Knowledge

Nucleosynthesis

Source đź“ť

454:, a Belgian physicist, who suggested that the evident expansion of the Universe in time required that the Universe, if contracted backwards in time, would continue to do so until it could contract no further. This would bring all the mass of the Universe to a single point, a "primeval atom", to a state before which time and space did not exist. Hoyle is credited with coining the term "Big Bang" during a 1949 BBC radio broadcast, saying that Lemaître's theory was "based on the hypothesis that all the matter in the universe was created in one big bang at a particular time in the remote past." It is popularly reported that Hoyle intended this to be pejorative, but Hoyle explicitly denied this and said it was just a striking image meant to highlight the difference between the two models. Lemaître's model was needed to explain the existence of deuterium and nuclides between helium and carbon, as well as the fundamentally high amount of helium present, not only in stars but also in interstellar space. As it happened, both Lemaître and Hoyle's models of nucleosynthesis would be needed to explain the elemental abundances in the universe. 1585: 761: 1580:{\displaystyle {\begin{array}{ll}{\ce {n^{0}->p+{}+e^{-}{}+{\overline {\nu }}_{e}}}&{\ce {p+{}+n^{0}->_{1}^{2}D{}+\gamma }}\\{\ce {^{2}_{1}D{}+p+->_{2}^{3}He{}+\gamma }}&{\ce {^{2}_{1}D{}+_{1}^{2}D->_{2}^{3}He{}+n^{0}}}\\{\ce {^{2}_{1}D{}+_{1}^{2}D->_{1}^{3}T{}+p+}}&{\ce {^{3}_{1}T{}+_{1}^{2}D->_{2}^{4}He{}+n^{0}}}\\{\ce {^{3}_{1}T{}+_{2}^{4}He->_{3}^{7}Li{}+\gamma }}&{\ce {^{3}_{2}He{}+n^{0}->_{1}^{3}T{}+p+}}\\{\ce {^{3}_{2}He{}+_{1}^{2}D->_{2}^{4}He{}+p+}}&{\ce {^{3}_{2}He{}+_{2}^{4}He->_{4}^{7}Be{}+\gamma }}\\{\ce {^{7}_{3}Li{}+p+->_{2}^{4}He{}+_{2}^{4}He}}&{\ce {^{7}_{4}Be{}+n^{0}->_{3}^{7}Li{}+p+}}\end{array}}} 246: 471: 1969: 490: 185: 27: 1768:
fuses nuclei that themselves have equal numbers of protons and neutrons to produce nuclides which consist of whole numbers of helium nuclei, up to 15 (representing Ni). Such multiple-alpha-particle nuclides are totally stable up to Ca (made of 10 helium nuclei), but heavier nuclei with equal and even numbers of protons and neutrons are tightly bound but unstable. The quasi-equilibrium produces radioactive
475:
stellar-produced elements are: (1) an alternation of abundance of elements according to whether they have even or odd atomic numbers, and (2) a general decrease in abundance, as elements become heavier. Within this trend is a peak at abundances of iron and nickel, which is especially visible on a logarithmic graph spanning fewer powers of ten, say between logA=2 (A=100) and logA=6 (A=1,000,000).
2148: 1740:, which inadvertently obscured Hoyle's 1954 theory. Further nucleosynthesis processes can occur, in particular the r-process (rapid process) described by the BFH paper and first calculated by Seeger, Fowler and Clayton, in which the most neutron-rich isotopes of elements heavier than nickel are produced by rapid absorption of free neutrons. The creation of free neutrons by 75:. Nucleosynthesis in stars and their explosions later produced the variety of elements and isotopes that we have today, in a process called cosmic chemical evolution. The amounts of total mass in elements heavier than hydrogen and helium (called 'metals' by astrophysicists) remains small (few percent), so that the universe still has approximately the same composition. 1775:, Cr, Fe, and Ni, which (except Ti) are created in abundance but decay after the explosion and leave the most stable isotope of the corresponding element at the same atomic weight. The most abundant and extant isotopes of elements produced in this way are Ti, Cr, and Fe. These decays are accompanied by the emission of gamma-rays (radiation from the nucleus), whose 1642:. It is responsible for the galactic abundances of elements from carbon to iron. Stars are thermonuclear furnaces in which H and He are fused into heavier nuclei by increasingly high temperatures as the composition of the core evolves. Of particular importance is carbon because its formation from He is a bottleneck in the entire process. Carbon is produced by the 1927:. These impacts fragment carbon, nitrogen, and oxygen nuclei present. The process results in the light elements beryllium, boron, and lithium in the cosmos at much greater abundances than they are found within solar atmospheres. The quantities of the light elements H and He produced by spallation are negligible relative to their primordial abundance. 1786:. Gamma-ray lines identifying Co and Co nuclei, whose half-lives limit their age to about a year, proved that their radioactive cobalt parents created them. This nuclear astronomy observation was predicted in 1969 as a way to confirm explosive nucleosynthesis of the elements, and that prediction played an important role in the planning for NASA's 358:, and by nucleosynthesis in exotic events such as neutron star collisions. Other nuclides, such as Ar, formed later through radioactive decay. On Earth, mixing and evaporation has altered the primordial composition to what is called the natural terrestrial composition. The heavier elements produced after the Big Bang range in 420:'s original work on nucleosynthesis of heavier elements in stars, occurred just after World War II. His work explained the production of all heavier elements, starting from hydrogen. Hoyle proposed that hydrogen is continuously created in the universe from vacuum and energy, without need for universal beginning. 2312:. He saw an analogy between the plutonium fission reaction and the newly discovered supernovae, and he was able to show that exploding super novae produced all of the elements in the same proportion as existed on Earth. He felt that he had accidentally fallen into a subject that would make his career. 1662:
The first direct proof that nucleosynthesis occurs in stars was the astronomical observation that interstellar gas has become enriched with heavy elements as time passed. As a result, stars that were born from it late in the galaxy, formed with much higher initial heavy element abundances than those
295:
could be formed, as this element requires a far higher product of helium density and time than were present in the short nucleosynthesis period of the Big Bang. That fusion process essentially shut down at about 20 minutes, due to drops in temperature and density as the universe continued to expand.
2111:
nuclides. This process happens when an energetic particle from radioactive decay, often an alpha particle, reacts with a nucleus of another atom to change the nucleus into another nuclide. This process may also cause the production of further subatomic particles, such as neutrons. Neutrons can also
398:
were created at the beginning of the universe, but no rational physical scenario for this could be identified. Gradually it became clear that hydrogen and helium are much more abundant than any of the other elements. All the rest constitute less than 2% of the mass of the Solar System, and of other
1767:
Explosive nucleosynthesis occurs too rapidly for radioactive decay to decrease the number of neutrons, so that many abundant isotopes with equal and even numbers of protons and neutrons are synthesized by the silicon quasi-equilibrium process. During this process, the burning of oxygen and silicon
1756:
was still small, that nonetheless contain their complement of r-process nuclei; thereby demonstrating that the metallicity is a product of an internal process. The r-process is responsible for our natural cohort of radioactive elements, such as uranium and thorium, as well as the most neutron-rich
1671:
star in 1952, by spectroscopy, provided the first evidence of nuclear activity within stars. Because technetium is radioactive, with a half-life much less than the age of the star, its abundance must reflect its recent creation within that star. Equally convincing evidence of the stellar origin of
466:
that was based on the unfractionated abundances of the non-volatile elements found within unevolved meteorites. Such a graph of the abundances is displayed on a logarithmic scale below, where the dramatically jagged structure is visually suppressed by the many powers of ten spanned in the vertical
457:
The goal of the theory of nucleosynthesis is to explain the vastly differing abundances of the chemical elements and their several isotopes from the perspective of natural processes. The primary stimulus to the development of this theory was the shape of a plot of the abundances versus the atomic
1793:
Other proofs of explosive nucleosynthesis are found within the stardust grains that condensed within the interiors of supernovae as they expanded and cooled. Stardust grains are one component of cosmic dust. In particular, radioactive Ti was measured to be very abundant within supernova stardust
1723:
except for a high abundance of the Si nuclei in the feverishly burning mix. This concept was the most important discovery in nucleosynthesis theory of the intermediate-mass elements since Hoyle's 1954 paper because it provided an overarching understanding of the abundant and chemically important
474:
Abundances of the chemical elements in the Solar System. Hydrogen and helium are most common, residuals within the paradigm of the Big Bang. The next three elements (Li, Be, B) are rare because they are poorly synthesized in the Big Bang and also in stars. The two general trends in the remaining
2029:
Tiny amounts of certain nuclides are produced on Earth by artificial means. Those are our primary source, for example, of technetium. However, some nuclides are also produced by a number of natural means that have continued after primordial elements were in place. These often act to create new
323:. These lighter elements in the present universe are therefore thought to have been produced through thousands of millions of years of cosmic ray (mostly high-energy proton) mediated breakup of heavier elements in interstellar gas and dust. The fragments of these cosmic-ray collisions include 409:
first suggested in 1920 that stars obtain their energy by fusing hydrogen into helium and raised the possibility that the heavier elements may also form in stars. This idea was not generally accepted, as the nuclear mechanism was not understood. In the years immediately before World War II,
249:
Periodic table showing the currently believed origins of each element. Elements from carbon up to sulfur may be made in stars of all masses by charged-particle fusion reactions. Iron group elements originate mostly from the nuclear-statistical equilibrium process in thermonuclear supernova
319:, and boron – which were found in the initial composition of the interstellar medium and hence the star. Interstellar gas therefore contains declining abundances of these light elements, which are present only by virtue of their nucleosynthesis during the Big Bang, and also 1810:
of binary neutron stars (BNSs) is now believed to be the main source of r-process elements. Being neutron-rich by definition, mergers of this type had been suspected of being a source of such elements, but definitive evidence was difficult to obtain. In 2017 strong evidence emerged, when
399:
star systems as well. At the same time it was clear that oxygen and carbon were the next two most common elements, and also that there was a general trend toward high abundance of the light elements, especially those with isotopes composed of whole numbers of helium-4 nuclei (
382:. The stability of atomic nuclei of different sizes and composition (i.e. numbers of neutrons and protons) plays an important role in the possible reactions among nuclei. Cosmic nucleosynthesis, therefore, is studied among researchers of astrophysics and nuclear physics (" 1718:
occurs in the energetic environment in supernovae, in which the elements between silicon and nickel are synthesized in quasiequilibrium established during fast fusion that attaches by reciprocating balanced nuclear reactions to Si. Quasiequilibrium can be thought of as
1954:
abundances and comparing those results with observed abundances. Isotope abundances are typically calculated from the transition rates between isotopes in a network. Often these calculations can be simplified as a few key reactions control the rate of other reactions.
458:
number of the elements. Those abundances, when plotted on a graph as a function of atomic number, have a jagged sawtooth structure that varies by factors up to ten million. A very influential stimulus to nucleosynthesis research was an abundance table created by
2030:
elements in ways that can be used to date rocks or to trace the source of geological processes. Although these processes do not produce the nuclides in abundance, they are assumed to be the entire source of the existing natural supply of those nuclides.
1752:. This promising scenario, though generally supported by supernova experts, has yet to achieve a satisfactory calculation of r-process abundances. The primary r-process has been confirmed by astronomers who had observed old stars born when galactic 254:), and by rapid neutron capture in the r-process, with origins being debated among rare supernova variants and compact-star collisions. Note that this graphic is a first-order simplification of an active research field with many open questions. 346:. These processes began as hydrogen and helium from the Big Bang collapsed into the first stars after about 500 million years. Star formation has been occurring continuously in galaxies since that time. The primordial nuclides were created by 447:, Fowler and Hoyle is a well-known summary of the state of the field in 1957. That paper defined new processes for the transformation of one heavy nucleus into others within stars, processes that could be documented by astronomers. 1646:
in all stars. Carbon is also the main element that causes the release of free neutrons within stars, giving rise to the s-process, in which the slow absorption of neutrons converts iron into elements heavier than iron and nickel.
1676:
stars. Observation of barium abundances some 20–50 times greater than found in unevolved stars is evidence of the operation of the s-process within such stars. Many modern proofs of stellar nucleosynthesis are provided by the
1839:
decays and cools. The first detection of the merger of a neutron star and black hole (NSBHs) came in July 2021 and more after but analysis seem to favor BNSs over NSBHs as the main contributors to heavy metal production.
2093:. This is not cluster decay, as the fission products may be split among nearly any type of atom. Thorium-232, uranium-235, and uranium-238 are primordial isotopes that undergo spontaneous fission. Natural technetium and 56:. After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions occurred, leaving our universe containing 124:: from the ejection of elements produced during stellar nucleosynthesis; through explosive nucleosynthesis during the supernova explosion; and from the r-process (absorption of multiple neutrons) during the explosion. 1870:
Cosmic ray spallation process reduces the atomic weight of interstellar matter by the impact with cosmic rays, to produce some of the lightest elements present in the universe (though not a significant amount of
130:
are a recently discovered major source of elements produced in the r-process. When two neutron stars collide, a significant amount of neutron-rich matter may be ejected which then quickly forms heavy elements.
1650:
The products of stellar nucleosynthesis are generally dispersed into the interstellar gas through mass loss episodes and the stellar winds of low mass stars. The mass loss events can be witnessed today in the
745:
froze out to form protons and neutrons. Because of the very short period in which nucleosynthesis occurred before it was stopped by expansion and cooling (about 20 minutes), no elements heavier than
141:
impact nuclei and fragment them. It is a significant source of the lighter nuclei, particularly He, Be and B, that are not created by stellar nucleosynthesis. Cosmic ray spallation can occur in the
1693:. The measured isotopic compositions in stardust grains demonstrate many aspects of nucleosynthesis within the stars from which the grains condensed during the star's late-life mass-loss episodes. 554:
processes which are believed to be responsible for nucleosynthesis. The majority of these occur within stars, and the chain of those nuclear fusion processes are known as hydrogen burning (via the
1794:
grains at the time they condensed during the supernova expansion. This confirmed a 1975 prediction of the identification of supernova stardust (SUNOCONs), which became part of the pantheon of
719:
and certain types of radioactive decay, most of the mass of the isotopes in the universe are thought to have been produced in the Big Bang. The nuclei of these elements, along with some
2127:
nuclides. Cosmic rays continue to produce new elements on Earth by the same cosmogenic processes discussed above that produce primordial beryllium and boron. One important example is
423:
Hoyle's work explained how the abundances of the elements increased with time as the galaxy aged. Subsequently, Hoyle's picture was expanded during the 1960s by contributions from
2985:
Chakrabarti, S. K.; Jin, L.; Arnett, W. D. (1987). "Nucleosynthesis Inside Thick Accretion Disks Around Black Holes. I – Thermodynamic Conditions and Preliminary Analysis".
2837: 2120:. For example, some stable isotopes such as neon-21 and neon-22 are produced by several routes of nucleogenic synthesis, and thus only part of their abundance is primordial. 98:
in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ejected through stellar winds and explosions. The
3478:
Meneguzzi, M.; Audouze, J.; Reeves, H. (1971). "The Production of the Elements Li, Be, B by Galactic Cosmic Rays in Space and Its Relation with Stellar Observations".
3272: 582:. These processes are able to create elements up to and including iron and nickel. This is the region of nucleosynthesis within which the isotopes with the highest 3642: 2454: 327:
and the stable isotopes of the light elements lithium, beryllium, and boron. Carbon was not made in the Big Bang, but was produced later in larger stars via the
1779:
can be used to identify the isotope created by the decay. The detection of these emission lines were an important early product of gamma-ray astronomy.
3379: 3152:
Arai, K.; Matsuba, R.; Fujimoto, S.; Koike, O.; Hashimoto, M. (2003). "Nucleosynthesis Inside Accretion Disks Around Intermediate-mass Black Holes".
3041: 1685:, solid grains that have condensed from the gases of individual stars and which have been extracted from meteorites. Stardust is one component of 629:
Big Bang nucleosynthesis occurred within the first three minutes of the beginning of the universe and is responsible for much of the abundance of
3076: 2079:
is produced by alpha-decay, and the helium trapped in Earth's crust is also mostly non-primordial. In other types of radioactive decay, such as
753:) could be formed. Elements formed during this time were in the plasma state, and did not cool to the state of neutral atoms until much later. 3329:"A New Approach for Calculating the Alpha-Decay Half-Life for the Heavy and Super-heavy Elements and an Exact A Priori Result for Beyllium-8" 3097:; Ruffert, M.; Janka, H.-Th.; Hix, W. R. (2008). "Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole-Neutron Star Mergers". 1782:
The most convincing proof of explosive nucleosynthesis in supernovae occurred in 1987 when those gamma-ray lines were detected emerging from
2059:
produce many intermediate daughter nuclides before they too finally decay to isotopes of lead. The Earth's natural supply of elements like
3670: 3412: 2757: 2671: 2627: 374:). Synthesis of these elements occurred through nuclear reactions involving the strong and weak interactions among nuclei, and called 1764:(rapid proton) involves the rapid absorption of free protons as well as neutrons, but its role and its existence are less certain. 1744:
during the rapid compression of the supernova core along with the assembly of some neutron-rich seed nuclei makes the r-process a
2161: 2123:
Nuclear reactions due to cosmic rays. By convention, these reaction-products are not termed "nucleogenic" nuclides, but rather
2796: 2666: 3587: 3564: 3541: 3518: 2752: 2569: 2492: 2895:"The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers" 3410:
Hoyle, F. (1954). "On Nuclear Reactions Occurring in Very Hot STARS. I. The Synthesis of Elements from Carbon to Nickel".
2508:
Clayton, D. D.; Fowler, W. A.; Hull, T. E.; Zimmerman, B. A. (1961). "Neutron Capture Chains in Heavy Element Synthesis".
378:(including both rapid and slow multiple neutron capture), and include also nuclear fission and radioactive decays such as 1748:, and one that can occur even in a star of pure H and He. This is in contrast to the BFH designation of the process as a 598:, by a number of other processes. Some of those others include the r-process, which involves rapid neutron captures, the 1590: 48:(protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the 2437: 3242: 2420: 2083:, larger species of nuclei are ejected (for example, neon-20), and these eventually become newly formed stable atoms. 2016: 537: 232: 1998: 519: 214: 1990: 511: 206: 586:
per nucleon are created. Heavier elements can be assembled within stars by a neutron capture process known as the
3663: 2960: 1875:). Most notably spallation is believed to be responsible for the generation of almost all of He and the elements 1820: 2313: 1994: 1798:. Other unusual isotopic ratios within these grains reveal many specific aspects of explosive nucleosynthesis. 515: 307:
A star formed in the early universe produces heavier elements by combining its lighter nuclei –
210: 1787: 1638:
Stellar nucleosynthesis is the nuclear process by which new nuclei are produced. It occurs in stars during
338: â‰Ą 6, carbon and heavier elements) requires the extreme temperatures and pressures found within 3556: 3510: 3034: 2557: 2480: 1836: 3656: 3533: 3480: 3059: 1672:
heavy elements is the large overabundances of specific stable elements found in stellar atmospheres of
741:
are considered to have been formed between 100 and 300 seconds after the Big Bang when the primordial
3447: 3099: 2987: 2801: 2587: 2370: 2331: 2211: 1919:
are thought to have been produced in the Big Bang. The spallation process results from the impact of
1715: 1710: 355: 113: 3225: 2449: 3943: 3933: 1979: 624: 500: 406: 347: 297: 195: 53: 3822: 3787: 3767: 3722: 3268:"Light element variations in globular clusters via nucleosynthesis in black hole accretion discs" 1983: 1673: 1613: 1609: 579: 555: 504: 351: 199: 87: 16:
Process that creates new atomic nuclei from pre-existing nucleons, primarily protons and neutrons
3817: 3807: 3220: 3190: 2842: 2444: 1807: 742: 575: 567: 428: 264: 153:, or on Earth in the atmosphere or in the ground. This contributes to the presence on Earth of 3938: 2561: 2550: 2484: 2473: 2181: 2116:. These neutrons can then go on to produce other nuclides via neutron-induced fission, or by 2075:
in the time since the formation of the Earth. Little of the atmospheric argon is primordial.
1865: 320: 134: 3493: 2640: 2406: 3812: 3802: 3489: 3456: 3421: 3388: 3291: 3212: 3163: 3118: 2996: 2916: 2865: 2810: 2766: 2680: 2648: 2636: 2596: 2519: 2379: 2340: 2269: 2220: 1835:, and subsequently detected signals of numerous heavy elements such as gold as the ejected 1816: 1643: 1617: 571: 563: 383: 328: 8: 3866: 3757: 3737: 3732: 2090: 1924: 1776: 1633: 607: 595: 142: 127: 3638: 3460: 3425: 3392: 3295: 3216: 3167: 3122: 3000: 2920: 2814: 2770: 2684: 2600: 2523: 2383: 2344: 2273: 2224: 451: 250:
explosions. Elements beyond iron are made in high-mass stars with slow neutron capture (
3503: 3309: 3281: 3248: 3202: 3134: 3108: 2942: 2906: 2733: 2304:
Actually, before the war ended, he learned about the problem of spherical implosion of
1828: 301: 300:, was the first type of nucleogenesis to occur in the universe, creating the so-called 165: 154: 3175: 1930:
Beryllium and boron are not significantly produced by stellar fusion processes, since
271:
as it cooled below two trillion degrees. A few minutes afterwards, starting with only
3747: 3717: 3687: 3620: 3583: 3560: 3537: 3514: 3344: 3252: 3238: 3154: 3012: 2946: 2934: 2737: 2725: 2708: 2565: 2531: 2510: 2488: 2416: 2309: 2287: 2236: 2104: 2100: 2086: 2037: 1639: 444: 440: 432: 424: 395: 3313: 3138: 90:. Nuclear fusion reactions create many of the lighter elements, up to and including 3777: 3742: 3727: 3679: 3610: 3464: 3429: 3396: 3336: 3299: 3230: 3198: 3171: 3126: 3068: 3004: 2924: 2818: 2774: 2717: 2688: 2644: 2604: 2527: 2387: 2348: 2277: 2260: 2228: 2113: 2044: 1827:, along with a collaboration of many observatories around the world, detected both 1769: 1741: 1652: 1682: 414:
first elucidated those nuclear mechanisms by which hydrogen is fused into helium.
3887: 3782: 3752: 3094: 3072: 3030: 2117: 1795: 1783: 1690: 245: 99: 2232: 3908: 3892: 3615: 3598: 3234: 2929: 2894: 1849: 1594: 583: 375: 79: 3469: 3442: 3401: 3374: 2838:"All the Gold in the Universe Could Come from the Collisions of Neutron Stars" 2625:
Clayton, D. D.; Nittler, L. R. (2004). "Astrophysics with Presolar Stardust".
2353: 2326: 766: 291:
may have been formed at this time, but the process stopped before significant
3927: 3797: 3712: 3624: 3328: 2938: 2391: 2080: 1733: 551: 400: 359: 41: 31: 3335:. U.S. Department of Energy Office of Scientific and Technical Information. 3304: 3267: 2721: 1655:
phase of low-mass star evolution, and the explosive ending of stars, called
3871: 2729: 2291: 2240: 2072: 450:
The Big Bang itself had been proposed in 1931, long before this period, by
287:(both with mass number 7) were formed, but hardly any other elements. Some 263:
It is thought that the primordial nucleons themselves were formed from the
168: 161: 83: 2585:
Merrill, S. P. W. (1952). "Spectroscopic Observations of Stars of Class".
3697: 3207: 2961:"Neutron star collisions are a "goldmine" of heavy elements, study finds" 2153: 2108: 2056: 2052: 2048: 1931: 1920: 1772: 1753: 1686: 701: 463: 138: 20: 470: 3848: 3702: 3195:
Proceedings of the Ninth Marcel Grossmann Meeting on General Relavitity
2132: 2124: 2094: 2047:. The nuclear decay of many long-lived primordial isotopes, especially 2041: 1853: 1761: 1737: 1706: 1664: 716: 641: 599: 459: 436: 417: 411: 379: 116:
within exploding stars is largely responsible for the elements between
3348: 3016: 2368:
Suess, Hans E.; Urey, Harold C. (1956). "Abundances of the Elements".
3843: 3835: 3827: 3792: 3707: 3579: 2412: 2305: 2282: 2255: 2128: 1880: 1872: 1702: 1668: 1656: 1629: 1625: 1621: 746: 656: 603: 591: 587: 559: 371: 343: 316: 284: 251: 150: 146: 107: 103: 72: 3648: 3340: 3191:"Nucleonsynthesis in Advective Accretion Disk Around Compact Object" 2206: 1968: 489: 184: 3441:
Burbidge, E. M.; Burbidge, G. R.; Fowler, W. A.; Hoyle, F. (1957).
3433: 3286: 3130: 3008: 2911: 2822: 2778: 2692: 2608: 2325:
Burbidge, E. M.; Burbidge, G. R.; Fowler, W. A.; Hoyle, F. (1957).
2076: 2068: 2064: 1832: 1824: 1678: 686: 671: 324: 308: 268: 121: 57: 49: 26: 3113: 2893:
Chen, Hsin-Yu; Vitale, Salvatore; Foucart, Francois (2021-10-01).
2873: 1951: 1876: 280: 276: 69: 65: 45: 1831:
and electromagnetic signatures of a likely neutron star merger,
312: 292: 272: 117: 95: 61: 3641:– nucleosynthesis explained in terms of the nuclide chart, by 2131:, produced from nitrogen-14 in the atmosphere by cosmic rays. 19:"Nucleogenesis" redirects here. For the song by Vangelis, see 2060: 750: 606:(sometimes known as the gamma process), which results in the 288: 3092: 1843: 3440: 3193:. In Jantzen, R. T.; Ruffini, R.; Gurzadyan, V. G. (eds.). 2869: 2324: 1812: 1659:, of those with more than eight times the mass of the Sun. 339: 91: 3273:
Monthly Notices of the Royal Astronomical Society: Letters
2507: 2147: 2408:
From First Light to Reionization the End of the Dark Ages
830: 30:
Diagram illustration the creation of new elements by the
3151: 394:
The first ideas on nucleosynthesis were simply that the
2795:
Clayton, D. D.; Colgate, S. A.; Fishman, G. J. (1969).
2436:
Fields, B.D.; Molaro, P.; Sarkar, S. (September 2017).
3477: 2753:"Nucleosynthesis of Heavy Elements by Neutron Capture" 1950:
Theories of nucleosynthesis are tested by calculating
3061:
Nucleosynthesis in Accretion Disks Around Black Holes
2794: 2751:
Seeger, P. A.; Fowler, W. A.; Clayton, D. D. (1965).
2664: 1732:= 60). It replaced the incorrect although much cited 764: 2984: 2665:
Bodansky, D.; Clayton, D. D.; Fowler, W. A. (1968).
2143: 389: 334:
The subsequent nucleosynthesis of heavier elements (
3505:
Principles of Stellar Evolution and Nucleosynthesis
2750: 2552:
Principles of Stellar Evolution and Nucleosynthesis
2543: 2541: 2475:
Principles of Stellar Evolution and Nucleosynthesis
2103:. Naturally occurring nuclear reactions powered by 3502: 2667:"Nuclear Quasi-Equilibrium during Silicon Burning" 2549: 2472: 2435: 2067:is via this mechanism. The atmosphere's supply of 1579: 3596: 3380:Monthly Notices of the Royal Astronomical Society 3035:"Nucleosynthesis from Black Hole Accretion Disks" 2892: 1958: 3925: 3029: 2965:MIT News | Massachusetts Institute of Technology 2538: 52:, through nuclear reactions in a process called 2797:"Gamma-Ray Lines from Young Supernova Remnants" 2660: 2658: 700:continues to be produced by stellar fusion and 64:. The rest is traces of other elements such as 2790: 2788: 2624: 2620: 2618: 3664: 3553:Cauldrons in the Cosmos: Nuclear Astrophysics 3375:"The Synthesis of the Elements from Hydrogen" 3326: 3188: 2655: 1696: 1589:Chief nuclear reactions responsible for the 171:such as uranium, thorium, and potassium-40. 110:create heavier elements, from iron upwards. 86:, giving off energy in the process known as 3550: 3413:The Astrophysical Journal Supplement Series 2785: 2758:The Astrophysical Journal Supplement Series 2706:Clayton, D. D. (2007). "Hoyle's Equation". 2672:The Astrophysical Journal Supplement Series 2628:Annual Review of Astronomy and Astrophysics 2615: 1997:. Unsourced material may be challenged and 618: 518:. Unsourced material may be challenged and 213:. Unsourced material may be challenged and 3671: 3657: 2112:be produced in spontaneous fission and by 2071:is due mostly to the radioactive decay of 1663:that had formed earlier. The detection of 1603: 3614: 3468: 3400: 3303: 3285: 3224: 3206: 3112: 2928: 2910: 2835: 2448: 2404: 2367: 2352: 2281: 2253: 2204: 2017:Learn how and when to remove this message 1844:Black hole accretion disk nucleosynthesis 538:Learn how and when to remove this message 267:around 13.8 billion years ago during the 233:Learn how and when to remove this message 160:On Earth new nuclei are also produced by 2256:"The Internal Constitution of the Stars" 2207:"The Internal Constitution of the Stars" 1859: 469: 244: 82:light elements to heavier ones in their 25: 3597:Arcones, A.; Thielemann, F. K. (2022). 3573: 3527: 3500: 3057: 2705: 2584: 2547: 2470: 2162:Extinct isotopes of superheavy elements 1801: 3926: 3327:Surdoval, Wayne; Berry, David (2021). 2649:10.1146/annurev.astro.42.053102.134022 590:or in explosive environments, such as 3678: 3652: 3603:The Astronomy and Astrophysics Review 3409: 3372: 3265: 1945: 3551:Rolfs, C. E.; Rodney, W. S. (2005). 3443:"Synthesis of the Elements in Stars" 2327:"Synthesis of the Elements in Stars" 1995:adding citations to reliable sources 1962: 1934:has an extremely short half-life of 516:adding citations to reliable sources 483: 211:adding citations to reliable sources 178: 2863: 13: 3530:Handbook of Isotopes in the Cosmos 3366: 2836:Stromberg, Joseph (16 July 2013). 1923:(mostly fast protons) against the 14: 3955: 3632: 3509:(Reprint ed.). Chicago, IL: 2899:The Astrophysical Journal Letters 2556:(Reprint ed.). Chicago, IL: 2479:(Reprint ed.). Chicago, IL: 1597:observed throughout the universe. 390:History of nucleosynthesis theory 3082:from the original on 2020-03-24. 3047:from the original on 2016-09-10. 2460:from the original on 2022-04-01. 2182:"DOE Explains...Nucleosynthesis" 2146: 1967: 1757:isotopes of each heavy element. 488: 183: 40:is the process that creates new 3639:The Valley of Stability (video) 3320: 3259: 3182: 3145: 3086: 3051: 3023: 2978: 2953: 2886: 2857: 2829: 2744: 2699: 2578: 2501: 2314:Autobiography William A. Fowler 1821:Fermi Gamma-ray Space Telescope 435:, followed by many others. The 2464: 2438:"23. Big-Bang Nucleosynthesis" 2429: 2398: 2361: 2318: 2298: 2247: 2198: 2174: 1959:Minor mechanisms and processes 1848:Nucleosynthesis may happen in 1540: 1469: 1408: 1337: 1264: 1205: 1132: 1061: 988: 924: 863: 780: 613: 1: 3176:10.1016/S0375-9474(03)00856-X 3033:; Surman, R. (2 April 2007). 2167: 1788:Compton Gamma-Ray Observatory 2532:10.1016/0003-4916(61)90067-7 2097:are produced in this manner. 819: 479: 7: 3557:University of Chicago Press 3511:University of Chicago Press 2558:University of Chicago Press 2481:University of Chicago Press 2405:Stiavelli, Massimo (2009). 2233:10.1126/science.52.1341.233 2139: 1883:, and boron, although some 715:continue to be produced by 366: = 6 (carbon) to 258: 164:, the decay of long-lived, 10: 3960: 3616:10.1007/s00159-022-00146-x 3534:Cambridge University Press 3481:Astronomy and Astrophysics 3235:10.1142/9789812777386_0544 2033:These mechanisms include: 1863: 1724:elements between silicon ( 1700: 1607: 622: 174: 18: 3901: 3880: 3857: 3766: 3686: 3470:10.1103/RevModPhys.29.547 3448:Reviews of Modern Physics 3189:Mukhopadhyay, B. (2018). 3100:The Astrophysical Journal 2988:The Astrophysical Journal 2802:The Astrophysical Journal 2588:The Astrophysical Journal 2371:Reviews of Modern Physics 2354:10.1103/RevModPhys.29.547 2332:Reviews of Modern Physics 2254:Eddington, A. S. (1920). 2205:Eddington, A. S. (1920). 1716:Supernova nucleosynthesis 1711:Supernova nucleosynthesis 1697:Explosive nucleosynthesis 1689:and is frequently called 1523: 1452: 1386: 1315: 1247: 1183: 1110: 1039: 966: 907: 437:seminal 1957 review paper 356:supernova nucleosynthesis 114:Supernova nucleosynthesis 3599:"Origin of the elements" 3576:Nuclear Physics of Stars 2930:10.3847/2041-8213/ac26c6 2866:"GW170817 Press Release" 2392:10.1103/RevModPhys.28.53 1516: 1510: 1445: 1439: 1379: 1373: 1308: 1302: 1240: 1234: 1176: 1170: 1103: 1097: 1032: 1026: 959: 953: 900: 894: 625:Big Bang nucleosynthesis 619:Big Bang nucleosynthesis 407:Arthur Stanley Eddington 348:Big Bang nucleosynthesis 298:Big Bang nucleosynthesis 54:Big Bang nucleosynthesis 3723:Double electron capture 3528:Clayton, D. D. (2003). 3501:Clayton, D. D. (1983). 3494:1971A&A....15..337M 3402:10.1093/mnras/106.5.343 2722:10.1126/science.1151167 2641:2004ARA&A..42...39C 2548:Clayton, D. D. (1983). 2471:Clayton, D. D. (1983). 2107:give rise to so-called 1674:asymptotic giant branch 1667:in the atmosphere of a 1610:Stellar nucleosynthesis 1604:Stellar nucleosynthesis 352:stellar nucleosynthesis 88:stellar nucleosynthesis 3201:. pp. 2261–2262. 1581: 550:There are a number of 476: 429:Alastair G. W. Cameron 255: 34: 3578:. Weinheim, Germany: 3305:10.1093/mnrasl/sly169 3266:Breen, P. G. (2018). 2411:. Weinheim, Germany: 1866:Cosmic ray spallation 1860:Cosmic ray spallation 1582: 704:and trace amounts of 473: 467:scale of this graph. 321:cosmic ray spallation 248: 137:is a process wherein 135:Cosmic ray spallation 29: 3574:Iliadis, C. (2007). 3058:Frankel, N. (2017). 1991:improve this section 1802:Neutron star mergers 1644:triple-alpha process 1618:Triple-alpha process 762: 610:of existing nuclei. 596:neutron star mergers 512:improve this section 384:nuclear astrophysics 329:triple-alpha process 296:This first process, 207:improve this section 128:Neutron star mergers 3867:Photodisintegration 3788:Proton–proton chain 3758:Spontaneous fission 3738:Isomeric transition 3733:Internal conversion 3461:1957RvMP...29..547B 3426:1954ApJS....1..121H 3393:1946MNRAS.106..343H 3296:2018MNRAS.481L.110B 3217:2002nmgm.meet.2261M 3168:2003NuPhA.718..572A 3123:2008ApJ...679L.117S 3001:1987ApJ...313..674C 2921:2021ApJ...920L...3C 2815:1969ApJ...155...75C 2771:1965ApJS...11..121S 2716:(5858): 1876–1877. 2685:1968ApJS...16..299B 2601:1952ApJ...116...21M 2524:1961AnPhy..12..331C 2384:1956RvMP...28...53S 2345:1957RvMP...29..547B 2274:1920Natur.106...14E 2225:1920Obs....43..341E 2135:is another example. 2091:spontaneous fission 1925:interstellar medium 1777:spectroscopic lines 1634:photodisintegration 1614:Proton–proton chain 1591:relative abundances 1553: 1502: 1482: 1421: 1403: 1350: 1332: 1277: 1218: 1200: 1145: 1127: 1074: 1056: 1001: 983: 937: 876: 832: 608:photodisintegration 556:proton–proton chain 302:primordial elements 155:cosmogenic nuclides 143:interstellar medium 3373:Hoyle, F. (1946). 1946:Empirical evidence 1829:gravitational wave 1728:= 28) and nickel ( 1721:almost equilibrium 1577: 1575: 1539: 1488: 1468: 1407: 1389: 1336: 1318: 1263: 1204: 1186: 1131: 1113: 1060: 1042: 987: 969: 923: 862: 813: 743:quark–gluon plasma 477: 265:quark–gluon plasma 256: 44:from pre-existing 35: 3921: 3920: 3917: 3916: 3748:Positron emission 3718:Double beta decay 3680:Nuclear processes 3589:978-3-527-40602-9 3566:978-0-226-72457-7 3543:978-0-521-82381-4 3532:. Cambridge, UK: 3520:978-0-226-10952-7 3155:Nuclear Physics A 3095:McLaughlin, G. C. 2967:. 25 October 2021 2571:978-0-226-10952-7 2511:Annals of Physics 2494:978-0-226-10952-7 2310:Manhattan project 2105:radioactive decay 2101:Nuclear reactions 2087:Radioactive decay 2045:daughter nuclides 2038:Radioactive decay 2027: 2026: 2019: 1837:degenerate matter 1750:secondary process 1653:planetary nebulae 1640:stellar evolution 1565: 1556: 1532: 1515: 1514: 1513: 1505: 1485: 1461: 1444: 1443: 1442: 1424: 1406: 1378: 1377: 1376: 1362: 1353: 1335: 1307: 1306: 1305: 1289: 1280: 1256: 1239: 1238: 1237: 1221: 1203: 1175: 1174: 1173: 1157: 1148: 1130: 1102: 1101: 1100: 1086: 1077: 1059: 1031: 1030: 1029: 1013: 1004: 986: 958: 957: 956: 940: 916: 899: 898: 897: 879: 855: 840: 827: 822: 801: 786: 773: 548: 547: 540: 433:Donald D. Clayton 425:William A. Fowler 396:chemical elements 370: = 94 ( 243: 242: 235: 102:reactions of the 68:and the hydrogen 3951: 3878: 3877: 3778:Deuterium fusion 3743:Neutron emission 3728:Electron capture 3673: 3666: 3659: 3650: 3649: 3628: 3618: 3593: 3570: 3547: 3524: 3508: 3497: 3474: 3472: 3437: 3406: 3404: 3360: 3359: 3357: 3355: 3324: 3318: 3317: 3307: 3289: 3263: 3257: 3256: 3228: 3210: 3208:astro-ph/0103162 3199:World Scientific 3186: 3180: 3179: 3149: 3143: 3142: 3116: 3107:(2): L117–L120. 3090: 3084: 3083: 3081: 3069:Lund Observatory 3066: 3055: 3049: 3048: 3046: 3039: 3027: 3021: 3020: 2982: 2976: 2975: 2973: 2972: 2957: 2951: 2950: 2932: 2914: 2890: 2884: 2883: 2881: 2880: 2864:Chu, J. (n.d.). 2861: 2855: 2854: 2852: 2850: 2833: 2827: 2826: 2792: 2783: 2782: 2748: 2742: 2741: 2703: 2697: 2696: 2662: 2653: 2652: 2622: 2613: 2612: 2582: 2576: 2575: 2555: 2545: 2536: 2535: 2505: 2499: 2498: 2478: 2468: 2462: 2461: 2459: 2452: 2442: 2433: 2427: 2426: 2402: 2396: 2395: 2365: 2359: 2358: 2356: 2322: 2316: 2302: 2296: 2295: 2285: 2283:10.1038/106014a0 2251: 2245: 2244: 2219:(1341): 233–40. 2202: 2196: 2195: 2193: 2192: 2178: 2156: 2151: 2150: 2114:neutron emission 2022: 2015: 2011: 2008: 2002: 1971: 1963: 1941: 1939: 1918: 1917: 1916: 1909: 1908: 1900: 1899: 1898: 1891: 1890: 1742:electron capture 1681:compositions of 1586: 1584: 1583: 1578: 1576: 1572: 1571: 1570: 1563: 1558: 1554: 1552: 1547: 1538: 1537: 1530: 1525: 1511: 1506: 1503: 1501: 1496: 1487: 1483: 1481: 1476: 1467: 1466: 1459: 1454: 1440: 1433: 1426: 1422: 1420: 1415: 1404: 1402: 1397: 1388: 1374: 1369: 1368: 1367: 1360: 1355: 1351: 1349: 1344: 1333: 1331: 1326: 1317: 1303: 1296: 1295: 1294: 1287: 1282: 1278: 1276: 1271: 1262: 1261: 1254: 1249: 1235: 1230: 1223: 1219: 1217: 1212: 1201: 1199: 1194: 1185: 1171: 1164: 1163: 1162: 1155: 1150: 1146: 1144: 1139: 1128: 1126: 1121: 1112: 1098: 1093: 1092: 1091: 1084: 1079: 1075: 1073: 1068: 1057: 1055: 1050: 1041: 1027: 1020: 1019: 1018: 1011: 1006: 1002: 1000: 995: 984: 982: 977: 968: 954: 949: 942: 938: 936: 931: 922: 921: 914: 909: 895: 888: 881: 877: 875: 870: 861: 860: 853: 848: 846: 845: 838: 833: 831: 828: 825: 823: 815: 809: 807: 806: 799: 794: 792: 791: 784: 779: 778: 771: 740: 738: 737: 729: 727: 726: 714: 712: 711: 699: 697: 696: 684: 682: 681: 669: 667: 666: 654: 652: 651: 639: 637: 636: 543: 536: 532: 529: 523: 492: 484: 452:Georges LemaĂ®tre 238: 231: 227: 224: 218: 187: 179: 3959: 3958: 3954: 3953: 3952: 3950: 3949: 3948: 3944:Nuclear physics 3934:Nucleosynthesis 3924: 3923: 3922: 3913: 3897: 3888:Neutron capture 3876: 3859: 3853: 3770:nucleosynthesis 3769: 3762: 3753:Proton emission 3708:Gamma radiation 3689: 3682: 3677: 3635: 3590: 3567: 3555:. Chicago, IL: 3544: 3521: 3369: 3367:Further reading 3364: 3363: 3353: 3351: 3341:10.2172/1773479 3325: 3321: 3280:(1): L110–114. 3264: 3260: 3245: 3226:10.1.1.254.7490 3187: 3183: 3150: 3146: 3091: 3087: 3079: 3073:Lund University 3064: 3056: 3052: 3044: 3037: 3028: 3024: 2983: 2979: 2970: 2968: 2959: 2958: 2954: 2891: 2887: 2878: 2876: 2862: 2858: 2848: 2846: 2834: 2830: 2793: 2786: 2749: 2745: 2704: 2700: 2663: 2656: 2623: 2616: 2583: 2579: 2572: 2546: 2539: 2506: 2502: 2495: 2469: 2465: 2457: 2450:10.1.1.729.1183 2440: 2434: 2430: 2423: 2403: 2399: 2366: 2362: 2323: 2319: 2303: 2299: 2268:(2653): 14–20. 2252: 2248: 2212:The Observatory 2203: 2199: 2190: 2188: 2180: 2179: 2175: 2170: 2152: 2145: 2142: 2118:neutron capture 2023: 2012: 2006: 2003: 1988: 1972: 1961: 1948: 1937: 1935: 1915: 1913: 1912: 1911: 1907: 1905: 1904: 1903: 1902: 1897: 1895: 1894: 1893: 1889: 1887: 1886: 1885: 1884: 1868: 1862: 1850:accretion disks 1846: 1804: 1796:presolar grains 1784:supernova 1987A 1746:primary process 1713: 1701:Main articles: 1699: 1691:presolar grains 1636: 1608:Main articles: 1606: 1601: 1600: 1599: 1598: 1587: 1574: 1573: 1566: 1562: 1557: 1548: 1543: 1533: 1529: 1524: 1509: 1507: 1497: 1492: 1486: 1477: 1472: 1462: 1458: 1453: 1438: 1435: 1434: 1425: 1416: 1411: 1398: 1393: 1387: 1372: 1370: 1363: 1359: 1354: 1345: 1340: 1327: 1322: 1316: 1301: 1298: 1297: 1290: 1286: 1281: 1272: 1267: 1257: 1253: 1248: 1233: 1231: 1222: 1213: 1208: 1195: 1190: 1184: 1169: 1166: 1165: 1158: 1154: 1149: 1140: 1135: 1122: 1117: 1111: 1096: 1094: 1087: 1083: 1078: 1069: 1064: 1051: 1046: 1040: 1025: 1022: 1021: 1014: 1010: 1005: 996: 991: 978: 973: 967: 952: 950: 941: 932: 927: 917: 913: 908: 893: 890: 889: 880: 871: 866: 856: 852: 847: 841: 837: 836: 834: 829: 824: 814: 808: 802: 798: 793: 787: 783: 774: 770: 769: 765: 763: 760: 759: 736: 734: 733: 732: 731: 725: 723: 722: 721: 720: 710: 708: 707: 706: 705: 695: 693: 692: 691: 690: 680: 678: 677: 676: 675: 665: 663: 662: 661: 660: 650: 648: 647: 646: 645: 635: 633: 632: 631: 630: 627: 621: 616: 580:silicon burning 544: 533: 527: 524: 509: 493: 482: 392: 279:, nuclei up to 261: 239: 228: 222: 219: 204: 188: 177: 100:neutron capture 38:Nucleosynthesis 24: 17: 12: 11: 5: 3957: 3947: 3946: 3941: 3936: 3919: 3918: 3915: 3914: 3912: 3911: 3909:(n-p) reaction 3905: 3903: 3899: 3898: 3896: 3895: 3893:Proton capture 3890: 3884: 3882: 3875: 3874: 3869: 3863: 3861: 3855: 3854: 3852: 3851: 3846: 3841: 3833: 3825: 3820: 3815: 3810: 3805: 3800: 3795: 3790: 3785: 3780: 3774: 3772: 3764: 3763: 3761: 3760: 3755: 3750: 3745: 3740: 3735: 3730: 3725: 3720: 3715: 3710: 3705: 3700: 3694: 3692: 3684: 3683: 3676: 3675: 3668: 3661: 3653: 3647: 3646: 3634: 3633:External links 3631: 3630: 3629: 3594: 3588: 3571: 3565: 3548: 3542: 3525: 3519: 3498: 3475: 3455:(4): 547–650. 3438: 3434:10.1086/190005 3407: 3387:(5): 343–383. 3368: 3365: 3362: 3361: 3319: 3258: 3243: 3181: 3144: 3131:10.1086/589507 3085: 3050: 3031:McLaughlin, G. 3022: 3009:10.1086/165006 2977: 2952: 2885: 2856: 2828: 2823:10.1086/149849 2784: 2779:10.1086/190111 2743: 2698: 2693:10.1086/190176 2654: 2614: 2609:10.1086/145589 2577: 2570: 2537: 2518:(3): 331–408. 2500: 2493: 2463: 2428: 2421: 2397: 2360: 2339:(4): 547–650. 2317: 2297: 2246: 2197: 2172: 2171: 2169: 2166: 2165: 2164: 2158: 2157: 2141: 2138: 2137: 2136: 2121: 2098: 2084: 2025: 2024: 1975: 1973: 1966: 1960: 1957: 1947: 1944: 1914: 1906: 1896: 1888: 1864:Main article: 1861: 1858: 1845: 1842: 1803: 1800: 1698: 1695: 1605: 1602: 1588: 1569: 1561: 1551: 1546: 1542: 1536: 1528: 1522: 1519: 1508: 1500: 1495: 1491: 1480: 1475: 1471: 1465: 1457: 1451: 1448: 1437: 1436: 1432: 1429: 1419: 1414: 1410: 1401: 1396: 1392: 1385: 1382: 1371: 1366: 1358: 1348: 1343: 1339: 1330: 1325: 1321: 1314: 1311: 1300: 1299: 1293: 1285: 1275: 1270: 1266: 1260: 1252: 1246: 1243: 1232: 1229: 1226: 1216: 1211: 1207: 1198: 1193: 1189: 1182: 1179: 1168: 1167: 1161: 1153: 1143: 1138: 1134: 1125: 1120: 1116: 1109: 1106: 1095: 1090: 1082: 1072: 1067: 1063: 1054: 1049: 1045: 1038: 1035: 1024: 1023: 1017: 1009: 999: 994: 990: 981: 976: 972: 965: 962: 951: 948: 945: 935: 930: 926: 920: 912: 906: 903: 892: 891: 887: 884: 874: 869: 865: 859: 851: 844: 835: 821: 818: 812: 805: 797: 790: 782: 777: 768: 767: 758: 757: 756: 755: 735: 724: 709: 694: 679: 664: 649: 634: 623:Main article: 620: 617: 615: 612: 584:binding energy 576:oxygen burning 568:carbon burning 564:helium burning 546: 545: 496: 494: 487: 481: 478: 445:G. R. Burbidge 441:E. M. Burbidge 401:alpha nuclides 391: 388: 376:nuclear fusion 360:atomic numbers 260: 257: 241: 240: 191: 189: 182: 176: 173: 15: 9: 6: 4: 3: 2: 3956: 3945: 3942: 3940: 3937: 3935: 3932: 3931: 3929: 3910: 3907: 3906: 3904: 3900: 3894: 3891: 3889: 3886: 3885: 3883: 3879: 3873: 3870: 3868: 3865: 3864: 3862: 3856: 3850: 3847: 3845: 3842: 3840: 3838: 3834: 3832: 3830: 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3804: 3801: 3799: 3796: 3794: 3791: 3789: 3786: 3784: 3781: 3779: 3776: 3775: 3773: 3771: 3765: 3759: 3756: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3734: 3731: 3729: 3726: 3724: 3721: 3719: 3716: 3714: 3713:Cluster decay 3711: 3709: 3706: 3704: 3701: 3699: 3696: 3695: 3693: 3691: 3685: 3681: 3674: 3669: 3667: 3662: 3660: 3655: 3654: 3651: 3644: 3640: 3637: 3636: 3626: 3622: 3617: 3612: 3608: 3604: 3600: 3595: 3591: 3585: 3581: 3577: 3572: 3568: 3562: 3558: 3554: 3549: 3545: 3539: 3535: 3531: 3526: 3522: 3516: 3512: 3507: 3506: 3499: 3495: 3491: 3487: 3483: 3482: 3476: 3471: 3466: 3462: 3458: 3454: 3450: 3449: 3444: 3439: 3435: 3431: 3427: 3423: 3419: 3415: 3414: 3408: 3403: 3398: 3394: 3390: 3386: 3382: 3381: 3376: 3371: 3370: 3350: 3346: 3342: 3338: 3334: 3330: 3323: 3315: 3311: 3306: 3301: 3297: 3293: 3288: 3283: 3279: 3275: 3274: 3269: 3262: 3254: 3250: 3246: 3244:9789812389930 3240: 3236: 3232: 3227: 3222: 3218: 3214: 3209: 3204: 3200: 3196: 3192: 3185: 3177: 3173: 3169: 3165: 3161: 3157: 3156: 3148: 3140: 3136: 3132: 3128: 3124: 3120: 3115: 3110: 3106: 3102: 3101: 3096: 3089: 3078: 3074: 3070: 3063: 3062: 3054: 3043: 3036: 3032: 3026: 3018: 3014: 3010: 3006: 3002: 2998: 2994: 2990: 2989: 2981: 2966: 2962: 2956: 2948: 2944: 2940: 2936: 2931: 2926: 2922: 2918: 2913: 2908: 2904: 2900: 2896: 2889: 2875: 2871: 2867: 2860: 2845: 2844: 2839: 2832: 2824: 2820: 2816: 2812: 2808: 2804: 2803: 2798: 2791: 2789: 2780: 2776: 2772: 2768: 2764: 2760: 2759: 2754: 2747: 2739: 2735: 2731: 2727: 2723: 2719: 2715: 2711: 2710: 2702: 2694: 2690: 2686: 2682: 2678: 2674: 2673: 2668: 2661: 2659: 2650: 2646: 2642: 2638: 2634: 2630: 2629: 2621: 2619: 2610: 2606: 2602: 2598: 2594: 2590: 2589: 2581: 2573: 2567: 2563: 2559: 2554: 2553: 2544: 2542: 2533: 2529: 2525: 2521: 2517: 2513: 2512: 2504: 2496: 2490: 2486: 2482: 2477: 2476: 2467: 2456: 2451: 2446: 2439: 2432: 2424: 2422:9783527627370 2418: 2415:. p. 8. 2414: 2410: 2409: 2401: 2393: 2389: 2385: 2381: 2377: 2373: 2372: 2364: 2355: 2350: 2346: 2342: 2338: 2334: 2333: 2328: 2321: 2315: 2311: 2307: 2301: 2293: 2289: 2284: 2279: 2275: 2271: 2267: 2263: 2262: 2257: 2250: 2242: 2238: 2234: 2230: 2226: 2222: 2218: 2214: 2213: 2208: 2201: 2187: 2183: 2177: 2173: 2163: 2160: 2159: 2155: 2149: 2144: 2134: 2130: 2126: 2122: 2119: 2115: 2110: 2106: 2102: 2099: 2096: 2092: 2088: 2085: 2082: 2081:cluster decay 2078: 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2046: 2043: 2039: 2036: 2035: 2034: 2031: 2021: 2018: 2010: 2000: 1996: 1992: 1986: 1985: 1981: 1976:This section 1974: 1970: 1965: 1964: 1956: 1953: 1943: 1933: 1928: 1926: 1922: 1882: 1878: 1874: 1867: 1857: 1855: 1851: 1841: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1809: 1799: 1797: 1791: 1789: 1785: 1780: 1778: 1774: 1771: 1765: 1763: 1758: 1755: 1751: 1747: 1743: 1739: 1735: 1734:alpha process 1731: 1727: 1722: 1717: 1712: 1708: 1704: 1694: 1692: 1688: 1684: 1680: 1675: 1670: 1666: 1660: 1658: 1654: 1648: 1645: 1641: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1596: 1595:atomic nuclei 1592: 1567: 1559: 1549: 1544: 1534: 1526: 1520: 1517: 1498: 1493: 1489: 1478: 1473: 1463: 1455: 1449: 1446: 1430: 1427: 1417: 1412: 1399: 1394: 1390: 1383: 1380: 1364: 1356: 1346: 1341: 1328: 1323: 1319: 1312: 1309: 1291: 1283: 1273: 1268: 1258: 1250: 1244: 1241: 1227: 1224: 1214: 1209: 1196: 1191: 1187: 1180: 1177: 1159: 1151: 1141: 1136: 1123: 1118: 1114: 1107: 1104: 1088: 1080: 1070: 1065: 1052: 1047: 1043: 1036: 1033: 1015: 1007: 997: 992: 979: 974: 970: 963: 960: 946: 943: 933: 928: 918: 910: 904: 901: 885: 882: 872: 867: 857: 849: 842: 816: 810: 803: 795: 788: 775: 754: 752: 749:(or possibly 748: 744: 718: 703: 688: 673: 658: 643: 626: 611: 609: 605: 601: 597: 593: 589: 585: 581: 577: 573: 569: 565: 561: 557: 553: 552:astrophysical 542: 539: 531: 521: 517: 513: 507: 506: 502: 497:This section 495: 491: 486: 485: 472: 468: 465: 461: 455: 453: 448: 446: 442: 438: 434: 430: 426: 421: 419: 415: 413: 408: 404: 402: 397: 387: 385: 381: 377: 373: 369: 365: 361: 357: 353: 349: 345: 341: 337: 332: 330: 326: 322: 318: 314: 310: 305: 303: 299: 294: 290: 286: 282: 278: 274: 270: 266: 253: 247: 237: 234: 226: 216: 212: 208: 202: 201: 197: 192:This section 190: 186: 181: 180: 172: 170: 169:radionuclides 167: 163: 158: 156: 152: 148: 144: 140: 136: 132: 129: 125: 123: 119: 115: 111: 109: 105: 101: 97: 93: 89: 85: 81: 76: 74: 71: 67: 63: 59: 55: 51: 47: 43: 42:atomic nuclei 39: 33: 32:alpha process 28: 22: 3939:Astrophysics 3872:Photofission 3836: 3828: 3606: 3602: 3575: 3552: 3529: 3504: 3485: 3479: 3452: 3446: 3417: 3411: 3384: 3378: 3352:. Retrieved 3332: 3322: 3277: 3271: 3261: 3194: 3184: 3159: 3153: 3147: 3104: 3098: 3093:Surman, R.; 3088: 3060: 3053: 3025: 2992: 2986: 2980: 2969:. Retrieved 2964: 2955: 2902: 2898: 2888: 2877:. Retrieved 2859: 2847:. Retrieved 2841: 2831: 2806: 2800: 2762: 2756: 2746: 2713: 2707: 2701: 2676: 2670: 2635:(1): 39–78. 2632: 2626: 2592: 2586: 2580: 2551: 2515: 2509: 2503: 2474: 2466: 2431: 2407: 2400: 2378:(1): 53–74. 2375: 2369: 2363: 2336: 2330: 2320: 2300: 2265: 2259: 2249: 2216: 2210: 2200: 2189:. Retrieved 2185: 2176: 2089:may lead to 2073:potassium-40 2040:may lead to 2032: 2028: 2013: 2004: 1989:Please help 1977: 1949: 1929: 1869: 1847: 1805: 1792: 1781: 1766: 1759: 1749: 1745: 1729: 1725: 1720: 1714: 1661: 1649: 1637: 702:alpha decays 689:). Although 628: 572:neon burning 549: 534: 525: 510:Please help 498: 456: 449: 422: 416: 405: 393: 367: 363: 335: 333: 306: 262: 229: 220: 205:Please help 193: 162:radiogenesis 159: 133: 126: 112: 77: 37: 36: 3698:Alpha decay 3688:Radioactive 3488:: 337–359. 3162:: 572–574. 2843:Smithsonian 2154:Star portal 2109:nucleogenic 2057:thorium-232 2053:uranium-238 2049:uranium-235 1921:cosmic rays 1854:black holes 1754:metallicity 1687:cosmic dust 614:Major types 464:Harold Urey 315:, lithium, 139:cosmic rays 21:Albedo 0.39 3928:Categories 3849:rp-process 3823:Si burning 3813:Ne burning 3783:Li burning 3703:Beta decay 3287:1804.08877 2971:2021-12-23 2912:2107.02714 2879:2018-07-04 2191:2022-03-22 2186:Energy.gov 2168:References 2133:Iodine-129 2125:cosmogenic 2095:promethium 2042:radiogenic 2007:April 2021 1762:rp-process 1707:rp-process 1665:technetium 1657:supernovae 717:spallation 602:, and the 600:rp-process 592:supernovae 528:April 2021 460:Hans Suess 418:Fred Hoyle 412:Hans Bethe 380:beta decay 344:supernovae 223:April 2021 166:primordial 151:meteoroids 3860:processes 3844:p-process 3818:O burning 3808:C burning 3798:α process 3793:CNO cycle 3625:1432-0754 3580:Wiley-VCH 3253:118008078 3221:CiteSeerX 3114:0803.1785 2947:238198587 2939:2041-8205 2905:(1): L3. 2738:118423007 2562:Chapter 7 2485:Chapter 5 2445:CiteSeerX 2413:Wiley-VCH 2306:plutonium 2129:carbon-14 1978:does not 1942:seconds. 1881:beryllium 1873:deuterium 1738:BFH paper 1703:r-process 1669:red giant 1630:p-process 1626:s-process 1622:CNO cycle 1593:of light 1541:⟶ 1470:⟶ 1431:γ 1409:⟶ 1338:⟶ 1265:⟶ 1228:γ 1206:⟶ 1133:⟶ 1062:⟶ 989:⟶ 947:γ 925:⟶ 886:γ 864:⟶ 820:¯ 817:ν 804:− 781:⟶ 747:beryllium 657:deuterium 604:p-process 588:s-process 560:CNO cycle 499:does not 480:Processes 372:plutonium 317:beryllium 285:beryllium 252:s-process 194:does not 147:asteroids 108:s-process 104:r-process 73:deuterium 3902:Exchange 3839:-process 3831:-process 3803:Triple-α 3645:(France) 3609:(1): 1. 3354:17 April 3333:osti.gov 3314:54001706 3139:17114805 3077:Archived 3042:Archived 2849:27 April 2730:18096793 2455:Archived 2292:17747682 2241:17747682 2140:See also 2077:Helium-4 2069:argon-40 2065:polonium 1833:GW170817 1825:INTEGRAL 1683:stardust 1679:isotopic 687:helium-4 672:helium-3 325:helium-3 309:hydrogen 277:neutrons 269:Big Bang 259:Timeline 122:rubidium 58:hydrogen 50:Big Bang 46:nucleons 3881:Capture 3768:Stellar 3490:Bibcode 3457:Bibcode 3422:Bibcode 3420:: 121. 3389:Bibcode 3349:1773479 3292:Bibcode 3213:Bibcode 3164:Bibcode 3119:Bibcode 3067:(MSc). 3017:6468841 2997:Bibcode 2995:: 674. 2917:Bibcode 2874:Caltech 2811:Bibcode 2767:Bibcode 2765:: 121. 2709:Science 2681:Bibcode 2679:: 299. 2637:Bibcode 2597:Bibcode 2520:Bibcode 2380:Bibcode 2341:Bibcode 2308:in the 2270:Bibcode 2221:Bibcode 1999:removed 1984:sources 1952:isotope 1877:lithium 1770:isobars 1736:of the 674:), and 642:protium 558:or the 520:removed 505:sources 281:lithium 273:protons 215:removed 200:sources 175:History 70:isotope 66:lithium 3623:  3586:  3563:  3540:  3517:  3347:  3312:  3251:  3241:  3223:  3137:  3015:  2945:  2937:  2809:: 75. 2736:  2728:  2595:: 21. 2568:  2491:  2447:  2419:  2290:  2261:Nature 2239:  2055:, and 1819:, the 1808:merger 1709:, and 1632:, and 431:, and 313:helium 293:carbon 118:oxygen 96:nickel 78:Stars 62:helium 3858:Other 3690:decay 3310:S2CID 3282:arXiv 3249:S2CID 3203:arXiv 3135:S2CID 3109:arXiv 3080:(PDF) 3065:(PDF) 3045:(PDF) 3038:(PDF) 2943:S2CID 2907:arXiv 2734:S2CID 2458:(PDF) 2441:(PDF) 2061:radon 1817:VIRGO 751:boron 362:from 340:stars 289:boron 145:, on 84:cores 3621:ISSN 3584:ISBN 3561:ISBN 3538:ISBN 3515:ISBN 3356:2024 3345:OSTI 3239:ISBN 3013:OSTI 2935:ISSN 2870:LIGO 2851:2014 2726:PMID 2566:ISBN 2489:ISBN 2417:ISBN 2288:PMID 2237:PMID 2063:and 1982:any 1980:cite 1901:and 1823:and 1813:LIGO 1806:The 1760:The 730:and 655:(D, 594:and 578:and 503:any 501:cite 462:and 386:"). 342:and 283:and 275:and 198:any 196:cite 149:and 120:and 106:and 94:and 92:iron 80:fuse 60:and 3643:CEA 3611:doi 3465:doi 3430:doi 3397:doi 3385:106 3337:doi 3300:doi 3278:481 3231:doi 3172:doi 3160:718 3127:doi 3105:679 3005:doi 2993:313 2925:doi 2903:920 2819:doi 2807:155 2775:doi 2718:doi 2714:318 2689:doi 2645:doi 2605:doi 2593:116 2528:doi 2388:doi 2349:doi 2278:doi 2266:106 2229:doi 1993:by 1936:8.2 1852:of 659:), 644:), 562:), 514:by 439:by 403:). 209:by 3930:: 3619:. 3607:31 3605:. 3601:. 3582:. 3559:. 3536:. 3513:. 3486:15 3484:. 3463:. 3453:29 3451:. 3445:. 3428:. 3416:. 3395:. 3383:. 3377:. 3343:. 3331:. 3308:. 3298:. 3290:. 3276:. 3270:. 3247:. 3237:. 3229:. 3219:. 3211:. 3197:. 3170:. 3158:. 3133:. 3125:. 3117:. 3103:. 3075:. 3040:. 3011:. 3003:. 2991:. 2963:. 2941:. 2933:. 2923:. 2915:. 2901:. 2897:. 2868:. 2840:. 2817:. 2805:. 2799:. 2787:^ 2773:. 2763:11 2761:. 2755:. 2732:. 2724:. 2712:. 2687:. 2677:16 2675:. 2669:. 2657:^ 2643:. 2633:42 2631:. 2617:^ 2603:. 2591:. 2564:. 2560:. 2540:^ 2526:. 2516:12 2514:. 2487:. 2483:. 2453:. 2443:. 2386:. 2376:28 2374:. 2347:. 2337:29 2335:. 2329:. 2286:. 2276:. 2264:. 2258:. 2235:. 2227:. 2217:43 2215:. 2209:. 2184:. 2051:, 1940:10 1932:Be 1910:Be 1892:Li 1879:, 1856:. 1815:, 1790:. 1773:Ti 1705:, 1628:, 1624:, 1620:, 1616:, 1612:, 1555:Li 1512:Be 1504:He 1484:He 1441:Li 1423:Be 1405:He 1375:He 1352:He 1304:He 1236:He 1220:Li 1202:He 1147:He 1003:He 939:He 739:Be 728:Li 698:He 683:He 668:He 574:, 570:, 566:, 443:, 427:, 354:, 350:, 331:. 311:, 304:. 157:. 3837:s 3829:r 3672:e 3665:t 3658:v 3627:. 3613:: 3592:. 3569:. 3546:. 3523:. 3496:. 3492:: 3473:. 3467:: 3459:: 3436:. 3432:: 3424:: 3418:1 3405:. 3399:: 3391:: 3358:. 3339:: 3316:. 3302:: 3294:: 3284:: 3255:. 3233:: 3215:: 3205:: 3178:. 3174:: 3166:: 3141:. 3129:: 3121:: 3111:: 3071:/ 3019:. 3007:: 2999:: 2974:. 2949:. 2927:: 2919:: 2909:: 2882:. 2872:/ 2853:. 2825:. 2821:: 2813:: 2781:. 2777:: 2769:: 2740:. 2720:: 2695:. 2691:: 2683:: 2651:. 2647:: 2639:: 2611:. 2607:: 2599:: 2574:. 2534:. 2530:: 2522:: 2497:. 2425:. 2394:. 2390:: 2382:: 2357:. 2351:: 2343:: 2294:. 2280:: 2272:: 2243:. 2231:: 2223:: 2194:. 2020:) 2014:( 2009:) 2005:( 2001:. 1987:. 1938:Ă— 1730:A 1726:A 1568:+ 1564:p 1560:+ 1550:7 1545:3 1535:0 1531:n 1527:+ 1521:7 1518:4 1499:4 1494:2 1490:+ 1479:4 1474:2 1464:+ 1460:p 1456:+ 1450:7 1447:3 1428:+ 1418:7 1413:4 1400:4 1395:2 1391:+ 1384:3 1381:2 1365:+ 1361:p 1357:+ 1347:4 1342:2 1334:D 1329:2 1324:1 1320:+ 1313:3 1310:2 1292:+ 1288:p 1284:+ 1279:T 1274:3 1269:1 1259:0 1255:n 1251:+ 1245:3 1242:2 1225:+ 1215:7 1210:3 1197:4 1192:2 1188:+ 1181:3 1178:1 1172:T 1160:0 1156:n 1152:+ 1142:4 1137:2 1129:D 1124:2 1119:1 1115:+ 1108:3 1105:1 1099:T 1089:+ 1085:p 1081:+ 1076:T 1071:3 1066:1 1058:D 1053:2 1048:1 1044:+ 1037:2 1034:1 1028:D 1016:0 1012:n 1008:+ 998:3 993:2 985:D 980:2 975:1 971:+ 964:2 961:1 955:D 944:+ 934:3 929:2 919:+ 915:p 911:+ 905:2 902:1 896:D 883:+ 878:D 873:2 868:1 858:0 854:n 850:+ 843:+ 839:p 826:e 811:+ 800:e 796:+ 789:+ 785:p 776:0 772:n 713:H 685:( 670:( 653:H 640:( 638:H 541:) 535:( 530:) 526:( 522:. 508:. 368:Z 364:Z 336:Z 236:) 230:( 225:) 221:( 217:. 203:. 23:.

Index

Albedo 0.39

alpha process
atomic nuclei
nucleons
Big Bang
Big Bang nucleosynthesis
hydrogen
helium
lithium
isotope
deuterium
fuse
cores
stellar nucleosynthesis
iron
nickel
neutron capture
r-process
s-process
Supernova nucleosynthesis
oxygen
rubidium
Neutron star mergers
Cosmic ray spallation
cosmic rays
interstellar medium
asteroids
meteoroids
cosmogenic nuclides

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑