Knowledge

Nanonetwork

Source 📝

685:
spreading has a deep impact in the performance of the system, for example in creating the intersymbol interference (ISI) at the receiving nanomachine. In order to detect the concentration-encoded molecular signal two detection methods named sampling-based detection (SD) and energy-based detection (ED) have been proposed. While the SD approach is based on the concentration amplitude of only one sample taken at a suitable time instant during the symbol duration, the ED approach is based on the total accumulated number of molecules received during the entire symbol duration. In order to reduce the impact of ISI a controlled pulse-width based molecular communication scheme has been analysed. The work presented in showed that it is possible to realize multilevel amplitude modulation based on ideal diffusion. A comprehensive study of pulse-based binary and sinus-based, concentration-encoded molecular communication system have also been investigated.
351: 281: 293: 672:
molecular communication, the molecules propagate through spontaneous diffusion in a fluidic medium. In this case, the molecules can be subject solely to the laws of diffusion or can also be affected by non-predictable turbulence present in the fluidic medium. Pheromonal communication, when pheromones
660:
communication through blood streams inside the human body is an example of this type of propagation. The flow-based propagation can also be realized by using carrier entities whose motion can be constrained on the average along specific paths, despite showing a random component. A good example of
684:
Based on the macroscopic theory of ideal (free) diffusion the impulse response of a unicast molecular communication channel was reported in a paper that identified that the impulse response of the ideal diffusion based molecular communication channel experiences temporal spreading. Such temporal
621:
is defined as the transmission and reception of information by means of molecules. The different molecular communication techniques can be classified according to the type of molecule propagation in walkaway-based, flow-based or diffusion-based communication.
525:
and actuation. Nanonetworks are expected to expand the capabilities of single nanomachines both in terms of complexity and range of operation by allowing them to coordinate, share and fuse information. Nanonetworks enable new applications of
554:
Classical communication paradigms need to be revised for the nanoscale. The two main alternatives for communication in the nanoscale are based either on electromagnetic communication or on molecular communication.
1139:
Moore, M.; Enomoto, A.; Nakano, T.; Egashira, R.; Suda, T.; Kayasuga, A.; Kojima, H.; Sakakibara, H.; Oiwa, K. (March 2006). "A Design of a Molecular Communication System for Nanomachines Using Molecular Motors".
594:
For the time being, two main alternatives for electromagnetic communication in the nanoscale have been envisioned. First, it has been experimentally demonstrated that is possible to receive and
587:
systems, nano-memories, logical circuitry in the nanoscale and even nano-antennas. From a communication perspective, the unique properties observed in nanomaterials will decide on the specific
1552:
Mahfuz, M.U.; Makrakis, D.; Mouftah, H.T. (15–18 August 2011). "A comprehensive study of concentration-encoded unicast molecular communication with binary pulse transmission".
1326: 1406: 1497:
Mahfuz, M.U.; Makrakis, D.; Mouftah, H.T. (8–11 May 2011). "On the characteristics of concentration-encoded multi-level amplitude modulated unicast molecular communication".
1607:
Mahfuz, M.U.; Makrakis, D.; Mouftah, H.T. (26–29 October 2011). "Transient characterization of concentration-encoded molecular communication with sinusoidal stimulation".
1278: 606:
which is able to decode an amplitude or frequency modulated wave. Second, graphene-based nano-antennas have been analyzed as potential electromagnetic radiators in the
1442:
Mahfuz, M.U.; Makrakis, D.; Mouftah, H.T. (8–11 May 2011). "Characterization of intersymbol interference in concentration-encoded unicast molecular communication".
879:
Bennewitz, R.; Crain, J. N.; Kirakosian, A.; Lin, J.L.; McChesney, J. L.; Petrovykh, D. Y.; Himpsel, F. J. (2002). "Atomic scale memory at a silicon surface".
673:
are released into a fluidic medium, such as air or water, is an example of diffusion-based architecture. Other examples of this kind of transport include
591:
for emission of electromagnetic radiation, the time lag of the emission, or the magnitude of the emitted power for a given input energy, amongst others.
1248: 1383: 1648: 1593: 1538: 1483: 1837: 92: 1337: 1015: 1417: 1857: 323: 480: 1801: 1155:
Gregori, M.; Akyildiz, Ian F. (May 2010). "A New NanoNetwork Architecture using Flagellated Bacteria and Catalytic Nanomotors".
1270: 1569: 1514: 1459: 196: 45: 1092: 774:
Rutherglen, C.; Burke, P. J. (2009). "Nano-Electromagnetics: Circuit and Electromagnetic Properties of Carbon Nanotubes".
934: 1123: 1624: 1309: 932:
Burke, Peter J.; Li, Shengdong; Yu, Zhen (2006). "Quantitative theory of nanowire and nanotube antenna performance".
758: 1841: 1817: 629:
molecular communication, the molecules propagate through pre-defined pathways by using carrier substances, such as
191: 809:
Curtright, A. E.; Bouwman, P. J.; Wartane, R. C.; Swider-Lyons, K. E. (2004). "Power Sources for Nanotechnology".
1190:
Parcerisa, L.; Akyildiz, Ian F. (November 2009). "Molecular Communication Options for Long Range Nanonetworks".
1807: 1609:
Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies
68: 1902: 1787: 1777: 588: 219: 316: 97: 1851: 473: 229: 171: 1767: 1662:
Akyildiz, Ian F.; Brunetti, F.; Blazquez, C. (June 2008). "Nanonetworks: A New Communication Paradigm".
1907: 1757: 432: 1847: 1363: 1228: 564: 427: 55: 50: 40: 1881: 365: 243: 143: 64: 1762: 1414:
Proc. 4th International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-2011)
1407:"On the Detection of Binary Concentration-Encoded Unicast Molecular Communication in Nanonetworks" 1334:
Proc. 3rd International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-2010)
1897: 1364:"On the characterization of binary concentration-encoded molecular communication in nanonetworks" 844:
Wang, Z. L. (2008). "Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics".
618: 454: 309: 214: 148: 134: 23: 714:
J. M. Jornet and M. Pierobon (November 2011). "Nanonetworks: A New Frontier in Communications".
350: 1872: 466: 1689:
Akyildiz, Ian F.; Jornet, J. M. (June 2010). "Electromagnetic Wireless Nanosensor Networks".
1229:"Ca2+-signaling-based molecular communication systems: design and future research directions" 1081:
Proc. Of EUCAP 2010, Fourth European Conference on Antennas and Propagation, Barcelona, Spain
576: 444: 412: 375: 267: 1821: 1142:
Proc. Fourth Annual IEEE Conference on Pervasive Computing and Communications and Workshops
1077:"Graphene-based Nano-antennas for Electromagnetic Nanocommunications in the Terahertz Band" 953: 898: 818: 390: 380: 176: 87: 988: 8: 535: 252: 224: 957: 902: 822: 1733: 1642: 1630: 1587: 1575: 1532: 1520: 1477: 1465: 1172: 1057: 1007: 969: 943: 914: 888: 861: 731: 385: 153: 1831: 1620: 1565: 1510: 1455: 1305: 1119: 1084: 1040:
Atakan, B.; Akan, O. (June 2010). "Carbon nanotube-based nanoscale ad hoc networks".
910: 791: 754: 735: 695:
IEEE P1906.1 Recommended Practice for Nanoscale and Molecular Communication Framework
674: 584: 439: 370: 297: 1579: 1469: 1176: 1061: 1011: 918: 865: 579:
have opened the door to a new generation of electronic nanoscale components such as
1737: 1725: 1698: 1671: 1634: 1612: 1557: 1524: 1502: 1447: 1375: 1240: 1207: 1199: 1164: 1049: 999: 973: 961: 906: 853: 826: 783: 723: 630: 422: 339: 262: 1858:
P1906.1 – Recommended Practice for Nanoscale and Molecular Communication Framework
1811: 1702: 1675: 1379: 1244: 1203: 603: 181: 162: 120: 1854:
Emerging Technical Subcommittee on Nanoscale, Molecular, and Quantum Networking.
1716:
Akyildiz, Ian F.; Jornet, J. M. (December 2010). "The Internet of Nano-Things".
1506: 1451: 1076: 678: 607: 539: 527: 417: 285: 186: 82: 31: 1772: 1561: 1053: 965: 1891: 1758:
IEEE Communications Society Best Readings in Nanoscale Communication Networks
1729: 1168: 1088: 830: 580: 568: 234: 205: 106: 1867: 1616: 1327:"Characterization of Molecular Communication Channel for Nanoscale Networks" 727: 1873:
A simulation tool for nanoscale biological networks – Elsevier presentation
1791: 1781: 1499:
2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE)
1444:
2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE)
857: 795: 787: 694: 543: 518: 502: 405: 395: 257: 125: 77: 513:
at most in size) which are able to perform only very simple tasks such as
948: 893: 1862: 1212: 653: 638: 595: 531: 510: 1003: 280: 662: 649: 633:. This type of molecular communication can also be achieved by using 599: 514: 506: 115: 808: 657: 449: 292: 634: 1405:
Mahfuz, M.U.; Makrakis, D.; Mouftah, H.T. (26–29 January 2011).
1113: 572: 1325:
Mahfuz, M.U.; Makrakis, D.; Mouftah, H. (20–23 January 2010).
522: 713: 1797: 878: 400: 1877: 1138: 1788:
GRANET Project – Broadband Wireless Networking Laboratory
1778:
MONACO Project – Broadband Wireless Networking Laboratory
1554:
2011 11th IEEE International Conference on Nanotechnology
648:
molecular communication, the molecules propagate through
1827: 1661: 994:. In Lakhtakia, Akhlesh; Maksimenko, Sergey A (eds.). 1606: 1551: 1496: 1441: 1404: 1361: 1324: 987:
Burke, Peter J.; Rutherglen, Chris; Yu, Zhen (2006).
563:
This is defined as the transmission and reception of
542:
applications. Nanoscale communication is defined in
1362:Mahfuz, M.U.; Makrakis, D.; Mouftah, H.T. (2010). 1763:Stack Exchange Page for Q&A on NanoNetworking 1189: 986: 538:research, military technology and industrial and 16:A computing network of nanomachines, at nanoscale 1889: 1157:IEEE Journal on Selected Areas in Communications 1154: 773: 1868:Nano Communication Networks (Elsevier) Journal 1715: 1688: 1075:Jornet, J. M.; Akyildiz, Ian F. (April 2010). 1074: 1501:. Niagara Falls, ON. pp. 000312–000316. 1446:. Niagara Falls, ON. pp. 000164–000168. 474: 317: 1114:T. Nakano; A. Eckford; T. Haraguchi (2013). 1556:. Portland, Oregon, USA. pp. 227–232. 549: 1773:Instructions to join P1906.1 Working Group 1647:: CS1 maint: location missing publisher ( 1592:: CS1 maint: location missing publisher ( 1537:: CS1 maint: location missing publisher ( 1482:: CS1 maint: location missing publisher ( 1336:. Valencia, Spain: 327–332. Archived from 1271:"The challenge of molecular communication" 1263: 1039: 602:, i.e., an electromechanically resonating 481: 467: 324: 310: 1211: 947: 931: 892: 811:International Journal of Nanotechnology 1890: 1416:. Rome, Italy: 446–449. Archived from 1386:from the original on 24 September 2015 1275:Technology Review (Physics ArXiv Blog) 1226: 598:an electromagnetic wave by means of a 665:long range molecular communications. 1863:IEEE 802.15 Terahertz Interest Group 1802:Universitat Politècnica de Catalunya 1299: 1281:from the original on 20 January 2021 1095:from the original on 19 January 2018 843: 748: 1878:NanoNetworking Research Group (NRG) 1818:Research on Molecular Communication 935:IEEE Transactions on Nanotechnology 652:in a fluidic medium whose flow and 13: 1798:NaNoNetworking Center in Catalunya 1611:. Barcelona, Spain. pp. 1–6. 1251:from the original on 23 April 2024 998:. Vol. 6328. p. 632806. 558: 14: 1919: 1751: 1021:from the original on 10 June 2021 1842:University of California, Irvine 1808:Molecular communication research 1768:Nanoscale Networking in Industry 751:Nanoscale Communication Networks 656:are guided and predictable. The 349: 291: 279: 192:Semiconductor device fabrication 1838:Wiki on Molecular Communication 1709: 1682: 1655: 1600: 1545: 1490: 1435: 1398: 1355: 1318: 1293: 1220: 1183: 1148: 1132: 1107: 1068: 567:from components based on novel 1304:. Princeton University Press. 1118:. Cambridge University Press. 1033: 980: 925: 872: 837: 802: 767: 742: 707: 1: 1804:, Barcelona, Catalunya, Spain 846:Advanced Functional Materials 700: 220:Scanning tunneling microscope 1828:Intelligence Networking Lab. 1718:IEEE Wireless Communications 1703:10.1016/j.nancom.2010.04.001 1676:10.1016/j.comnet.2008.04.001 1380:10.1016/j.nancom.2011.01.001 1245:10.1016/j.nancom.2017.02.001 1204:10.1016/j.comnet.2009.08.001 1042:IEEE Communications Magazine 613: 197:Semiconductor scale examples 7: 1852:IEEE Communications Society 1691:Nano Communication Networks 1368:Nano Communication Networks 1233:Nano Communication Networks 688: 501:is a set of interconnected 230:Super resolution microscopy 172:Molecular scale electronics 10: 1924: 1507:10.1109/CCECE.2011.6030462 1452:10.1109/CCECE.2011.6030431 989:"Carbon Nanotube Antennas" 911:10.1088/0957-4484/13/4/312 1562:10.1109/NANO.2011.6144554 1054:10.1109/MCOM.2010.5473874 966:10.1109/TNANO.2006.877430 716:Communications of the ACM 571:. Recent advancements in 565:electromagnetic radiation 1730:10.1109/MWC.2010.5675779 1169:10.1109/JSAC.2010.100510 831:10.1504/IJNT.2004.003726 677:among cells, as well as 550:Communication approaches 433:Municipal wireless (MWN) 244:Molecular nanotechnology 144:Self-assembled monolayer 1617:10.1145/2093698.2093712 1302:Random Walks in Biology 1116:Molecular Communication 728:10.1145/2018396.2018417 619:Molecular communication 505:(devices a few hundred 455:Interplanetary Internet 215:Atomic force microscopy 149:Supramolecular assembly 135:Molecular self-assembly 1794:, Atlanta, Georgia, US 1784:, Atlanta, Georgia, US 1227:Barros, M. T. (2017). 858:10.1002/adfm.200800541 788:10.1002/smll.200800527 661:this case is given by 577:molecular electronics 298:Technology portal 268:Molecular engineering 1903:Network architecture 1822:University of Ottawa 1343:on 20 September 2015 749:Bush, S. F. (2010). 177:Molecular logic gate 88:Green nanotechnology 1882:Boğaziçi University 1300:Berg, H.C. (1993). 958:2006ITNan...5..314B 903:2002Nanot..13..499B 823:2004IJNT....1..226C 253:Molecular assembler 225:Electron microscope 1884:, Istanbul, Turkey 428:Metropolitan (MAN) 286:Science portal 154:DNA nanotechnology 1908:Computer networks 1832:Yonsei University 1814:, Toronto, Canada 1670:(12): 2260–2279. 1664:Computer Networks 1571:978-1-4577-1516-7 1516:978-1-4244-9788-1 1461:978-1-4244-9788-1 1198:(16): 2753–2766. 1192:Computer Networks 1004:10.1117/12.678970 852:(22): 3553–3567. 675:calcium signaling 585:energy harvesting 499:nanoscale network 491: 490: 334: 333: 1915: 1844:, California, US 1824:, Ottawa, Canada 1742: 1741: 1713: 1707: 1706: 1686: 1680: 1679: 1659: 1653: 1652: 1646: 1638: 1604: 1598: 1597: 1591: 1583: 1549: 1543: 1542: 1536: 1528: 1494: 1488: 1487: 1481: 1473: 1439: 1433: 1432: 1430: 1428: 1422: 1411: 1402: 1396: 1395: 1393: 1391: 1359: 1353: 1352: 1350: 1348: 1342: 1331: 1322: 1316: 1315: 1297: 1291: 1290: 1288: 1286: 1277:. 28 June 2010. 1267: 1261: 1260: 1258: 1256: 1224: 1218: 1217: 1215: 1187: 1181: 1180: 1152: 1146: 1145: 1136: 1130: 1129: 1111: 1105: 1104: 1102: 1100: 1072: 1066: 1065: 1037: 1031: 1030: 1028: 1026: 1020: 993: 984: 978: 977: 951: 949:cond-mat/0408418 929: 923: 922: 896: 894:cond-mat/0204251 876: 870: 869: 841: 835: 834: 806: 800: 799: 771: 765: 764: 753:. Artech House. 746: 740: 739: 711: 681:among bacteria. 631:molecular motors 483: 476: 469: 366:Near-field (NFC) 353: 340:Computer network 336: 335: 326: 319: 312: 296: 295: 284: 283: 263:Mechanosynthesis 121:Carbon nanotubes 19: 18: 1923: 1922: 1918: 1917: 1916: 1914: 1913: 1912: 1888: 1887: 1812:York University 1754: 1748: 1746: 1745: 1714: 1710: 1687: 1683: 1660: 1656: 1640: 1639: 1627: 1605: 1601: 1585: 1584: 1572: 1550: 1546: 1530: 1529: 1517: 1495: 1491: 1475: 1474: 1462: 1440: 1436: 1426: 1424: 1423:on 10 June 2021 1420: 1409: 1403: 1399: 1389: 1387: 1360: 1356: 1346: 1344: 1340: 1329: 1323: 1319: 1312: 1298: 1294: 1284: 1282: 1269: 1268: 1264: 1254: 1252: 1225: 1221: 1188: 1184: 1153: 1149: 1137: 1133: 1126: 1112: 1108: 1098: 1096: 1073: 1069: 1038: 1034: 1024: 1022: 1018: 996:Nanomodeling II 991: 985: 981: 930: 926: 877: 873: 842: 838: 807: 803: 772: 768: 761: 747: 743: 712: 708: 703: 691: 670:diffusion-based 616: 604:carbon nanotube 561: 559:Electromagnetic 552: 487: 396:Wireless (WLAN) 343: 330: 290: 278: 182:Nanolithography 163:Nanoelectronics 51:Popular culture 17: 12: 11: 5: 1921: 1911: 1910: 1905: 1900: 1898:Nanotechnology 1886: 1885: 1875: 1870: 1865: 1860: 1855: 1845: 1835: 1825: 1815: 1805: 1795: 1785: 1775: 1770: 1765: 1760: 1753: 1752:External links 1750: 1744: 1743: 1708: 1681: 1654: 1625: 1599: 1570: 1544: 1515: 1489: 1460: 1434: 1397: 1374:(4): 289–300. 1354: 1317: 1310: 1292: 1262: 1219: 1182: 1163:(4): 612–619. 1147: 1131: 1125:978-1107023086 1124: 1106: 1067: 1048:(6): 129–135. 1032: 979: 942:(4): 314–334. 924: 887:(4): 499–502. 881:Nanotechnology 871: 836: 801: 782:(8): 884–906. 766: 759: 741: 705: 704: 702: 699: 698: 697: 690: 687: 679:quorum sensing 615: 612: 608:terahertz band 560: 557: 551: 548: 540:consumer goods 528:nanotechnology 489: 488: 486: 485: 478: 471: 463: 460: 459: 458: 457: 452: 447: 442: 437: 436: 435: 425: 420: 415: 410: 409: 408: 403: 401:Virtual (VLAN) 398: 393: 383: 378: 376:Personal (PAN) 373: 368: 363: 355: 354: 346: 345: 332: 331: 329: 328: 321: 314: 306: 303: 302: 301: 300: 288: 273: 272: 271: 270: 265: 260: 255: 247: 246: 240: 239: 238: 237: 232: 227: 222: 217: 209: 208: 202: 201: 200: 199: 194: 189: 184: 179: 174: 166: 165: 159: 158: 157: 156: 151: 146: 138: 137: 131: 130: 129: 128: 123: 118: 110: 109: 103: 102: 101: 100: 95: 90: 85: 83:Nanotoxicology 80: 72: 71: 61: 60: 59: 58: 53: 48: 43: 35: 34: 32:Nanotechnology 28: 27: 26:of articles on 15: 9: 6: 4: 3: 2: 1920: 1909: 1906: 1904: 1901: 1899: 1896: 1895: 1893: 1883: 1879: 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1859: 1856: 1853: 1849: 1846: 1843: 1839: 1836: 1833: 1829: 1826: 1823: 1819: 1816: 1813: 1809: 1806: 1803: 1799: 1796: 1793: 1789: 1786: 1783: 1779: 1776: 1774: 1771: 1769: 1766: 1764: 1761: 1759: 1756: 1755: 1749: 1739: 1735: 1731: 1727: 1723: 1719: 1712: 1704: 1700: 1696: 1692: 1685: 1677: 1673: 1669: 1665: 1658: 1650: 1644: 1636: 1632: 1628: 1626:9781450309134 1622: 1618: 1614: 1610: 1603: 1595: 1589: 1581: 1577: 1573: 1567: 1563: 1559: 1555: 1548: 1540: 1534: 1526: 1522: 1518: 1512: 1508: 1504: 1500: 1493: 1485: 1479: 1471: 1467: 1463: 1457: 1453: 1449: 1445: 1438: 1419: 1415: 1408: 1401: 1385: 1381: 1377: 1373: 1369: 1365: 1358: 1339: 1335: 1328: 1321: 1313: 1311:9780691000640 1307: 1303: 1296: 1280: 1276: 1272: 1266: 1250: 1246: 1242: 1238: 1234: 1230: 1223: 1214: 1209: 1205: 1201: 1197: 1193: 1186: 1178: 1174: 1170: 1166: 1162: 1158: 1151: 1143: 1135: 1127: 1121: 1117: 1110: 1094: 1090: 1086: 1082: 1078: 1071: 1063: 1059: 1055: 1051: 1047: 1043: 1036: 1017: 1013: 1009: 1005: 1001: 997: 990: 983: 975: 971: 967: 963: 959: 955: 950: 945: 941: 937: 936: 928: 920: 916: 912: 908: 904: 900: 895: 890: 886: 882: 875: 867: 863: 859: 855: 851: 847: 840: 832: 828: 824: 820: 816: 812: 805: 797: 793: 789: 785: 781: 777: 770: 762: 760:9781608070039 756: 752: 745: 737: 733: 729: 725: 722:(11): 84–89. 721: 717: 710: 706: 696: 693: 692: 686: 682: 680: 676: 671: 666: 664: 659: 655: 651: 647: 642: 640: 636: 632: 628: 627:walkway-based 623: 620: 611: 609: 605: 601: 597: 592: 590: 586: 582: 581:nanobatteries 578: 574: 570: 569:nanomaterials 566: 556: 547: 545: 541: 537: 536:environmental 533: 529: 524: 520: 516: 512: 508: 504: 500: 496: 484: 479: 477: 472: 470: 465: 464: 462: 461: 456: 453: 451: 448: 446: 443: 441: 438: 434: 431: 430: 429: 426: 424: 421: 419: 416: 414: 411: 407: 404: 402: 399: 397: 394: 392: 391:Storage (SAN) 389: 388: 387: 384: 382: 379: 377: 374: 372: 369: 367: 364: 362: 359: 358: 357: 356: 352: 348: 347: 341: 338: 337: 327: 322: 320: 315: 313: 308: 307: 305: 304: 299: 294: 289: 287: 282: 277: 276: 275: 274: 269: 266: 264: 261: 259: 256: 254: 251: 250: 249: 248: 245: 242: 241: 236: 235:Nanotribology 233: 231: 228: 226: 223: 221: 218: 216: 213: 212: 211: 210: 207: 206:Nanometrology 204: 203: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 169: 168: 167: 164: 161: 160: 155: 152: 150: 147: 145: 142: 141: 140: 139: 136: 133: 132: 127: 126:Nanoparticles 124: 122: 119: 117: 114: 113: 112: 111: 108: 107:Nanomaterials 105: 104: 99: 96: 94: 91: 89: 86: 84: 81: 79: 76: 75: 74: 73: 70: 66: 63: 62: 57: 54: 52: 49: 47: 46:Organizations 44: 42: 39: 38: 37: 36: 33: 30: 29: 25: 21: 20: 1792:Georgia Tech 1782:Georgia Tech 1747: 1724:(6): 58–63. 1721: 1717: 1711: 1694: 1690: 1684: 1667: 1663: 1657: 1608: 1602: 1553: 1547: 1498: 1492: 1443: 1437: 1425:. Retrieved 1418:the original 1413: 1400: 1388:. Retrieved 1371: 1367: 1357: 1345:. Retrieved 1338:the original 1333: 1320: 1301: 1295: 1283:. Retrieved 1274: 1265: 1253:. Retrieved 1236: 1232: 1222: 1195: 1191: 1185: 1160: 1156: 1150: 1141: 1134: 1115: 1109: 1097:. Retrieved 1080: 1070: 1045: 1041: 1035: 1023:. Retrieved 995: 982: 939: 933: 927: 884: 880: 874: 849: 845: 839: 814: 810: 804: 779: 775: 769: 750: 744: 719: 715: 709: 683: 669: 667: 645: 643: 637:bacteria as 626: 624: 617: 593: 583:, nanoscale 562: 553: 544:IEEE P1906.1 519:data storing 503:nanomachines 498: 494: 492: 418:Campus (CAN) 360: 258:Nanorobotics 78:Nanomedicine 69:applications 1697:(1): 3–19. 1239:: 103–113. 1213:2099.1/8361 817:: 226–239. 511:micrometers 495:nanonetwork 386:Local (LAN) 187:Moore's law 1892:Categories 701:References 663:pheromonal 654:turbulence 646:flow-based 639:chemotaxis 596:demodulate 589:bandwidths 532:biomedical 507:nanometers 440:Wide (WAN) 406:Home (HAN) 116:Fullerenes 98:Regulation 1848:Home page 1643:cite book 1588:cite book 1533:cite book 1478:cite book 1255:16 August 1089:2164-3342 736:240230920 650:diffusion 614:Molecular 600:nanoradio 515:computing 509:or a few 361:Nanoscale 1580:23577179 1470:18387617 1384:Archived 1279:Archived 1249:Archived 1177:15166214 1093:Archived 1062:20768350 1016:Archived 1012:59322398 919:15150349 866:43937604 796:19358165 689:See also 658:hormonal 450:Internet 423:Backbone 413:Building 344:by scale 24:a series 22:Part of 1850:of the 1834:, Korea 1738:6919416 1635:3490172 1525:1646397 1427:10 June 1347:10 June 1285:10 June 1099:10 June 1083:: 1–5. 1025:10 June 974:2764025 954:Bibcode 899:Bibcode 819:Bibcode 635:E. coli 534:field, 530:in the 523:sensing 381:Near-me 93:Hazards 56:Outline 41:History 1736:  1633:  1623:  1578:  1568:  1523:  1513:  1468:  1458:  1308:  1175:  1122:  1087:  1060:  1010:  972:  917:  864:  794:  757:  734:  573:carbon 65:Impact 1734:S2CID 1631:S2CID 1576:S2CID 1521:S2CID 1466:S2CID 1421:(PDF) 1410:(PDF) 1390:6 May 1341:(PDF) 1330:(PDF) 1173:S2CID 1058:S2CID 1019:(PDF) 1008:S2CID 992:(PDF) 970:S2CID 944:arXiv 915:S2CID 889:arXiv 862:S2CID 776:Small 732:S2CID 445:Cloud 342:types 1649:link 1621:ISBN 1594:link 1566:ISBN 1539:link 1511:ISBN 1484:link 1456:ISBN 1429:2021 1392:2012 1349:2021 1306:ISBN 1287:2021 1257:2017 1120:ISBN 1101:2021 1085:ISSN 1027:2021 792:PMID 755:ISBN 575:and 371:Body 67:and 1880:at 1840:at 1830:at 1820:at 1810:at 1800:at 1790:at 1780:at 1726:doi 1699:doi 1672:doi 1613:doi 1558:doi 1503:doi 1448:doi 1376:doi 1241:doi 1208:hdl 1200:doi 1165:doi 1050:doi 1000:doi 962:doi 907:doi 854:doi 827:doi 784:doi 724:doi 668:In 644:In 625:In 497:or 1894:: 1732:. 1722:17 1720:. 1693:. 1668:52 1666:. 1645:}} 1641:{{ 1629:. 1619:. 1590:}} 1586:{{ 1574:. 1564:. 1535:}} 1531:{{ 1519:. 1509:. 1480:}} 1476:{{ 1464:. 1454:. 1412:. 1382:. 1370:. 1366:. 1332:. 1273:. 1247:. 1237:11 1235:. 1231:. 1206:. 1196:53 1194:. 1171:. 1161:28 1159:. 1091:. 1079:. 1056:. 1046:48 1044:. 1014:. 1006:. 968:. 960:. 952:. 938:. 913:. 905:. 897:. 885:13 883:. 860:. 850:18 848:. 825:. 813:. 790:. 778:. 730:. 720:54 718:. 641:. 610:. 546:. 521:, 517:, 493:A 1740:. 1728:: 1705:. 1701:: 1695:1 1678:. 1674:: 1651:) 1637:. 1615:: 1596:) 1582:. 1560:: 1541:) 1527:. 1505:: 1486:) 1472:. 1450:: 1431:. 1394:. 1378:: 1372:1 1351:. 1314:. 1289:. 1259:. 1243:: 1216:. 1210:: 1202:: 1179:. 1167:: 1144:. 1128:. 1103:. 1064:. 1052:: 1029:. 1002:: 976:. 964:: 956:: 946:: 940:5 921:. 909:: 901:: 891:: 868:. 856:: 833:. 829:: 821:: 815:1 798:. 786:: 780:5 763:. 738:. 726:: 482:e 475:t 468:v 325:e 318:t 311:v

Index

a series
Nanotechnology
History
Organizations
Popular culture
Outline
Impact
applications
Nanomedicine
Nanotoxicology
Green nanotechnology
Hazards
Regulation
Nanomaterials
Fullerenes
Carbon nanotubes
Nanoparticles
Molecular self-assembly
Self-assembled monolayer
Supramolecular assembly
DNA nanotechnology
Nanoelectronics
Molecular scale electronics
Molecular logic gate
Nanolithography
Moore's law
Semiconductor device fabrication
Semiconductor scale examples
Nanometrology
Atomic force microscopy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.