Knowledge

Optical flow

Source đź“ť

1711: 1723:), the sequence is now described as well as it needs to be. However, in the field of machine vision, the question of whether the ball is moving to the right or if the observer is moving to the left is unknowable yet critical information. Not even if a static, patterned background were present in the five frames, could we confidently state that the ball was moving to the right, because the pattern might have an infinite distance to the observer. 31: 951: 657: 96:
Sequences of ordered images allow the estimation of motion as either instantaneous image velocities or discrete image displacements. Fleet and Weiss provide a tutorial introduction to gradient based optical flow. John L. Barron, David J. Fleet, and Steven Beauchemin provide a performance analysis of
1718:
Consider a five-frame clip of a ball moving from the bottom left of a field of vision, to the top right. Motion estimation techniques can determine that on a two dimensional plane the ball is moving up and to the right and vectors describing this motion can be extracted from the sequence of frames.
1680:
have developed as a major aspect of optical flow research. While the optical flow field is superficially similar to a dense motion field derived from the techniques of motion estimation, optical flow is the study of not only the determination of the optical flow field itself, but also of its use in
1644:
Discrete optimization methods – the search space is quantized, and then image matching is addressed through label assignment at every pixel, such that the corresponding deformation minimizes the distance between the source and the target image. The optimal solution is often recovered through
773: 807: 1066: 472: 1738:
Various configurations of optical flow sensors exist. One configuration is an image sensor chip connected to a processor programmed to run an optical flow algorithm. Another configuration uses a vision chip, which is an integrated circuit having both the
1754:
techniques to implement circuits that respond to optical flow, and thus may be appropriate for use in an optical flow sensor. Such circuits may draw inspiration from biological neural circuitry that similarly responds to optical flow.
1579:
of the optical flow algorithms. To find the optical flow another set of equations is needed, given by some additional constraint. All optical flow methods introduce additional conditions for estimating the actual flow.
68:
have further demonstrated the role of the optical flow stimulus for the perception of movement by the observer in the world; perception of the shape, distance and movement of objects in the world; and the control of
671: 416: 946:{\displaystyle {\frac {\partial I}{\partial x}}{\frac {\Delta x}{\Delta t}}+{\frac {\partial I}{\partial y}}{\frac {\Delta y}{\Delta t}}+{\frac {\partial I}{\partial t}}{\frac {\Delta t}{\Delta t}}=0} 962: 2346: 1307: 1268: 1229: 652:{\displaystyle I(x+\Delta x,y+\Delta y,t+\Delta t)=I(x,y,t)+{\frac {\partial I}{\partial x}}\,\Delta x+{\frac {\partial I}{\partial y}}\,\Delta y+{\frac {\partial I}{\partial t}}\,\Delta t+{}} 1769:
applications, primarily where there is a need to measure visual motion or relative motion between the robot and other objects in the vicinity of the robot. The use of optical flow sensors in
1568: 34:
The optic flow experienced by a rotating observer (in this case a fly). The direction and magnitude of optic flow at each location is represented by the direction and length of each arrow.
1508: 1681:
estimating the three-dimensional nature and structure of the scene, as well as the 3D motion of objects and the observer relative to the scene, most of them using the image Jacobian.
1620:– optimizing a functional based on residuals from the brightness constancy constraint, and a particular regularization term expressing the expected smoothness of the flow field 1699:
of objects and the environment. Since awareness of motion and the generation of mental maps of the structure of our environment are critical components of animal (and human)
1608:
Differential methods of estimating optical flow, based on partial derivatives of the image signal and/or the sought flow field and higher-order partial derivatives, such as:
1747:. In some cases the processing circuitry may be implemented using analog or mixed-signal circuits to enable fast optical flow computation using minimal current consumption. 1109: 147: 1623: 1190: 799: 460: 314: 291: 268: 245: 1345: 204: 1629: 1426: 1399: 1372: 2025: 1149: 1129: 118: 1657:
Many of these, in addition to the current state-of-the-art algorithms are evaluated on the Middlebury Benchmark Dataset. Other popular benchmark datasets are
53:
between an observer and a scene. Optical flow can also be defined as the distribution of apparent velocities of movement of brightness pattern in an image.
1695:
The application of optical flow includes the problem of inferring not only the motion of the observer and objects in the scene, but also the
76:
The term optical flow is also used by roboticists, encompassing related techniques from image processing and control of navigation including
768:{\displaystyle {\frac {\partial I}{\partial x}}\Delta x+{\frac {\partial I}{\partial y}}\Delta y+{\frac {\partial I}{\partial t}}\Delta t=0} 60:
in the 1940s to describe the visual stimulus provided to animals moving through the world. Gibson stressed the importance of optic flow for
1743:
and the processor on the same die, allowing for a compact implementation. An example of this is a generic optical mouse sensor used in an
2579: 2203: 326: 2585: 157:
approximations of the image signal; that is, they use partial derivatives with respect to the spatial and temporal coordinates.
1061:{\displaystyle {\frac {\partial I}{\partial x}}V_{x}+{\frac {\partial I}{\partial y}}V_{y}+{\frac {\partial I}{\partial t}}=0} 2395: 2213: 2158:"Application of Local Optical Flow Methods to High-Velocity Free-surface Flows: Validation and Application to Stepped Chutes" 2081: 2003: 1864: 1837: 2549: 2385: 1854: 2619: 1827: 1273: 1234: 1195: 2523: 2420: 1519: 1437: 2249:
Baker, Simon; Scharstein, Daniel; Lewis, J. P.; Roth, Stefan; Black, Michael J.; Szeliski, Richard (March 2011).
2490: 2457: 2157: 1575: 1639:– a range of modifications/extensions of Horn–Schunck, using other data terms and other smoothness terms. 1599: 1881: 100:
The optical flow methods try to calculate the motion between two image frames which are taken at times
64:, the ability to discern possibilities for action within the environment. Followers of Gibson and his 17: 1703:, the conversion of this innate ability to a computer capability is similarly crucial in the field of 2514:
Floreano, Dario; Zufferey, Jean-Christophe; Srinivasan, Mandyam V.; Ellington, Charlie, eds. (2009).
2066: 2298:
Baker, Simon; Scharstein, Daniel; Lewis, J. P.; Roth, Stefan; Black, Michael J.; Szeliski, Richard.
1984: 1982: 2118: 1751: 1692:. Optical flow information has been recognized as being useful for controlling micro air vehicles. 1646: 1979: 1770: 1617: 1611: 1074: 123: 2113: 2098: 1797: 1154: 781: 424: 296: 273: 250: 209: 1312: 171: 97:
a number of optical flow techniques. It emphasizes the accuracy and density of measurements.
65: 2172: 1593: 1404: 1377: 1350: 8: 2574: 2327: 2184: 1802: 1782: 1636: 85: 2176: 1762:, as the main sensing component for measuring the motion of the mouse across a surface. 1688:
and tracking, image dominant plane extraction, movement detection, robot navigation and
2554: 2366: 2280: 2131: 2047: 1968: 1650: 1573:
This is an equation in two unknowns and cannot be solved as such. This is known as the
1134: 1114: 665:
By truncating the higher order terms (which performs a linearization) it follows that:
659: 103: 81: 2529: 2519: 2496: 2486: 2463: 2453: 2446: 2426: 2416: 2391: 2370: 2272: 2209: 2077: 1999: 1990: 1960: 1900: 1860: 1833: 1732: 1700: 1677: 1673: 1603: 1589: 70: 1972: 2358: 2262: 2180: 2135: 2123: 2051: 2037: 1950: 1904: 1896: 1685: 77: 46: 2284: 1955: 1938: 1689: 57: 50: 2153: 1704: 2362: 2267: 2250: 153:
position. These methods are called differential since they are based on local
2613: 2533: 2430: 2276: 1792: 1787: 1773:, for stability and obstacle avoidance, is also an area of current research. 1759: 1744: 463: 154: 2500: 2467: 1964: 1807: 1740: 84:, time-to-contact information, focus of expansion calculations, luminance, 2230: 2042: 1939:"Use of speed cues in the detection of moving objects by moving observers" 1829:
Thinking in Perspective: Critical Essays in the Study of Thought Processes
1710: 27:
Pattern of motion in a visual scene due to relative motion of the observer
2323: 2228: 2199: 1989:
Aires, Kelson R. T.; Santana, Andre M.; Medeiros, Adelardo A. D. (2008).
56:
The concept of optical flow was introduced by the American psychologist
2127: 1908: 1856:
Electronic Spatial Sensing for the Blind: Contributions from Perception
61: 2603: 2597: 2591: 2232:
Dense Image Registration through MRFs and Efficient Linear Programming
2565: 2299: 2229:
B. Glocker; N. Komodakis; G. Tziritas; N. Navab; N. Paragios (2008).
2019: 2017: 2015: 1696: 1684:
Optical flow was used by robotics researchers in many areas such as:
2570: 2513: 1766: 2560: 2097:
Barron, John L.; Fleet, David J. & Beauchemin, Steven (1994).
2012: 2197: 2072:. In Paragios, Nikos; Chen, Yunmei; Faugeras, Olivier D. (eds.). 1614:– regarding image patches and an affine model for the flow field 49:
of objects, surfaces, and edges in a visual scene caused by the
1714:
The optical flow vector of a moving object in a video sequence.
1662: 1598:
Block-based methods – minimizing sum of squared differences or
2566:
Middlebury Optical flow evaluation and ground truth sequences.
30: 2557:
article on fxguide.com (using optical flow in visual effects)
1658: 150: 1626:– based on a model of the motion of edges in image sequences 411:{\displaystyle I(x,y,t)=I(x+\Delta x,y+\Delta y,t+\Delta t)} 1720: 421:
Assuming the movement to be small, the image constraint at
2594:
Online demo and source code of the Horn and Schunck method
2347:"Biologically inspired visual sensing and flight control" 2483:
Analog VLSI circuits for the perception of visual motion
2345:
Barrows, G. L.; Chahl, J. S.; Srinivasan, M. V. (2003).
2251:"A Database and Evaluation Methodology for Optical Flow" 2248: 2582:
GPU implementation of a Lucas-Kanade based optical flow
2344: 1880:
Horn, Berthold K.P.; Schunck, Brian G. (August 1981).
1758:
Optical flow sensors are used extensively in computer
1278: 1239: 1200: 2606:
Online demo and source code of the Brox et al. method
2600:
Online demo and source code of the Zach et al. method
2096: 1522: 1440: 1428:
can be written for the derivatives in the following.
1407: 1380: 1353: 1315: 1276: 1237: 1198: 1157: 1137: 1117: 1077: 965: 810: 784: 674: 475: 427: 329: 299: 276: 253: 212: 174: 126: 106: 2297: 1988: 2561:
Optical flow evaluation and ground truth sequences.
2445: 2074:Handbook of Mathematical Models in Computer Vision 1562: 1502: 1420: 1393: 1366: 1339: 1301: 1262: 1223: 1184: 1143: 1123: 1103: 1060: 945: 793: 767: 651: 454: 410: 308: 285: 262: 239: 198: 141: 112: 1302:{\displaystyle {\tfrac {\partial I}{\partial t}}} 1263:{\displaystyle {\tfrac {\partial I}{\partial y}}} 1224:{\displaystyle {\tfrac {\partial I}{\partial x}}} 2611: 2023: 1750:One area of contemporary research is the use of 316:between the two image frames, and the following 1563:{\displaystyle \nabla I\cdot {\vec {V}}=-I_{t}} 2485:. Chichester, England: John Wiley & Sons. 1151:components of the velocity or optical flow of 1853:Warren, David H.; Strelow, Edward R. (1985). 1852: 1825: 1719:For the purposes of video compression (e.g., 2151: 2147: 2145: 1765:Optical flow sensors are also being used in 1583: 1503:{\displaystyle I_{x}V_{x}+I_{y}V_{y}=-I_{t}} 88:encoding, and stereo disparity measurement. 2588:by CUVI (CUDA Vision & Imaging Library) 1936: 1879: 2064: 168:-D cases are similar) a voxel at location 2266: 2142: 2117: 2041: 2024:Beauchemin, S. S.; Barron, J. L. (1995). 1954: 637: 607: 577: 2255:International Journal of Computer Vision 2106:International Journal of Computer Vision 2099:"Performance of optical flow techniques" 1709: 29: 2480: 2373:– via Cambridge University Press. 14: 2612: 2165:Experimental Thermal and Fluid Science 1921: 1826:Burton, Andrew; Radford, John (1978). 1726: 2410: 2383: 2322: 2065:Fleet, David J.; Weiss, Yair (2006). 1632:– coarse optical flow via correlation 2443: 2185:10.1016/j.expthermflusci.2017.09.010 1992:Optical Flow Using Color Information 1937:Royden, C. S.; Moore, K. D. (2012). 1309:are the derivatives of the image at 24: 2573:- Optical flow estimation through 2452:. Reading, Mass.: Addison-Wesley. 1924:The Perception of the Visual World 1649:algorithms, linear programming or 1523: 1289: 1281: 1250: 1242: 1211: 1203: 1043: 1035: 1010: 1002: 977: 969: 928: 920: 908: 900: 885: 877: 865: 857: 842: 834: 822: 814: 785: 753: 744: 736: 724: 715: 707: 695: 686: 678: 638: 628: 620: 608: 598: 590: 578: 568: 560: 518: 503: 488: 399: 384: 369: 300: 277: 254: 133: 25: 2631: 2543: 2238:. Medical Image Analysis Journal. 2036:(3). ACM New York, USA: 433–466. 2026:"The computation of optical flow" 1347:in the corresponding directions. 66:ecological approach to psychology 2507: 2474: 2437: 2404: 2390:. Lawrence Erlbaum Associates. 2377: 2338: 2316: 2291: 2242: 2222: 2191: 1771:unmanned aerial vehicles (UAVs) 318:brightness constancy constraint 2592:Horn and Schunck Optical Flow: 2448:Analog VLSI and neural systems 2384:Brown, Christopher M. (1987). 2090: 2076:. Springer. pp. 237–257. 2058: 1930: 1915: 1873: 1846: 1819: 1538: 1334: 1316: 1179: 1161: 551: 533: 524: 479: 449: 431: 405: 360: 351: 333: 234: 216: 193: 175: 13: 1: 1813: 91: 1956:10.1016/j.visres.2012.02.006 1901:10.1016/0004-3702(81)90024-2 7: 2415:. Boston, MA: Springer US. 2387:Advances in Computer Vision 1776: 1602:, or maximizing normalized 1600:sum of absolute differences 1104:{\displaystyle V_{x},V_{y}} 45:is the pattern of apparent 10: 2636: 1882:"Determining optical flow" 1730: 164:)-dimensional case (3D or 142:{\displaystyle t+\Delta t} 2620:Motion in computer vision 2580:The French Aerospace Lab: 2516:Flying insects and robots 2481:Stocker, Alan A. (2006). 2363:10.1017/S0001924000011891 2268:10.1007/s11263-010-0390-2 2067:"Optical Flow Estimation" 1998:. ACM New York, NY, USA. 1584:Methods for determination 466:can be developed to get: 2518:. Heidelberg: Springer. 1752:neuromorphic engineering 1731:Not to be confused with 1647:Max-flow min-cut theorem 1592:– inverse of normalized 1185:{\displaystyle I(x,y,t)} 794:{\displaystyle \Delta t} 455:{\displaystyle I(x,y,t)} 309:{\displaystyle \Delta t} 286:{\displaystyle \Delta y} 263:{\displaystyle \Delta x} 240:{\displaystyle I(x,y,t)} 2411:Moini, Alireza (2000). 1889:Artificial Intelligence 1668: 1340:{\displaystyle (x,y,t)} 199:{\displaystyle (x,y,t)} 2198:Glyn W. Humphreys and 1798:Vision processing unit 1715: 1564: 1504: 1422: 1395: 1368: 1341: 1303: 1264: 1225: 1186: 1145: 1125: 1105: 1062: 947: 795: 769: 653: 456: 412: 310: 287: 264: 241: 200: 160:For a (2D +  143: 114: 35: 2444:Mead, Carver (1989). 2304:vision.middlebury.edu 2043:10.1145/212094.212141 2030:ACM Computing Surveys 1922:Gibson, J.J. (1950). 1713: 1565: 1505: 1423: 1421:{\displaystyle I_{t}} 1396: 1394:{\displaystyle I_{y}} 1369: 1367:{\displaystyle I_{x}} 1342: 1304: 1265: 1226: 1187: 1146: 1126: 1106: 1063: 948: 796: 770: 654: 457: 413: 311: 288: 265: 242: 201: 144: 115: 62:affordance perception 33: 2604:Robust Optical Flow: 2571:mrf-registration.net 2351:Aeronautical Journal 2328:"The Image Jacobian" 2208:. Psychology Press. 1624:Buxton–Buxton method 1594:cross-power spectrum 1520: 1438: 1405: 1378: 1351: 1313: 1274: 1235: 1196: 1155: 1135: 1115: 1075: 963: 808: 782: 672: 473: 425: 327: 297: 274: 251: 210: 172: 124: 104: 2598:TV-L1 Optical Flow: 2586:CUDA Implementation 2555:Art of Optical Flow 2177:2018ETFS...90..186Z 1926:. Houghton Mifflin. 1803:Continuity Equation 1783:Ambient optic array 1727:Optical flow sensor 1637:variational methods 1630:Black–Jepson method 1618:Horn–Schunck method 1612:Lucas–Kanade method 247:will have moved by 82:object segmentation 2550:Finding Optic Flow 2128:10.1007/bf01420984 1716: 1651:belief propagation 1560: 1500: 1418: 1391: 1364: 1337: 1299: 1297: 1260: 1258: 1221: 1219: 1182: 1141: 1121: 1101: 1058: 956:which results in 943: 791: 765: 660:higher-order terms 649: 452: 408: 306: 283: 260: 237: 196: 139: 110: 86:motion compensated 36: 2397:978-0-89859-648-9 2357:(1069): 159–268. 2332:QUT Robot Academy 2215:978-0-86377-124-8 2083:978-0-387-26371-7 2005:978-1-59593-753-7 1866:978-90-247-2689-9 1839:978-0-416-85840-2 1733:Optical flowmeter 1678:video compression 1674:Motion estimation 1604:cross-correlation 1590:Phase correlation 1541: 1296: 1257: 1218: 1144:{\displaystyle y} 1124:{\displaystyle x} 1050: 1017: 984: 935: 915: 892: 872: 849: 829: 751: 722: 693: 635: 605: 575: 113:{\displaystyle t} 16:(Redirected from 2627: 2538: 2537: 2511: 2505: 2504: 2478: 2472: 2471: 2451: 2441: 2435: 2434: 2408: 2402: 2401: 2381: 2375: 2374: 2342: 2336: 2335: 2320: 2314: 2313: 2311: 2310: 2295: 2289: 2288: 2270: 2246: 2240: 2239: 2237: 2226: 2220: 2219: 2205:Visual Cognition 2195: 2189: 2188: 2162: 2149: 2140: 2139: 2121: 2103: 2094: 2088: 2087: 2071: 2062: 2056: 2055: 2045: 2021: 2010: 2009: 1997: 1986: 1977: 1976: 1958: 1934: 1928: 1927: 1919: 1913: 1912: 1895:(1–3): 185–203. 1886: 1877: 1871: 1870: 1850: 1844: 1843: 1823: 1686:object detection 1576:aperture problem 1569: 1567: 1566: 1561: 1559: 1558: 1543: 1542: 1534: 1509: 1507: 1506: 1501: 1499: 1498: 1483: 1482: 1473: 1472: 1460: 1459: 1450: 1449: 1427: 1425: 1424: 1419: 1417: 1416: 1400: 1398: 1397: 1392: 1390: 1389: 1373: 1371: 1370: 1365: 1363: 1362: 1346: 1344: 1343: 1338: 1308: 1306: 1305: 1300: 1298: 1295: 1287: 1279: 1269: 1267: 1266: 1261: 1259: 1256: 1248: 1240: 1230: 1228: 1227: 1222: 1220: 1217: 1209: 1201: 1191: 1189: 1188: 1183: 1150: 1148: 1147: 1142: 1130: 1128: 1127: 1122: 1110: 1108: 1107: 1102: 1100: 1099: 1087: 1086: 1067: 1065: 1064: 1059: 1051: 1049: 1041: 1033: 1028: 1027: 1018: 1016: 1008: 1000: 995: 994: 985: 983: 975: 967: 952: 950: 949: 944: 936: 934: 926: 918: 916: 914: 906: 898: 893: 891: 883: 875: 873: 871: 863: 855: 850: 848: 840: 832: 830: 828: 820: 812: 800: 798: 797: 792: 778:or, dividing by 774: 772: 771: 766: 752: 750: 742: 734: 723: 721: 713: 705: 694: 692: 684: 676: 658: 656: 655: 650: 648: 636: 634: 626: 618: 606: 604: 596: 588: 576: 574: 566: 558: 461: 459: 458: 453: 417: 415: 414: 409: 315: 313: 312: 307: 292: 290: 289: 284: 269: 267: 266: 261: 246: 244: 243: 238: 205: 203: 202: 197: 148: 146: 145: 140: 119: 117: 116: 111: 78:motion detection 21: 2635: 2634: 2630: 2629: 2628: 2626: 2625: 2624: 2610: 2609: 2546: 2541: 2526: 2512: 2508: 2493: 2479: 2475: 2460: 2442: 2438: 2423: 2409: 2405: 2398: 2382: 2378: 2343: 2339: 2321: 2317: 2308: 2306: 2296: 2292: 2247: 2243: 2235: 2227: 2223: 2216: 2196: 2192: 2160: 2150: 2143: 2101: 2095: 2091: 2084: 2069: 2063: 2059: 2022: 2013: 2006: 1995: 1987: 1980: 1943:Vision Research 1935: 1931: 1920: 1916: 1884: 1878: 1874: 1867: 1851: 1847: 1840: 1824: 1820: 1816: 1779: 1736: 1729: 1690:visual odometry 1671: 1586: 1554: 1550: 1533: 1532: 1521: 1518: 1517: 1494: 1490: 1478: 1474: 1468: 1464: 1455: 1451: 1445: 1441: 1439: 1436: 1435: 1412: 1408: 1406: 1403: 1402: 1385: 1381: 1379: 1376: 1375: 1358: 1354: 1352: 1349: 1348: 1314: 1311: 1310: 1288: 1280: 1277: 1275: 1272: 1271: 1249: 1241: 1238: 1236: 1233: 1232: 1210: 1202: 1199: 1197: 1194: 1193: 1156: 1153: 1152: 1136: 1133: 1132: 1116: 1113: 1112: 1095: 1091: 1082: 1078: 1076: 1073: 1072: 1042: 1034: 1032: 1023: 1019: 1009: 1001: 999: 990: 986: 976: 968: 966: 964: 961: 960: 927: 919: 917: 907: 899: 897: 884: 876: 874: 864: 856: 854: 841: 833: 831: 821: 813: 811: 809: 806: 805: 783: 780: 779: 743: 735: 733: 714: 706: 704: 685: 677: 675: 673: 670: 669: 647: 627: 619: 617: 597: 589: 587: 567: 559: 557: 474: 471: 470: 426: 423: 422: 328: 325: 324: 320:can be given: 298: 295: 294: 275: 272: 271: 252: 249: 248: 211: 208: 207: 206:with intensity 173: 170: 169: 125: 122: 121: 105: 102: 101: 94: 58:James J. Gibson 51:relative motion 28: 23: 22: 15: 12: 11: 5: 2633: 2623: 2622: 2608: 2607: 2601: 2595: 2589: 2583: 2577: 2568: 2563: 2558: 2552: 2545: 2544:External links 2542: 2540: 2539: 2524: 2506: 2491: 2473: 2458: 2436: 2421: 2403: 2396: 2376: 2337: 2326:(8 May 2017). 2315: 2300:"Optical Flow" 2290: 2241: 2221: 2214: 2190: 2141: 2119:10.1.1.173.481 2089: 2082: 2057: 2011: 2004: 1978: 1929: 1914: 1872: 1865: 1845: 1838: 1817: 1815: 1812: 1811: 1810: 1805: 1800: 1795: 1790: 1785: 1778: 1775: 1728: 1725: 1705:machine vision 1670: 1667: 1655: 1654: 1642: 1641: 1640: 1633: 1627: 1621: 1615: 1606: 1596: 1585: 1582: 1571: 1570: 1557: 1553: 1549: 1546: 1540: 1537: 1531: 1528: 1525: 1511: 1510: 1497: 1493: 1489: 1486: 1481: 1477: 1471: 1467: 1463: 1458: 1454: 1448: 1444: 1415: 1411: 1388: 1384: 1361: 1357: 1336: 1333: 1330: 1327: 1324: 1321: 1318: 1294: 1291: 1286: 1283: 1255: 1252: 1247: 1244: 1216: 1213: 1208: 1205: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1140: 1120: 1098: 1094: 1090: 1085: 1081: 1069: 1068: 1057: 1054: 1048: 1045: 1040: 1037: 1031: 1026: 1022: 1015: 1012: 1007: 1004: 998: 993: 989: 982: 979: 974: 971: 954: 953: 942: 939: 933: 930: 925: 922: 913: 910: 905: 902: 896: 890: 887: 882: 879: 870: 867: 862: 859: 853: 847: 844: 839: 836: 827: 824: 819: 816: 790: 787: 776: 775: 764: 761: 758: 755: 749: 746: 741: 738: 732: 729: 726: 720: 717: 712: 709: 703: 700: 697: 691: 688: 683: 680: 663: 662: 646: 643: 640: 633: 630: 625: 622: 616: 613: 610: 603: 600: 595: 592: 586: 583: 580: 573: 570: 565: 562: 556: 553: 550: 547: 544: 541: 538: 535: 532: 529: 526: 523: 520: 517: 514: 511: 508: 505: 502: 499: 496: 493: 490: 487: 484: 481: 478: 451: 448: 445: 442: 439: 436: 433: 430: 419: 418: 407: 404: 401: 398: 395: 392: 389: 386: 383: 380: 377: 374: 371: 368: 365: 362: 359: 356: 353: 350: 347: 344: 341: 338: 335: 332: 305: 302: 282: 279: 259: 256: 236: 233: 230: 227: 224: 221: 218: 215: 195: 192: 189: 186: 183: 180: 177: 138: 135: 132: 129: 109: 93: 90: 26: 9: 6: 4: 3: 2: 2632: 2621: 2618: 2617: 2615: 2605: 2602: 2599: 2596: 2593: 2590: 2587: 2584: 2581: 2578: 2576: 2572: 2569: 2567: 2564: 2562: 2559: 2556: 2553: 2551: 2548: 2547: 2535: 2531: 2527: 2525:9783540893936 2521: 2517: 2510: 2502: 2498: 2494: 2488: 2484: 2477: 2469: 2465: 2461: 2455: 2450: 2449: 2440: 2432: 2428: 2424: 2422:9781461552673 2418: 2414: 2407: 2399: 2393: 2389: 2388: 2380: 2372: 2368: 2364: 2360: 2356: 2352: 2348: 2341: 2333: 2329: 2325: 2319: 2305: 2301: 2294: 2286: 2282: 2278: 2274: 2269: 2264: 2260: 2256: 2252: 2245: 2234: 2233: 2225: 2217: 2211: 2207: 2206: 2201: 2194: 2186: 2182: 2178: 2174: 2170: 2166: 2159: 2155: 2148: 2146: 2137: 2133: 2129: 2125: 2120: 2115: 2111: 2107: 2100: 2093: 2085: 2079: 2075: 2068: 2061: 2053: 2049: 2044: 2039: 2035: 2031: 2027: 2020: 2018: 2016: 2007: 2001: 1994: 1993: 1985: 1983: 1974: 1970: 1966: 1962: 1957: 1952: 1948: 1944: 1940: 1933: 1925: 1918: 1910: 1906: 1902: 1898: 1894: 1890: 1883: 1876: 1868: 1862: 1858: 1857: 1849: 1841: 1835: 1832:. Routledge. 1831: 1830: 1822: 1818: 1809: 1806: 1804: 1801: 1799: 1796: 1794: 1793:Range imaging 1791: 1789: 1788:Optical mouse 1786: 1784: 1781: 1780: 1774: 1772: 1768: 1763: 1761: 1756: 1753: 1748: 1746: 1745:optical mouse 1742: 1734: 1724: 1722: 1712: 1708: 1706: 1702: 1698: 1693: 1691: 1687: 1682: 1679: 1675: 1666: 1664: 1660: 1652: 1648: 1643: 1638: 1634: 1631: 1628: 1625: 1622: 1619: 1616: 1613: 1610: 1609: 1607: 1605: 1601: 1597: 1595: 1591: 1588: 1587: 1581: 1578: 1577: 1555: 1551: 1547: 1544: 1535: 1529: 1526: 1516: 1515: 1514: 1495: 1491: 1487: 1484: 1479: 1475: 1469: 1465: 1461: 1456: 1452: 1446: 1442: 1434: 1433: 1432: 1429: 1413: 1409: 1386: 1382: 1359: 1355: 1331: 1328: 1325: 1322: 1319: 1292: 1284: 1253: 1245: 1214: 1206: 1176: 1173: 1170: 1167: 1164: 1158: 1138: 1118: 1096: 1092: 1088: 1083: 1079: 1055: 1052: 1046: 1038: 1029: 1024: 1020: 1013: 1005: 996: 991: 987: 980: 972: 959: 958: 957: 940: 937: 931: 923: 911: 903: 894: 888: 880: 868: 860: 851: 845: 837: 825: 817: 804: 803: 802: 788: 762: 759: 756: 747: 739: 730: 727: 718: 710: 701: 698: 689: 681: 668: 667: 666: 661: 644: 641: 631: 623: 614: 611: 601: 593: 584: 581: 571: 563: 554: 548: 545: 542: 539: 536: 530: 527: 521: 515: 512: 509: 506: 500: 497: 494: 491: 485: 482: 476: 469: 468: 467: 465: 464:Taylor series 446: 443: 440: 437: 434: 428: 402: 396: 393: 390: 387: 381: 378: 375: 372: 366: 363: 357: 354: 348: 345: 342: 339: 336: 330: 323: 322: 321: 319: 303: 280: 257: 231: 228: 225: 222: 219: 213: 190: 187: 184: 181: 178: 167: 163: 158: 156: 155:Taylor series 152: 136: 130: 127: 107: 98: 89: 87: 83: 79: 74: 72: 67: 63: 59: 54: 52: 48: 44: 40: 32: 19: 2515: 2509: 2482: 2476: 2447: 2439: 2413:Vision Chips 2412: 2406: 2386: 2379: 2354: 2350: 2340: 2331: 2324:Corke, Peter 2318: 2307:. Retrieved 2303: 2293: 2258: 2254: 2244: 2231: 2224: 2204: 2193: 2168: 2164: 2109: 2105: 2092: 2073: 2060: 2033: 2029: 1991: 1946: 1942: 1932: 1923: 1917: 1892: 1888: 1875: 1859:. Springer. 1855: 1848: 1828: 1821: 1808:Motion field 1764: 1760:optical mice 1757: 1749: 1741:image sensor 1737: 1717: 1694: 1683: 1672: 1656: 1574: 1572: 1512: 1430: 1070: 955: 777: 664: 420: 317: 165: 161: 159: 99: 95: 75: 55: 42: 39:Optical flow 38: 37: 2261:(1): 1–31. 2200:Vicki Bruce 2171:: 186–199. 2154:Chanson, H. 2152:Zhang, G.; 1909:1721.1/6337 2492:0470034882 2459:0201059924 2309:2019-10-18 1814:References 92:Estimation 71:locomotion 43:optic flow 18:Optic flow 2534:495477442 2431:851803922 2371:108782688 2277:0920-5691 2114:CiteSeerX 2112:: 43–77. 1949:: 17–24. 1697:structure 1548:− 1539:→ 1530:⋅ 1524:∇ 1488:− 1290:∂ 1282:∂ 1251:∂ 1243:∂ 1212:∂ 1204:∂ 1044:∂ 1036:∂ 1011:∂ 1003:∂ 978:∂ 970:∂ 929:Δ 921:Δ 909:∂ 901:∂ 886:Δ 878:Δ 866:∂ 858:∂ 843:Δ 835:Δ 823:∂ 815:∂ 786:Δ 754:Δ 745:∂ 737:∂ 725:Δ 716:∂ 708:∂ 696:Δ 687:∂ 679:∂ 639:Δ 629:∂ 621:∂ 609:Δ 599:∂ 591:∂ 579:Δ 569:∂ 561:∂ 519:Δ 504:Δ 489:Δ 400:Δ 385:Δ 370:Δ 301:Δ 278:Δ 255:Δ 149:at every 134:Δ 2614:Category 2501:71521689 2468:17954003 2202:(1989). 2156:(2018). 1973:52847487 1965:22406544 1777:See also 1767:robotics 1653:methods. 1635:General 1111:are the 2173:Bibcode 2136:1290100 2052:1334552 2532:  2522:  2499:  2489:  2466:  2456:  2429:  2419:  2394:  2369:  2285:316800 2283:  2275:  2212:  2134:  2116:  2080:  2050:  2002:  1971:  1963:  1863:  1836:  1701:vision 1663:Sintel 1431:Thus: 1071:where 47:motion 2367:S2CID 2281:S2CID 2236:(PDF) 2161:(PDF) 2132:S2CID 2102:(PDF) 2070:(PDF) 2048:S2CID 1996:(PDF) 1969:S2CID 1885:(PDF) 1659:KITTI 462:with 151:voxel 2530:OCLC 2520:ISBN 2497:OCLC 2487:ISBN 2464:OCLC 2454:ISBN 2427:OCLC 2417:ISBN 2392:ISBN 2273:ISSN 2210:ISBN 2078:ISBN 2000:ISBN 1961:PMID 1861:ISBN 1834:ISBN 1721:MPEG 1676:and 1669:Uses 1661:and 1513:or 1401:and 1270:and 1192:and 1131:and 293:and 120:and 2575:MRF 2359:doi 2355:107 2263:doi 2181:doi 2124:doi 2038:doi 1951:doi 1905:hdl 1897:doi 41:or 2616:: 2528:. 2495:. 2462:. 2425:. 2365:. 2353:. 2349:. 2330:. 2302:. 2279:. 2271:. 2259:92 2257:. 2253:. 2179:. 2169:90 2167:. 2163:. 2144:^ 2130:. 2122:. 2110:12 2108:. 2104:. 2046:. 2034:27 2032:. 2028:. 2014:^ 1981:^ 1967:. 1959:. 1947:59 1945:. 1941:. 1903:. 1893:17 1891:. 1887:. 1707:. 1665:. 1231:, 801:, 270:, 80:, 73:. 2536:. 2503:. 2470:. 2433:. 2400:. 2361:: 2334:. 2312:. 2287:. 2265:: 2218:. 2187:. 2183:: 2175:: 2138:. 2126:: 2086:. 2054:. 2040:: 2008:. 1975:. 1953:: 1911:. 1907:: 1899:: 1869:. 1842:. 1735:. 1556:t 1552:I 1545:= 1536:V 1527:I 1496:t 1492:I 1485:= 1480:y 1476:V 1470:y 1466:I 1462:+ 1457:x 1453:V 1447:x 1443:I 1414:t 1410:I 1387:y 1383:I 1374:, 1360:x 1356:I 1335:) 1332:t 1329:, 1326:y 1323:, 1320:x 1317:( 1293:t 1285:I 1254:y 1246:I 1215:x 1207:I 1180:) 1177:t 1174:, 1171:y 1168:, 1165:x 1162:( 1159:I 1139:y 1119:x 1097:y 1093:V 1089:, 1084:x 1080:V 1056:0 1053:= 1047:t 1039:I 1030:+ 1025:y 1021:V 1014:y 1006:I 997:+ 992:x 988:V 981:x 973:I 941:0 938:= 932:t 924:t 912:t 904:I 895:+ 889:t 881:y 869:y 861:I 852:+ 846:t 838:x 826:x 818:I 789:t 763:0 760:= 757:t 748:t 740:I 731:+ 728:y 719:y 711:I 702:+ 699:x 690:x 682:I 645:+ 642:t 632:t 624:I 615:+ 612:y 602:y 594:I 585:+ 582:x 572:x 564:I 555:+ 552:) 549:t 546:, 543:y 540:, 537:x 534:( 531:I 528:= 525:) 522:t 516:+ 513:t 510:, 507:y 501:+ 498:y 495:, 492:x 486:+ 483:x 480:( 477:I 450:) 447:t 444:, 441:y 438:, 435:x 432:( 429:I 406:) 403:t 397:+ 394:t 391:, 388:y 382:+ 379:y 376:, 373:x 367:+ 364:x 361:( 358:I 355:= 352:) 349:t 346:, 343:y 340:, 337:x 334:( 331:I 304:t 281:y 258:x 235:) 232:t 229:, 226:y 223:, 220:x 217:( 214:I 194:) 191:t 188:, 185:y 182:, 179:x 176:( 166:n 162:t 137:t 131:+ 128:t 108:t 20:)

Index

Optic flow

motion
relative motion
James J. Gibson
affordance perception
ecological approach to psychology
locomotion
motion detection
object segmentation
motion compensated
voxel
Taylor series
Taylor series
higher-order terms
aperture problem
Phase correlation
cross-power spectrum
sum of absolute differences
cross-correlation
Lucas–Kanade method
Horn–Schunck method
Buxton–Buxton method
Black–Jepson method
variational methods
Max-flow min-cut theorem
belief propagation
KITTI
Sintel
Motion estimation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑