Knowledge

Near-field scanning optical microscope

Source 📝

149:, followed in 1984 by the first paper that used visible radiation for near field scanning. The near-field optical (NFO) microscope involved a sub-wavelength aperture at the apex of a metal coated sharply pointed transparent tip, and a feedback mechanism to maintain a constant distance of a few nanometers between the sample and the probe. Lewis et al. were also aware of the potential of an NFO microscope at this time. They reported first results in 1986 confirming super-resolution. In both experiments, details below 50 nm (about λ 2044: 29: 2145: 285: 1702: 277: 116:. His original idea, proposed in 1928, was based upon the usage of intense nearly planar light from an arc under pressure behind a thin, opaque metal film with a small orifice of about 100 nm. The orifice was to remain within 100 nm of the surface, and information was to be collected by point-by-point scanning. He foresaw the illumination and the detector movement being the biggest technical difficulties. 2157: 422:(SERS). This technique can be used in an apertureless shear-force NSOM setup, or by using an AFM tip coated with gold or silver. The Raman signal is found to be significantly enhanced under the AFM tip. This technique has been used to give local variations in the Raman spectra under a single-walled nanotube. A highly sensitive optoacoustic spectrometer must be used for the detection of the Raman signal. 17: 362: 261: 297:, which has a square pyramid shape with two facets coated with a metal. Such a probe has a high signal collection efficiency (>90%) and no frequency cutoff. Another alternative is "active tip" schemes, where the tip is functionalized with active light sources such as a fluorescent dye or even a light emitting diode that enables fluorescence excitation. 923: 469:. It is normally limited to surface studies; however, it can be applied for subsurface investigations within the corresponding depth of field. In shear force mode and other contact operation it is not conducive for studying soft materials. It has long scan times for large sample areas for high resolution imaging. 239:
and have intensities that drop off exponentially with distance from the object. Because of this, the detector must be placed very close to the sample in the near field zone, typically a few nanometers. As a result, near field microscopy remains primarily a surface inspection technique. The detector is then
411:
Direct local Raman NSOM is based on Raman spectroscopy. Aperture Raman NSOM is limited by very hot and blunt tips, and by long collection times. However, apertureless NSOM can be used to achieve high Raman scattering efficiency factors (around 40). Topological artifacts make it hard to implement this
82:
light is focused through an aperture with a diameter smaller than the excitation wavelength, resulting in an evanescent field (or near-field) on the far side of the aperture. When the sample is scanned at a small distance below the aperture, the optical resolution of transmitted or reflected light is
444:
The nanofocusing technique can create a nanometer-scale "white" light source at the tip apex, which can be used to illuminate a sample at near-field for spectroscopic analysis. The interband optical transitions in individual single-walled carbon nanotubes are imaged and a spatial resolution around 6
440:
method is a broadband nanoscale spectroscopy that combines apertureless NSOM with broadband illumination and FTIR detection to obtain a complete infrared spectrum at every spatial location. Sensitivity to a single molecular complex and nanoscale resolution up to 10 nm has been demonstrated with
407:
As the name implies, information is collected by spectroscopic means instead of imaging in the near field regime. Through near field spectroscopy (NFS), one can probe spectroscopically with sub-wavelength resolution. Raman SNOM and fluorescence SNOM are two of the most popular NFS techniques as they
161:
According to Abbe's theory of image formation, developed in 1873, the resolving capability of an optical component is ultimately limited by the spreading out of each image point due to diffraction. Unless the aperture of the optical component is large enough to collect all the diffracted light, the
300:
The merits of aperture and apertureless NSOM configurations can be merged in a hybrid probe design, which contains a metallic tip attached to the side of a tapered optical fiber. At visible range (400 nm to 900 nm), about 50% of the incident light can be focused to the tip apex, which is
238:
This treatment takes into account only the light diffracted into the far-field that propagates without any restrictions. NSOM makes use of evanescent or non propagating fields that exist only near the surface of the object. These fields carry the high frequency spatial information about the object
272:
Though there are many issues associated with the apertured tips (heating, artifacts, contrast, sensitivity, topology and interference among others), aperture mode remains more popular. This is primarily because apertureless mode is even more complex to set up and operate, and is not understood as
425:
Fluorescence NSOM is a highly popular and sensitive technique which makes use of fluorescence for near field imaging, and is especially suited for biological applications. The technique of choice here is apertureless back to the fiber emission in constant shear force mode. This technique uses
382:
from the returning reflected light. The scanning tip, depending upon the operation mode, is usually a pulled or stretched optical fiber coated with metal except at the tip or just a standard AFM cantilever with a hole in the center of the pyramidal tip. Standard optical detectors, such as
453:
NSOM can be vulnerable to artifacts that are not from the intended contrast mode. The most common root for artifacts in NSOM are tip breakage during scanning, striped contrast, displaced optical contrast, local far field light concentration, and topographic artifacts.
313:
Feedback mechanisms are usually used to achieve high resolution and artifact free images since the tip must be positioned within a few nanometers of the surfaces. Some of these mechanisms are constant force feedback and shear force feedback
373:
The primary components of an NSOM setup are the light source, feedback mechanism, the scanning tip, the detector and the piezoelectric sample stage. The light source is usually a laser focused into an optical fiber through a
324:
In shear force feedback mode, a tuning fork is mounted alongside the tip and made to oscillate at its resonance frequency. The amplitude is closely related to the tip-surface distance, and thus used as a feedback mechanism.
120:
also developed similar theories in 1956. He thought the moving of the pinhole or the detector when it is so close to the sample would be the most likely issue that could prevent the realization of such an instrument. It was
268:
There exist NSOM which can be operated in so-called aperture mode and NSOM for operation in a non-aperture mode. As illustrated, the tips used in the apertureless mode are very sharp and do not have a metal coating.
288:
Apertureless modes of operation: a) photon tunneling (PSTM) by a sharp transparent tip, b) PSTM by sharp opaque tip on smooth surface, and c) scanning interferometric apertureless microscopy with double
484:
utilize in-plane polarimetry to study physical properties inaccessible to near-field scanning optical microscopes including the spatial dependence of intramolecular vibrations in anisotropic molecules.
218: 1192:
Bao W, Melli M, Caselli N, Riboli F, Wiersma DS, Staffaroni M, et al. (December 2012). "Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging".
978:
Lewis AM, Isaacson M, Harootunian A, Muray A (1984). "Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures".
162:
finer aspects of the image will not correspond exactly to the object. The minimum resolution (d) for the optical component is thus limited by its aperture size, and expressed by the
430:-based dyes embedded in an appropriate resin. Edge filters are used for removal of all primary laser light. Resolution as low as 10 nm can be achieved using this technique. 1395:
Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R (August 2012). "Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution".
333:
It is possible to take advantage of the various contrast techniques available to optical microscopy through NSOM but with much higher resolution. By using the change in the
273:
well. There are five primary modes of apertured NSOM operation and four primary modes of apertureless NSOM operation. The major ones are illustrated in the next figure.
457:
In apertureless NSOM, also known as scattering-type SNOM or s-SNOM, many of these artifacts are eliminated or can be avoided by proper technique application.
433:
Near field infrared spectrometry and near-field dielectric microscopy use near-field probes to combine sub-micron microscopy with localized IR spectroscopy.
83:
limited only by the diameter of the aperture. In particular, lateral resolution of 6 nm and vertical resolution of 2–5 nm have been demonstrated.
1893: 1629: 1380:
Pollock HM, Smith DA (2002). "The use of near-field probes for vibrational spectroscopy and photothermal imaging". In Chalmers JM, Griffiths PR (eds.).
231:
for the optical component (maximum 1.3–1.4 for modern objectives with a very high magnification factor). Thus, the resolution limit is usually around λ
2087: 337:
of light or the intensity of the light as a function of the incident wavelength, it is possible to make use of contrast enhancing techniques such as
353:. It is also possible to provide contrast using the change in refractive index, reflectivity, local stress and magnetic properties amongst others. 1497:"6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source" 627:"6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source" 480:
of the scanning tip. Metallic scanning tips naturally orient the polarization state perpendicular to the sample surface. Other techniques, like
305:(TERS) at tip apex, and collect the Raman signals through the same fiber. The lens-free fiber-in-fiber-out STM-NSOM-TERS has been demonstrated. 1294:
Hoshino K, Gopal A, Glaz MS, Vanden Bout DA, Zhang X (2012). "Nanoscale fluorescence imaging with quantum dot near-field electroluminescence".
1998: 1684: 408:
allow for the identification of nanosized features with chemical contrast. Some of the common near-field spectroscopic techniques are below.
1926: 1689: 853: 1329:
Kim S, Yu N, Ma X, Zhu Y, Liu Q, Liu M, Yan R (2019). "High external-efficiency nanofocusing for lens-free near-field optical nanoscopy".
365:
Block diagram of an apertureless reflection-back-to-the-fiber NSOM setup with shear-force distance control and cross-polarization; 1:
280:
Apertured modes of operation: a) illumination, b) collection, c) illumination collection, d) reflection and e) reflection collection.
921:, Pohl DW, "optical near field scanning microscope", published 1987-04-22, issued 1982-12-27, assigned to IBM. 545:"Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide" 1672: 1622: 524: 481: 2125: 1993: 1719: 90:, chemical structure and local stress. Dynamic properties can also be studied at a sub-wavelength scale using this technique. 1159: 1106: 1062:
Harootunian A, Betzig E, Isaacson M, Lewis A (1986). "Super-resolution fluorescence near-field scanning optical microscopy".
108:
is given credit for conceiving and developing the idea for an imaging instrument that would image by exciting and collecting
1152:
Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces
172: 1597: 2161: 2092: 1801: 1796: 1781: 1744: 1667: 1552:
Ocelic N, Huber A, Hillenbrand R (2006-09-04). "Pseudoheterodyne detection for background-free near-field spectroscopy".
419: 113: 2183: 2028: 2008: 1657: 1615: 350: 1243:
Michaelis J, Hettich C, Mlynek J, Sandoghdar V (May 2000). "Optical microscopy using a single-molecule light source".
247:
stage. The scanning can either be done at a constant height or with regulated height by using a feedback mechanism.
2072: 2068: 1919: 1811: 1776: 773:
Synge EH (1928). "A suggested method for extending the microscopic resolution into the ultramicroscopic region".
415: 302: 117: 2097: 1791: 1771: 1766: 1729: 1127: 163: 86:
As in optical microscopy, the contrast mechanism can be easily adapted to study different properties, such as
2193: 1734: 1679: 24:, with the diffraction of light coming from NSOM fiber probe, showing wavelength of light and the near-field. 301:
around 5 nm in radius. This hybrid probe can deliver the excitation light through the fiber to realize
137:
using microwave radiation with a wavelength of 3 cm. A line grating was resolved with a resolution of λ
1701: 2203: 2149: 1912: 1831: 1826: 2115: 1847: 1761: 134: 68: 2082: 918: 1988: 1857: 1821: 1816: 1739: 1724: 1638: 494: 346: 126: 94: 1786: 2076: 2058: 1973: 1852: 1652: 318: 146: 105: 731:"Observation of nanostructure by scanning near-field optical microscope with small sphere probe" 2018: 473: 1978: 1440:"Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy" 2188: 1983: 1806: 1438:
Amenabar I, Poly S, Nuansing W, Hubrich EH, Govyadinov AA, Huth F, et al. (2013-12-04).
392: 321:(AFM). Experiments can be performed in contact, intermittent contact, and non-contact modes. 76: 1561: 1508: 1451: 1404: 1338: 1303: 1252: 1201: 1071: 1018: 950: 876: 836: 745: 703: 648: 556: 384: 378:, a beam splitter and a coupler. The polarizer and the beam splitter would serve to remove 334: 33: 8: 2198: 2063: 2003: 1177: 1007:"Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications" 41: 1565: 1512: 1455: 1408: 1342: 1307: 1256: 1205: 1075: 1022: 954: 880: 840: 749: 707: 652: 560: 1954: 1529: 1496: 1472: 1439: 1362: 1276: 1225: 1039: 1006: 900: 671: 638: 626: 577: 544: 396: 228: 1030: 28: 1577: 1534: 1477: 1420: 1366: 1354: 1268: 1217: 1155: 1102: 1044: 991: 892: 676: 582: 504: 477: 369:
and crossed polarizers; 2: shear-force arrangement; 3: sample mount on a piezo stage.
21: 1229: 2033: 1862: 1569: 1524: 1516: 1467: 1459: 1412: 1346: 1311: 1280: 1260: 1209: 1079: 1034: 1026: 987: 958: 904: 884: 809: 782: 753: 711: 666: 656: 572: 564: 244: 87: 72: 2120: 1601: 867:
Ash EA, Nicholls G (June 1972). "Super-resolution aperture scanning microscope".
388: 294: 37: 2013: 1878: 1520: 758: 730: 661: 466: 1350: 813: 786: 2177: 2043: 1581: 1358: 694:
Dürig U, Pohl DW, Rohner F (1986). "Near-field optical scanning microscopy".
366: 1607: 1213: 1538: 1481: 1424: 1272: 1221: 1048: 1005:
Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E (January 1986).
896: 680: 586: 342: 317:
Constant force feedback mode is similar to the feedback mechanism used in
543:
Bao W, Borys NJ, Ko C, Suh J, Fan W, Thron A, et al. (August 2015).
499: 427: 379: 240: 109: 729:
Oshikane Y, Kataoka T, Okuda M, Hara S, Inoue H, Nakano M (April 2007).
1947: 1935: 1888: 1883: 1463: 1181:
The Optics Laboratory, North Carolina State University. 12 October 2007
600: 568: 130: 64: 1573: 1416: 1315: 465:
One limitation is a very short working distance and extremely shallow
1904: 1754: 1264: 888: 800:
Synge EH (1932). "An application of piezoelectricity to microscopy".
715: 437: 375: 1495:
Ma X, Liu Q, Yu N, Xu D, Kim S, Liu Z, et al. (November 2021).
1083: 963: 938: 625:
Ma X, Liu Q, Yu N, Xu D, Kim S, Liu Z, et al. (November 2021).
284: 67:
technique for nanostructure investigation that breaks the far field
643: 526:
Optical Spectroscopy of Colloidal CdSe Semiconductor Nanostructures
338: 122: 16: 399:
NSOM for example, have much more stringent detector requirements.
276: 264:
Sketch of a) typical metal-coated tip, and b) sharp uncoated tip.
1242: 2023: 1662: 472:
An additional limitation is the predominant orientation of the
1061: 1004: 854:"Brief History and Simple Description of NSOM/SNOM Technology" 977: 361: 79: 1394: 260: 1437: 1293: 939:"Optical stethoscopy: Image recording with resolution λ/20" 2088:
Total internal reflection fluorescence microscopy (TIRF)
728: 605:
WITec Wissenschaftliche Instrumente und Technologie GmbH
1551: 255: 213:{\displaystyle d=0.61{\frac {\lambda _{0}}{N\!A}}\;\!} 1191: 356: 175: 32:
Comparison of photoluminescence maps recorded from a
2126:
Photo-activated localization microscopy (PALM/STORM)
395:, can be used. Highly specialized NSOM techniques, 212: 209: 201: 2175: 693: 2029:Interference reflection microscopy (IRM/RICM) 1920: 1637: 1623: 1173: 1171: 542: 1379: 1122: 1120: 1118: 936: 827:O'Keefe JA (1956). "Letters to the Editor". 738:Science and Technology of Advanced Materials 1373: 866: 826: 1927: 1913: 1630: 1616: 1328: 1168: 1145: 1143: 1141: 1139: 1137: 402: 208: 1528: 1494: 1471: 1115: 1038: 962: 757: 670: 660: 642: 624: 576: 532:(Ph.D. thesis). University of Notre Dame. 1999:Differential interference contrast (DIC) 476:state of the interrogating light in the 360: 283: 275: 259: 235:/2 for conventional optical microscopy. 27: 15: 1134: 1128:Near-Field Scanning Optical Microscopy. 917: 516: 482:anisotropic terahertz microspectroscopy 293:Some types of NSOM operation utilize a 227:is the wavelength in vacuum; NA is the 2176: 1994:Quantitative phase-contrast microscopy 1934: 1705:Typical atomic force microscopy set-up 522: 308: 57:scanning near-field optical microscopy 49:Near-field scanning optical microscopy 1908: 1611: 1149: 1131:Olympus America Inc. 12 October 2007. 1096: 971: 799: 772: 250: 2156: 2121:Stimulated emission depletion (STED) 1382:Handbook of vibrational spectroscopy 930: 141:/60. A decade later, a patent on an 420:surface enhanced Raman spectroscopy 256:Aperture and apertureless operation 145:near-field microscope was filed by 13: 1700: 1185: 357:Instrumentation and standard setup 351:differential interference contrast 153:/10) in size could be recognized. 14: 2215: 2093:Lightsheet microscopy (LSFM/SPIM) 1591: 1101:. San Francisco: Addison Wesley. 536: 2155: 2144: 2143: 2042: 1384:. Vol. 2. pp. 1472–92. 937:Pohl DW, Denk W, Lanz M (1984). 856:. Nanonics Inc. 12 October 2007. 71:by exploiting the properties of 1812:Scanning quantum dot microscopy 1604: (archived October 2, 2008) 1545: 1488: 1431: 1388: 1322: 1287: 1236: 1090: 1055: 998: 911: 860: 846: 416:Tip-enhanced Raman spectroscopy 303:tip-enhanced Raman spectroscopy 2098:Lattice light-sheet microscopy 2009:Second harmonic imaging (SHIM) 1767:Photothermal microspectroscopy 820: 793: 766: 722: 687: 618: 593: 460: 412:technique for rough surfaces. 129:who, in 1972, first broke the 1: 1031:10.1016/s0006-3495(86)83640-2 510: 992:10.1016/0304-3991(84)90201-8 448: 7: 1750:Near-field scanning optical 1720:Ballistic electron emission 488: 328: 44:(bottom). Scale bars: 1 μm. 10: 2220: 1848:Scanning probe lithography 1521:10.1038/s41467-021-27216-5 759:10.1016/j.stam.2007.02.013 696:Journal of Applied Physics 662:10.1038/s41467-021-27216-5 243:across the sample using a 100: 2184:Scanning probe microscopy 2139: 2106: 2051: 2040: 1964: 1942: 1871: 1858:Feature-oriented scanning 1840: 1822:Scanning SQUID microscopy 1817:Scanning SQUID microscope 1712: 1698: 1645: 1639:Scanning probe microscopy 1351:10.1038/s41566-019-0456-9 814:10.1080/14786443209461931 787:10.1080/14786440808564615 495:Fluorescence spectroscopy 418:(TERS) is an offshoot of 156: 127:University College London 95:scanning probe microscopy 1802:Scanning joule expansion 1797:Scanning ion-conductance 1782:Scanning electrochemical 1745:Magnetic resonance force 1154:. Heidelberg: Springer. 36:flake using NSOM with a 2059:Fluorescence microscopy 2019:Structured illumination 1974:Bright-field microscopy 1853:Dip-pen nanolithography 1598:SNOM Scan Image Gallery 1554:Applied Physics Letters 1296:Applied Physics Letters 1214:10.1126/science.1227977 1064:Applied Physics Letters 943:Applied Physics Letters 445:nm has been reported. 403:Near-field spectroscopy 319:atomic force microscopy 106:Edward Hutchinson Synge 93:NSOM/SNOM is a form of 40:(top) and conventional 2131:Near-field (NSOM/SNOM) 2069:Multiphoton microscopy 1706: 370: 290: 281: 265: 214: 45: 25: 1984:Dark-field microscopy 1807:Scanning Kelvin probe 1704: 1501:Nature Communications 1444:Nature Communications 1179:Introduction to NSOM. 919:EP patent 0112401 631:Nature Communications 549:Nature Communications 364: 287: 279: 263: 215: 31: 20:Diagram illustrating 19: 2194:Laboratory equipment 2052:Fluorescence methods 1894:Vibrational analysis 1777:Scanning capacitance 385:avalanche photodiode 173: 34:molybdenum disulfide 2083:Image deconvolution 2064:Confocal microscopy 2004:Dispersion staining 1979:Köhler illumination 1792:Scanning Hall probe 1772:Piezoresponse force 1730:Electrostatic force 1566:2006ApPhL..89j1124O 1513:2021NatCo..12.6868M 1456:2013NatCo...4.2890A 1409:2012NanoL..12.3973H 1343:2019NaPho..13..636K 1308:2012ApPhL.101d3118H 1257:2000Natur.405..325M 1206:2012Sci...338.1317B 1200:(6112): 1317–1321. 1076:1986ApPhL..49..674H 1023:1986BpJ....49..269B 1011:Biophysical Journal 955:1984ApPhL..44..651P 881:1972Natur.237..510A 841:1956JOSA...46..359. 750:2007STAdM...8..181O 708:1986JAP....59.3318D 653:2021NatCo..12.6868M 561:2015NatCo...6.7993B 309:Feedback mechanisms 42:confocal microscopy 2204:Optical microscopy 1955:Optical microscopy 1936:Optical microscopy 1735:Kelvin probe force 1707: 1680:Scanning tunneling 1464:10.1038/ncomms3890 569:10.1038/ncomms8993 523:Herzog JB (2011). 371: 291: 282: 266: 251:Modes of operation 229:numerical aperture 210: 164:Rayleigh criterion 46: 26: 2171: 2170: 2116:Diffraction limit 1902: 1901: 1574:10.1063/1.2348781 1417:10.1021/nl301159v 1316:10.1063/1.4739235 1251:(6784): 325–328. 1161:978-3-540-28405-5 1108:978-0-19-510818-7 875:(5357): 510–512. 505:Near-field optics 206: 135:diffraction limit 22:near-field optics 2211: 2159: 2158: 2147: 2146: 2109:limit techniques 2046: 1967:contrast methods 1965:Illumination and 1929: 1922: 1915: 1906: 1905: 1863:Millipede memory 1832:Scanning voltage 1827:Scanning thermal 1632: 1625: 1618: 1609: 1608: 1586: 1585: 1549: 1543: 1542: 1532: 1492: 1486: 1485: 1475: 1435: 1429: 1428: 1403:(8): 3973–3978. 1392: 1386: 1385: 1377: 1371: 1370: 1331:Nature Photonics 1326: 1320: 1319: 1291: 1285: 1284: 1265:10.1038/35012545 1240: 1234: 1233: 1189: 1183: 1175: 1166: 1165: 1150:Kaupp G (2006). 1147: 1132: 1124: 1113: 1112: 1097:Hecht E (2002). 1094: 1088: 1087: 1059: 1053: 1052: 1042: 1002: 996: 995: 975: 969: 968: 966: 934: 928: 927: 926: 922: 915: 909: 908: 889:10.1038/237510a0 864: 858: 857: 850: 844: 843: 824: 818: 817: 797: 791: 790: 770: 764: 763: 761: 735: 726: 720: 719: 716:10.1063/1.336848 691: 685: 684: 674: 664: 646: 622: 616: 615: 613: 612: 597: 591: 590: 580: 540: 534: 533: 531: 520: 219: 217: 216: 211: 207: 205: 196: 195: 186: 125:and Nicholls at 88:refractive index 73:evanescent waves 69:resolution limit 2219: 2218: 2214: 2213: 2212: 2210: 2209: 2208: 2174: 2173: 2172: 2167: 2135: 2108: 2107:Sub-diffraction 2102: 2047: 2038: 1966: 1960: 1938: 1933: 1903: 1898: 1867: 1836: 1762:Photon scanning 1708: 1696: 1685:Electrochemical 1673:Photoconductive 1641: 1636: 1602:Wayback Machine 1594: 1589: 1550: 1546: 1493: 1489: 1436: 1432: 1393: 1389: 1378: 1374: 1327: 1323: 1292: 1288: 1241: 1237: 1190: 1186: 1176: 1169: 1162: 1148: 1135: 1125: 1116: 1109: 1095: 1091: 1084:10.1063/1.97565 1060: 1056: 1003: 999: 980:Ultramicroscopy 976: 972: 964:10.1063/1.94865 935: 931: 924: 916: 912: 865: 861: 852: 851: 847: 829:J. Opt. Soc. Am 825: 821: 798: 794: 771: 767: 733: 727: 723: 692: 688: 623: 619: 610: 608: 601:"SNOM || WITec" 599: 598: 594: 541: 537: 529: 521: 517: 513: 491: 463: 451: 405: 389:photomultiplier 359: 331: 311: 295:campanile probe 258: 253: 234: 226: 197: 191: 187: 185: 174: 171: 170: 159: 152: 140: 118:John A. O'Keefe 103: 75:. In SNOM, the 38:campanile probe 12: 11: 5: 2217: 2207: 2206: 2201: 2196: 2191: 2186: 2169: 2168: 2166: 2165: 2153: 2140: 2137: 2136: 2134: 2133: 2128: 2123: 2118: 2112: 2110: 2104: 2103: 2101: 2100: 2095: 2090: 2085: 2080: 2066: 2061: 2055: 2053: 2049: 2048: 2041: 2039: 2037: 2036: 2031: 2026: 2021: 2016: 2014:4Pi microscope 2011: 2006: 2001: 1996: 1991: 1989:Phase contrast 1986: 1981: 1976: 1970: 1968: 1962: 1961: 1959: 1958: 1951: 1943: 1940: 1939: 1932: 1931: 1924: 1917: 1909: 1900: 1899: 1897: 1896: 1891: 1886: 1881: 1879:Nanotechnology 1875: 1873: 1869: 1868: 1866: 1865: 1860: 1855: 1850: 1844: 1842: 1838: 1837: 1835: 1834: 1829: 1824: 1819: 1814: 1809: 1804: 1799: 1794: 1789: 1784: 1779: 1774: 1769: 1764: 1759: 1758: 1757: 1747: 1742: 1740:Magnetic force 1737: 1732: 1727: 1725:Chemical force 1722: 1716: 1714: 1710: 1709: 1699: 1697: 1695: 1694: 1693: 1692: 1690:Spin polarized 1687: 1677: 1676: 1675: 1670: 1665: 1660: 1649: 1647: 1643: 1642: 1635: 1634: 1627: 1620: 1612: 1606: 1605: 1593: 1592:External links 1590: 1588: 1587: 1560:(10): 101124. 1544: 1487: 1430: 1387: 1372: 1337:(9): 636–643. 1321: 1286: 1235: 1184: 1167: 1160: 1133: 1114: 1107: 1089: 1054: 1017:(1): 269–279. 997: 970: 929: 910: 859: 845: 819: 792: 765: 721: 686: 617: 592: 535: 514: 512: 509: 508: 507: 502: 497: 490: 487: 467:depth of field 462: 459: 450: 447: 404: 401: 391:tube (PMT) or 358: 355: 347:phase contrast 330: 327: 310: 307: 257: 254: 252: 249: 232: 224: 221: 220: 204: 200: 194: 190: 184: 181: 178: 158: 155: 150: 138: 102: 99: 9: 6: 4: 3: 2: 2216: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2181: 2179: 2164: 2163: 2154: 2152: 2151: 2142: 2141: 2138: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2113: 2111: 2105: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2078: 2074: 2070: 2067: 2065: 2062: 2060: 2057: 2056: 2054: 2050: 2045: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1972: 1971: 1969: 1963: 1957: 1956: 1952: 1950: 1949: 1945: 1944: 1941: 1937: 1930: 1925: 1923: 1918: 1916: 1911: 1910: 1907: 1895: 1892: 1890: 1887: 1885: 1882: 1880: 1877: 1876: 1874: 1870: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1845: 1843: 1839: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1793: 1790: 1788: 1787:Scanning gate 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1763: 1760: 1756: 1753: 1752: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1717: 1715: 1711: 1703: 1691: 1688: 1686: 1683: 1682: 1681: 1678: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1655: 1654: 1651: 1650: 1648: 1644: 1640: 1633: 1628: 1626: 1621: 1619: 1614: 1613: 1610: 1603: 1599: 1596: 1595: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1548: 1540: 1536: 1531: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1491: 1483: 1479: 1474: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1434: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1391: 1383: 1376: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1332: 1325: 1317: 1313: 1309: 1305: 1302:(4): 043118. 1301: 1297: 1290: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1239: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1188: 1182: 1180: 1174: 1172: 1163: 1157: 1153: 1146: 1144: 1142: 1140: 1138: 1130: 1129: 1123: 1121: 1119: 1110: 1104: 1100: 1093: 1085: 1081: 1077: 1073: 1069: 1065: 1058: 1050: 1046: 1041: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1001: 993: 989: 985: 981: 974: 965: 960: 956: 952: 948: 944: 940: 933: 920: 914: 906: 902: 898: 894: 890: 886: 882: 878: 874: 870: 863: 855: 849: 842: 838: 834: 830: 823: 815: 811: 807: 803: 796: 788: 784: 780: 776: 769: 760: 755: 751: 747: 743: 739: 734:(free access) 732: 725: 717: 713: 709: 705: 701: 697: 690: 682: 678: 673: 668: 663: 658: 654: 650: 645: 640: 636: 632: 628: 621: 607:. Ulm Germany 606: 602: 596: 588: 584: 579: 574: 570: 566: 562: 558: 554: 550: 546: 539: 528: 527: 519: 515: 506: 503: 501: 498: 496: 493: 492: 486: 483: 479: 475: 470: 468: 458: 455: 446: 442: 439: 434: 431: 429: 423: 421: 417: 413: 409: 400: 398: 394: 390: 386: 381: 377: 368: 367:beam splitter 363: 354: 352: 348: 344: 340: 336: 326: 322: 320: 315: 306: 304: 298: 296: 286: 278: 274: 270: 262: 248: 246: 245:piezoelectric 242: 236: 230: 202: 198: 192: 188: 182: 179: 176: 169: 168: 167: 165: 154: 148: 144: 136: 132: 128: 124: 119: 115: 111: 107: 98: 96: 91: 89: 84: 81: 78: 74: 70: 66: 62: 58: 54: 50: 43: 39: 35: 30: 23: 18: 2189:Cell imaging 2160: 2148: 2130: 2077:Three-photon 1953: 1946: 1841:Applications 1749: 1653:Atomic force 1557: 1553: 1547: 1504: 1500: 1490: 1447: 1443: 1433: 1400: 1397:Nano Letters 1396: 1390: 1381: 1375: 1334: 1330: 1324: 1299: 1295: 1289: 1248: 1244: 1238: 1197: 1193: 1187: 1178: 1151: 1126: 1098: 1092: 1067: 1063: 1057: 1014: 1010: 1000: 983: 979: 973: 946: 942: 932: 913: 872: 868: 862: 848: 832: 828: 822: 805: 801: 795: 778: 774: 768: 741: 737: 724: 702:(10): 3318. 699: 695: 689: 634: 630: 620: 609:. Retrieved 604: 595: 552: 548: 538: 525: 518: 474:polarization 471: 464: 456: 452: 443: 435: 432: 424: 414: 410: 406: 372: 343:fluorescence 335:polarization 332: 323: 316: 312: 299: 292: 271: 267: 237: 222: 160: 142: 104: 92: 85: 60: 56: 52: 48: 47: 1668:Non-contact 1507:(1): 6868. 1070:(11): 674. 808:(83): 297. 781:(35): 356. 637:(1): 6868. 500:Nano-optics 461:Limitations 441:nano-FTIR. 428:merocyanine 380:stray light 289:modulation. 147:Dieter Pohl 110:diffraction 2199:Microscopy 2178:Categories 2073:Two-photon 1948:Microscope 1889:Microscopy 1884:Microscope 1658:Conductive 986:(3): 227. 949:(7): 651. 835:(5): 359. 744:(3): 181. 644:2006.04903 611:2017-04-06 511:References 478:near-field 114:near field 77:excitation 65:microscopy 1755:Nano-FTIR 1582:0003-6951 1367:256704795 1359:1749-4893 802:Phil. Mag 775:Phil. Mag 449:Artifacts 438:nano-FTIR 376:polarizer 189:λ 2150:Category 1872:See also 1663:Infrared 1539:34824270 1482:24301518 1450:: 2890. 1425:22703339 1273:10830956 1230:12220003 1222:23224550 1049:19431633 897:12635200 681:34824270 587:26269394 555:: 7993. 489:See also 339:staining 329:Contrast 241:rastered 2162:Commons 1600:at the 1562:Bibcode 1530:8617169 1509:Bibcode 1473:3863900 1452:Bibcode 1405:Bibcode 1339:Bibcode 1304:Bibcode 1281:1350535 1253:Bibcode 1202:Bibcode 1194:Science 1072:Bibcode 1040:1329633 1019:Bibcode 951:Bibcode 905:4144680 877:Bibcode 837:Bibcode 746:Bibcode 704:Bibcode 672:8617169 649:Bibcode 578:4557266 557:Bibcode 223:Here, λ 143:optical 112:in the 101:History 63:) is a 2024:Sarfus 1646:Common 1580:  1537:  1527:  1480:  1470:  1423:  1365:  1357:  1279:  1271:  1245:Nature 1228:  1220:  1158:  1105:  1099:Optics 1047:  1037:  925:  903:  895:  869:Nature 679:  669:  585:  575:  157:Theory 2034:Raman 1713:Other 1363:S2CID 1277:S2CID 1226:S2CID 901:S2CID 639:arXiv 530:(PDF) 397:Raman 80:laser 55:) or 1578:ISSN 1535:PMID 1478:PMID 1421:PMID 1355:ISSN 1269:PMID 1218:PMID 1156:ISBN 1103:ISBN 1045:PMID 893:PMID 677:PMID 583:PMID 436:The 349:and 183:0.61 131:Abbe 61:SNOM 53:NSOM 1570:doi 1525:PMC 1517:doi 1468:PMC 1460:doi 1413:doi 1347:doi 1312:doi 1300:101 1261:doi 1249:405 1210:doi 1198:338 1080:doi 1035:PMC 1027:doi 988:doi 959:doi 885:doi 873:237 810:doi 783:doi 754:doi 712:doi 667:PMC 657:doi 573:PMC 565:doi 393:CCD 133:'s 123:Ash 2180:: 2075:, 1576:. 1568:. 1558:89 1556:. 1533:. 1523:. 1515:. 1505:12 1503:. 1499:. 1476:. 1466:. 1458:. 1446:. 1442:. 1419:. 1411:. 1401:12 1399:. 1361:. 1353:. 1345:. 1335:13 1333:. 1310:. 1298:. 1275:. 1267:. 1259:. 1247:. 1224:. 1216:. 1208:. 1196:. 1170:^ 1136:^ 1117:^ 1078:. 1068:49 1066:. 1043:. 1033:. 1025:. 1015:49 1013:. 1009:. 984:13 982:. 957:. 947:44 945:. 941:. 899:. 891:. 883:. 871:. 833:46 831:. 806:13 804:. 777:. 752:. 740:. 736:. 710:. 700:59 698:. 675:. 665:. 655:. 647:. 635:12 633:. 629:. 603:. 581:. 571:. 563:. 551:. 547:. 387:, 345:, 341:, 166:: 97:. 2079:) 2071:( 1928:e 1921:t 1914:v 1631:e 1624:t 1617:v 1584:. 1572:: 1564:: 1541:. 1519:: 1511:: 1484:. 1462:: 1454:: 1448:4 1427:. 1415:: 1407:: 1369:. 1349:: 1341:: 1318:. 1314:: 1306:: 1283:. 1263:: 1255:: 1232:. 1212:: 1204:: 1164:. 1111:. 1086:. 1082:: 1074:: 1051:. 1029:: 1021:: 994:. 990:: 967:. 961:: 953:: 907:. 887:: 879:: 839:: 816:. 812:: 789:. 785:: 779:6 762:. 756:: 748:: 742:8 718:. 714:: 706:: 683:. 659:: 651:: 641:: 614:. 589:. 567:: 559:: 553:6 233:0 225:0 203:A 199:N 193:0 180:= 177:d 151:0 139:0 59:( 51:(

Index


near-field optics

molybdenum disulfide
campanile probe
confocal microscopy
microscopy
resolution limit
evanescent waves
excitation
laser
refractive index
scanning probe microscopy
Edward Hutchinson Synge
diffraction
near field
John A. O'Keefe
Ash
University College London
Abbe
diffraction limit
Dieter Pohl
Rayleigh criterion
numerical aperture
rastered
piezoelectric



campanile probe

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.