Knowledge

Neurovascular unit

Source đź“ť

527:), bradykinesia, psychiatric symptoms, and cognitive decline, all of which are accelerated through neuronal cell death. The idea that neurovascular impairments may contribute to early neuronal cell loss in Huntington’s disease has been attracting significant attention in the HD community. Reduced cerebral blood flow, increased small vessel density, and increased blood–brain barrier (BBB) permeability–all traits of neurovascular dysfunction–have been reported in both rodent and patient post-mortem tissue. Preliminary findings support that neurovascular alterations occur in Huntington's disease and may contribute to its early neuropathology. It has also been proposed that neurovascular dysregulation manifests earlier in Huntington's than other pathologies, triggering innate immune signaling and a reduction of protein levels critical for maintaining the blood–brain barrier. While neurovascular failure in HD 408:(OCT) is an imaging technique that utilizes low-coherence interferometry to generate high-resolution cross-sectional images of biological tissues. It can, thus, provide information about the microstructure and vascular network of the neurovascular unit. More specifically, OCT has been used to study cerebral blood flow dynamics, changes in vessel diameter, and blood–brain barrier integrity. It also has real-time imaging capabilities and can, thus, be effectively applied in both clinical and preclinical settings. Downsides of optical coherence tomography include limited depth penetration in highly scattering tissues and a lower resolution in increasing depth, which can limit its application in deep brain regions. 279:(ATP), which requires glucose and oxygen. These need to be delivered to areas in the brain with consistency via cerebral blood flow. In order for the brain to receive enough blood flow when in high demand, coupling occurs between neurons and CBF. Neurovascular coupling encompasses the changes in cerebral blood flow that occur in response to the level of neuronal activity. When the brain needs to exert more energy, there is an associated increase in the level of blood flow to compensate for this. The brain does not have a place where it stores energy, and, therefore, the response of blood flow has to be immediate so that crucial functions for continued life can persist. Difficulties arise when 455:
dysfunction is a feature not only of cerebrovascular pathologies, such as stroke, but also of neurodegenerative conditions, such as Alzheimer's disease. While studies are still ongoing to determine the precise effects of neurovascular failure, there is emerging evidence that neurovascular dysfunction plays a pivotal role in the degeneration of the nervous system, which contrasts the typical view that neurodegeneration is caused by intrinsic neuronal effects. The breakdown of neurovascular coupling (e.g., modulations in neuronal activity that cause changes in local blood flow) and the
370:, on the other hand, provides 3D information by scanning a focused electron beam across the sample's surface, allowing for the visualization of the topography of neurovascular unit components. Electron microscopy techniques are, thus, invaluable for studying the precise cellular and subcellular interactions within the NVU. However, it requires sample preparation involving fixation, dehydration, and staining, which can introduce artifacts, and it is not suitable for live or large-scale imaging due to its time-consuming nature. 239:
is facilitated by the neck arteries. Segmented vascular resistance, or the amount of flow control that each section of the brain maintains, is measured as the ratio of the blood pressure gradient to blood flow volume. The blood flow within the NVU is a low resistance channel that allows blood to be distributed to different parts of the body. The cells of the NVU sense the needs of neural tissue and release many different mediators that engage in signaling pathways and initiate effector systems such as the
772:
vasoconstriction. Vasomotor interneurons established contacts with local microvessels and received somatic and dendritic afferents from acetylcholine (ACh) and serotonin (5-HT) pathways, varying by interneuron subtype. Our results demonstrate the capability of specific subsets of cortical GABA interneurons to transmute neuronal signals into vascular responses and suggest that they could serve as local integrators of neurovascular coupling for subcortical vasoactive pathways.
61:(NINDS). In prior years, the importance of both neurons and cerebral vasculature was well known; however, their interconnected relationship was not. The two were long considered distinct entities which, for the most part, operated independently. Since 2001, though, the rapid increase of scientific papers citing the neurovascular unit represents the growing understanding of the interactions that occur between the brain’s cells and blood vessels. 117: 267:. Endothelial cells form the wall of the BBB, while mural cells exist on the outer surface of this layer of endothelial cells. The mural cells also have their own abluminal layer which hosts pericytes that work to maintain the permeability of the barrier, and the epithelial cells filter the amount of toxins entering. These cells connect to different segments of the vascular tree that exist within the brain. 446:(VEGF); in addition to this, the upregulation of astrocyte receptors in endothelial cells can stimulate endothelial proliferation and migration, which can dangerously increase blood–brain barrier (BBB) permeability. Ultimately, vascular dysfunction results in decreased cerebral blood flow and abnormalities in the blood–brain barrier, which poses a threat to the normal functioning of the brain. 504:
However, considering that AD seems to include a combination of vascular and neurodegenerative processes and that disruption to the vascular physiology occurs early in the disease process, targeting the vascular component may help potentially decelerate the pathologic progression of AD. Currently, only a few vascular targets have been the subject of large-scale randomised controlled trials.
167:, can, thus, measure and locate activity in the brain with precision. Imaging of the brain also allows researchers to better understand the neurovascular unit and its many complexities. Furthermore, any impediments to the function of the neurovascular system will prevent neurons from receiving the appropriate nutrients. A complete stoppage for only a few minutes, which could be caused by 499:. Destruction of the organization of the blood–brain barrier, decreased cerebral blood flow, and the establishment of an inflammatory context often result in neuronal damage since these factors promote the aggregation of β-amyloid peptide in the brain. During a review of various consortium data, it was shown that more than 30% of AD cases exhibit 422:
disease, diabetes, and/or high cholesterol), poor lifestyle choices, genetic changes during pregnancy, physical trauma, and other specific genetic characteristics are generally at higher risk. In particular, neurovascular failure can be caused by problems arising in the blood vessels, including blockages (
503:
on post-mortem examination, and almost all have evidence of cerebral amyloid angiopathy, microvascular degeneration, and white matter lesions. Despite this data, it is still insufficient to reach a pathologic diagnosis, making it unclear whether AD is a cause or a consequence of neuronal dysfunction.
238:
and the perivascular compartment, form the network of the NVU. Arterioles are made up of pial vessels and arterioles, and the perivascular compartment includes perivascular macrophages in addition to Mato, pial, and mast cells. Cerebral blood flow is a critical component of this overall system and it
1387:
Measurements of vasodilatory responses and electrophysiological recordings reveal that, in response to PGD2 application, adenosine release induces A2A receptor (A2AR)-mediated dilation of blood vessels and activation of Ventrolateral Preoptic Nucleus (VLPO) sleep-promoting neurons. Collectively, our
421:
Neurovascular failure, or neurovascular disease, refers to a range of conditions that negatively affect the function of blood vessels in the brain and spinal cord. While the exact mechanisms behind neurovascular disease are unknown, people with inherited conditions (such as a family history of heart
459:
of the NVU is commonly observed across a wide variety of neurological and psychiatric disorders, including Alzheimer’s disease. The combination of recent hypotheses and evidence suggests that the pathophysiology of the NVU may contribute to cognitive impairment and be an initiating trigger for
454:
Efficient blood supply to the brain is extremely significant to its normal functioning, and improper blood flow can lead to potentially devastating neurological consequences. Alterations of vascular regulatory mechanisms lead to brain dysfunction and disease. The emerging view is that neurovascular
108:
in a multidimensional process involving the many cells of the neurovascular unit, along with multiple signaling molecules. The interactions between the components of the NVU allow it to sense neurons' needs of oxygen and glucose and, in turn, trigger the appropriate vasodilatory or vasoconstrictive
334:
Fluorescence microscopy is a widely used imaging technique that utilizes fluorescent probes to visualize specific molecules or structures within the neurovascular unit. It allows researchers to label and track cellular components, such as neurons, astrocytes, and blood vessel markers, with high
771:
The expression of vasoactive intestinal peptide (VIP) or nitric oxide synthase (NOS) in interneurons induces dilation, while somatostatin (SOM) induces contraction. Direct perfusion of VIP and NO donors onto the slices caused microvessel dilation, whereas neuropeptide Y (NPY) and SOM induced
393:(dMRI) provides insights into the brain's structural connectivity by tracking the diffusion of water molecules in its tissue. MRI, in general, has excellent spatial resolution and can be used for both human and animal studies, making it a valuable tool for studying the neurovascular unit 381:(MRI) is a non-invasive imaging technique that uses strong magnetic fields and radio waves to generate detailed images of the brain's anatomy and function. It can provide information about blood flow, oxygenation levels, and structural characteristics of the neurovascular unit. The 464:, there is still much to be investigated, especially with respect to the effect of neurovasculature on neurological diseases; namely, whether the initiating event occurs at the neuronal level and "mobilizes" vascular response or the vascular event triggers neuronal dysfunction. 495:. There is growing support for the vascular hypothesis of AD, which posits that blood vessels are the origin for a variety of pathogenic pathways that lead to neuronal damage and AD. Vascular risk factors can result in dysregulation of the neurovascular unit and 531:
is still being tested, recent work supports clinical application. For example, immunohistological assays revealed vessel aberrations in brain tissue, establishing the early onset of such aberrations as a potential biomarker for early Huntington's diagnosis.
859:
Cerebellar stellate and Purkinje cells play distinct roles in neurovascular coupling by dilating and constricting neighboring microvessels, respectively. This highlights the specialized functions of different neuron types in regulating cerebral blood
259:(BBB), which plays an important role in maintaining the microenvironment of the brain. In addition to regulating the exit and entrance of blood, the blood–brain barrier also filters toxins that may cause inflammation, injury, and disease. The overall 32:
in order to deliver the requisite nutrients to activated neurons. The NVU addresses the brain's unique dilemma of having high energy demands yet low energy storage capacity. In order to function properly, the brain must receive substrates for energy
109:
responses. Neuronal activity as well as astrocytes can therefore participate in CNV, both by inducing vasodilation and vasoconstriction.Thus, the NVU provides the architecture behind neurovascular coupling, which connects neuronal activity to
295:
brain slices maintained in survival conditions. Ultimately, neurovascular coupling promotes brain health by moderating proper cerebral blood flow. There is still much more to be discovered about it, though; and, due to the difficulty of
45:
do not have the same ability as, for example, muscle cells, which can use up their energy reserves and refill them later; therefore, cerebral metabolism must be driven in the moment. The neurovascular unit facilitates this
247:
to increase blood flow through vasodilation or to reduce blood flow by vasoconstriction. This is recognized as a multidimensional response that operates across the cerebrovascular network as a whole.
1338:
Using infrared videomicroscopy on ex vivo brain slices, we established that glucose induces vasodilation specifically in the Ventrolateral Preoptic Nucleus (VLPO) via astrocytic release of adenosine.
397:. It has limited temporal resolution, though, and its ability to visualize finer cellular and molecular details within the neurovascular unit is relatively lower compared to microscopy techniques. 287:
and potential disorders. Furthermore, modern imaging techniques have allowed researchers to view and study cerebral blood flow in a noninvasive manner. However, imaging deep brain structures
1388:
results elucidate the PGD2 signaling pathway in the VLPO, demonstrating its role in controlling local blood flow and activating sleep-promoting neurons via astrocyte-derived adenosine.
460:
neurological manifestations of diseases such as Alzheimer's and dementia. Ultimately, despite the vast amount of current literature supporting vascular contributions to neurological
442:, signaling pathways involved in neurovascular coupling are impaired. Neuronal injury is often preceded by the expression and release of pro-angiogenic factors, such as 479:, a neurodegenerative disease with progressive impairment of behavioral and cognitive functions. Neuropathologically, there are two major indicators of Alzheimer's: 343:, researchers can simultaneously examine multiple cellular components and molecular pathways of the neurovascular unit. However, limited tissue penetration depth, 326:
also allow the NVU itself to be studied by providing visual insights into the complex interactions between neurons, glial cells, and blood vessels in the brain.
362:
provides details of the neurovascular unit at the nanometer scale by using a focused beam of electrons instead of light, enabling higher resolution imaging.
2103:
Lin CY, Hsu YH, Lin MH, Yang TH, Chen HM, Chen YC, et al. (December 2013). "Neurovascular abnormalities in humans and mice with Huntington's disease".
2600:
Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu YH, Chen HM, et al. (August 2015). "Aberrant astrocytes impair vascular reactivity in Huntington disease".
339:
offers excellent spatial resolution, allowing for detailed visualization of cellular morphology and localized molecular interactions. By using different
1863: 385:(fMRI) allows researchers to study brain activity by measuring changes in blood oxygenation associated with neural activity, thus classifying it as a 1449:
Mai-Morente SP, Marset VM, Blanco F, Isasi EE, Abudara V (May 2021). "A nuclear fluorescent dye identifies pericytes at the neurovascular unit".
100:
mechanism of homeostasis that increases blood supply to neural tissue when necessary. This mechanism controls oxygen and nutrient levels using
2230:
Soto-Rojas LO, Pacheco-Herrero M, MartĂ­nez-GĂłmez PA, Campa-CĂłrdoba BB, Apátiga-PĂ©rez R, Villegas-Rojas MM, et al. (February 2021).
263:
unit functions as a defense for the central nervous system. Encompassed within the BBB are two types of blood vessels: endothelial and
155:
The temporal and spatial link between cerebral blood flow and neuronal activity allows the former to serve as a proxy for the latter.
366:
images thin tissue sections, providing detailed information about the fine cellular structures, including synapses and organelles.
322:
The neurovascular unit enables imaging techniques to measure neuronal activity by tracking blood flow. Various other types of
2645:"Cerebrovascular and blood-brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology" 382: 160: 1697: 386: 1825:
Anagnostakou V, Ughi GJ, Puri AS, Gounis MJ (October 2021). "Optical Coherence Tomography for Neurovascular Disorders".
443: 1048:
Ahmad A, Patel V, Xiao J, Khan MM (November 2020). "The Role of Neurovascular System in Neurodegenerative Diseases".
363: 2508:
Jakel RJ, Maragos WF (June 2000). "Neuronal cell death in Huntington's disease: a potential role for dopamine".
784:
Carmignoto G, GĂłmez-Gonzalo M (May 2010). "The contribution of astrocyte signalling to neurovascular coupling".
1351: 283:
proteins are present in higher concentrations, as there is an associated increase in blood flow that leads to
2148:"Vascular contributions to cognitive impairment, clinical Alzheimer's disease, and dementia in older persons" 1290:
Scharbarg E, Daenens M, LemaĂ®tre F, Geoffroy H, Guille-Collignon M, Gallopin T, et al. (January 2016).
405: 367: 164: 492: 1350:
Scharbarg E, Walter A, Lecoin L, Gallopin T, LemaĂ®tre F, Guille-Collignon M, et al. (March 2023).
378: 2643:
Drouin-Ouellet J, Sawiak SJ, Cisbani G, LagacĂ© M, Kuan WL, Saint-Pierre M, et al. (August 2015).
2327:
Kalaria RN, Ballard C (1999). "Overlap between pathology of Alzheimer disease and vascular dementia".
574:"The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease" 176: 515:(HD) is an autosomal dominant neurodegenerative disease caused by an abnormal repetition of the CAG 2553:"Complex relationships between cerebral blood flow and brain atrophy in early Huntington's disease" 144: 2057:
Iadecola C (May 2004). "Neurovascular regulation in the normal brain and in Alzheimer's disease".
1599:"Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling" 1356:
Controls Local Blood Flow and Sleep-Promoting Neurons in the VLPO via Astrocyte-Derived Adenosine"
1243:"Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways" 733:"Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways" 930:"Neurovascular coupling in humans: Physiology, methodological advances and clinical implications" 512: 500: 256: 184: 1775:"Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy" 480: 472: 276: 244: 180: 97: 2644: 1241:
Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, et al. (October 2004).
731:
Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, et al. (October 2004).
196: 89: 874:"Vascular tone and neurovascular coupling: considerations toward an improved in vitro model" 2754: 1303: 1192:
Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H, Amatore C, et al. (June 2006).
1156: 996:
Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H, Amatore C, et al. (June 2006).
819:
Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H, Amatore C, et al. (June 2006).
516: 336: 175:, can result in permanent damage and death. Dysfunction in the NVU is also associated with 2367:"The Neurovascular Unit in Dementia: An Opinion on Current Research and Future Directions" 8: 1402:"Miniature Fluorescence Microscopy for Imaging Brain Activity in Freely-Behaving Animals" 359: 110: 29: 2758: 2433: 2174: 2147: 1307: 1194:"Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum" 1160: 998:"Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum" 821:"Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum" 2804: 2775: 2742: 2718: 2691: 2672: 2625: 2577: 2552: 2533: 2490: 2442: 2417: 2393: 2366: 2258: 2231: 2128: 2082: 2031: 2006: 1979: 1952: 1923: 1898: 1838: 1799: 1774: 1747: 1722: 1674: 1647: 1623: 1598: 1574: 1547: 1523: 1498: 1426: 1401: 1324: 1291: 1267: 1242: 1218: 1193: 1120: 1095: 1073: 1022: 997: 954: 929: 900: 873: 845: 820: 757: 732: 713: 652: 625: 598: 573: 240: 168: 140: 2521: 797: 2780: 2723: 2664: 2617: 2582: 2568: 2525: 2482: 2447: 2398: 2344: 2340: 2309: 2263: 2206: 2179: 2120: 2074: 2036: 2007:"Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease" 1984: 1928: 1842: 1804: 1752: 1679: 1628: 1579: 1528: 1476: 1431: 1378: 1329: 1272: 1223: 1174: 1125: 1077: 1065: 1027: 959: 905: 850: 801: 762: 705: 657: 603: 496: 439: 128: 2741:
Garcia FJ, Sun N, Lee H, Godlewski B, Mathys H, Galani K, et al. (March 2022).
2676: 2629: 2537: 2494: 2229: 2116: 2086: 717: 302:
research, the growing body of knowledge on neurovascular coupling relies heavily on
2770: 2762: 2713: 2703: 2656: 2609: 2572: 2564: 2517: 2474: 2437: 2429: 2388: 2378: 2336: 2299: 2253: 2243: 2169: 2159: 2132: 2112: 2066: 2026: 2018: 1974: 1964: 1918: 1910: 1834: 1794: 1786: 1742: 1734: 1669: 1659: 1618: 1614: 1610: 1569: 1559: 1518: 1510: 1466: 1458: 1421: 1413: 1370: 1319: 1311: 1262: 1258: 1254: 1213: 1209: 1205: 1164: 1115: 1107: 1057: 1017: 1013: 1009: 949: 941: 895: 885: 840: 836: 832: 793: 752: 748: 744: 695: 647: 637: 593: 585: 260: 105: 113:
and highlights the interdependence of their development, structure, and function.
2304: 2287: 2164: 2022: 1953:"Neurovascular dysfunction in vascular dementia, Alzheimer's and atherosclerosis" 1374: 589: 488: 456: 1111: 2766: 2198: 1417: 1061: 978: 344: 2708: 2383: 1969: 1738: 1564: 1471: 1400:
Chen S, Wang Z, Zhang D, Wang A, Chen L, Cheng H, et al. (October 2020).
1169: 1144: 642: 2798: 1664: 1178: 945: 890: 390: 348: 215: 172: 136: 77: 53:
The neurovascular unit was formalized as a concept in 2001, at the inaugural
1292:"Astrocyte-derived adenosine is central to the hypnogenic effect of glucose" 50:
delivery and, thus, ensures that neuronal activity can continue seamlessly.
2784: 2727: 2668: 2621: 2586: 2529: 2486: 2451: 2402: 2348: 2313: 2267: 2210: 2183: 2124: 2078: 2040: 1988: 1932: 1846: 1808: 1790: 1756: 1683: 1632: 1583: 1532: 1480: 1435: 1382: 1333: 1276: 1227: 1129: 1069: 1031: 963: 909: 854: 805: 766: 709: 661: 607: 528: 484: 323: 317: 284: 156: 101: 1914: 1899:"Pathophysiology of the neurovascular unit: disease cause or consequence?" 1514: 2418:"Huntington disease: a single-gene degenerative disorder of the striatum" 2248: 928:
Phillips AA, Chan FH, Zheng MM, Krassioukov AV, Ainslie PN (April 2016).
340: 280: 207: 148: 69: 626:"Neurovascular Coupling in Development and Disease: Focus on Astrocytes" 700: 683: 520: 435: 427: 264: 93: 73: 34: 2660: 2613: 2478: 2013:. Vascular contributions to cognitive impairment and dementia (VCID). 1462: 1315: 1043: 1041: 523:(Htt). Common features of Huntington's include involuntary movements ( 923: 921: 919: 461: 235: 227: 223: 132: 125: 121: 116: 85: 65: 2285: 2070: 1648:"Large Volume Electron Microscopy and Neural Microcircuit Analysis" 1038: 476: 431: 423: 211: 159:
techniques that directly or indirectly monitor blood flow, such as
81: 2286:
Rius-Pérez S, Tormos AM, Pérez S, Taléns-Visconti R (March 2018).
916: 2642: 304: 298: 38: 2152:
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
2011:
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
1289: 234:
with synaptic junctions for signaling. Cerebral vessels, namely
524: 351:
negatively impact the potential for long-term imaging studies.
231: 206:
The neurovascular unit is made up of vascular cells (including
42: 1773:
Fujimoto JG, Pitris C, Boppart SA, Brezinski ME (2000-01-01).
1772: 2692:"Impaired Cerebrovascular Reactivity in Huntington's Disease" 1349: 58: 25: 2690:
Chan ST, Mercaldo ND, Kwong KK, Hersch SM, Rosas HD (2021).
1497:
Sanderson MJ, Smith I, Parker I, Bootman MD (October 2014).
1448: 927: 2288:"Vascular pathology: Cause or effect in Alzheimer disease?" 2232:"The Neurovascular Unit Dysfunction in Alzheimer's Disease" 2004: 1702:
National Institute of Biomedical Imaging and Bioengineering
1496: 219: 2465:
Novak MJ, Tabrizi SJ (June 2010). "Huntington's disease".
2005:
Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV (May 2016).
1824: 1721:
Mueller BA, Lim KO, Hemmy L, Camchong J (September 2015).
1191: 995: 818: 1240: 730: 275:
Cellular processes critically rely on the production of
2743:"Single-cell dissection of the human brain vasculature" 2689: 1720: 985:. San Rafael (CA): Morgan & Claypool Life Sciences. 783: 59:
National Institute of Neurological Disorders and Stroke
2740: 1596: 438:). In response to pathogenic stimuli, such as tissue 255:
The cells of the neurovascular unit also make up the
1950: 1896: 1892: 1890: 1888: 1886: 1884: 1820: 1818: 681: 2196: 1645: 1548:"Brain Ultrastructure: Putting the Pieces Together" 449: 120:A schematic of the neurovascular unit (NVU), where 2599: 2281: 2279: 2277: 1597:Knott G, Marchman H, Wall D, Lich B (March 2008). 1047: 1881: 1815: 1492: 1490: 1399: 619: 617: 291:is challenging. Therefore, NVC can be studied on 2796: 2052: 2050: 1951:Shabir O, Berwick J, Francis SE (October 2018). 1858: 1856: 1768: 1766: 1545: 623: 567: 565: 2360: 2358: 2274: 2205:. Treasure Island (FL): StatPearls Publishing. 2145: 1723:"Diffusion MRI and its Role in Neuropsychology" 1089: 1087: 682:Muoio V, Persson PB, Sendeski MM (April 2014). 563: 561: 559: 557: 555: 553: 551: 549: 547: 545: 400: 308:techniques for imaging the neurovascular unit. 2550: 2364: 2326: 2000: 1998: 1946: 1944: 1942: 1870:. Philadelphia, PA: University of Pennsylvania 1487: 614: 2102: 2047: 1903:Journal of Cerebral Blood Flow and Metabolism 1853: 1763: 1142: 934:Journal of Cerebral Blood Flow and Metabolism 373: 88:. Together these function in the homeostatic 2551:Chen JJ, Salat DH, Rosas HD (January 2012). 2507: 2464: 2355: 1084: 677: 675: 673: 671: 542: 64:The neurovascular unit consists of neurons, 2236:International Journal of Molecular Sciences 2197:Kumar A, Sidhu J, Goyal A, Tsao JW (2023). 2098: 2096: 1995: 1939: 1552:Frontiers in Cell and Developmental Biology 1093: 979:"Chapter 5, Control of Cerebral Blood Flow" 630:Frontiers in Cell and Developmental Biology 41:–in specific areas, quantities, and times. 2329:Alzheimer Disease and Associated Disorders 1100:Cold Spring Harbor Perspectives in Biology 865: 329: 2774: 2717: 2707: 2576: 2441: 2392: 2382: 2303: 2257: 2247: 2173: 2163: 2030: 1978: 1968: 1922: 1897:Stanimirovic DB, Friedman A (July 2012). 1798: 1746: 1673: 1663: 1622: 1573: 1563: 1522: 1470: 1425: 1323: 1266: 1217: 1168: 1119: 1021: 953: 899: 889: 844: 756: 699: 684:"The neurovascular unit - concept review" 668: 651: 641: 597: 270: 2415: 2093: 2056: 571: 416: 411: 201: 115: 976: 507: 96:. Cerebral hyperaemia is a fundamental 2797: 1646:Kubota Y, Sohn J, Kawaguchi Y (2018). 871: 624:Stackhouse TL, Mishra A (2021-07-12). 467: 354: 250: 1143:Pasley BN, Freeman RD (2008-03-11). 491:, or around blood vessels, known as 487:peptide (Aβ) in the brain, known as 387:blood-oxygen-level-dependent imaging 2146:Kapasi A, Schneider JA (May 2016). 13: 2422:Dialogues in Clinical Neuroscience 1839:10.1016/j.neuroscience.2021.06.008 1698:"Magnetic Resonance Imaging (MRI)" 1094:Daneman R, Prat A (January 2015). 444:vascular endothelial growth factor 24:) comprises the components of the 14: 2816: 2434:10.31887/DCNS.2016.18.1/pnopoulos 1546:Nahirney PC, Tremblay ME (2021). 798:10.1016/j.brainresrev.2009.11.007 2569:10.1016/j.neuroimage.2011.08.112 2341:10.1097/00002093-199912003-00017 475:(AD) is the most common type of 450:Effects of neurovascular failure 364:Transmission electron microscopy 2734: 2683: 2636: 2593: 2544: 2501: 2458: 2409: 2371:Frontiers in Aging Neuroscience 2320: 2223: 2190: 2139: 2117:10.1016/j.expneurol.2013.08.019 1714: 1690: 1639: 1590: 1539: 1442: 1393: 1343: 1283: 1234: 1185: 1136: 989: 2365:Beishon L, Panerai RB (2021). 1615:10.1523/JNEUROSCI.3189-07.2008 1259:10.1523/JNEUROSCI.3065-04.2004 1210:10.1523/JNEUROSCI.5515-05.2006 1014:10.1523/JNEUROSCI.5515-05.2006 970: 837:10.1523/JNEUROSCI.5515-05.2006 812: 777: 749:10.1523/JNEUROSCI.3065-04.2004 724: 483:(NFTs) and an accumulation of 243:; these mediators trigger the 1: 2522:10.1016/s0166-2236(00)01568-x 572:Iadecola C (September 2017). 535: 147:(APCs) and border-associated 2305:10.1016/j.nrleng.2015.07.008 2165:10.1016/j.bbadis.2015.12.023 2059:Nature Reviews. Neuroscience 2023:10.1016/j.bbadis.2015.12.016 1652:Frontiers in Neural Circuits 1503:Cold Spring Harbor Protocols 1375:10.1021/acschemneuro.2c00660 878:Frontiers in Neuroenergetics 590:10.1016/j.neuron.2017.07.030 406:Optical coherence tomography 401:Optical coherence tomography 368:Scanning electron microscopy 245:vascular smooth muscle cells 76:), the vasomotor apparatus ( 55:Stroke Progress Review Group 7: 1603:The Journal of Neuroscience 1247:The Journal of Neuroscience 1198:The Journal of Neuroscience 1112:10.1101/cshperspect.a020412 1002:The Journal of Neuroscience 825:The Journal of Neuroscience 737:The Journal of Neuroscience 190: 28:that collectively regulate 10: 2821: 2767:10.1038/s41586-022-04521-7 2416:Nopoulos PC (March 2016). 1418:10.1007/s12264-020-00561-z 1062:10.1007/s12035-020-02023-z 389:(BOLD imaging) technique. 379:Magnetic resonance imaging 374:Magnetic resonance imaging 315: 311: 194: 177:neurodegenerative diseases 2709:10.3389/fphys.2021.663898 2384:10.3389/fnagi.2021.721937 1970:10.1186/s12868-018-0465-5 1864:"Cerebrovascular Disease" 1739:10.1007/s11065-015-9291-z 1565:10.3389/fcell.2021.629503 1499:"Fluorescence microscopy" 1451:Journal of Neurochemistry 1363:ACS Chemical Neuroscience 1170:10.4249/scholarpedia.5340 1096:"The blood-brain barrier" 643:10.3389/fcell.2021.702832 1665:10.3389/fncir.2018.00098 1145:"Neurovascular coupling" 983:The Cerebral Circulation 946:10.1177/0271678X15617954 891:10.3389/fnene.2010.00016 145:antigen-presenting cells 139:. Also, resident in the 2696:Frontiers in Physiology 2510:Trends in Neurosciences 501:cerebrovascular disease 481:neurofibrillary tangles 330:Fluorescence microscopy 124:processes surround the 2335:(Suppl 3): S115–S123. 2105:Experimental Neurology 1791:10.1038/sj.neo.7900071 1727:Neuropsychology Review 1050:Molecular Neurobiology 786:Brain Research Reviews 277:adenosine triphosphate 271:Neurovascular coupling 152: 98:central nervous system 1915:10.1038/jcbfm.2012.25 1515:10.1101/pdb.top071795 1509:(10): pdb.top071795. 1406:Neuroscience Bulletin 417:Neurovascular failure 412:Clinical significance 316:Further information: 202:Anatomical components 197:Haemodynamic response 195:Further information: 119: 90:haemodynamic response 2249:10.3390/ijms22042022 517:trinucleotide repeat 513:Huntington's disease 508:Huntington's disease 337:Fluorescence imaging 185:Huntington's disease 2759:2022Natur.603..893G 2649:Annals of Neurology 2602:Annals of Neurology 2199:"Alzheimer Disease" 1308:2016NatSR...619107S 1161:2008SchpJ...3.5340P 977:Cipolla MJ (2009). 473:Alzheimer's disease 468:Alzheimer's disease 426:), clot formation ( 360:Electron microscopy 355:Electron microscopy 257:blood–brain barrier 251:Blood–brain barrier 216:smooth muscle cells 111:cerebral blood flow 78:smooth muscle cells 30:cerebral blood flow 1472:20.500.12008/26846 1296:Scientific Reports 872:Filosa JA (2010). 701:10.1111/apha.12250 493:amyloid angiopathy 169:arterial occlusion 153: 141:perivascular space 18:neurovascular unit 2753:(7903): 893–899. 2661:10.1002/ana.24406 2614:10.1002/ana.24428 2479:10.1136/bmj.c3109 1829:. Brain imaging. 1609:(12): 2959–2964. 1463:10.1111/jnc.15193 1412:(10): 1182–1190. 1316:10.1038/srep19107 1253:(41): 8940–8949. 1204:(26): 6997–7006. 1056:(11): 4373–4393. 1008:(26): 6997–7006. 831:(26): 6997–7006. 743:(41): 8940–8949. 688:Acta Physiologica 129:basement membrane 2812: 2789: 2788: 2778: 2738: 2732: 2731: 2721: 2711: 2687: 2681: 2680: 2640: 2634: 2633: 2597: 2591: 2590: 2580: 2563:(2): 1043–1051. 2548: 2542: 2541: 2505: 2499: 2498: 2462: 2456: 2455: 2445: 2413: 2407: 2406: 2396: 2386: 2362: 2353: 2352: 2324: 2318: 2317: 2307: 2283: 2272: 2271: 2261: 2251: 2227: 2221: 2220: 2218: 2217: 2194: 2188: 2187: 2177: 2167: 2143: 2137: 2136: 2100: 2091: 2090: 2054: 2045: 2044: 2034: 2002: 1993: 1992: 1982: 1972: 1957:BMC Neuroscience 1948: 1937: 1936: 1926: 1909:(7): 1207–1221. 1894: 1879: 1878: 1876: 1875: 1860: 1851: 1850: 1822: 1813: 1812: 1802: 1770: 1761: 1760: 1750: 1718: 1712: 1711: 1709: 1708: 1694: 1688: 1687: 1677: 1667: 1643: 1637: 1636: 1626: 1594: 1588: 1587: 1577: 1567: 1543: 1537: 1536: 1526: 1494: 1485: 1484: 1474: 1457:(4): 1377–1391. 1446: 1440: 1439: 1429: 1397: 1391: 1390: 1369:(6): 1063–1070. 1360: 1352:"Prostaglandin D 1347: 1341: 1340: 1327: 1287: 1281: 1280: 1270: 1238: 1232: 1231: 1221: 1189: 1183: 1182: 1172: 1140: 1134: 1133: 1123: 1091: 1082: 1081: 1045: 1036: 1035: 1025: 993: 987: 986: 974: 968: 967: 957: 925: 914: 913: 903: 893: 869: 863: 862: 848: 816: 810: 809: 792:(1–2): 138–148. 781: 775: 774: 760: 728: 722: 721: 703: 679: 666: 665: 655: 645: 621: 612: 611: 601: 569: 434:), and rupture ( 261:microvasculature 106:vasoconstriction 2820: 2819: 2815: 2814: 2813: 2811: 2810: 2809: 2795: 2794: 2793: 2792: 2739: 2735: 2688: 2684: 2641: 2637: 2598: 2594: 2549: 2545: 2506: 2502: 2463: 2459: 2414: 2410: 2363: 2356: 2325: 2321: 2284: 2275: 2228: 2224: 2215: 2213: 2195: 2191: 2144: 2140: 2101: 2094: 2071:10.1038/nrn1387 2055: 2048: 2003: 1996: 1949: 1940: 1895: 1882: 1873: 1871: 1862: 1861: 1854: 1823: 1816: 1771: 1764: 1719: 1715: 1706: 1704: 1696: 1695: 1691: 1644: 1640: 1595: 1591: 1544: 1540: 1495: 1488: 1447: 1443: 1398: 1394: 1358: 1355: 1348: 1344: 1288: 1284: 1239: 1235: 1190: 1186: 1141: 1137: 1092: 1085: 1046: 1039: 994: 990: 975: 971: 926: 917: 870: 866: 817: 813: 782: 778: 729: 725: 680: 669: 622: 615: 570: 543: 538: 521:Huntingtin gene 510: 489:amyloid plaques 470: 457:pathophysiology 452: 419: 414: 403: 376: 357: 332: 320: 314: 273: 253: 241:myogenic effect 204: 199: 193: 135:, creating the 68:, vasculature ( 12: 11: 5: 2818: 2808: 2807: 2791: 2790: 2733: 2682: 2655:(2): 160–177. 2635: 2608:(2): 178–192. 2592: 2543: 2516:(6): 239–245. 2500: 2457: 2408: 2354: 2319: 2298:(2): 112–120. 2273: 2222: 2189: 2158:(5): 878–886. 2138: 2092: 2065:(5): 347–360. 2046: 2017:(5): 887–900. 1994: 1938: 1880: 1852: 1814: 1762: 1733:(3): 250–271. 1713: 1689: 1638: 1589: 1538: 1486: 1441: 1392: 1353: 1342: 1282: 1233: 1184: 1135: 1106:(1): a020412. 1083: 1037: 988: 969: 940:(4): 647–664. 915: 864: 811: 776: 723: 694:(4): 790–798. 667: 613: 540: 539: 537: 534: 509: 506: 469: 466: 451: 448: 430:), narrowing ( 418: 415: 413: 410: 402: 399: 383:functional MRI 375: 372: 356: 353: 345:photobleaching 331: 328: 313: 310: 272: 269: 252: 249: 203: 200: 192: 189: 9: 6: 4: 3: 2: 2817: 2806: 2803: 2802: 2800: 2786: 2782: 2777: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2744: 2737: 2729: 2725: 2720: 2715: 2710: 2705: 2701: 2697: 2693: 2686: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2650: 2646: 2639: 2631: 2627: 2623: 2619: 2615: 2611: 2607: 2603: 2596: 2588: 2584: 2579: 2574: 2570: 2566: 2562: 2558: 2554: 2547: 2539: 2535: 2531: 2527: 2523: 2519: 2515: 2511: 2504: 2496: 2492: 2488: 2484: 2480: 2476: 2472: 2468: 2461: 2453: 2449: 2444: 2439: 2435: 2431: 2427: 2423: 2419: 2412: 2404: 2400: 2395: 2390: 2385: 2380: 2376: 2372: 2368: 2361: 2359: 2350: 2346: 2342: 2338: 2334: 2330: 2323: 2315: 2311: 2306: 2301: 2297: 2293: 2289: 2282: 2280: 2278: 2269: 2265: 2260: 2255: 2250: 2245: 2241: 2237: 2233: 2226: 2212: 2208: 2204: 2200: 2193: 2185: 2181: 2176: 2171: 2166: 2161: 2157: 2153: 2149: 2142: 2134: 2130: 2126: 2122: 2118: 2114: 2110: 2106: 2099: 2097: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2053: 2051: 2042: 2038: 2033: 2028: 2024: 2020: 2016: 2012: 2008: 2001: 1999: 1990: 1986: 1981: 1976: 1971: 1966: 1962: 1958: 1954: 1947: 1945: 1943: 1934: 1930: 1925: 1920: 1916: 1912: 1908: 1904: 1900: 1893: 1891: 1889: 1887: 1885: 1869: 1868:Penn Medicine 1865: 1859: 1857: 1848: 1844: 1840: 1836: 1832: 1828: 1821: 1819: 1810: 1806: 1801: 1796: 1792: 1788: 1785:(1–2): 9–25. 1784: 1780: 1776: 1769: 1767: 1758: 1754: 1749: 1744: 1740: 1736: 1732: 1728: 1724: 1717: 1703: 1699: 1693: 1685: 1681: 1676: 1671: 1666: 1661: 1657: 1653: 1649: 1642: 1634: 1630: 1625: 1620: 1616: 1612: 1608: 1604: 1600: 1593: 1585: 1581: 1576: 1571: 1566: 1561: 1557: 1553: 1549: 1542: 1534: 1530: 1525: 1520: 1516: 1512: 1508: 1504: 1500: 1493: 1491: 1482: 1478: 1473: 1468: 1464: 1460: 1456: 1452: 1445: 1437: 1433: 1428: 1423: 1419: 1415: 1411: 1407: 1403: 1396: 1389: 1384: 1380: 1376: 1372: 1368: 1364: 1357: 1346: 1339: 1335: 1331: 1326: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1286: 1278: 1274: 1269: 1264: 1260: 1256: 1252: 1248: 1244: 1237: 1229: 1225: 1220: 1215: 1211: 1207: 1203: 1199: 1195: 1188: 1180: 1176: 1171: 1166: 1162: 1158: 1154: 1150: 1146: 1139: 1131: 1127: 1122: 1117: 1113: 1109: 1105: 1101: 1097: 1090: 1088: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1044: 1042: 1033: 1029: 1024: 1019: 1015: 1011: 1007: 1003: 999: 992: 984: 980: 973: 965: 961: 956: 951: 947: 943: 939: 935: 931: 924: 922: 920: 911: 907: 902: 897: 892: 887: 883: 879: 875: 868: 861: 856: 852: 847: 842: 838: 834: 830: 826: 822: 815: 807: 803: 799: 795: 791: 787: 780: 773: 768: 764: 759: 754: 750: 746: 742: 738: 734: 727: 719: 715: 711: 707: 702: 697: 693: 689: 685: 678: 676: 674: 672: 663: 659: 654: 649: 644: 639: 635: 631: 627: 620: 618: 609: 605: 600: 595: 591: 587: 583: 579: 575: 568: 566: 564: 562: 560: 558: 556: 554: 552: 550: 548: 546: 541: 533: 530: 526: 522: 518: 514: 505: 502: 498: 494: 490: 486: 482: 478: 474: 465: 463: 458: 447: 445: 441: 437: 433: 429: 425: 409: 407: 398: 396: 392: 391:Diffusion MRI 388: 384: 380: 371: 369: 365: 361: 352: 350: 349:phototoxicity 346: 342: 338: 335:specificity. 327: 325: 319: 309: 307: 306: 301: 300: 294: 290: 286: 282: 278: 268: 266: 262: 258: 248: 246: 242: 237: 233: 229: 225: 221: 217: 213: 209: 198: 188: 186: 182: 178: 174: 173:heart failure 170: 166: 162: 158: 150: 146: 142: 138: 137:glia limitans 134: 130: 127: 123: 118: 114: 112: 107: 103: 99: 95: 91: 87: 83: 79: 75: 72:and vascular 71: 67: 62: 60: 56: 51: 49: 44: 40: 36: 31: 27: 23: 19: 2750: 2746: 2736: 2699: 2695: 2685: 2652: 2648: 2638: 2605: 2601: 2595: 2560: 2556: 2546: 2513: 2509: 2503: 2470: 2466: 2460: 2428:(1): 91–98. 2425: 2421: 2411: 2374: 2370: 2332: 2328: 2322: 2295: 2291: 2239: 2235: 2225: 2214:. Retrieved 2202: 2192: 2155: 2151: 2141: 2108: 2104: 2062: 2058: 2014: 2010: 1960: 1956: 1906: 1902: 1872:. Retrieved 1867: 1830: 1827:Neuroscience 1826: 1782: 1778: 1730: 1726: 1716: 1705:. Retrieved 1701: 1692: 1655: 1651: 1641: 1606: 1602: 1592: 1555: 1551: 1541: 1506: 1502: 1454: 1450: 1444: 1409: 1405: 1395: 1386: 1366: 1362: 1345: 1337: 1302:(1): 19107. 1299: 1295: 1285: 1250: 1246: 1236: 1201: 1197: 1187: 1152: 1149:Scholarpedia 1148: 1138: 1103: 1099: 1053: 1049: 1005: 1001: 991: 982: 972: 937: 933: 881: 877: 867: 858: 828: 824: 814: 789: 785: 779: 770: 740: 736: 726: 691: 687: 633: 629: 584:(1): 17–42. 581: 577: 529:pathogenesis 511: 471: 453: 420: 404: 394: 377: 358: 341:fluorophores 333: 324:neuroimaging 321: 318:Neuroimaging 303: 297: 292: 288: 285:hypertension 274: 254: 205: 157:Neuroimaging 154: 102:vasodilation 92:of cerebral 63: 54: 52: 47: 21: 17: 15: 2242:(4): 2022. 1833:: 134–144. 1155:(3): 5340. 519:within the 281:angiotensin 265:mural cells 208:endothelium 181:Alzheimer's 149:macrophages 74:mural cells 70:endothelial 2702:: 663898. 2557:NeuroImage 2377:: 721937. 2292:Neurologia 2216:2023-06-19 2203:StatPearls 1874:2023-06-19 1707:2023-06-19 1558:: 629503. 636:: 702832. 536:References 462:phenotypes 436:hemorrhage 428:thrombosis 236:arterioles 224:astrocytes 179:including 94:hyperaemia 66:astrocytes 35:metabolism 2805:Neurology 2473:: c3109. 2111:: 20–30. 1963:(1): 62. 1779:Neoplasia 1179:1941-6016 1078:220843844 485:amyloid β 228:microglia 212:pericytes 165:PET scans 133:pericytes 126:capillary 122:astrocyte 86:microglia 82:pericytes 2799:Category 2785:35158371 2728:34366879 2677:15993646 2669:25866151 2630:30714012 2622:25914140 2587:21945790 2538:25754639 2530:10838590 2495:16061768 2487:20591965 2452:27069383 2403:34393765 2349:10609690 2314:26385017 2268:33670754 2211:29763097 2184:26769363 2175:11062590 2125:24036415 2087:36555564 2079:15100718 2041:26705676 1989:30333009 1933:22395208 1847:34126186 1809:10933065 1757:26255305 1684:30483066 1633:18353998 1584:33681208 1533:25275114 1481:32974913 1436:32797396 1383:36847485 1334:26755200 1277:15483113 1228:16807329 1130:25561720 1070:32725516 1032:16807329 964:26661243 910:20802803 855:16807329 806:19948187 767:15483113 718:25274791 710:24629161 662:34327206 608:28957666 477:dementia 432:stenosis 424:embolism 191:Function 37:–mainly 2776:9680899 2755:Bibcode 2719:8334185 2578:3787075 2443:4826775 2394:8355558 2259:7922832 2133:9613243 2032:4821735 1980:6192291 1924:3390807 1800:1531864 1748:4807614 1675:6240581 1624:6670719 1575:7930431 1524:4711767 1427:7532237 1325:4709579 1304:Bibcode 1268:6730057 1219:6673912 1157:Bibcode 1121:4292164 1023:6673912 955:4821024 901:2928708 846:6673912 758:6730057 653:8313501 599:5657612 497:hypoxia 440:hypoxia 395:in vivo 312:Imaging 305:ex vivo 299:in vivo 293:ex vivo 289:in vivo 232:neurons 230:), and 151:(BAMs). 84:), and 57:of the 43:Neurons 39:glucose 2783:  2773:  2747:Nature 2726:  2716:  2675:  2667:  2628:  2620:  2585:  2575:  2536:  2528:  2493:  2485:  2450:  2440:  2401:  2391:  2347:  2312:  2266:  2256:  2209:  2182:  2172:  2131:  2123:  2085:  2077:  2039:  2029:  1987:  1977:  1931:  1921:  1845:  1807:  1797:  1755:  1745:  1682:  1672:  1658:: 98. 1631:  1621:  1582:  1572:  1531:  1521:  1479:  1434:  1424:  1381:  1332:  1322:  1275:  1265:  1226:  1216:  1177:  1128:  1118:  1076:  1068:  1030:  1020:  962:  952:  908:  898:  853:  843:  804:  765:  755:  716:  708:  660:  650:  606:  596:  578:Neuron 525:chorea 347:, and 214:, and 48:ad hoc 2673:S2CID 2626:S2CID 2534:S2CID 2491:S2CID 2129:S2CID 2083:S2CID 1359:(PDF) 1074:S2CID 860:flow. 714:S2CID 26:brain 2781:PMID 2724:PMID 2665:PMID 2618:PMID 2583:PMID 2526:PMID 2483:PMID 2448:PMID 2399:PMID 2345:PMID 2310:PMID 2264:PMID 2207:PMID 2180:PMID 2156:1862 2121:PMID 2075:PMID 2037:PMID 2015:1862 1985:PMID 1929:PMID 1843:PMID 1805:PMID 1753:PMID 1680:PMID 1629:PMID 1580:PMID 1529:PMID 1507:2014 1477:PMID 1432:PMID 1379:PMID 1330:PMID 1273:PMID 1224:PMID 1175:ISSN 1126:PMID 1066:PMID 1028:PMID 960:PMID 906:PMID 851:PMID 802:PMID 763:PMID 706:PMID 658:PMID 604:PMID 226:and 220:glia 183:and 163:and 161:fMRI 143:are 131:and 104:and 80:and 16:The 2771:PMC 2763:doi 2751:603 2714:PMC 2704:doi 2657:doi 2610:doi 2573:PMC 2565:doi 2518:doi 2475:doi 2471:340 2467:BMJ 2438:PMC 2430:doi 2389:PMC 2379:doi 2337:doi 2300:doi 2254:PMC 2244:doi 2170:PMC 2160:doi 2113:doi 2109:250 2067:doi 2027:PMC 2019:doi 1975:PMC 1965:doi 1919:PMC 1911:doi 1835:doi 1831:474 1795:PMC 1787:doi 1743:PMC 1735:doi 1670:PMC 1660:doi 1619:PMC 1611:doi 1570:PMC 1560:doi 1519:PMC 1511:doi 1467:hdl 1459:doi 1455:157 1422:PMC 1414:doi 1371:doi 1320:PMC 1312:doi 1263:PMC 1255:doi 1214:PMC 1206:doi 1165:doi 1116:PMC 1108:doi 1058:doi 1018:PMC 1010:doi 950:PMC 942:doi 896:PMC 886:doi 841:PMC 833:doi 794:doi 753:PMC 745:doi 696:doi 692:210 648:PMC 638:doi 594:PMC 586:doi 218:), 171:or 22:NVU 2801:: 2779:. 2769:. 2761:. 2749:. 2745:. 2722:. 2712:. 2700:12 2698:. 2694:. 2671:. 2663:. 2653:78 2651:. 2647:. 2624:. 2616:. 2606:78 2604:. 2581:. 2571:. 2561:59 2559:. 2555:. 2532:. 2524:. 2514:23 2512:. 2489:. 2481:. 2469:. 2446:. 2436:. 2426:18 2424:. 2420:. 2397:. 2387:. 2375:13 2373:. 2369:. 2357:^ 2343:. 2333:13 2331:. 2308:. 2296:33 2294:. 2290:. 2276:^ 2262:. 2252:. 2240:22 2238:. 2234:. 2201:. 2178:. 2168:. 2154:. 2150:. 2127:. 2119:. 2107:. 2095:^ 2081:. 2073:. 2061:. 2049:^ 2035:. 2025:. 2009:. 1997:^ 1983:. 1973:. 1961:19 1959:. 1955:. 1941:^ 1927:. 1917:. 1907:32 1905:. 1901:. 1883:^ 1866:. 1855:^ 1841:. 1817:^ 1803:. 1793:. 1781:. 1777:. 1765:^ 1751:. 1741:. 1731:25 1729:. 1725:. 1700:. 1678:. 1668:. 1656:12 1654:. 1650:. 1627:. 1617:. 1607:28 1605:. 1601:. 1578:. 1568:. 1554:. 1550:. 1527:. 1517:. 1505:. 1501:. 1489:^ 1475:. 1465:. 1453:. 1430:. 1420:. 1410:36 1408:. 1404:. 1385:. 1377:. 1367:14 1365:. 1361:. 1336:. 1328:. 1318:. 1310:. 1298:. 1294:. 1271:. 1261:. 1251:24 1249:. 1245:. 1222:. 1212:. 1202:26 1200:. 1196:. 1173:. 1163:. 1151:. 1147:. 1124:. 1114:. 1102:. 1098:. 1086:^ 1072:. 1064:. 1054:57 1052:. 1040:^ 1026:. 1016:. 1006:26 1004:. 1000:. 981:. 958:. 948:. 938:36 936:. 932:. 918:^ 904:. 894:. 884:. 880:. 876:. 857:. 849:. 839:. 829:26 827:. 823:. 800:. 790:63 788:. 769:. 761:. 751:. 741:24 739:. 735:. 712:. 704:. 690:. 686:. 670:^ 656:. 646:. 632:. 628:. 616:^ 602:. 592:. 582:96 580:. 576:. 544:^ 210:, 187:. 2787:. 2765:: 2757:: 2730:. 2706:: 2679:. 2659:: 2632:. 2612:: 2589:. 2567:: 2540:. 2520:: 2497:. 2477:: 2454:. 2432:: 2405:. 2381:: 2351:. 2339:: 2316:. 2302:: 2270:. 2246:: 2219:. 2186:. 2162:: 2135:. 2115:: 2089:. 2069:: 2063:5 2043:. 2021:: 1991:. 1967:: 1935:. 1913:: 1877:. 1849:. 1837:: 1811:. 1789:: 1783:2 1759:. 1737:: 1710:. 1686:. 1662:: 1635:. 1613:: 1586:. 1562:: 1556:9 1535:. 1513:: 1483:. 1469:: 1461:: 1438:. 1416:: 1373:: 1354:2 1314:: 1306:: 1300:6 1279:. 1257:: 1230:. 1208:: 1181:. 1167:: 1159:: 1153:3 1132:. 1110:: 1104:7 1080:. 1060:: 1034:. 1012:: 966:. 944:: 912:. 888:: 882:2 835:: 808:. 796:: 747:: 720:. 698:: 664:. 640:: 634:9 610:. 588:: 222:( 20:(

Index

brain
cerebral blood flow
metabolism
glucose
Neurons
National Institute of Neurological Disorders and Stroke
astrocytes
endothelial
mural cells
smooth muscle cells
pericytes
microglia
haemodynamic response
hyperaemia
central nervous system
vasodilation
vasoconstriction
cerebral blood flow

astrocyte
capillary
basement membrane
pericytes
glia limitans
perivascular space
antigen-presenting cells
macrophages
Neuroimaging
fMRI
PET scans

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑