Knowledge

Protein complex

Source đź“ť

213:, whereas permanent complexes have a relatively long half-life. Typically, the obligate interactions (protein–protein interactions in an obligate complex) are permanent, whereas non-obligate interactions have been found to be either permanent or transient. Note that there is no clear distinction between obligate and non-obligate interaction, rather there exist a continuum between them which depends on various conditions e.g. pH, protein concentration etc. However, there are important distinctions between the properties of transient and permanent/stable interactions: stable interactions are highly conserved but transient interactions are far less conserved, interacting proteins on the two sides of a stable interaction have more tendency of being co-expressed than those of a transient interaction (in fact, co-expression probability between two transiently interacting proteins is not higher than two random proteins), and transient interactions are much less co-localized than stable interactions. Though, transient by nature, transient interactions are very important for cell biology: the human interactome is enriched in such interactions, these interactions are the dominating players of gene regulation and signal transduction, and proteins with 369:
multimer. Genes that encode multimer-forming polypeptides appear to be common. One interpretation of the data is that polypeptide monomers are often aligned in the multimer in such a way that mutant polypeptides defective at nearby sites in the genetic map tend to form a mixed multimer that functions poorly, whereas mutant polypeptides defective at distant sites tend to form a mixed multimer that functions more effectively. The intermolecular forces likely responsible for self-recognition and multimer formation were discussed by Jehle.
246: 121: 422:, which can identify different intermediate states simultaneously. This has led to the discovery that most complexes follow an ordered assembly pathway. In the cases where disordered assembly is possible, the change from an ordered to a disordered state leads to a transition from function to dysfunction of the complex, since disordered assembly leads to aggregation. 201:, then the complexes formed by such proteins are termed "non-obligate protein complexes". However, some proteins can't be found to create a stable well-folded structure alone, but can be found as a part of a protein complex which stabilizes the constituent proteins. Such protein complexes are called "obligate protein complexes". 267:". These authors also showed that complexes tend to be composed of either essential or non-essential proteins rather than showing a random distribution (see Figure). However, this not an all or nothing phenomenon: only about 26% (105/401) of yeast complexes consist of solely essential or solely nonessential subunits. 228:
have more than one structural form or dynamic structural disorder in the bound state. This means that proteins may not fold completely in either transient or permanent complexes. Consequently, specific complexes can have ambiguous interactions, which vary according to the environmental signals. Hence
262:
belong to protein complexes. This led to the conclusion that essentiality is a property of molecular machines (i.e. complexes) rather than individual components. Wang et al. (2009) noted that larger protein complexes are more likely to be essential, explaining why essential genes are more likely to
441:
proteins assemble in a way that mimics evolution. That is, an intermediate in the assembly process is present in the complex's evolutionary history. The opposite phenomenon is observed in heteromultimeric complexes, where gene fusion occurs in a manner that preserves the original assembly pathway.
368:
of the gene. Separately, the mutants were tested in pairwise combinations to measure complementation. An analysis of the results from such studies led to the conclusion that intragenic complementation, in general, arises from the interaction of differently defective polypeptide monomers to form a
968:
Yu, H; Braun, P; Yildirim, M. A.; Lemmens, I; Venkatesan, K; Sahalie, J; Hirozane-Kishikawa, T; Gebreab, F; Li, N; Simonis, N; Hao, T; Rual, J. F.; Dricot, A; Vazquez, A; Murray, R. R.; Simon, C; Tardivo, L; Tam, S; Svrzikapa, N; Fan, C; De Smet, A. S.; Motyl, A; Hudson, M. E.; Park, J; Xin, X;
425:
The structure of proteins play a role in how the multiprotein complex assembles. The interfaces between proteins can be used to predict assembly pathways. The intrinsic flexibility of proteins also plays a role: more flexible proteins allow for a greater surface area available for interaction.
31: 291:
in the plasma membrane of a neuron are heteromultimeric proteins composed of four of forty known alpha subunits. Subunits must be of the same subfamily to form the multimeric protein channel. The tertiary structure of the channel allows ions to flow through the hydrophobic plasma membrane.
96:
complex and substrates can be vastly improved, leading to higher cellular efficiency. Many of the techniques used to enter cells and isolate proteins are inherently disruptive to such large complexes, complicating the task of determining the components of a complex.
278:
The subunits of a multimeric protein may be identical as in a homomultimeric (homooligomeric) protein or different as in a heteromultimeric protein. Many soluble and membrane proteins form homomultimeric complexes in a cell, majority of proteins in the
417:
Proper assembly of multiprotein complexes is important, since misassembly can lead to disastrous consequences. In order to study pathway assembly, researchers look at intermediate steps in the pathway. One such technique that allows one to do that is
253:
Although some early studies suggested a strong correlation between essentiality and protein interaction degree (the "centrality-lethality" rule) subsequent analyses have shown that this correlation is weak for binary or transient interactions (e.g.,
1466:
Rodríguez-Pombo P, Pérez-Cerdá C, Pérez B, Desviat LR, Sánchez-Pulido L, Ugarte M. Towards a model to explain the intragenic complementation in the heteromultimeric protein propionyl-CoA carboxylase. Biochim Biophys Acta. 2005;1740(3):489-498.
148:. Individual proteins can participate in a variety of protein complexes. Different complexes perform different functions, and the same complex can perform multiple functions depending on various factors. Factors include: 1517:
Raicu V, Stoneman MR, Fung R, Melnichuk M, Jansma DB, Pisterzi LF, Rath S, Fox, M, Wells, JW, Saldin DK (2008). "Determination of supramolecular structure and spatial distribution of protein complexes in living cells".
283:
are homomultimeric. Homooligomers are responsible for the diversity and specificity of many pathways, may mediate and regulate gene expression, activity of enzymes, ion channels, receptors, and cell adhesion processes.
89:. These complexes are a cornerstone of many (if not most) biological processes. The cell is seen to be composed of modular supramolecular complexes, each of which performs an independent, discrete biological function. 624:
Amoutzias G, Van de Peer Y (2010). "Single-Gene and Whole-Genome Duplications and the Evolution of Protein–Protein Interaction Networks. Evolutionary genomics and systems biology". In Caetano-Anolles G (ed.).
1664:
Sudha, Govindarajan; Nussinov, Ruth; Srinivasan, Narayanaswamy (2014). "An overview of recent advances in structural bioinformatics of protein–protein interactions and a guide to their principles".
323:
of a particular gene, the mixed multimer may exhibit greater functional activity than the unmixed multimers formed by each of the mutants alone. In such a case, the phenomenon is referred to as
429:
While assembly is a different process from disassembly, the two are reversible in both homomeric and heteromeric complexes. Thus, the overall process can be referred to as (dis)assembly.
401:. Recently, Raicu and coworkers developed a method to determine the quaternary structure of protein complexes in living cells. This method is based on the determination of pixel-level 229:
different ensembles of structures result in different (even opposite) biological functions. Post-translational modifications, protein interactions or alternative splicing modulate the
217:(IDR: regions in protein that show dynamic inter-converting structures in the native state) are found to be enriched in transient regulatory and signaling interactions. 1249:
Lage, K; Karlberg, E. O.; Størling, Z. M.; Olason, P. I.; Pedersen, A. G.; Rigina, O; Hinsby, A. M.; Tümer, Z; Pociot, F; Tommerup, N; Moreau, Y; Brunak, S (2007).
327:(also called inter-allelic complementation). Intragenic complementation has been demonstrated in many different genes in a variety of organisms including the fungi 1450:
Smallwood S, Cevik B, Moyer SA. Intragenic complementation and oligomerization of the L subunit of the sendai virus RNA polymerase. Virology. 2002;304(2):235-245.
65: 2136: 1036:"Why do hubs in the yeast protein interaction network tend to be essential: Reexamining the connection between the network topology and essentiality" 1545: 144:
Protein complex formation can activate or inhibit one or more of the complex members and in this way, protein complex formation can be similar to
2028: 595: 316:
form a complex, this protein structure is referred to as a multimer. When a multimer is formed from polypeptides produced by two different
1147:
Wang, H; Kakaradov, B; Collins, S. R.; Karotki, L; Fiedler, D; Shales, M; Shokat, K. M.; Walther, T. C.; Krogan, N. J.; Koller, D (2009).
1516: 409:. The distribution of FRET efficiencies are simulated against different models to get the geometry and stoichiometry of the complexes. 233:
of fuzzy complexes, to fine-tune affinity or specificity of interactions. These mechanisms are often used for regulation within the
1841: 263:
have high co-complex interaction degree. Ryan et al. (2013) referred to the observation that entire complexes appear essential as "
324: 748:
Tompa P, Fuxreiter M (January 2008). "Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions".
270:
In humans, genes whose protein products belong to the same complex are more likely to result in the same disease phenotype.
258:). However, the correlation is robust for networks of stable co-complex interactions. In fact, a disproportionate number of 17: 402: 108:. In stable complexes, large hydrophobic interfaces between proteins typically bury surface areas larger than 2500 square 2221: 2021: 42: 2114: 249:
Essential proteins in yeast complexes occur much less randomly than expected by chance. Modified after Ryan et al. 2013
489: 288: 2179: 1869: 86: 2184: 2156: 2129: 2107: 2092: 2057: 2014: 907:
Jeong, H; Mason, S. P.; Barabási, A. L.; Oltvai, Z. N. (2001). "Lethality and centrality in protein networks".
419: 2102: 1834: 76: 1500:
Jehle H. Intermolecular forces and biological specificity. Proc Natl Acad Sci U S A. 1963;50(3):516-524.
818:
Fuxreiter M, Simon I, Bondos S (August 2011). "Dynamic protein–DNA recognition: beyond what can be seen".
394: 2274: 390: 197:
If a protein can form a stable well-folded structure on its own (without any other associated protein)
184:
complexes. They compared 6000 yeast proteins to those from 2026 other fungi and 4325 other eukaryotes.
126: 1098:"A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality" 341: 83: 2206: 1813: 1347:"Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization" 386: 335: 234: 230: 164: 1809: 2238: 2216: 2196: 1827: 1483:
Crick FH, Orgel LE. The theory of inter-allelic complementation. J Mol Biol. 1964 Jan;8:161-5.
300:. A cluster of connexons forms the gap-junction in two neurons that transmit signals through an 172:
wide and the elucidation of most of its protein complexes is ongoing. In 2021, researchers used
2201: 2097: 397:
is also becoming available. One method that is commonly used for identifying the meomplexes is
1973: 1750:
Levy, Emmanuel D; Boeri Erba, Elisabetta; Robinson, Carol V; Teichmann, Sarah A (July 2008).
1539: 406: 382: 361: 360:
defective in the same gene were often isolated and mapped in a linear order on the basis of
1864: 1763: 1568: 1358: 1047: 1027: 982: 926: 456: 353: 1615:
Marsh JA, Hernández H, Hall Z, Ahnert SE, Perica T, Robinson CV, Teichmann SA (Apr 2013).
1251:"A human phenome-interactome network of protein complexes implicated in genetic disorders" 860:"All or nothing: Protein complexes flip essentiality between distantly related eukaryotes" 699:"Unequal evolutionary conservation of human protein interactions in interologous networks" 8: 2253: 2243: 2211: 398: 378: 1767: 1572: 1362: 1051: 986: 930: 245: 2248: 1784: 1751: 1727: 1700: 1641: 1616: 1592: 1428: 1403: 1379: 1370: 1346: 1327: 1278: 1226: 1199: 1175: 1148: 1124: 1097: 1070: 1035: 1003: 970: 950: 916: 884: 859: 725: 698: 572: 547: 301: 38: 1488: 674: 649: 1905: 1879: 1789: 1732: 1681: 1677: 1646: 1617:"Protein complexes are under evolutionary selection to assemble via ordered pathways" 1584: 1433: 1404:"Intragenic Complementation among Temperature Sensitive Mutants of Bacteriophage T4D" 1384: 1319: 1314: 1297: 1270: 1231: 1180: 1129: 1075: 1008: 942: 889: 835: 800: 765: 730: 679: 577: 528: 485: 329: 280: 61: 1331: 1250: 168:(yeast). For this relatively simple organism, the study of protein complexes is now 1983: 1941: 1936: 1931: 1779: 1771: 1722: 1712: 1673: 1636: 1628: 1596: 1576: 1527: 1501: 1484: 1468: 1451: 1423: 1415: 1374: 1366: 1309: 1282: 1262: 1221: 1211: 1170: 1160: 1119: 1109: 1065: 1055: 1031: 998: 990: 934: 879: 871: 827: 792: 757: 720: 710: 669: 661: 630: 596:"AI cracks the code of protein complexes—providing a road map for new drug targets" 567: 559: 518: 255: 137: 46: 954: 2006: 1889: 1874: 1717: 1472: 1060: 783:
Fuxreiter M (January 2012). "Fuzziness: linking regulation to protein dynamics".
548:"The origins and evolution of functional modules: lessons from protein complexes" 461: 259: 145: 1419: 482:
Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins
2189: 2072: 2049: 1910: 1632: 1165: 831: 761: 634: 451: 162:
Many protein complexes are well understood, particularly in the model organism
105: 1216: 971:"High-quality binary protein interaction map of the yeast interactome network" 2268: 2084: 2067: 1968: 1963: 1701:"Protein flexibility facilitates quaternary structure assembly and evolution" 1531: 432: 225: 173: 109: 92:
Through proximity, the speed and selectivity of binding interactions between
1149:"A complex-based reconstruction of the Saccharomyces cerevisiae interactome" 1114: 994: 715: 1793: 1736: 1685: 1650: 1588: 1455: 1437: 1388: 1323: 1274: 1235: 1184: 1133: 1079: 1012: 946: 893: 839: 804: 769: 734: 683: 665: 581: 563: 532: 365: 130: 1505: 381:
of protein complexes can be determined by experimental techniques such as
2062: 1988: 1978: 1559:
Dobson, Christopher M (December 2003). "Protein folding and misfolding".
921: 875: 69: 1775: 1580: 1200:"Using protein complexes to predict phenotypic effects of gene mutation" 2174: 2151: 1915: 796: 347: 120: 101: 1993: 938: 523: 506: 438: 296:
are an example of a homomultimeric protein composed of six identical
181: 177: 1266: 1946: 1884: 357: 297: 293: 969:
Cusick, M. E.; Moore, T; Boone, C; Snyder, M; Roth, F. P. (2008).
30: 1956: 1951: 1850: 1025: 133: 79: 34: 505:
Hartwell LH, Hopfield JJ, Leibler S, Murray AW (December 1999).
204: 2146: 2141: 2037: 1749: 320: 317: 273: 169: 93: 2231: 2226: 1344: 858:
Ryan, C. J.; Krogan, N. J.; Cunningham, P; Cagney, G (2013).
504: 209:
Transient protein complexes form and break down transiently
2124: 2119: 1819: 1146: 313: 192: 1345:
Hashimoto K, Nishi H, Bryant S, Panchenko AR (June 2011).
1248: 857: 433:
Evolutionary significance of multiprotein complex assembly
405:(FRET) efficiency in conjunction with spectrally resolved 240: 545: 1614: 906: 1663: 1401: 967: 546:
Pereira-Leal JB, Levy ED, Teichmann SA (March 2006).
356:, an RNA virus and humans. In such studies, numerous 2137:
Branched-chain alpha-keto acid dehydrogenase complex
817: 623: 2239:
Phosphoenolpyruvate sugar phosphotransferase system
1402:Bernstein, H; Edgar, RS; Denhardt, GH (June 1965). 312:When multiple copies of a polypeptide encoded by a 2036: 1752:"Assembly reflects evolution of protein complexes" 484:(3rd ed.). Oxford: Oxford University Press. 2266: 619: 617: 615: 2058:Photosynthetic reaction center complex proteins 1610: 1608: 1606: 1095: 1699:Marsh, Joseph; Teichmann, Sarah A (May 2014). 1698: 747: 647: 2022: 1835: 1197: 1096:Hart, G. T.; Lee, I; Marcotte, E. R. (2007). 696: 612: 307: 205:Transient vs permanent/stable protein complex 187: 1666:Progress in Biophysics and Molecular Biology 1603: 1544:: CS1 maint: multiple names: authors list ( 1338: 811: 479: 274:Homomultimeric and heteromultimeric proteins 1091: 1089: 1019: 853: 851: 849: 782: 776: 741: 690: 641: 539: 498: 2029: 2015: 1842: 1828: 1295: 1191: 372: 100:Examples of protein complexes include the 1812:at the U.S. National Library of Medicine 1783: 1726: 1716: 1640: 1427: 1378: 1313: 1225: 1215: 1174: 1164: 1123: 1113: 1069: 1059: 1002: 920: 900: 883: 724: 714: 673: 571: 522: 393:. Increasingly the theoretical option of 72:are found in a single polypeptide chain. 1298:"The modular nature of genetic diseases" 1242: 1140: 1086: 846: 552:Philos. Trans. R. Soc. Lond. B Biol. Sci 507:"From molecular to modular cell biology" 244: 193:Obligate vs non-obligate protein complex 119: 37:is a protein functioning as a molecular 29: 1289: 241:Essential proteins in protein complexes 14: 2267: 1558: 1198:Fraser, H. B.; Plotkin, J. B. (2007). 961: 64:. Protein complexes are distinct from 2010: 1823: 60:is a group of two or more associated 27:Type of stable macromolecular complex 648:Nooren IM, Thornton JM (July 2003). 2222:Mitochondrial trifunctional protein 1153:Molecular & Cellular Proteomics 650:"Diversity of protein interactions" 104:for molecular degradation and most 82:in a protein complex are linked by 24: 25: 2286: 1803: 437:In homomultimeric complexes, the 403:Förster resonance energy transfer 1678:10.1016/j.pbiomolbio.2014.07.004 1315:10.1111/j.1399-0004.2006.00708.x 289:voltage-gated potassium channels 220: 215:intrinsically disordered regions 176:software RoseTTAFold along with 75:Protein complexes are a form of 2180:Carbamoyl phosphate synthase II 1870:Post-translational modification 1743: 1692: 1657: 1552: 1510: 1494: 1477: 1460: 1444: 1395: 1296:Oti, M; Brunner, H. G. (2007). 180:to solve the structures of 712 2185:Aspartate carbamoyltransferase 2093:Pyruvate dehydrogenase complex 588: 473: 420:electrospray mass spectrometry 13: 1: 2217:Glycine decarboxylase complex 2212:Fatty acid synthetase complex 1489:10.1016/s0022-2836(64)80156-x 697:Brown KR, Jurisica I (2007). 467: 1849: 1718:10.1371/journal.pbio.1001870 1473:10.1016/j.bbadis.2004.10.009 1371:10.1088/1478-3975/8/3/035007 1061:10.1371/journal.pcbi.1000140 864:Genome Biology and Evolution 480:Price NC, Stevens L (1999). 87:protein–protein interactions 7: 445: 412: 115: 10: 2291: 2249:Sucrase-isomaltase complex 2115:Oxoglutarate dehydrogenase 1911:Protein structural domains 1633:10.1016/j.cell.2013.02.044 1166:10.1074/mcp.M800490-MCP200 1040:PLOS Computational Biology 832:10.1016/j.tibs.2011.04.006 762:10.1016/j.tibs.2007.10.003 635:10.1002/9780470570418.ch19 391:nuclear magnetic resonance 325:intragenic complementation 308:Intragenic complementation 188:Types of protein complexes 127:Bacillus amyloliquefaciens 2167: 2083: 2048: 1924: 1898: 1857: 1420:10.1093/genetics/51.6.987 1217:10.1186/gb-2007-8-11-r252 342:Schizosaccharomyces pombe 152:Cell compartment location 2207:Electron transport chain 1814:Medical Subject Headings 1532:10.1038/nphoton.2008.291 387:Single particle analysis 336:Saccharomyces cerevisiae 235:eukaryotic transcription 231:conformational ensembles 165:Saccharomyces cerevisiae 2197:P450-containing systems 1115:10.1186/1471-2105-8-236 1026:Zotenko, E; Mestre, J; 995:10.1126/science.1158684 716:10.1186/gb-2007-8-5-r95 395:protein–protein docking 373:Structure determination 226:Fuzzy protein complexes 158:Cell nutritional status 43:protein domain dynamics 2202:Cytochrome b6f complex 1810:Multiprotein+Complexes 1456:10.1006/viro.2002.1720 564:10.1098/rstb.2005.1807 517:(6761 Suppl): C47–52. 364:frequencies to form a 250: 141: 49: 2042:multienzyme complexes 1974:Photoreceptor protein 1506:10.1073/pnas.50.3.516 627:Evolutionary Genomics 407:two-photon microscope 383:X-ray crystallography 248: 123: 77:quaternary structure. 33: 1865:Protein biosynthesis 1255:Nature Biotechnology 666:10.1093/emboj/cdg359 629:. pp. 413–429. 457:Biomolecular complex 265:modular essentiality 68:, in which multiple 58:multiprotein complex 18:Multiprotein complex 2254:Tryptophan synthase 2244:Polyketide synthase 1776:10.1038/nature06942 1768:2008Natur.453.1262L 1581:10.1038/nature02261 1573:2003Natur.426..884D 1363:2011PhBio...8c5007H 1052:2008PLSCB...4E0140Z 987:2008Sci...322..104Y 931:2001Natur.411...41J 820:Trends Biochem. Sci 750:Trends Biochem. Sci 399:immunoprecipitation 379:molecular structure 140:(blue) in a complex 66:multidomain enzymes 1102:BMC Bioinformatics 876:10.1093/gbe/evt074 797:10.1039/c1mb05234a 302:electrical synapse 251: 142: 136:(colored) and its 62:polypeptide chains 50: 39:biological machine 2275:Protein complexes 2262: 2261: 2004: 2003: 1906:Protein structure 1880:Protein targeting 1302:Clinical Genetics 330:Neurospora crassa 281:Protein Data Bank 70:catalytic domains 16:(Redirected from 2282: 2031: 2024: 2017: 2008: 2007: 1984:Phycobiliprotein 1942:Globular protein 1937:Membrane protein 1932:List of proteins 1844: 1837: 1830: 1821: 1820: 1798: 1797: 1787: 1762:(7199): 1262–5. 1747: 1741: 1740: 1730: 1720: 1696: 1690: 1689: 1661: 1655: 1654: 1644: 1612: 1601: 1600: 1567:(6968): 884–90. 1556: 1550: 1549: 1543: 1535: 1520:Nature Photonics 1514: 1508: 1498: 1492: 1481: 1475: 1464: 1458: 1448: 1442: 1441: 1431: 1399: 1393: 1392: 1382: 1342: 1336: 1335: 1317: 1293: 1287: 1286: 1246: 1240: 1239: 1229: 1219: 1195: 1189: 1188: 1178: 1168: 1144: 1138: 1137: 1127: 1117: 1093: 1084: 1083: 1073: 1063: 1032:Przytycka, T. M. 1023: 1017: 1016: 1006: 981:(5898): 104–10. 965: 959: 958: 939:10.1038/35075138 924: 922:cond-mat/0105306 904: 898: 897: 887: 855: 844: 843: 815: 809: 808: 780: 774: 773: 745: 739: 738: 728: 718: 694: 688: 687: 677: 645: 639: 638: 621: 610: 609: 607: 606: 592: 586: 585: 575: 558:(1467): 507–17. 543: 537: 536: 526: 524:10.1038/35011540 502: 496: 495: 477: 354:bacteriophage T4 345:; the bacterium 256:yeast two-hybrid 155:Cell cycle stage 21: 2290: 2289: 2285: 2284: 2283: 2281: 2280: 2279: 2265: 2264: 2263: 2258: 2163: 2079: 2044: 2035: 2005: 2000: 1964:Fibrous protein 1920: 1894: 1890:Protein methods 1875:Protein folding 1853: 1848: 1806: 1801: 1748: 1744: 1711:(5): e1001870. 1697: 1693: 1672:(2–3): 141–50. 1662: 1658: 1613: 1604: 1557: 1553: 1537: 1536: 1515: 1511: 1499: 1495: 1491:. PMID 14149958 1482: 1478: 1465: 1461: 1449: 1445: 1414:(6): 987–1002. 1400: 1396: 1343: 1339: 1294: 1290: 1267:10.1038/nbt1295 1247: 1243: 1196: 1192: 1145: 1141: 1094: 1087: 1046:(8): e1000140. 1024: 1020: 966: 962: 905: 901: 856: 847: 816: 812: 781: 777: 746: 742: 695: 691: 660:(14): 3486–92. 646: 642: 622: 613: 604: 602: 600:www.science.org 594: 593: 589: 544: 540: 503: 499: 492: 478: 474: 470: 462:Protein subunit 448: 435: 415: 375: 310: 276: 260:essential genes 243: 223: 207: 195: 190: 146:phosphorylation 118: 106:RNA polymerases 54:protein complex 28: 23: 22: 15: 12: 11: 5: 2288: 2278: 2277: 2260: 2259: 2257: 2256: 2251: 2246: 2241: 2236: 2235: 2234: 2229: 2219: 2214: 2209: 2204: 2199: 2194: 2193: 2192: 2190:Dihydroorotase 2187: 2182: 2171: 2169: 2165: 2164: 2162: 2161: 2160: 2159: 2154: 2149: 2144: 2134: 2133: 2132: 2127: 2122: 2112: 2111: 2110: 2105: 2100: 2089: 2087: 2081: 2080: 2078: 2077: 2076: 2075: 2070: 2060: 2054: 2052: 2050:Photosynthesis 2046: 2045: 2034: 2033: 2026: 2019: 2011: 2002: 2001: 1999: 1998: 1997: 1996: 1991: 1986: 1976: 1971: 1966: 1961: 1960: 1959: 1954: 1949: 1939: 1934: 1928: 1926: 1922: 1921: 1919: 1918: 1913: 1908: 1902: 1900: 1896: 1895: 1893: 1892: 1887: 1882: 1877: 1872: 1867: 1861: 1859: 1855: 1854: 1847: 1846: 1839: 1832: 1824: 1818: 1817: 1805: 1804:External links 1802: 1800: 1799: 1742: 1691: 1656: 1627:(2): 461–470. 1602: 1551: 1526:(2): 107–113. 1509: 1493: 1476: 1459: 1443: 1394: 1337: 1288: 1241: 1204:Genome Biology 1190: 1159:(6): 1361–81. 1139: 1085: 1028:O'Leary, D. P. 1018: 960: 915:(6833): 41–2. 899: 870:(6): 1049–59. 845: 810: 775: 740: 689: 640: 611: 587: 538: 497: 490: 471: 469: 466: 465: 464: 459: 454: 452:Heterotetramer 447: 444: 434: 431: 414: 411: 374: 371: 309: 306: 275: 272: 242: 239: 222: 219: 206: 203: 194: 191: 189: 186: 160: 159: 156: 153: 117: 114: 26: 9: 6: 4: 3: 2: 2287: 2276: 2273: 2272: 2270: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2233: 2230: 2228: 2225: 2224: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2191: 2188: 2186: 2183: 2181: 2178: 2177: 2176: 2173: 2172: 2170: 2166: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2139: 2138: 2135: 2131: 2128: 2126: 2123: 2121: 2118: 2117: 2116: 2113: 2109: 2106: 2104: 2101: 2099: 2096: 2095: 2094: 2091: 2090: 2088: 2086: 2085:Dehydrogenase 2082: 2074: 2071: 2069: 2066: 2065: 2064: 2061: 2059: 2056: 2055: 2053: 2051: 2047: 2043: 2039: 2032: 2027: 2025: 2020: 2018: 2013: 2012: 2009: 1995: 1992: 1990: 1987: 1985: 1982: 1981: 1980: 1977: 1975: 1972: 1970: 1969:Chromoprotein 1967: 1965: 1962: 1958: 1955: 1953: 1950: 1948: 1945: 1944: 1943: 1940: 1938: 1935: 1933: 1930: 1929: 1927: 1923: 1917: 1914: 1912: 1909: 1907: 1904: 1903: 1901: 1897: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1862: 1860: 1856: 1852: 1845: 1840: 1838: 1833: 1831: 1826: 1825: 1822: 1815: 1811: 1808: 1807: 1795: 1791: 1786: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1746: 1738: 1734: 1729: 1724: 1719: 1714: 1710: 1706: 1702: 1695: 1687: 1683: 1679: 1675: 1671: 1667: 1660: 1652: 1648: 1643: 1638: 1634: 1630: 1626: 1622: 1618: 1611: 1609: 1607: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1555: 1547: 1541: 1533: 1529: 1525: 1521: 1513: 1507: 1503: 1497: 1490: 1486: 1480: 1474: 1470: 1463: 1457: 1453: 1447: 1439: 1435: 1430: 1425: 1421: 1417: 1413: 1409: 1405: 1398: 1390: 1386: 1381: 1376: 1372: 1368: 1364: 1360: 1357:(3): 035007. 1356: 1352: 1348: 1341: 1333: 1329: 1325: 1321: 1316: 1311: 1307: 1303: 1299: 1292: 1284: 1280: 1276: 1272: 1268: 1264: 1261:(3): 309–16. 1260: 1256: 1252: 1245: 1237: 1233: 1228: 1223: 1218: 1213: 1209: 1205: 1201: 1194: 1186: 1182: 1177: 1172: 1167: 1162: 1158: 1154: 1150: 1143: 1135: 1131: 1126: 1121: 1116: 1111: 1107: 1103: 1099: 1092: 1090: 1081: 1077: 1072: 1067: 1062: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1022: 1014: 1010: 1005: 1000: 996: 992: 988: 984: 980: 976: 972: 964: 956: 952: 948: 944: 940: 936: 932: 928: 923: 918: 914: 910: 903: 895: 891: 886: 881: 877: 873: 869: 865: 861: 854: 852: 850: 841: 837: 833: 829: 826:(8): 415–23. 825: 821: 814: 806: 802: 798: 794: 791:(1): 168–77. 790: 786: 779: 771: 767: 763: 759: 755: 751: 744: 736: 732: 727: 722: 717: 712: 708: 704: 700: 693: 685: 681: 676: 671: 667: 663: 659: 655: 651: 644: 636: 632: 628: 620: 618: 616: 601: 597: 591: 583: 579: 574: 569: 565: 561: 557: 553: 549: 542: 534: 530: 525: 520: 516: 512: 508: 501: 493: 491:0-19-850229-X 487: 483: 476: 472: 463: 460: 458: 455: 453: 450: 449: 443: 440: 430: 427: 423: 421: 410: 408: 404: 400: 396: 392: 388: 384: 380: 370: 367: 363: 362:recombination 359: 355: 351: 349: 344: 343: 338: 337: 332: 331: 326: 322: 319: 315: 305: 303: 299: 295: 290: 285: 282: 271: 268: 266: 261: 257: 247: 238: 236: 232: 227: 221:Fuzzy complex 218: 216: 212: 202: 200: 185: 183: 179: 175: 174:deep learning 171: 167: 166: 157: 154: 151: 150: 149: 147: 139: 135: 132: 129: 128: 122: 113: 111: 107: 103: 98: 95: 90: 88: 85: 81: 78: 73: 71: 67: 63: 59: 55: 48: 44: 40: 36: 32: 19: 2041: 1759: 1755: 1745: 1708: 1705:PLOS Biology 1704: 1694: 1669: 1665: 1659: 1624: 1620: 1564: 1560: 1554: 1540:cite journal 1523: 1519: 1512: 1496: 1479: 1462: 1446: 1411: 1407: 1397: 1354: 1350: 1340: 1305: 1301: 1291: 1258: 1254: 1244: 1210:(11): R252. 1207: 1203: 1193: 1156: 1152: 1142: 1105: 1101: 1043: 1039: 1021: 978: 974: 963: 912: 908: 902: 867: 863: 823: 819: 813: 788: 784: 778: 753: 749: 743: 706: 702: 692: 657: 653: 643: 626: 603:. Retrieved 599: 590: 555: 551: 541: 514: 510: 500: 481: 475: 436: 428: 424: 416: 376: 352:; the virus 346: 340: 334: 328: 311: 286: 277: 269: 264: 252: 224: 214: 210: 208: 198: 196: 163: 161: 143: 131:ribonuclease 125: 99: 91: 84:non-covalent 74: 57: 53: 51: 2063:Photosystem 1989:Phytochrome 1979:Biliprotein 1308:(1): 1–11. 785:Mol Biosyst 703:Genome Biol 366:genetic map 350:typhimurium 237:machinery. 1916:Proteasome 1899:Structures 756:(1): 2–8. 709:(5): R95. 605:2021-11-14 468:References 348:Salmonella 102:proteasome 47:nanoscales 41:. It uses 1994:Lipocalin 1858:Processes 1351:Phys Biol 439:homomeric 358:mutations 298:connexins 294:Connexons 182:eukaryote 178:AlphaFold 138:inhibitor 94:enzymatic 2269:Category 1947:Globulin 1885:Proteome 1851:Proteins 1794:18563089 1737:24866000 1686:25077409 1651:23582331 1589:14685248 1438:14337770 1408:Genetics 1389:21572178 1332:24615025 1324:17204041 1275:17344885 1236:18042286 1185:19176519 1134:17605818 1080:18670624 1034:(2008). 1013:18719252 947:11333967 894:23661563 840:21620710 805:21927770 770:18054235 735:17535438 684:12853464 582:16524839 533:10591225 446:See also 413:Assembly 116:Function 80:Proteins 2038:Enzymes 1957:Albumin 1952:Edestin 1785:2658002 1764:Bibcode 1728:4035275 1642:4009401 1597:1036192 1569:Bibcode 1429:1210828 1380:3148176 1359:Bibcode 1283:5691546 1227:2258176 1176:2690481 1125:1940025 1108:: 236. 1071:2467474 1048:Bibcode 1004:2746753 983:Bibcode 975:Science 927:Bibcode 885:3698920 726:1929159 573:1609335 321:alleles 211:in vivo 199:in vivo 134:barnase 35:Kinesin 2147:BCKDHB 2142:BCKDHA 1816:(MeSH) 1792:  1782:  1756:Nature 1735:  1725:  1684:  1649:  1639:  1595:  1587:  1561:Nature 1436:  1426:  1387:  1377:  1330:  1322:  1281:  1273:  1234:  1224:  1183:  1173:  1132:  1122:  1078:  1068:  1011:  1001:  955:258942 953:  945:  909:Nature 892:  882:  838:  803:  768:  733:  723:  682:  675:165629 672:  654:EMBO J 580:  570:  531:  511:Nature 488:  318:mutant 170:genome 2232:HADHB 2227:HADHA 2168:Other 1925:Types 1593:S2CID 1328:S2CID 1279:S2CID 951:S2CID 917:arXiv 2125:DLST 2120:OGDH 1790:PMID 1733:PMID 1682:PMID 1647:PMID 1621:Cell 1585:PMID 1546:link 1434:PMID 1385:PMID 1320:PMID 1271:PMID 1232:PMID 1181:PMID 1130:PMID 1076:PMID 1009:PMID 943:PMID 890:PMID 836:PMID 801:PMID 766:PMID 731:PMID 680:PMID 578:PMID 529:PMID 486:ISBN 377:The 339:and 314:gene 287:The 124:The 2175:CAD 2157:DLD 2152:DBT 2130:DLD 1780:PMC 1772:doi 1760:453 1723:PMC 1713:doi 1674:doi 1670:116 1637:PMC 1629:doi 1625:153 1577:doi 1565:426 1528:doi 1502:doi 1485:doi 1469:doi 1452:doi 1424:PMC 1416:doi 1375:PMC 1367:doi 1310:doi 1263:doi 1222:PMC 1212:doi 1171:PMC 1161:doi 1120:PMC 1110:doi 1066:PMC 1056:doi 999:PMC 991:doi 979:322 935:doi 913:411 880:PMC 872:doi 828:doi 793:doi 758:doi 721:PMC 711:doi 670:PMC 662:doi 631:doi 568:PMC 560:doi 556:361 519:doi 515:402 389:or 56:or 45:on 2271:: 2108:E3 2103:E2 2098:E1 2073:II 2040:: 1788:. 1778:. 1770:. 1758:. 1754:. 1731:. 1721:. 1709:12 1707:. 1703:. 1680:. 1668:. 1645:. 1635:. 1623:. 1619:. 1605:^ 1591:. 1583:. 1575:. 1563:. 1542:}} 1538:{{ 1522:. 1432:. 1422:. 1412:51 1410:. 1406:. 1383:. 1373:. 1365:. 1353:. 1349:. 1326:. 1318:. 1306:71 1304:. 1300:. 1277:. 1269:. 1259:25 1257:. 1253:. 1230:. 1220:. 1206:. 1202:. 1179:. 1169:. 1155:. 1151:. 1128:. 1118:. 1104:. 1100:. 1088:^ 1074:. 1064:. 1054:. 1042:. 1038:. 1030:; 1007:. 997:. 989:. 977:. 973:. 949:. 941:. 933:. 925:. 911:. 888:. 878:. 866:. 862:. 848:^ 834:. 824:36 822:. 799:. 787:. 764:. 754:33 752:. 729:. 719:. 705:. 701:. 678:. 668:. 658:22 656:. 652:. 614:^ 598:. 576:. 566:. 554:. 550:. 527:. 513:. 509:. 385:, 333:, 304:. 112:. 110:Ă…s 52:A 2068:I 2030:e 2023:t 2016:v 1843:e 1836:t 1829:v 1796:. 1774:: 1766:: 1739:. 1715:: 1688:. 1676:: 1653:. 1631:: 1599:. 1579:: 1571:: 1548:) 1534:. 1530:: 1524:3 1504:: 1487:: 1471:: 1454:: 1440:. 1418:: 1391:. 1369:: 1361:: 1355:8 1334:. 1312:: 1285:. 1265:: 1238:. 1214:: 1208:8 1187:. 1163:: 1157:8 1136:. 1112:: 1106:8 1082:. 1058:: 1050:: 1044:4 1015:. 993:: 985:: 957:. 937:: 929:: 919:: 896:. 874:: 868:5 842:. 830:: 807:. 795:: 789:8 772:. 760:: 737:. 713:: 707:8 686:. 664:: 637:. 633:: 608:. 584:. 562:: 535:. 521:: 494:. 20:)

Index

Multiprotein complex

Kinesin
biological machine
protein domain dynamics
nanoscales
polypeptide chains
multidomain enzymes
catalytic domains
quaternary structure.
Proteins
non-covalent
protein–protein interactions
enzymatic
proteasome
RNA polymerases
Ă…s

Bacillus amyloliquefaciens
ribonuclease
barnase
inhibitor
phosphorylation
Saccharomyces cerevisiae
genome
deep learning
AlphaFold
eukaryote
Fuzzy protein complexes
conformational ensembles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑