354: 350: 346: 343: 340: 337: 336: 330: 323: 320: 317: 316: 315: 313: 303: 301: 297: 287: 284: 280: 269: 267: 262: 252: 249: 245: 235: 233: 223: 214: 210: 206: 204: 200: 196: 191: 189: 185: 181: 177: 173: 169: 165: 156: 153: 152: 151: 143: 138: 134: 131: 127: 124: 120: 117: 113: 112: 111: 109: 104: 100: 96: 86: 84: 80: 69: 66: 62: 58: 53: 43: 41: 36: 31: 29: 25: 21: 2351:Metagenomics 2302:10033/621506 2284: 2280: 2274: 2241: 2237: 2227: 2195:(1): 48–52. 2192: 2189:Gut Microbes 2188: 2178: 2151: 2147: 2137: 2102: 2098: 2088: 2056:(5): 17004. 2053: 2049: 2007: 2003: 1993: 1948: 1944: 1934: 1889: 1885: 1875: 1832: 1828: 1818: 1785: 1781: 1775: 1742: 1738: 1732: 1699: 1695: 1689: 1654: 1650: 1640: 1608:(2): 160–8. 1605: 1601: 1595: 1560: 1556: 1550: 1507: 1503: 1493: 1456: 1452: 1442: 1399: 1395: 1385: 1350: 1346: 1336: 1309: 1305: 1295: 1250: 1246: 1232: 1197: 1193: 1183: 1148: 1144: 1134: 1097: 1093: 1083: 1046: 1042: 1032: 995: 992:BMC Genomics 991: 951: 947: 937: 902: 898: 887: 850: 846: 836: 801: 797: 787: 762: 758: 752: 743: 737: 704: 700: 694: 675: 671: 661: 652: 646: 611: 607: 593: 568: 564: 538: 519: 501: 447: 426: 417: 414: 406: 399: 388: 374:Applications 327: 309: 293: 275: 272:Leimena-2013 258: 241: 229: 220: 211: 207: 192: 160: 149: 141: 92: 75: 64: 60: 49: 46:Introduction 35:metagenomics 32: 19: 18: 1578:11336/14704 1510:(1): 1014. 333:Limitations 306:Microarrays 178:, COG, and 166:, BWA, and 95:microarrays 2325:Categories 1623:11336/2561 1459:(1): 399. 998:(1): 530. 853:(1): 323. 543:References 383:See also: 348:artefacts. 266:amino acid 180:Swiss-Prot 65:functional 52:microbiome 2287:: 78–87. 2266:205498287 1724:205491968 1657:: 16003. 1563:: 69–93. 1402:: 26447. 1239:Danska JS 1100:(1): 27. 1049:(1): 27. 701:BioEssays 614:: 19–25. 409:dysbiosis 361:virulence 238:MetaTrans 114:removing 93:Although 61:taxonomic 2336:Genomics 2311:28214646 2258:22890146 2219:24149677 2170:20522625 2129:26468751 2080:28191884 2026:23395397 1985:24843156 1926:21408168 1886:PLOS ONE 1867:22674334 1810:22798964 1802:23435359 1767:21789611 1759:20098461 1716:23618829 1681:28721242 1632:22940212 1587:21314432 1542:30833550 1485:27687690 1434:27211518 1377:30377376 1328:28481971 1287:22558305 1247:PLOS ONE 1224:24692635 1175:24599074 1126:25918553 1075:25918553 1024:23915218 970:18689821 929:23845962 879:21816040 828:21572440 779:24115627 729:42365781 638:27127406 602:(2016). 600:Elinav E 585:21839669 491:hidden). 137:proteins 72:Function 28:microbes 2210:4049936 2120:4633303 2071:5319707 1976:4050606 1953:Bibcode 1917:3050895 1894:Bibcode 1858:4420145 1837:Bibcode 1829:Science 1672:5515271 1533:6399450 1512:Bibcode 1476:5041328 1425:4876386 1404:Bibcode 1368:6235447 1278:3338770 1255:Bibcode 1215:3977359 1166:4817619 1117:4410737 1066:4410737 1015:3750648 920:3875132 870:3163565 819:3571712 721:7682412 629:4839964 522:operons 396:in situ 261:MG-RAST 248:16S RNA 226:HUMAnN2 203:RNA-seq 195:contigs 188:aerobic 164:Bowtie2 130:E. coli 2309:  2264:  2256:  2217:  2207:  2168:  2127:  2117:  2078:  2068:  2024:  1983:  1973:  1924:  1914:  1865:  1855:  1808:  1800:  1765:  1757:  1722:  1714:  1679:  1669:  1630:  1585:  1540:  1530:  1483:  1473:  1432:  1422:  1375:  1365:  1326:  1285:  1275:  1222:  1212:  1173:  1163:  1124:  1114:  1073:  1063:  1022:  1012:  968:  927:  917:  877:  867:  826:  816:  777:  727:  719:  636:  626:  583:  444:genes. 296:mOTUs2 290:mOTUs2 33:While 2262:S2CID 1806:S2CID 1763:S2CID 1720:S2CID 725:S2CID 496:lysis 475:PAMPs 432:Other 352:host. 255:SAMSA 168:BLAST 57:omics 2307:PMID 2254:PMID 2215:PMID 2166:PMID 2125:PMID 2076:PMID 2022:PMID 1981:PMID 1922:PMID 1863:PMID 1798:PMID 1755:PMID 1712:PMID 1677:PMID 1628:PMID 1583:PMID 1538:PMID 1481:PMID 1430:PMID 1373:PMID 1324:PMID 1283:PMID 1220:PMID 1194:mBio 1171:PMID 1122:PMID 1071:PMID 1020:PMID 966:PMID 925:PMID 875:PMID 824:PMID 775:PMID 717:PMID 634:PMID 581:PMID 532:and 465:and 389:The 294:The 283:rRNA 281:and 279:tRNA 201:for 176:KEGG 123:tRNA 116:rRNA 101:and 79:mRNA 50:The 24:gene 2297:hdl 2289:doi 2246:doi 2205:PMC 2197:doi 2156:doi 2115:PMC 2107:doi 2066:PMC 2058:doi 2012:doi 1971:PMC 1961:doi 1949:111 1912:PMC 1902:doi 1853:PMC 1845:doi 1833:336 1790:doi 1747:doi 1704:doi 1667:PMC 1659:doi 1618:hdl 1610:doi 1573:hdl 1565:doi 1528:PMC 1520:doi 1471:PMC 1461:doi 1420:PMC 1412:doi 1363:PMC 1355:doi 1314:doi 1273:PMC 1263:doi 1210:PMC 1202:doi 1161:PMC 1153:doi 1112:PMC 1102:doi 1061:PMC 1051:doi 1010:PMC 1000:doi 956:doi 915:PMC 907:doi 865:PMC 855:doi 814:PMC 806:doi 767:doi 709:doi 680:doi 624:PMC 616:doi 573:doi 473:to 2327:: 2305:. 2295:. 2285:35 2283:. 2260:. 2252:. 2242:10 2240:. 2236:. 2213:. 2203:. 2191:. 2187:. 2164:. 2152:59 2150:. 2146:. 2123:. 2113:. 2103:18 2101:. 2097:. 2074:. 2064:. 2052:. 2048:. 2034:^ 2020:. 2006:. 2002:. 1979:. 1969:. 1959:. 1947:. 1943:. 1920:. 1910:. 1900:. 1888:. 1884:. 1861:. 1851:. 1843:. 1831:. 1827:. 1804:. 1796:. 1786:11 1784:. 1761:. 1753:. 1743:10 1741:. 1718:. 1710:. 1700:13 1698:. 1675:. 1665:. 1653:. 1649:. 1626:. 1616:. 1606:24 1604:. 1581:. 1571:. 1561:73 1559:. 1536:. 1526:. 1518:. 1508:10 1506:. 1502:. 1479:. 1469:. 1457:17 1455:. 1451:. 1428:. 1418:. 1410:. 1398:. 1394:. 1371:. 1361:. 1351:15 1349:. 1345:. 1322:. 1310:19 1308:. 1304:. 1281:. 1271:. 1261:. 1249:. 1245:. 1218:. 1208:. 1196:. 1192:. 1169:. 1159:. 1147:. 1143:. 1120:. 1110:. 1096:. 1092:. 1069:. 1059:. 1045:. 1041:. 1018:. 1008:. 996:14 994:. 990:. 978:^ 964:. 952:24 950:. 946:. 923:. 913:. 901:. 897:. 873:. 863:. 851:12 849:. 845:. 822:. 812:. 802:29 800:. 796:. 773:. 761:. 723:. 715:. 705:15 703:. 674:. 670:. 632:. 622:. 612:10 610:. 606:. 579:. 569:14 567:. 551:^ 536:. 528:, 461:, 457:, 453:, 174:, 172:GO 85:. 2313:. 2299:: 2291:: 2268:. 2248:: 2221:. 2199:: 2193:5 2172:. 2158:: 2131:. 2109:: 2082:. 2060:: 2054:2 2028:. 2014:: 2008:7 1987:. 1963:: 1955:: 1928:. 1904:: 1896:: 1890:6 1869:. 1847:: 1839:: 1812:. 1792:: 1769:. 1749:: 1726:. 1706:: 1683:. 1661:: 1655:2 1634:. 1620:: 1612:: 1589:. 1575:: 1567:: 1544:. 1522:: 1514:: 1487:. 1463:: 1436:. 1414:: 1406:: 1400:6 1379:. 1357:: 1330:. 1316:: 1289:. 1265:: 1257:: 1251:7 1226:. 1204:: 1198:5 1177:. 1155:: 1149:8 1128:. 1104:: 1098:7 1077:. 1053:: 1047:7 1026:. 1002:: 972:. 958:: 931:. 909:: 903:8 881:. 857:: 830:. 808:: 781:. 769:: 763:5 731:. 711:: 688:. 682:: 676:4 640:. 618:: 587:. 575:: 498:. 363:. 132:) 125:)

Index

gene
microbes
metagenomics
microbial communities
microbiome
omics
mRNA
shotgun sequencing
microarrays
next-generation sequencing
third-generation sequencing
RNA extraction
rRNA
tRNA
E. coli
proteins
Bowtie2
BLAST
GO
KEGG
Swiss-Prot
stable isotope probing
aerobic
contigs
Trinity software
RNA-seq
Human Microbiome Project
multithreading
16S RNA
MG-RAST

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑