Knowledge

N-end rule

Source ๐Ÿ“

224:. The removal of the methionine is more efficient when the second residue is small and uncharged (for example alanine), but inefficient when it is bulky and charged such as arginine. Once the f-Met is removed, the second residue becomes the N-terminal residue and are subject to the N-end rule. Residues with middle sized side-chains such as leucine as the second residue therefore may have a short half-life. 278:. ClpS is a bacterial adaptor protein that is responsible for recognizing protein substrates via their N-terminal residues and delivering them to a protease core for degradation. This study suggests that ClpS1 is functionally similar to ClpS, also playing a role in substrate recognition via specific N-terminal residues ( 177:, positively-charged and some aliphatic and aromatic residues on the N-terminus, such as arginine, lysine, leucine, phenylalanine, tyrosine, and tryptophan, have short half-lives of around 2-minutes and are rapidly degraded. These residues (when located at the N-terminus of a protein) are referred to as 298:
were analyzed to determine the relative abundance of specific N-terminal residues. This study revealed that Alanine, Serine, Threonine, and Valine were the most abundant N-terminal residues, while Leucine, Phenylalanine, Tryptophan, and Tyrosine (all triggers for degradation in bacteria) were among
34:
of a protein determines its half-life (time after which half of the total amount of a given polypeptide is degraded). The rule applies to both eukaryotic and prokaryotic organisms, but with different strength, rules, and outcome. In eukaryotic cells, these N-terminal residues are recognized and
302:
Furthermore, an affinity assay using ClpS1 and N-terminal residues was performed to determine whether ClpS1 did indeed have specific binding partners. This study revealed that Phenylalanine and Tryptophan bind specifically to ClpS1, making them prime candidates for N-degrons in chloroplasts.
47:
and co-workers in 1986. However, only rough estimations of protein half-life can be deduced from this 'rule', as N-terminal amino acid modification can lead to variability and anomalies, whilst amino acid impact can also change from organism to organism. Other degradation signals, known as
252:
and a cyanobacterium, because chloroplasts share several features with the bacterium, including photosynthetic capabilities. The bacterial N-end rule is already well documented; it involves the Clp protease system which consists of the adaptor protein
1327:
LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, et al. (November 2005). "A protein interaction network of the malaria parasite Plasmodium falciparum".
690:
Erbse A, Schmidt R, Bornemann T, Schneider-Mergener J, Mogk A, Zahn R, et al. (February 2006). "ClpS is an essential component of the N-end rule pathway in Escherichia coli".
261:
chaperone and protease core. A similar Clp system is present in the chloroplast stroma, suggesting that the N-end rule might function similarly in chloroplasts and bacteria.
381:(leucine, phenylalanine, tyrosine and tryptophan) but also N-terminal Isoleucine and hence exhibits broad specificity (in comparison to its bacterial counterpart). 189:(arginine, lysine and in a special case methionine ). Secondary destabilising residues are modified by the attachment of a Primary destabilising residue by the 364: 275: 254: 202: 999:
Dougan DA, Micevski D, Truscott KN (January 2012). "The N-end rule pathway: from recognition by N-recognins, to destruction by AAA+proteases".
792:"Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid" 282:) like its bacterial counterpart. It is posited that upon recognition, ClpS1 binds to these substrate proteins and brings them to the ClpC 193:
leucyl/phenylalanyl-tRNA-protein transferase. All other amino acids when located at the N-terminus of a protein are referred to as
1278:"Structural insights into the inactive subunit of the apicoplast-localized caseinolytic protease complex of Plasmodium falciparum" 499:
Bachmair A, Finley D, Varshavsky A (October 1986). "In vivo half-life of a protein is a function of its amino-terminal residue".
248:
organisms that can convert light into energy. It is thought that the chloroplast developed from an endosymbiosis between a
1229:"PfClpC Is an Essential Clp Chaperone Required for Plastid Integrity and Clp Protease Stability in Plasmodium falciparum" 1134:"The Arabidopsis Chloroplast Stromal N-Terminome: Complexities of Amino-Terminal Protein Maturation and Stability" 359:
contain all of the necessary components required for a Apicoplast-localized Clp-protease, including a potential
638:"Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli" 220:(f-Met). The formyl group of this methionine is quickly removed, and the methionine itself is then removed by 216:
A complicating issue is that the first residue of bacterial proteins is normally expressed with an N-terminal
1428: 743:"Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS" 306:
Further research is currently being conducted to confirm whether the N-end rule operates in chloroplasts.
1383:"The N-end rule adaptor protein ClpS from Plasmodium falciparum exhibits broad substrate specificity" 221: 1276:
El Bakkouri M, Rathore S, Calmettes C, Wernimont AK, Liu K, Sinha D, et al. (January 2013).
1227:
Florentin A, Cobb DW, Fishburn JD, Cipriano MJ, Kim PS, Fierro MA, et al. (November 2017).
1082:"ClpS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis" 373:
ClpS is able to recognize a variety of N-terminal primary destabilizing residues, not only the
369: 355: 341: 741:
Schuenemann VJ, Kralik SM, Albrecht R, Spall SK, Truscott KN, Dougan DA, Zeth K (May 2009).
590:
Tobias JW, Shrader TE, Rocap G, Varshavsky A (November 1991). "The N-end rule in bacteria".
1336: 803: 699: 599: 508: 291: 266: 44: 464: 8: 210: 1340: 1036:"Organization, function and substrates of the essential Clp protease system in plastids" 807: 703: 603: 512: 1360: 1304: 1277: 1253: 1228: 1158: 1133: 1106: 1081: 976: 951: 885: 767: 742: 723: 662: 637: 473: 448: 429: 416: 399: 217: 826: 791: 560: 543: 201:
are specifically recognised by the bacterial N-recognin (recognition component) ClpS.
1404: 1352: 1309: 1258: 1209: 1163: 1111: 1057: 1016: 981: 929: 889: 877: 831: 772: 715: 667: 615: 565: 524: 478: 421: 360: 335: 283: 271: 258: 1080:
Nishimura K, Asakura Y, Friso G, Kim J, Oh SH, Rutschow H, et al. (June 2013).
433: 27:
through recognition of the N-terminal residue of proteins. The rule states that the
1394: 1364: 1344: 1299: 1289: 1248: 1240: 1199: 1153: 1145: 1101: 1093: 1047: 1008: 971: 963: 919: 867: 821: 811: 762: 754: 727: 707: 657: 649: 607: 555: 516: 468: 460: 411: 173: 36: 872: 855: 542:
Gonda DK, Bachmair A, Wรผnning I, Tobias JW, Lane WS, Varshavsky A (October 1989).
232:
There are several reasons why it is possible that the N-end rule functions in the
43:
thereby marking the protein for degradation. The rule was initially discovered by
1244: 1052: 1035: 1012: 796:
Proceedings of the National Academy of Sciences of the United States of America
323: 295: 245: 40: 924: 907: 1422: 241: 237: 102:-terminal residues - approximate half-life of proteins in mammalian systems 72: 1399: 1382: 1294: 1204: 1187: 816: 611: 520: 197:
and have half-lives of more than 10 hours . Proteins bearing an N-terminal
1408: 1356: 1313: 1262: 1213: 1167: 1115: 1097: 1061: 1020: 985: 933: 881: 776: 719: 671: 653: 482: 319: 206: 835: 758: 619: 569: 528: 425: 350: 330: 233: 213:, and hence ClpS delivers N-degron substrates to ClpAP for degradation. 24: 1348: 1149: 967: 711: 790:
Hirel PH, Schmitter MJ, Dessen P, Fayat G, Blanquet S (November 1989).
689: 28: 249: 1275: 636:
Ninnis RL, Spall SK, Talbo GH, Truscott KN, Dougan DA (June 2009).
236:
of plant cells as well. The first piece of evidence comes from the
326: 1326: 181:. In bacteria, destabilising residues can be further defined as 279: 190: 49: 740: 240:
which encompasses the idea that chloroplasts are derived from
1226: 1001:
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
349:
spp. (parasites causing malaria). Similar to plants, several
78:
Met, Gly, Ala, Ser, Thr, Val, Pro - > 20 hrs (stabilizing)
589: 1132:
Rowland E, Kim J, Bhuiyan NH, van Wijk KJ (November 2015).
71:-terminal residues - approximate half-life of proteins for 541: 1131: 789: 60:
The rule may operate differently in different organisms.
1079: 635: 498: 286:
of the protease core machinery to initiate degradation.
1381:
Tan JL, Ward L, Truscott KN, Dougan DA (October 2016).
1185: 205:
is as a specific adaptor protein for the ATP-dependent
998: 185:(leucine, phenylalanine, tyrosine, and tryptophan) or 1380: 1188:"N-degron specificity of chloroplast ClpS1 in plants" 446: 1040:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
87:Leu, Phe, Asp, Lys - approx. 3 min (destabilizing) 1033: 1420: 1186:Montandon C, Dougan DA, van Wijk KJ (May 2019). 1181: 1179: 1177: 1075: 1073: 1071: 901: 899: 853: 945: 943: 849: 847: 845: 400:"The N-end rule pathway of protein degradation" 270:revealed the protein ClpS1, a possible plastid 55: 1127: 1125: 544:"Universality and structure of the N-end rule" 447:Tasaki T, Sriram SM, Park KS, Kwon YT (2012). 1174: 1068: 908:"Endosymbiosis and Eukaryotic Cell Evolution" 896: 940: 842: 585: 583: 581: 579: 1122: 1034:Nishimura K, van Wijk KJ (September 2015). 1027: 992: 494: 492: 397: 1398: 1303: 1293: 1252: 1203: 1157: 1105: 1051: 975: 923: 905: 871: 825: 815: 766: 661: 576: 559: 472: 415: 84:Tyr, Gln - approx. 10 min (destabilizing) 949: 854:Bouchnak I, van Wijk KJ (October 2019). 299:the residues that were rarely detected. 489: 81:Ile, Glu - approx. 30 min (stabilizing) 1421: 1376: 1374: 465:10.1146/annurev-biochem-051710-093308 952:"Chloroplast origin and integration" 685: 683: 681: 631: 629: 1282:The Journal of Biological Chemistry 548:The Journal of Biological Chemistry 90:Arg - approx. 2 min (destabilizing) 23:is a rule that governs the rate of 13: 1371: 417:10.1046/j.1365-2443.1997.1020301.x 14: 1440: 678: 626: 367:. In vitro data demonstrate that 52:, can also be found in sequence. 187:secondary destabilising residues 1320: 1269: 1220: 856:"N-Degron Pathways in Plastids" 227: 783: 734: 535: 440: 391: 379:Primary destabilizing residues 264:Additionally, a 2013 study in 183:Primary destabilising residues 1: 906:Archibald JM (October 2015). 873:10.1016/j.tplants.2019.06.013 561:10.1016/S0021-9258(19)84762-2 453:Annual Review of Biochemistry 398:Varshavsky A (January 1997). 384: 309: 199:Primary destabilising residue 1245:10.1016/j.celrep.2017.10.081 1053:10.1016/j.bbabio.2014.11.012 1013:10.1016/j.bbamcr.2011.07.002 950:McFadden GI (January 2001). 56:Rules in different organisms 7: 166: 10: 1445: 94: 925:10.1016/j.cub.2015.07.055 449:"The N-end rule pathway" 222:methionyl aminopeptidase 63: 1400:10.1002/1873-3468.12382 1295:10.1074/jbc.M112.416560 1205:10.1002/1873-3468.13378 860:Trends in Plant Science 817:10.1073/pnas.86.21.8247 612:10.1126/science.1962196 521:10.1126/science.3018930 1098:10.1105/tpc.113.112557 654:10.1038/emboj.2009.134 179:destabilising residues 110:Met (M), Gly (G) โ†’ 30h 759:10.1038/embor.2009.62 370:Plasmodium falciparum 356:Plasmodium falciparum 353:n species, including 342:Plasmodium falciparum 234:chloroplast organelle 1429:Protein biosynthesis 292:Arabidopsis thaliana 267:Arabidopsis thaliana 238:endosymbiotic theory 195:stabilising residues 45:Alexander Varshavsky 32:-terminal amino acid 1349:10.1038/nature04104 1341:2005Natur.438..103L 1150:10.1104/pp.15.01214 968:10.1104/pp.125.1.50 808:1989PNAS...86.8247H 712:10.1038/nature04412 704:2006Natur.439..753E 604:1991Sci...254.1374T 513:1986Sci...234..179B 25:protein degradation 289:In another study, 1393:(19): 3397โ€“3406. 363:of the bacterial 336:Toxoplasma gondii 274:of the bacterial 37:ubiquitin ligases 1436: 1413: 1412: 1402: 1378: 1369: 1368: 1324: 1318: 1317: 1307: 1297: 1273: 1267: 1266: 1256: 1239:(7): 1746โ€“1756. 1224: 1218: 1217: 1207: 1183: 1172: 1171: 1161: 1138:Plant Physiology 1129: 1120: 1119: 1109: 1077: 1066: 1065: 1055: 1031: 1025: 1024: 996: 990: 989: 979: 956:Plant Physiology 947: 938: 937: 927: 903: 894: 893: 875: 851: 840: 839: 829: 819: 787: 781: 780: 770: 738: 732: 731: 687: 676: 675: 665: 642:The EMBO Journal 633: 624: 623: 598:(5036): 1374โ€“7. 587: 574: 573: 563: 554:(28): 16700โ€“12. 539: 533: 532: 507:(4773): 179โ€“86. 496: 487: 486: 476: 444: 438: 437: 419: 395: 296:stromal proteins 218:formylmethionine 174:Escherichia coli 1444: 1443: 1439: 1438: 1437: 1435: 1434: 1433: 1419: 1418: 1417: 1416: 1379: 1372: 1335:(7064): 103โ€“7. 1325: 1321: 1274: 1270: 1225: 1221: 1184: 1175: 1130: 1123: 1092:(6): 2276โ€“301. 1078: 1069: 1032: 1028: 997: 993: 948: 941: 918:(19): R911-21. 912:Current Biology 904: 897: 866:(10): 917โ€“926. 852: 843: 802:(21): 8247โ€“51. 788: 784: 739: 735: 698:(7077): 753โ€“6. 688: 679: 648:(12): 1732โ€“44. 634: 627: 588: 577: 540: 536: 497: 490: 445: 441: 396: 392: 387: 365:ClpS N-recognin 312: 250:eukaryotic cell 230: 169: 164: 97: 66: 58: 12: 11: 5: 1442: 1432: 1431: 1415: 1414: 1370: 1319: 1288:(2): 1022โ€“31. 1268: 1219: 1198:(9): 962โ€“970. 1173: 1144:(3): 1881โ€“96. 1121: 1086:The Plant Cell 1067: 1026: 991: 939: 895: 841: 782: 733: 677: 625: 575: 534: 488: 439: 404:Genes to Cells 389: 388: 386: 383: 329:found in most 324:photosynthetic 311: 308: 246:photosynthetic 229: 226: 168: 165: 163: 162: 161:Gln (Q) โ†’ 0.8h 159: 158:Arg (R) โ†’ 1.0h 156: 155:Glu (E) โ†’ 1.0h 153: 152:Phe (F) โ†’ 1.1h 150: 149:Asp (D) โ†’ 1.1h 147: 146:Cys (C) โ†’ 1.2h 144: 143:Lys (K) โ†’ 1.3h 141: 140:Asn (N) โ†’ 1.4h 138: 137:Ser (S) โ†’ 1.9h 135: 134:Tyr (Y) โ†’ 2.8h 132: 131:Trp (W) โ†’ 2.8h 129: 128:His (H) โ†’ 3.5h 126: 125:Ala (A) โ†’ 4.4h 123: 122:Leu (L) โ†’ 5.5h 120: 119:Thr (T) โ†’ 7.2h 117: 114: 111: 108: 104: 96: 93: 92: 91: 88: 85: 82: 79: 65: 62: 57: 54: 41:ubiquitination 9: 6: 4: 3: 2: 1441: 1430: 1427: 1426: 1424: 1410: 1406: 1401: 1396: 1392: 1388: 1384: 1377: 1375: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1323: 1315: 1311: 1306: 1301: 1296: 1291: 1287: 1283: 1279: 1272: 1264: 1260: 1255: 1250: 1246: 1242: 1238: 1234: 1230: 1223: 1215: 1211: 1206: 1201: 1197: 1193: 1189: 1182: 1180: 1178: 1169: 1165: 1160: 1155: 1151: 1147: 1143: 1139: 1135: 1128: 1126: 1117: 1113: 1108: 1103: 1099: 1095: 1091: 1087: 1083: 1076: 1074: 1072: 1063: 1059: 1054: 1049: 1046:(9): 915โ€“30. 1045: 1041: 1037: 1030: 1022: 1018: 1014: 1010: 1006: 1002: 995: 987: 983: 978: 973: 969: 965: 961: 957: 953: 946: 944: 935: 931: 926: 921: 917: 913: 909: 902: 900: 891: 887: 883: 879: 874: 869: 865: 861: 857: 850: 848: 846: 837: 833: 828: 823: 818: 813: 809: 805: 801: 797: 793: 786: 778: 774: 769: 764: 760: 756: 753:(5): 508โ€“14. 752: 748: 744: 737: 729: 725: 721: 717: 713: 709: 705: 701: 697: 693: 686: 684: 682: 673: 669: 664: 659: 655: 651: 647: 643: 639: 632: 630: 621: 617: 613: 609: 605: 601: 597: 593: 586: 584: 582: 580: 571: 567: 562: 557: 553: 549: 545: 538: 530: 526: 522: 518: 514: 510: 506: 502: 495: 493: 484: 480: 475: 470: 466: 462: 458: 454: 450: 443: 435: 431: 427: 423: 418: 413: 409: 405: 401: 394: 390: 382: 380: 376: 372: 371: 366: 362: 358: 357: 352: 348: 344: 343: 338: 337: 332: 328: 325: 321: 317: 307: 304: 300: 297: 294: 293: 287: 285: 281: 277: 276:ClpS recognin 273: 269: 268: 262: 260: 256: 251: 247: 243: 242:cyanobacteria 239: 235: 225: 223: 219: 214: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 175: 160: 157: 154: 151: 148: 145: 142: 139: 136: 133: 130: 127: 124: 121: 118: 115: 113:Pro (P) โ†’ 20h 112: 109: 107:Val (V)โ†’ 100h 106: 105: 103: 101: 89: 86: 83: 80: 77: 76: 75: 74: 73:S. cerevisiae 70: 61: 53: 51: 46: 42: 38: 33: 31: 26: 22: 20: 1390: 1387:FEBS Letters 1386: 1332: 1328: 1322: 1285: 1281: 1271: 1236: 1233:Cell Reports 1232: 1222: 1195: 1192:FEBS Letters 1191: 1141: 1137: 1089: 1085: 1043: 1039: 1029: 1007:(1): 83โ€“91. 1004: 1000: 994: 959: 955: 915: 911: 863: 859: 799: 795: 785: 750: 747:EMBO Reports 746: 736: 695: 691: 645: 641: 595: 591: 551: 547: 537: 504: 500: 456: 452: 442: 410:(1): 13โ€“28. 407: 403: 393: 378: 374: 368: 354: 346: 340: 334: 333:, including 315: 313: 305: 301: 290: 288: 265: 263: 231: 228:Chloroplasts 215: 198: 194: 186: 182: 178: 172: 170: 116:Ile (I)โ†’ 20h 99: 98: 68: 67: 59: 39:, mediating 35:targeted by 29: 18: 17: 15: 962:(1): 50โ€“3. 351:Apicomplexa 331:Apicomplexa 209:+ protease 459:: 261โ€“89. 385:References 377:bacterial 347:Plasmodium 345:and other 316:apicoplast 310:Apicoplast 890:196351051 284:chaperone 21:-end rule 1423:Category 1409:27588721 1357:16267556 1314:23192353 1263:29141210 1214:30953344 1168:26371235 1116:23898032 1062:25482260 1021:21781991 986:11154294 934:26439354 882:31300194 777:19373253 720:16467841 672:19440203 483:22524314 434:27736735 257:and the 167:Bacteria 1365:4401702 1337:Bibcode 1305:3542988 1254:5726808 1159:4634096 1107:3723626 977:1539323 836:2682640 804:Bibcode 768:2680879 728:4406838 700:Bibcode 663:2699360 620:1962196 600:Bibcode 592:Science 570:2506181 529:3018930 509:Bibcode 501:Science 474:3610525 426:9112437 375:classic 361:homolog 327:plastid 320:derived 280:degrons 272:homolog 95:Mammals 50:degrons 1407:  1363:  1355:  1329:Nature 1312:  1302:  1261:  1251:  1212:  1166:  1156:  1114:  1104:  1060:  1019:  984:  974:  932:  888:  880:  834:  827:298257 824:  775:  765:  726:  718:  692:Nature 670:  660:  618:  568:  527:  481:  471:  432:  424:  259:ClpA/P 191:enzyme 1361:S2CID 886:S2CID 724:S2CID 430:S2CID 318:is a 211:ClpAP 64:Yeast 1405:PMID 1353:PMID 1310:PMID 1259:PMID 1210:PMID 1164:PMID 1112:PMID 1058:PMID 1044:1847 1017:PMID 1005:1823 982:PMID 930:PMID 878:PMID 832:PMID 773:PMID 716:PMID 668:PMID 616:PMID 566:PMID 525:PMID 479:PMID 422:PMID 322:non- 255:ClpS 203:ClpS 16:The 1395:doi 1391:590 1345:doi 1333:438 1300:PMC 1290:doi 1286:288 1249:PMC 1241:doi 1200:doi 1196:593 1154:PMC 1146:doi 1142:169 1102:PMC 1094:doi 1048:doi 1009:doi 972:PMC 964:doi 960:125 920:doi 868:doi 822:PMC 812:doi 763:PMC 755:doi 708:doi 696:439 658:PMC 650:doi 608:doi 596:254 556:doi 552:264 517:doi 505:234 469:PMC 461:doi 412:doi 314:An 207:AAA 171:In 1425:: 1403:. 1389:. 1385:. 1373:^ 1359:. 1351:. 1343:. 1331:. 1308:. 1298:. 1284:. 1280:. 1257:. 1247:. 1237:21 1235:. 1231:. 1208:. 1194:. 1190:. 1176:^ 1162:. 1152:. 1140:. 1136:. 1124:^ 1110:. 1100:. 1090:25 1088:. 1084:. 1070:^ 1056:. 1042:. 1038:. 1015:. 1003:. 980:. 970:. 958:. 954:. 942:^ 928:. 916:25 914:. 910:. 898:^ 884:. 876:. 864:24 862:. 858:. 844:^ 830:. 820:. 810:. 800:86 798:. 794:. 771:. 761:. 751:10 749:. 745:. 722:. 714:. 706:. 694:. 680:^ 666:. 656:. 646:28 644:. 640:. 628:^ 614:. 606:. 594:. 578:^ 564:. 550:. 546:. 523:. 515:. 503:. 491:^ 477:. 467:. 457:81 455:. 451:. 428:. 420:. 406:. 402:. 339:, 244:, 1411:. 1397:: 1367:. 1347:: 1339:: 1316:. 1292:: 1265:. 1243:: 1216:. 1202:: 1170:. 1148:: 1118:. 1096:: 1064:. 1050:: 1023:. 1011:: 988:. 966:: 936:. 922:: 892:. 870:: 838:. 814:: 806:: 779:. 757:: 730:. 710:: 702:: 674:. 652:: 622:. 610:: 602:: 572:. 558:: 531:. 519:: 511:: 485:. 463:: 436:. 414:: 408:2 100:N 69:N 30:N 19:N

Index

protein degradation
N-terminal amino acid
ubiquitin ligases
ubiquitination
Alexander Varshavsky
degrons
S. cerevisiae
Escherichia coli
enzyme
ClpS
AAA
ClpAP
formylmethionine
methionyl aminopeptidase
chloroplast organelle
endosymbiotic theory
cyanobacteria
photosynthetic
eukaryotic cell
ClpS
ClpA/P
Arabidopsis thaliana
homolog
ClpS recognin
degrons
chaperone
Arabidopsis thaliana
stromal proteins
derived
photosynthetic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

โ†‘