Knowledge

Massive parallel sequencing

Source đź“ť

450:
show amplification bias, which results in their underrepresentation in genome alignments and assemblies. Single molecule templates are usually immobilized on solid supports using one of at least three different approaches. In the first approach, spatially distributed individual primer molecules are covalently attached to the solid support. The template, which is prepared by randomly fragmenting the starting material into small sizes (for example,~200–250 bp) and adding common adapters to the fragment ends, is then hybridized to the immobilized primer. In the second approach, spatially distributed single-molecule templates are covalently attached to the solid support by priming and extending single-stranded, single-molecule templates from immobilized primers. A common primer is then hybridized to the template. In either approach, DNA polymerase can bind to the immobilized primed template configuration to initiate the NGS reaction. Both of the above approaches are used by Helicos BioSciences. In a third approach, spatially distributed single polymerase molecules are attached to the solid support, to which a primed template molecule is bound. This approach is used by Pacific Biosciences. Larger DNA molecules (up to tens of thousands of base pairs) can be used with this technique and, unlike the first two approaches, the third approach can be used with real-time methods, resulting in potentially longer read lengths.
540:
chemically blocked such that each incorporation is a unique event. An imaging step follows each base incorporation step, then the blocked group is chemically removed to prepare each strand for the next incorporation by DNA polymerase. This series of steps continues for a specific number of cycles, as determined by user-defined instrument settings. The 3' blocking groups were originally conceived as either enzymatic or chemical reversal The chemical method has been the basis for the Solexa and Illumina machines. Sequencing by reversible terminator chemistry can be a four-colour cycle such as used by Illumina/Solexa, or a one-colour cycle such as used by Helicos BioSciences. Helicos BioSciences used “virtual Terminators”, which are unblocked terminators with a second nucleoside analogue that acts as an inhibitor. These terminators have the appropriate modifications for terminating or inhibiting groups so that DNA synthesis is terminated after a single base addition.
527:. All the key concepts of sequencing by synthesis were introduced, including (1) amplification of DNA to enhance the subsequent signal and attach the DNA to be sequenced (template) to a solid support, (2) generation of single stranded DNA on the solid support (3) incorporation of nucleotides using an engineered polymerase and (4) detection of the incorporated nucleotide by light detection in real-time. In a follow-up article, the concept was further developed and in 1998, an article was published in which the authors showed that non-incorporated nucleotides could be removed with a fourth enzyme ( 1094: 112: 733: 1736: 704: 1755: 475:. An engineered polymerase is used to synthesize a copy of a single strand of DNA and the incorporation of each nucleotide is monitored. The principle of sequencing by synthesis was first described in 1993 with improvements published some years later. The key parts are highly similar for all embodiments of SBS and include (1) 1662: 759: 1855: 449:
Protocols requiring DNA amplification are often cumbersome to implement and may introduce sequencing errors. The preparation of single-molecule templates is more straightforward and does not require PCR, which can introduce errors in the amplified templates. AT-rich and GC-rich target sequences often
99:
NGS parallelization of the sequencing reactions generates hundreds of megabases to gigabases of nucleotide sequence reads in a single instrument run. This has enabled a drastic increase in available sequence data and fundamentally changed genome sequencing approaches in the biomedical sciences. Newly
432:
and extension results in localized amplification of DNA fragments in millions of separate locations across the flow cell surface. Solid-phase amplification produces 100–200 million spatially separated template clusters, providing free ends to which a universal sequencing primer is then hybridized to
569:
is currently leading this method. The method of real-time sequencing involves imaging the continuous incorporation of dye-labelled nucleotides during DNA synthesis: single DNA polymerase molecules are attached to the bottom surface of individual zero-mode waveguide detectors (Zmw detectors) that
557:
to determine the identity of the ligated probe. The cycle can be repeated either by using cleavable probes to remove the fluorescent dye and regenerate a 5′-PO4 group for subsequent ligation cycles (chained ligation) or by removing and hybridizing a new primer to the template (unchained ligation).
95:
to the complementary strand rather than through chain-termination chemistry. Third, the spatially segregated, amplified DNA templates are sequenced simultaneously in a massively parallel fashion without the requirement for a physical separation step. These steps are followed in most NGS platforms,
552:
and either one-base-encoded probes or two-base-encoded probes. In its simplest form, a fluorescently labelled probe hybridizes to its complementary sequence adjacent to the primed template. DNA ligase is then added to join the dye-labelled probe to the primer. Non-ligated probes are washed away,
539:
This approach uses reversible terminator-bound dNTPs in a cyclic method that comprises nucleotide incorporation, fluorescence imaging and cleavage. A fluorescently-labeled terminator is imaged as each dNTP is added and then cleaved to allow incorporation of the next base. These nucleotides are
479:
to enhance the subsequent signal and to attach the DNA to be sequenced to a solid support,  (2) generation of single stranded DNA on the solid support, (3) incorporation of nucleotides using an engineered polymerase and (4) detection of the incorporation of nucleotide. Then steps 3-4 are
369:
Two methods are used in preparing templates for NGS reactions: amplified templates originating from single DNA molecules, and single DNA molecule templates. For imaging systems which cannot detect single fluorescence events, amplification of DNA templates is required. The three most common
574:
nucleotides are being incorporated into the growing primer strand. Pacific Biosciences uses a unique DNA polymerase which better incorporates phospholinked nucleotides and enables the resequencing of closed circular templates. While single-read accuracy is 87%, consensus accuracy has been
389:
is first generated through random fragmentation of genomic DNA. Single-stranded DNA fragments (templates) are attached to the surface of beads with adaptors or linkers, and one bead is attached to a single DNA fragment from the DNA library. The surface of the beads contains
53:. Some of these technologies emerged between 1993 and 1998 and have been commercially available since 2005. These technologies use miniaturized and parallelized platforms for sequencing of 1 million to 43 billion short reads (50 to 400 bases each) per instrument run. 1424: 419:
Forward and reverse primers are covalently attached at high-density to the slide in a flow cell. The ratio of the primers to the template on the support defines the surface density of the amplified clusters. The flow cell is exposed to reagents for
394:
probes with sequences that are complementary to the adaptors binding the DNA fragments. The beads are then compartmentalized into water-oil emulsion droplets. In the aqueous water-oil emulsion, each of the droplets capturing one bead is a PCR
359:
Run times and gigabase (Gb) output per run for single-end sequencing are noted. Run times and outputs approximately double when performing paired-end sequencing. ‡Average read lengths for the Roche 454 and Helicos Biosciences platforms.
107:
As of 2014, massively parallel sequencing platforms are commercially available and their features are summarized in the table. As the pace of NGS technologies is advancing rapidly, technical specifications and pricing are in flux.
1479:"Next generation sequencing for clinical diagnostics-principles and application to targeted resequencing for hypertrophic cardiomyopathy: a paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology" 699:, Adams CP, Kron SJ, "Method for performing amplification of nucleic acid with two primers bound to a single solid support", published 1997-06-24, assigned to Mosaic Technologies Inc. and 575:
demonstrated at 99.999% with multi-kilobase read lengths. In 2015, Pacific Biosciences released a new sequencing instrument called the Sequel System, which increases capacity approximately 6.5-fold.
480:
repeated and the sequence is assembled from the signals obtained in step 4. This principle of sequencing-by-synthesis has been used for almost all massive parallel sequencing instruments, including
56:
Many NGS platforms differ in engineering configurations and sequencing chemistry. They share the technical paradigm of massive parallel sequencing via spatially separated, clonally amplified
1753:, Drmanac R, Callow MJ, Drmanac S, Hauser BK, Yeung G, "Single molecule arrays for genetic and chemical analysis", published 2013-05-21, assigned to Callida Genomics Inc. 441:
and Steve Kron filed a patent on a similar, but non-clonal, surface amplification method, named “bridge amplification” adapted for clonal amplification in 1997 by Church and Mitra.
80:
DNA sequencing with commercially available NGS platforms is generally conducted with the following steps. First, DNA sequencing libraries are generated by clonal amplification by
1940:
Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. (June 2013). "Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data".
370:
amplification methods are emulsion PCR (emPCR), rolling circle and solid-phase amplification. The final distribution of templates can be spatially random or on a grid.
1220: 2012: 1090: 1033: 1425:"Pacific Biosciences Introduces New Chemistry With Longer Read Lengths to Detect Novel Features in DNA Sequence and Advance Genome Studies of Large Organisms" 72:
separation of chain-termination products produced in individual sequencing reactions. This methodology allows sequencing to be completed on a larger scale.
1998: 1984: 433:
initiate the sequencing reaction. This technology was filed for a patent in 1997 from Glaxo-Welcome's Geneva Biomedical Research Institute (GBRI), by
100:
emerging NGS technologies and instruments have further contributed to a significant decrease in the cost of sequencing nearing the mark of $ 1000 per
571: 1731:, Church GM, Porreca GJ, Shendure J, Rosenbaum AM, "Nanogrid rolling circle DNA sequencing", published 2017-04-18, assigned to 658:
Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (November 1996). "Real-time DNA sequencing using detection of pyrophosphate release".
1173:"Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding" 1089:, Ju J, Li Z, Edwards JR, Itagaki Y, "Massive parallel method for decoding DNA and RNA", published 2010-09-07, assigned to 1058: 700: 1894: 17: 1770: 1869: 1732: 1658: 1463: 1772:
A very large scale, high throughput and low cost DNA sequencing method based on a new 2-dimensional DNA auto-patterning process
1594:"Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations" 1224: 1657:, Church GM, Mitra R, "Replica amplification of nucleic acid arrays", published 2002-11-26, assigned to 1529:
Chee-Seng K, Yun LE, Yudi P, Kee-Seng C (April 2010). "Next Generation Sequencing Technologies and Their Applications.".
513: 2020: 1037: 531:) allowing sequencing by synthesis to be performed without the need for washing away non-incorporated nucleotides. 2040: 584: 754: 725: 424:-based extension, and priming occurs as the free/distal end of a ligated fragment "bridges" to a complementary 438: 411:
in solution is followed by capture on a grid of spots sized to be smaller than the DNAs to be immobilized.
408: 594: 589: 429: 437:, Eric Kawashima, and Laurent Farinelli, and was publicly presented for the first time in 1998. In 1994 1111:
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. (November 2008).
548:
In this approach, the sequence extension reaction is not carried out by polymerases but rather by DNA
1985:"PacBio Users Report Progress in Long Reads for Plant Genome Assembly, Tricky Regions of Human Genome" 1847: 1750: 1728: 1654: 1086: 750: 721: 696: 1850:, Balasubramanian S, "Polynucleotide sequencing", published 2004-12-21, assigned to 1309:
Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, et al. (September 2005).
626:"Solid Phase DNA Minisequencing by an Enzymatic Luminometric Inorganic Pyrophosphate Detection Assay" 382: 81: 512:
was first described in 1993 by combining a solid support with an engineered DNA polymerase lacking
1919: 1013:"2008 Release: NHGRI Seeks DNA Sequencing Technologies Fit for Routine Laboratory and Medical Use" 625: 1171:
McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu Y, Tsung EF, et al. (September 2009).
1775:. Fifth International Automation in Mapping and DNA Sequencing Conference. St. Louis, MO, USA. 1249:
Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, et al. (January 2010).
476: 463:
The objective for sequential sequencing by synthesis (SBS) is to determine the sequencing of a
1448: 1062: 1898: 816:"Massive parallel sequencing in forensics: advantages, issues, technicalities, and prospects" 1793: 1605: 1379: 1322: 1262: 1124: 554: 1681:"In situ localized amplification and contact replication of many individual DNA molecules" 728:), "Method of nucleic acid amplification", published 2007-06-13, assigned to 8: 1366:
Peters BA, Kermani BG, Sparks AB, Alferov O, Hong P, Alexeev A, et al. (July 2012).
566: 485: 329: 1873: 1609: 1383: 1326: 1266: 1128: 1965: 1851: 1829: 1574: 1503: 1478: 1400: 1367: 1348: 1288: 1197: 1172: 1145: 1112: 994: 940: 915: 891: 864: 840: 815: 729: 116: 1769:
Mayer P, Matton G, Adessi C, Turcatti G, Mermod JJ, Kawashima E (October 7–10, 1998).
1705: 1680: 1628: 1593: 1251:"Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays" 1969: 1957: 1821: 1813: 1710: 1633: 1578: 1566: 1508: 1436: 1405: 1340: 1280: 1202: 1150: 986: 945: 896: 845: 796: 675: 481: 101: 68:—also known as capillary sequencing or first-generation sequencing—which is based on 65: 1833: 1352: 1292: 1949: 1805: 1749: 1700: 1692: 1623: 1613: 1558: 1498: 1490: 1395: 1387: 1330: 1270: 1192: 1184: 1140: 1132: 998: 976: 935: 927: 886: 876: 835: 827: 786: 667: 637: 1999:"PacBio Launches Higher-Throughput, Lower-Cost Single-Molecule Sequencing System" 1809: 791: 774: 425: 391: 88: 69: 561: 1727: 1598:
Proceedings of the National Academy of Sciences of the United States of America
1494: 981: 964: 931: 831: 509: 493: 472: 61: 38: 1113:"Accurate whole human genome sequencing using reversible terminator chemistry" 2034: 1817: 497: 342: 1696: 1618: 1549:
Metzker ML (January 2010). "Sequencing technologies - the next generation".
1368:"Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells" 1335: 1310: 1275: 1250: 1961: 1714: 1637: 1570: 1512: 1409: 1344: 1284: 1206: 1154: 990: 949: 900: 849: 800: 671: 641: 599: 517: 434: 396: 1825: 1188: 679: 881: 489: 386: 92: 1391: 1136: 1953: 916:"Massively parallel sequencing: the next big thing in genetic medicine" 524: 468: 421: 41:
using the concept of massively parallel processing; it is also called
1592:
Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B (July 2003).
1311:"Accurate multiplex polony sequencing of an evolved bacterial genome" 1562: 543: 1110: 865:"Next generation DNA sequencing and the future of genomic medicine" 757:, "Method of nucleic acid sequencing", published 2004-06-23 720: 379: 84: 749: 1085: 1012: 657: 528: 521: 27:
DNA sequencing using the concept of massively parallel processing
775:"Next-generation sequencing: from basic research to diagnostics" 534: 549: 414: 1895:"True Single Molecule Sequencing (tSMS™): Helicos BioSciences" 1170: 91:, such that the DNA sequence is determined by the addition of 1059:"HiSeq v4 is here… and it delivers | Edinburgh Genomics" 562:
Phospholinked Fluorescent Nucleotides or Real-time sequencing
111: 813: 1792:
Ronaghi, Mostafa; Uhlén, Mathias; Nyrén, Pål (1998-07-17).
1777:
DNA colony massively parallel sequencing ams98 presentation
1091:
The Trustees of Columbia University in the City of New York
399:
that produces amplified copies of the single DNA template.
2013:"PacBio Announces Sequel Sequencing System - Bio-IT World" 1591: 1423:
Inc, Pacific Biosciences of California (October 3, 2013).
1365: 1248: 1939: 1768: 464: 407:
Amplification of a population of single DNA molecules by
57: 1528: 1476: 1308: 772: 1477:
Voelkerding KV, Dames S, Durtschi JD (September 2010).
364: 1794:"A Sequencing Method Based on Real-Time Pyrophosphate" 1464:"De novo bacterial genome assembly: a solved problem?" 624:
Nyren, P.; Pettersson, B.; Uhlen, M. (January 1993).
814:
Ballard D, Winkler-Galicki J, Wesoły J (July 2020).
773:
Voelkerding KV, Dames SA, Durtschi JD (April 2009).
623: 913: 402: 1653: 1920:"Fundamentals of 2 Base Encoding and Color Space" 1846: 1791: 862: 695: 544:Sequencing-by-ligation mediated by ligase enzymes 2032: 37:is any of several high-throughput approaches to 914:Tucker T, Marra M, Friedman JM (August 2009). 535:Sequencing by reversible terminator chemistry 64:. This design is very different from that of 1982: 965:"Next-generation sequencing: the race is on" 444: 415:DNA colony generation (Bridge amplification) 1678: 962: 701:Whitehead Institute for Biomedical Research 467:sample by detecting the incorporation of a 1544: 1542: 1540: 1461: 458: 1704: 1674: 1672: 1627: 1617: 1533:. Chichester: John Wiley & Sons, Ltd. 1502: 1399: 1334: 1274: 1196: 1144: 980: 939: 890: 880: 839: 790: 745: 743: 716: 714: 653: 651: 295:Oligonucleotide 9-mer Unchained Ligation 1733:President and Fellows of Harvard College 1659:President and Fellows of Harvard College 1649: 1647: 453: 110: 96:but each utilizes a different strategy. 1548: 1537: 1244: 1242: 1166: 1164: 1106: 1104: 820:International Journal of Legal Medicine 691: 689: 255:Oligonucleotide 8-mer Chained Ligation 60:templates or single DNA molecules in a 14: 2033: 1669: 1524: 1522: 1304: 1302: 1081: 1079: 740: 711: 648: 570:can obtain sequence information while 338:Phospholinked Fluorescent Nucleotides 1787: 1785: 1762: 1679:Mitra RD, Church GM (December 1999). 1644: 863:Anderson MW, Schrijver I (May 2010). 1840: 1483:The Journal of Molecular Diagnostics 1239: 1161: 1101: 686: 619: 617: 615: 365:Template preparation methods for NGS 1531:Encyclopedia of Life Sciences (ELS) 1519: 1422: 1299: 1076: 24: 1782: 920:American Journal of Human Genetics 87:. Second, the DNA is sequenced by 25: 2052: 753:, Kawashima E, Farinellit L, 612: 503: 1897:. Helicosbio.com. Archived from 724:, Farinelli L, Kawashima E, 403:Gridded rolling circle nanoballs 75: 2005: 1991: 1976: 1933: 1912: 1887: 1862: 1743: 1721: 1585: 1470: 1455: 1416: 1359: 1213: 1051: 1034:"Specifications for HiSeq 2500" 1026: 1005: 956: 585:Clinical metagenomic sequencing 373: 275:Native dNTPs, proton detection 1983:Monica Heger (March 5, 2013). 907: 856: 807: 766: 520:real-time detection using the 309:Helicos Biosciences Heliscope 13: 1: 605: 516:activity (proof-reading) and 269:Life Technologies Ion Proton 229:Illumina Genome Analyzer IIX 119:HiSeq 2000 sequencing machine 35:massively parallel sequencing 1922:. Appliedbiosystems.cnpg.com 1810:10.1126/science.281.5375.363 963:von Bubnoff A (March 2008). 792:10.1373/clinchem.2008.112789 409:rolling circle amplification 232:Clonal Bridge Amplification 212:Clonal Bridge Amplification 192:Clonal Bridge Amplification 51:second-generation sequencing 7: 1462:Nederbragt L (2013-07-05). 595:Third-generation sequencing 590:First-generation sequencing 578: 31:Massive parallel sequencing 10: 2057: 1872:. Illumina. Archived from 1495:10.2353/jmoldx.2010.100043 982:10.1016/j.cell.2008.02.028 932:10.1016/j.ajhg.2009.06.022 832:10.1007/s00414-020-02294-0 315:Reversible Dye Terminator 235:Reversible Dye Terminator 215:Reversible Dye Terminator 195:Reversible Dye Terminator 43:next-generation sequencing 18:Next-generation sequencing 445:Single-molecule templates 428:on the surface. Repeated 249:Life Technologies SOLiD4 1551:Nature Reviews. Genetics 138:Max read length (bases) 1619:10.1073/pnas.1133470100 1429:GlobeNewswire News Room 1336:10.1126/science.1117389 1276:10.1126/science.1181498 660:Analytical Biochemistry 630:Analytical Biochemistry 459:Sequencing by synthesis 2041:DNA sequencing methods 1685:Nucleic Acids Research 672:10.1006/abio.1996.0432 642:10.1006/abio.1993.1024 292:Gridded DNA-nanoballs 120: 1751:US patent 8445194 1697:10.1093/nar/27.24.e34 1655:US patent 6485944 1189:10.1101/gr.091868.109 1087:US patent 7790869 454:Sequencing approaches 132:Template preparation 114: 882:10.3390/genes1010038 555:fluorescence imaging 477:amplification of DNA 2017:www.bio-itworld.com 1610:2003PNAS..100.8817D 1392:10.1038/nature11236 1384:2012Natur.487..190P 1327:2005Sci...309.1728S 1321:(5741): 1728–1732. 1267:2010Sci...327...78D 1227:on 30 December 2013 1137:10.1038/nature07517 1129:2008Natur.456...53B 567:Pacific Biosciences 330:Pacific Biosciences 125: 1954:10.1038/nmeth.2474 1870:"Assay Technology" 1447:has generic name ( 779:Clinical Chemistry 514:3´to 5´exonuclease 289:Complete Genomics 123: 121: 1804:(5375): 363–365. 1604:(15): 8817–8822. 1378:(7406): 190–195. 508:The principle of 361: 355: 354: 345:); 30,000+ (max) 141:Run times (days) 102:genome sequencing 66:Sanger sequencing 16:(Redirected from 2048: 2025: 2024: 2019:. Archived from 2009: 2003: 2002: 1995: 1989: 1988: 1980: 1974: 1973: 1937: 1931: 1930: 1928: 1927: 1916: 1910: 1909: 1907: 1906: 1891: 1885: 1884: 1882: 1881: 1866: 1860: 1859: 1858: 1854: 1844: 1838: 1837: 1789: 1780: 1779: 1766: 1760: 1759: 1758: 1754: 1747: 1741: 1740: 1739: 1735: 1725: 1719: 1718: 1708: 1676: 1667: 1666: 1665: 1661: 1651: 1642: 1641: 1631: 1621: 1589: 1583: 1582: 1546: 1535: 1534: 1526: 1517: 1516: 1506: 1474: 1468: 1467: 1459: 1453: 1452: 1446: 1442: 1440: 1432: 1420: 1414: 1413: 1403: 1363: 1357: 1356: 1338: 1306: 1297: 1296: 1278: 1246: 1237: 1236: 1234: 1232: 1223:. Archived from 1217: 1211: 1210: 1200: 1183:(9): 1527–1541. 1168: 1159: 1158: 1148: 1108: 1099: 1098: 1097: 1093: 1083: 1074: 1073: 1071: 1070: 1061:. Archived from 1055: 1049: 1048: 1046: 1045: 1036:. Archived from 1030: 1024: 1023: 1021: 1020: 1009: 1003: 1002: 984: 960: 954: 953: 943: 911: 905: 904: 894: 884: 860: 854: 853: 843: 826:(4): 1291–1303. 811: 805: 804: 794: 770: 764: 763: 762: 758: 747: 738: 737: 736: 732: 718: 709: 708: 707: 703: 693: 684: 683: 655: 646: 645: 621: 357: 335:Single Molecule 312:Single Molecule 169:GS FLX Titanium 126: 122: 21: 2056: 2055: 2051: 2050: 2049: 2047: 2046: 2045: 2031: 2030: 2029: 2028: 2011: 2010: 2006: 2001:. October 2015. 1997: 1996: 1992: 1981: 1977: 1938: 1934: 1925: 1923: 1918: 1917: 1913: 1904: 1902: 1893: 1892: 1888: 1879: 1877: 1868: 1867: 1863: 1856: 1845: 1841: 1790: 1783: 1767: 1763: 1756: 1748: 1744: 1737: 1726: 1722: 1677: 1670: 1663: 1652: 1645: 1590: 1586: 1563:10.1038/nrg2626 1547: 1538: 1527: 1520: 1475: 1471: 1460: 1456: 1444: 1443: 1434: 1433: 1421: 1417: 1364: 1360: 1307: 1300: 1261:(5961): 78–81. 1247: 1240: 1230: 1228: 1219: 1218: 1214: 1177:Genome Research 1169: 1162: 1123:(7218): 53–59. 1109: 1102: 1095: 1084: 1077: 1068: 1066: 1057: 1056: 1052: 1043: 1041: 1032: 1031: 1027: 1018: 1016: 1011: 1010: 1006: 961: 957: 912: 908: 861: 857: 812: 808: 771: 767: 760: 748: 741: 734: 719: 712: 705: 694: 687: 656: 649: 622: 613: 608: 581: 564: 546: 537: 506: 461: 456: 447: 417: 405: 392:oligonucleotide 376: 367: 358: 209:Illumina HiSeq 189:Illumina MiSeq 175:Pyrosequencing 155:Pyrosequencing 144:Max Gb per Run 78: 70:electrophoretic 28: 23: 22: 15: 12: 11: 5: 2054: 2044: 2043: 2027: 2026: 2023:on 2015-10-02. 2004: 1990: 1975: 1948:(6): 563–569. 1942:Nature Methods 1932: 1911: 1886: 1861: 1839: 1781: 1761: 1742: 1720: 1691:(24): 34e–34. 1668: 1643: 1584: 1536: 1518: 1489:(5): 539–551. 1469: 1454: 1415: 1358: 1298: 1238: 1212: 1160: 1100: 1075: 1050: 1025: 1004: 975:(5): 721–723. 955: 926:(2): 142–154. 906: 855: 806: 785:(4): 641–658. 765: 739: 710: 685: 647: 636:(1): 171–175. 610: 609: 607: 604: 603: 602: 597: 592: 587: 580: 577: 563: 560: 545: 542: 536: 533: 510:Pyrosequencing 505: 504:Pyrosequencing 502: 473:DNA polymerase 460: 457: 455: 452: 446: 443: 416: 413: 404: 401: 375: 372: 366: 363: 353: 352: 349: 346: 339: 336: 333: 326: 325: 322: 319: 316: 313: 310: 306: 305: 302: 299: 296: 293: 290: 286: 285: 282: 279: 276: 273: 270: 266: 265: 262: 259: 256: 253: 250: 246: 245: 242: 239: 236: 233: 230: 226: 225: 222: 219: 216: 213: 210: 206: 205: 202: 199: 196: 193: 190: 186: 185: 182: 179: 176: 173: 170: 166: 165: 162: 159: 156: 153: 150: 146: 145: 142: 139: 136: 133: 130: 124:NGS platforms 77: 74: 39:DNA sequencing 26: 9: 6: 4: 3: 2: 2053: 2042: 2039: 2038: 2036: 2022: 2018: 2014: 2008: 2000: 1994: 1986: 1979: 1971: 1967: 1963: 1959: 1955: 1951: 1947: 1943: 1936: 1921: 1915: 1901:on 2012-03-11 1900: 1896: 1890: 1876:on 2012-08-26 1875: 1871: 1865: 1853: 1849: 1843: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1788: 1786: 1778: 1774: 1773: 1765: 1752: 1746: 1734: 1730: 1724: 1716: 1712: 1707: 1702: 1698: 1694: 1690: 1686: 1682: 1675: 1673: 1660: 1656: 1650: 1648: 1639: 1635: 1630: 1625: 1620: 1615: 1611: 1607: 1603: 1599: 1595: 1588: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1545: 1543: 1541: 1532: 1525: 1523: 1514: 1510: 1505: 1500: 1496: 1492: 1488: 1484: 1480: 1473: 1465: 1458: 1450: 1438: 1430: 1426: 1419: 1411: 1407: 1402: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1362: 1354: 1350: 1346: 1342: 1337: 1332: 1328: 1324: 1320: 1316: 1312: 1305: 1303: 1294: 1290: 1286: 1282: 1277: 1272: 1268: 1264: 1260: 1256: 1252: 1245: 1243: 1226: 1222: 1221:"Ion Torrent" 1216: 1208: 1204: 1199: 1194: 1190: 1186: 1182: 1178: 1174: 1167: 1165: 1156: 1152: 1147: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1107: 1105: 1092: 1088: 1082: 1080: 1065:on 2014-11-06 1064: 1060: 1054: 1040:on 2014-12-06 1039: 1035: 1029: 1014: 1008: 1000: 996: 992: 988: 983: 978: 974: 970: 966: 959: 951: 947: 942: 937: 933: 929: 925: 921: 917: 910: 902: 898: 893: 888: 883: 878: 874: 870: 866: 859: 851: 847: 842: 837: 833: 829: 825: 821: 817: 810: 802: 798: 793: 788: 784: 780: 776: 769: 756: 752: 746: 744: 731: 727: 723: 717: 715: 702: 698: 692: 690: 681: 677: 673: 669: 665: 661: 654: 652: 643: 639: 635: 631: 627: 620: 618: 616: 611: 601: 598: 596: 593: 591: 588: 586: 583: 582: 576: 573: 572:phospholinked 568: 559: 556: 551: 541: 532: 530: 526: 523: 519: 515: 511: 501: 499: 495: 491: 487: 483: 478: 474: 470: 466: 451: 442: 440: 436: 431: 427: 423: 412: 410: 400: 398: 393: 388: 384: 381: 371: 362: 350: 347: 344: 340: 337: 334: 331: 328: 327: 323: 320: 317: 314: 311: 308: 307: 303: 300: 297: 294: 291: 288: 287: 283: 280: 277: 274: 272:Clonal-emPCR 271: 268: 267: 263: 260: 257: 254: 252:Clonal-emPCR 251: 248: 247: 243: 240: 237: 234: 231: 228: 227: 223: 220: 217: 214: 211: 208: 207: 203: 200: 197: 194: 191: 188: 187: 183: 180: 177: 174: 172:Clonal-emPCR 171: 168: 167: 163: 160: 157: 154: 152:Clonal-emPCR 151: 148: 147: 143: 140: 137: 134: 131: 128: 127: 118: 113: 109: 105: 103: 97: 94: 90: 86: 83: 76:NGS platforms 73: 71: 67: 63: 59: 54: 52: 48: 44: 40: 36: 32: 19: 2021:the original 2016: 2007: 1993: 1978: 1945: 1941: 1935: 1924:. Retrieved 1914: 1903:. Retrieved 1899:the original 1889: 1878:. Retrieved 1874:the original 1864: 1842: 1801: 1797: 1776: 1771: 1764: 1745: 1723: 1688: 1684: 1601: 1597: 1587: 1557:(1): 31–46. 1554: 1550: 1530: 1486: 1482: 1472: 1457: 1428: 1418: 1375: 1371: 1361: 1318: 1314: 1258: 1254: 1229:. Retrieved 1225:the original 1215: 1180: 1176: 1120: 1116: 1067:. Retrieved 1063:the original 1053: 1042:. Retrieved 1038:the original 1028: 1017:. Retrieved 1015:. Genome.gov 1007: 972: 968: 958: 923: 919: 909: 875:(1): 38–69. 872: 868: 858: 823: 819: 809: 782: 778: 768: 666:(1): 84–89. 663: 659: 633: 629: 600:RNA Velocity 565: 553:followed by 547: 538: 518:luminescence 507: 462: 448: 435:Pascal Mayer 430:denaturation 418: 406: 397:microreactor 377: 374:Emulsion PCR 368: 356: 106: 98: 79: 55: 50: 46: 42: 34: 30: 29: 1852:Solexa Ltd. 1445:|last= 730:Solexa Ltd. 439:Chris Adams 387:DNA library 385:methods, a 93:nucleotides 1926:2012-08-05 1905:2012-08-05 1880:2012-08-05 1848:US 6833246 1729:US 9624538 1069:2014-11-06 1044:2014-11-06 1019:2012-08-05 751:EP 0975802 722:EP 0972081 697:US 5641658 606:References 525:luciferase 490:IonTorrent 469:nucleotide 422:polymerase 164:0.40-0.60 149:Roche 454 135:Chemistry 1970:205421576 1818:0036-8075 1579:205484500 201:0.17-2.7 129:Platform 89:synthesis 62:flow cell 2035:Category 1962:23644548 1834:26331871 1715:10572186 1638:12857956 1571:19997069 1513:20805560 1437:cite web 1410:22785314 1353:11405973 1345:16081699 1293:17309571 1285:19892942 1207:19546169 1155:18987734 991:18329356 950:19679224 901:24710010 850:32451905 801:19246620 579:See also 494:Illumina 380:emulsion 341:10,000 ( 117:Illumina 85:in vitro 1826:9705713 1798:Science 1606:Bibcode 1504:2928417 1401:3397394 1380:Bibcode 1323:Bibcode 1315:Science 1263:Bibcode 1255:Science 1198:2752135 1146:2581791 1125:Bibcode 999:8413828 941:2725244 892:3960862 841:7295846 755:Mayer P 726:Mayer P 680:8923969 529:apyrase 522:firefly 221:0.3-11 1968:  1960:  1857:  1832:  1824:  1816:  1757:  1738:  1713:  1706:148757 1703:  1664:  1636:  1629:166396 1626:  1577:  1569:  1511:  1501:  1408:  1398:  1372:Nature 1351:  1343:  1291:  1283:  1205:  1195:  1153:  1143:  1117:Nature 1096:  997:  989:  948:  938:  899:  889:  848:  838:  799:  761:  735:  706:  678:  550:ligase 486:PacBio 264:35-50 258:20-45 238:2x150 218:2x150 198:2x300 184:0.035 1966:S2CID 1830:S2CID 1575:S2CID 1349:S2CID 1289:S2CID 1231:1 Jan 995:S2CID 869:Genes 471:by a 426:oligo 348:0.08 332:SMRT 304:3000 298:7x10 241:2-14 224:1000 181:0.42 178:400‡ 161:0.42 158:400‡ 49:) or 1958:PMID 1822:PMID 1814:ISSN 1711:PMID 1634:PMID 1567:PMID 1509:PMID 1449:help 1406:PMID 1341:PMID 1281:PMID 1233:2014 1203:PMID 1151:PMID 987:PMID 969:Cell 946:PMID 897:PMID 846:PMID 797:PMID 676:PMID 496:and 351:0.5 318:35‡ 284:100 281:0.5 278:200 261:4-7 1950:doi 1806:doi 1802:281 1701:PMC 1693:doi 1624:PMC 1614:doi 1602:100 1559:doi 1499:PMC 1491:doi 1396:PMC 1388:doi 1376:487 1331:doi 1319:309 1271:doi 1259:327 1193:PMC 1185:doi 1141:PMC 1133:doi 1121:456 977:doi 973:132 936:PMC 928:doi 887:PMC 877:doi 836:PMC 828:doi 824:134 787:doi 668:doi 664:242 638:doi 634:208 498:MGI 482:454 465:DNA 383:PCR 378:In 343:N50 324:25 301:11 244:95 204:15 115:An 82:PCR 58:DNA 47:NGS 33:or 2037:: 2015:. 1964:. 1956:. 1946:10 1944:. 1828:. 1820:. 1812:. 1800:. 1796:. 1784:^ 1709:. 1699:. 1689:27 1687:. 1683:. 1671:^ 1646:^ 1632:. 1622:. 1612:. 1600:. 1596:. 1573:. 1565:. 1555:11 1553:. 1539:^ 1521:^ 1507:. 1497:. 1487:12 1485:. 1481:. 1441:: 1439:}} 1435:{{ 1427:. 1404:. 1394:. 1386:. 1374:. 1370:. 1347:. 1339:. 1329:. 1317:. 1313:. 1301:^ 1287:. 1279:. 1269:. 1257:. 1253:. 1241:^ 1201:. 1191:. 1181:19 1179:. 1175:. 1163:^ 1149:. 1139:. 1131:. 1119:. 1115:. 1103:^ 1078:^ 993:. 985:. 971:. 967:. 944:. 934:. 924:85 922:. 918:. 895:. 885:. 871:. 867:. 844:. 834:. 822:. 818:. 795:. 783:55 781:. 777:. 742:^ 713:^ 688:^ 674:. 662:. 650:^ 632:. 628:. 614:^ 500:. 492:, 488:, 484:, 321:8 104:. 1987:. 1972:. 1952:: 1929:. 1908:. 1883:. 1836:. 1808:: 1717:. 1695:: 1640:. 1616:: 1608:: 1581:. 1561:: 1515:. 1493:: 1466:. 1451:) 1431:. 1412:. 1390:: 1382:: 1355:. 1333:: 1325:: 1295:. 1273:: 1265:: 1235:. 1209:. 1187:: 1157:. 1135:: 1127:: 1072:. 1047:. 1022:. 1001:. 979:: 952:. 930:: 903:. 879:: 873:1 852:. 830:: 803:. 789:: 682:. 670:: 644:. 640:: 45:( 20:)

Index

Next-generation sequencing
DNA sequencing
DNA
flow cell
Sanger sequencing
electrophoretic
PCR
in vitro
synthesis
nucleotides
genome sequencing

Illumina
Pacific Biosciences
N50
emulsion
PCR
DNA library
oligonucleotide
microreactor
rolling circle amplification
polymerase
oligo
denaturation
Pascal Mayer
Chris Adams
DNA
nucleotide
DNA polymerase
amplification of DNA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑