Knowledge

Oren–Nayar reflectance model

Source 📝

1756: 100: 1266: 33: 175: 1033: 752: 182:
Analysis of this phenomenon has a long history and can be traced back almost a century. Past work has resulted in empirical models designed to fit experimental data as well as theoretical results derived from first principles. Much of this work was motivated by the non-Lambertian reflectance of the
1799: 170:
brightness value over many facets. Whereas Lambert’s law may hold well when observing a single planar facet, a collection of such facets with different orientations is guaranteed to violate Lambert’s law. The primary reason for this is that the foreshortened facet areas will change for different
1747: 147:
and graphics. For a large number of real-world surfaces, such as concrete, plaster, sand, etc., however, the Lambertian model is an inadequate approximation of the diffuse component. This is primarily because the Lambertian model does not take the roughness of the surface into account.
1261:{\displaystyle C_{2}={\begin{cases}0.45{\frac {\sigma ^{2}}{\sigma ^{2}+0.09}}\sin \alpha &{\text{if }}\cos(\phi _{i}-\phi _{r})\geq 0,\\0.45{\frac {\sigma ^{2}}{\sigma ^{2}+0.09}}\left(\sin \alpha -\left({\frac {2\beta }{\pi }}\right)^{3}\right)&{\text{otherwise,}}\end{cases}}} 1742:
Here is a real image of a matte vase illuminated from the viewing direction, along with versions rendered using the Lambertian and Oren-Nayar models. It shows that the Oren-Nayar model predicts the diffuse reflectance for rough surfaces more accurately than the Lambertian model.
517: 1377: 947: 110:
is a physical property of a material that describes how it reflects incident light. The appearance of various materials are determined to a large extent by their reflectance properties. Most reflectance models can be broadly classified into two categories:
206:
between points on the surface facets. It can be viewed as a generalization of Lambert’s law. Today, it is widely used in computer graphics and animation for rendering rough surfaces. It also has important implications for
1024: 1732: 1435: 1494: 747:{\displaystyle L_{1}={\frac {\rho }{\pi }}E_{0}\cos \theta _{i}\left(C_{1}+C_{2}\cos(\phi _{i}-\phi _{r})\tan \beta +C_{3}(1-|\cos(\phi _{i}-\phi _{r})|)\tan {\frac {\alpha +\beta }{2}}\right),} 1274: 760: 232: 194:
in 1993, predicts reflectance from rough diffuse surfaces for the entire hemisphere of source and sensor directions. The model takes into account complex physical phenomena such as
1660: 2020: 452: 336: 284: 1568: 1791: 1601: 1542: 304: 1518: 509: 482: 393: 366: 240: 166:(much larger than the wavelength of incident light) surface roughness is often projected onto a single detection element, which in turn produces an 17: 244: 958: 1668: 91:. It has been shown to accurately predict the appearance of a wide range of natural surfaces, such as concrete, plaster, sand, etc. 286:, is a measure of the roughness of the surfaces. The standard deviation of the facet slopes (gradient of the surface elevation), 154:
can be modelled as a set of facets with different slopes, where each facet is a small planar patch. Since photo receptors of the
1773:
Here are rendered images of a sphere using the Oren-Nayar model, corresponding to different surface roughnesses (i.e. different
1385: 1444: 247:, which assumes the surface to be composed of long symmetric V-cavities. Each cavity consists of two planar facets. The 103:
Comparison of a matte vase with the rendering based on the Lambertian model. Illumination is from the viewing direction.
1372:{\displaystyle C_{3}=0.125{\frac {\sigma ^{2}}{\sigma ^{2}+0.09}}\left({\frac {4\alpha \beta }{\pi ^{2}}}\right)^{2},} 1860: 942:{\displaystyle L_{2}=0.17{\frac {\rho ^{2}}{\pi }}E_{0}\cos \theta _{i}{\frac {\sigma ^{2}}{\sigma ^{2}+0.13}}\left,} 251:
of the surface is specified using a probability function for the distribution of facet slopes. In particular, the
1759:
Plot of the brightness of the rendered images, compared with the measurements on a cross section of the real vase
239:
The surface roughness model used in the derivation of the Oren-Nayar model is the microfacet model, proposed by
1920: 47: 1606: 1903:
Proceedings of the 21st annual conference on Computer graphics and interactive techniques - SIGGRAPH '94
401: 1944:
Torrance, K. E.; Sparrow, E. M. (1967). "Theory for off-specular reflection from roughened surfaces".
139:
appears equally bright from all viewing directions. This model for diffuse reflection was proposed by
1055: 309: 262: 140: 1980: 1865: 1547: 341:
In the Oren–Nayar reflectance model, each facet is assumed to be Lambertian in reflectance. If
129: 1776: 1573: 1527: 289: 252: 1953: 1503: 487: 460: 371: 344: 8: 116: 1957: 1926: 1819: 220: 216: 112: 81: 1916: 395:
of the light reflected by the faceted surface, according to the Oren-Nayar model, is
248: 208: 151: 124: 87: 2025: 1961: 1906: 1870: 135: 2001: 1930: 212: 144: 120: 1901:
Oren, M.; Nayar, S. K. (1994). "Generalization of Lambert's reflectance model".
191: 167: 72: 2014: 511:
that describes bounces of light between the facets are defined as follows.
171:
viewing directions, and thus the surface appearance will be view-dependent.
1965: 76: 1911: 163: 107: 231: 143:
in 1760 and has been perhaps the most widely used reflectance model in
1804: 368:
is the irradiance when the facet is illuminated head-on, the radiance
174: 2005: 1798: 1662:, and thus the Oren-Nayar model simplifies to the Lambertian model: 1755: 1746: 256: 99: 1019:{\displaystyle C_{1}=1-0.5{\frac {\sigma ^{2}}{\sigma ^{2}+0.33}}} 1727:{\displaystyle L_{r}={\frac {\rho }{\pi }}E_{0}\cos \theta _{i}.} 190:
The Oren–Nayar reflectance model, developed by Michael Oren and
1521: 159: 155: 1254: 184: 1981:"Microfacet Models for Refraction through Rough Surfaces" 162:
in a camera are both finite-area detectors, substantial
2021:
Scattering, absorption and radiative transfer (optics)
1978: 1779: 1671: 1609: 1576: 1550: 1530: 1506: 1447: 1430:{\displaystyle \alpha =\max(\theta _{i},\theta _{r})} 1388: 1277: 1036: 961: 763: 520: 490: 463: 404: 374: 347: 312: 292: 265: 1489:{\displaystyle \beta =\min(\theta _{i},\theta _{r})} 1805:
Connection with other microfacet reflectance models
2002:The official project page for the Oren-Nayar model 1785: 1726: 1654: 1595: 1562: 1536: 1512: 1488: 1429: 1371: 1260: 1018: 941: 746: 503: 476: 446: 387: 360: 330: 298: 278: 1834:Rough opaque specular surfaces (glossy surfaces) 178:Aggregation of the reflection from rough surfaces 2012: 1544:is the roughness of the surface. In the case of 1454: 1395: 1943: 127:, the diffuse component is often assumed to be 1570:(i.e., all facets in the same plane), we have 1896: 1894: 1892: 1890: 1888: 1886: 1848:Each facet is made of glass (transparent) 1910: 1900: 1883: 1754: 230: 173: 98: 14: 2013: 26: 1842:Each facet is Lambertian (diffuse) 1655:{\displaystyle C_{2}=C_{3}=L_{2}=0} 457:where the direct illumination term 24: 1845:Each facet is a mirror (specular) 1745: 447:{\displaystyle L_{r}=L_{1}+L_{2},} 322: 25: 2037: 1995: 1861:List of common shading algorithms 1826:Microfacet model for refraction 1797: 71:, developed by Michael Oren and 31: 94: 1972: 1937: 1831:Rough opaque diffuse surfaces 1483: 1457: 1424: 1398: 1141: 1115: 898: 872: 709: 705: 701: 675: 665: 655: 630: 604: 325: 313: 259:of the Gaussian distribution, 226: 13: 1: 1876: 235:Diagram of surface reflection 255:is often used, and thus the 69:Oren–Nayar reflectance model 18:Oren–Nayar Reflectance Model 7: 2006:CAVE research group webpage 1854: 1837:Rough transparent surfaces 331:{\displaystyle [0,\infty )} 279:{\displaystyle \sigma ^{2}} 42:may have misleading content 10: 2042: 1737: 1563:{\displaystyle \sigma =0} 1979:Walter, B.; et al. 1786:{\displaystyle \sigma } 1596:{\displaystyle C_{1}=1} 1537:{\displaystyle \sigma } 299:{\displaystyle \sigma } 141:Johann Heinrich Lambert 133:. A surface that obeys 1966:10.1364/JOSA.57.001105 1866:Phong reflection model 1787: 1760: 1750: 1728: 1656: 1597: 1564: 1538: 1514: 1490: 1431: 1373: 1262: 1020: 943: 748: 505: 478: 448: 389: 362: 332: 300: 280: 236: 179: 104: 1912:10.1145/192161.192213 1788: 1758: 1749: 1729: 1657: 1598: 1565: 1539: 1515: 1513:{\displaystyle \rho } 1491: 1432: 1374: 1263: 1021: 944: 749: 506: 504:{\displaystyle L_{2}} 479: 477:{\displaystyle L_{1}} 449: 390: 388:{\displaystyle L_{r}} 363: 361:{\displaystyle E_{0}} 333: 301: 281: 253:Gaussian distribution 234: 177: 102: 1905:. pp. 239–246. 1777: 1669: 1607: 1574: 1548: 1528: 1524:of the surface, and 1504: 1445: 1386: 1275: 1034: 959: 761: 518: 488: 461: 402: 372: 345: 310: 290: 263: 1958:1967JOSA...57.1105T 48:clarify the content 1783: 1761: 1751: 1724: 1652: 1593: 1560: 1534: 1510: 1486: 1427: 1369: 1258: 1253: 1016: 939: 744: 501: 474: 444: 385: 358: 328: 296: 276: 237: 221:photometric stereo 217:shape from shading 215:problems, such as 180: 105: 82:diffuse reflection 2004:at Shree Nayar's 1852: 1851: 1693: 1354: 1324: 1249: 1227: 1190: 1107: 1091: 1014: 919: 853: 795: 734: 542: 125:computer graphics 65: 64: 16:(Redirected from 2033: 1989: 1988: 1976: 1970: 1969: 1952:(9): 1105–1114. 1941: 1935: 1934: 1914: 1898: 1871:Gamma correction 1820:Torrance-Sparrow 1809: 1808: 1801: 1792: 1790: 1789: 1784: 1733: 1731: 1730: 1725: 1720: 1719: 1704: 1703: 1694: 1686: 1681: 1680: 1661: 1659: 1658: 1653: 1645: 1644: 1632: 1631: 1619: 1618: 1602: 1600: 1599: 1594: 1586: 1585: 1569: 1567: 1566: 1561: 1543: 1541: 1540: 1535: 1519: 1517: 1516: 1511: 1495: 1493: 1492: 1487: 1482: 1481: 1469: 1468: 1436: 1434: 1433: 1428: 1423: 1422: 1410: 1409: 1378: 1376: 1375: 1370: 1365: 1364: 1359: 1355: 1353: 1352: 1343: 1332: 1325: 1323: 1316: 1315: 1305: 1304: 1295: 1287: 1286: 1267: 1265: 1264: 1259: 1257: 1256: 1250: 1247: 1243: 1239: 1238: 1237: 1232: 1228: 1223: 1215: 1191: 1189: 1182: 1181: 1171: 1170: 1161: 1140: 1139: 1127: 1126: 1108: 1105: 1092: 1090: 1083: 1082: 1072: 1071: 1062: 1046: 1045: 1025: 1023: 1022: 1017: 1015: 1013: 1006: 1005: 995: 994: 985: 971: 970: 948: 946: 945: 940: 935: 931: 930: 929: 924: 920: 915: 907: 897: 896: 884: 883: 854: 852: 845: 844: 834: 833: 824: 822: 821: 806: 805: 796: 791: 790: 781: 773: 772: 753: 751: 750: 745: 740: 736: 735: 730: 719: 708: 700: 699: 687: 686: 668: 654: 653: 629: 628: 616: 615: 597: 596: 584: 583: 569: 568: 553: 552: 543: 535: 530: 529: 510: 508: 507: 502: 500: 499: 483: 481: 480: 475: 473: 472: 453: 451: 450: 445: 440: 439: 427: 426: 414: 413: 394: 392: 391: 386: 384: 383: 367: 365: 364: 359: 357: 356: 337: 335: 334: 329: 305: 303: 302: 297: 285: 283: 282: 277: 275: 274: 204:interreflections 60: 57: 51: 35: 34: 27: 21: 2041: 2040: 2036: 2035: 2034: 2032: 2031: 2030: 2011: 2010: 1998: 1993: 1992: 1977: 1973: 1946:J. Opt. Soc. Am 1942: 1938: 1923: 1899: 1884: 1879: 1857: 1807: 1796: 1778: 1775: 1774: 1772: 1769: 1766: 1763: 1740: 1715: 1711: 1699: 1695: 1685: 1676: 1672: 1670: 1667: 1666: 1640: 1636: 1627: 1623: 1614: 1610: 1608: 1605: 1604: 1581: 1577: 1575: 1572: 1571: 1549: 1546: 1545: 1529: 1526: 1525: 1505: 1502: 1501: 1477: 1473: 1464: 1460: 1446: 1443: 1442: 1418: 1414: 1405: 1401: 1387: 1384: 1383: 1360: 1348: 1344: 1333: 1331: 1327: 1326: 1311: 1307: 1306: 1300: 1296: 1294: 1282: 1278: 1276: 1273: 1272: 1252: 1251: 1246: 1244: 1233: 1216: 1214: 1210: 1209: 1196: 1192: 1177: 1173: 1172: 1166: 1162: 1160: 1154: 1153: 1135: 1131: 1122: 1118: 1104: 1102: 1078: 1074: 1073: 1067: 1063: 1061: 1051: 1050: 1041: 1037: 1035: 1032: 1031: 1001: 997: 996: 990: 986: 984: 966: 962: 960: 957: 956: 925: 908: 906: 902: 901: 892: 888: 879: 875: 859: 855: 840: 836: 835: 829: 825: 823: 817: 813: 801: 797: 786: 782: 780: 768: 764: 762: 759: 758: 720: 718: 704: 695: 691: 682: 678: 664: 649: 645: 624: 620: 611: 607: 592: 588: 579: 575: 574: 570: 564: 560: 548: 544: 534: 525: 521: 519: 516: 515: 495: 491: 489: 486: 485: 468: 464: 462: 459: 458: 435: 431: 422: 418: 409: 405: 403: 400: 399: 379: 375: 373: 370: 369: 352: 348: 346: 343: 342: 311: 308: 307: 291: 288: 287: 270: 266: 264: 261: 260: 229: 213:computer vision 145:computer vision 121:computer vision 97: 61: 55: 52: 45: 36: 32: 23: 22: 15: 12: 11: 5: 2039: 2029: 2028: 2023: 2009: 2008: 1997: 1996:External links 1994: 1991: 1990: 1971: 1936: 1921: 1881: 1880: 1878: 1875: 1874: 1873: 1868: 1863: 1856: 1853: 1850: 1849: 1846: 1843: 1839: 1838: 1835: 1832: 1828: 1827: 1824: 1816: 1806: 1803: 1782: 1739: 1736: 1735: 1734: 1723: 1718: 1714: 1710: 1707: 1702: 1698: 1692: 1689: 1684: 1679: 1675: 1651: 1648: 1643: 1639: 1635: 1630: 1626: 1622: 1617: 1613: 1592: 1589: 1584: 1580: 1559: 1556: 1553: 1533: 1509: 1498: 1497: 1485: 1480: 1476: 1472: 1467: 1463: 1459: 1456: 1453: 1450: 1439: 1438: 1426: 1421: 1417: 1413: 1408: 1404: 1400: 1397: 1394: 1391: 1380: 1379: 1368: 1363: 1358: 1351: 1347: 1342: 1339: 1336: 1330: 1322: 1319: 1314: 1310: 1303: 1299: 1293: 1290: 1285: 1281: 1269: 1268: 1255: 1245: 1242: 1236: 1231: 1226: 1222: 1219: 1213: 1208: 1205: 1202: 1199: 1195: 1188: 1185: 1180: 1176: 1169: 1165: 1159: 1156: 1155: 1152: 1149: 1146: 1143: 1138: 1134: 1130: 1125: 1121: 1117: 1114: 1111: 1103: 1101: 1098: 1095: 1089: 1086: 1081: 1077: 1070: 1066: 1060: 1057: 1056: 1054: 1049: 1044: 1040: 1028: 1027: 1012: 1009: 1004: 1000: 993: 989: 983: 980: 977: 974: 969: 965: 950: 949: 938: 934: 928: 923: 918: 914: 911: 905: 900: 895: 891: 887: 882: 878: 874: 871: 868: 865: 862: 858: 851: 848: 843: 839: 832: 828: 820: 816: 812: 809: 804: 800: 794: 789: 785: 779: 776: 771: 767: 755: 754: 743: 739: 733: 729: 726: 723: 717: 714: 711: 707: 703: 698: 694: 690: 685: 681: 677: 674: 671: 667: 663: 660: 657: 652: 648: 644: 641: 638: 635: 632: 627: 623: 619: 614: 610: 606: 603: 600: 595: 591: 587: 582: 578: 573: 567: 563: 559: 556: 551: 547: 541: 538: 533: 528: 524: 498: 494: 471: 467: 455: 454: 443: 438: 434: 430: 425: 421: 417: 412: 408: 382: 378: 355: 351: 327: 324: 321: 318: 315: 295: 273: 269: 228: 225: 192:Shree K. Nayar 152:Rough surfaces 96: 93: 88:rough surfaces 73:Shree K. Nayar 63: 62: 39: 37: 30: 9: 6: 4: 3: 2: 2038: 2027: 2024: 2022: 2019: 2018: 2016: 2007: 2003: 2000: 1999: 1986: 1982: 1975: 1967: 1963: 1959: 1955: 1951: 1947: 1940: 1932: 1928: 1924: 1918: 1913: 1908: 1904: 1897: 1895: 1893: 1891: 1889: 1887: 1882: 1872: 1869: 1867: 1864: 1862: 1859: 1858: 1847: 1844: 1841: 1840: 1836: 1833: 1830: 1829: 1825: 1822: 1821: 1817: 1814: 1811: 1810: 1802: 1800: 1794: 1780: 1770: 1767: 1764: 1757: 1753: 1748: 1744: 1721: 1716: 1712: 1708: 1705: 1700: 1696: 1690: 1687: 1682: 1677: 1673: 1665: 1664: 1663: 1649: 1646: 1641: 1637: 1633: 1628: 1624: 1620: 1615: 1611: 1590: 1587: 1582: 1578: 1557: 1554: 1551: 1531: 1523: 1507: 1478: 1474: 1470: 1465: 1461: 1451: 1448: 1441: 1440: 1419: 1415: 1411: 1406: 1402: 1392: 1389: 1382: 1381: 1366: 1361: 1356: 1349: 1345: 1340: 1337: 1334: 1328: 1320: 1317: 1312: 1308: 1301: 1297: 1291: 1288: 1283: 1279: 1271: 1270: 1240: 1234: 1229: 1224: 1220: 1217: 1211: 1206: 1203: 1200: 1197: 1193: 1186: 1183: 1178: 1174: 1167: 1163: 1157: 1150: 1147: 1144: 1136: 1132: 1128: 1123: 1119: 1112: 1109: 1099: 1096: 1093: 1087: 1084: 1079: 1075: 1068: 1064: 1058: 1052: 1047: 1042: 1038: 1030: 1029: 1010: 1007: 1002: 998: 991: 987: 981: 978: 975: 972: 967: 963: 955: 954: 953: 936: 932: 926: 921: 916: 912: 909: 903: 893: 889: 885: 880: 876: 869: 866: 863: 860: 856: 849: 846: 841: 837: 830: 826: 818: 814: 810: 807: 802: 798: 792: 787: 783: 777: 774: 769: 765: 757: 756: 741: 737: 731: 727: 724: 721: 715: 712: 696: 692: 688: 683: 679: 672: 669: 661: 658: 650: 646: 642: 639: 636: 633: 625: 621: 617: 612: 608: 601: 598: 593: 589: 585: 580: 576: 571: 565: 561: 557: 554: 549: 545: 539: 536: 531: 526: 522: 514: 513: 512: 496: 492: 484:and the term 469: 465: 441: 436: 432: 428: 423: 419: 415: 410: 406: 398: 397: 396: 380: 376: 353: 349: 339: 319: 316: 293: 271: 267: 258: 254: 250: 246: 242: 233: 224: 222: 218: 214: 210: 205: 201: 197: 193: 188: 186: 176: 172: 169: 165: 161: 157: 153: 149: 146: 142: 138: 137: 136:Lambert's Law 132: 131: 126: 122: 118: 114: 109: 101: 92: 90: 89: 84: 83: 78: 74: 70: 59: 49: 43: 40:This article 38: 29: 28: 19: 1984: 1974: 1949: 1945: 1939: 1902: 1818: 1812: 1795: 1771: 1768: 1765: 1762: 1752: 1741: 1499: 951: 456: 340: 238: 209:human vision 203: 199: 195: 189: 181: 150: 134: 128: 106: 95:Introduction 86: 80: 77:reflectivity 68: 66: 53: 46:Please help 41: 227:Formulation 164:macroscopic 108:Reflectance 2015:Categories 1922:0897916670 1877:References 1813:Oren-Nayar 1248:otherwise, 306:ranges in 130:Lambertian 79:model for 1985:Egsr 2007 1793:values): 1781:σ 1713:θ 1709:⁡ 1691:π 1688:ρ 1552:σ 1532:σ 1508:ρ 1475:θ 1462:θ 1449:β 1416:θ 1403:θ 1390:α 1346:π 1341:β 1338:α 1309:σ 1298:σ 1225:π 1221:β 1207:− 1204:α 1201:⁡ 1175:σ 1164:σ 1145:≥ 1133:ϕ 1129:− 1120:ϕ 1113:⁡ 1100:α 1097:⁡ 1076:σ 1065:σ 999:σ 988:σ 979:− 917:π 913:β 890:ϕ 886:− 877:ϕ 870:⁡ 864:− 838:σ 827:σ 815:θ 811:⁡ 793:π 784:ρ 728:β 722:α 716:⁡ 693:ϕ 689:− 680:ϕ 673:⁡ 662:− 640:β 637:⁡ 622:ϕ 618:− 609:ϕ 602:⁡ 562:θ 558:⁡ 540:π 537:ρ 323:∞ 294:σ 268:σ 249:roughness 200:shadowing 168:aggregate 56:July 2019 1855:See also 1106:if  257:variance 241:Torrance 117:specular 2026:Shading 1954:Bibcode 1738:Results 1520:is the 245:Sparrow 223:, etc. 196:masking 113:diffuse 75:, is a 1931:122480 1929:  1919:  1823:model 1815:model 1603:, and 1522:albedo 952:where 160:pixels 156:retina 1927:S2CID 1292:0.125 119:. In 85:from 1917:ISBN 1500:and 1321:0.09 1187:0.09 1158:0.45 1088:0.09 1059:0.45 1011:0.33 850:0.13 778:0.17 243:and 211:and 202:and 185:moon 158:and 123:and 115:and 67:The 1962:doi 1907:doi 1706:cos 1455:min 1396:max 1198:sin 1110:cos 1094:sin 982:0.5 867:cos 808:cos 713:tan 670:cos 634:tan 599:cos 555:cos 2017:: 1983:. 1960:. 1950:57 1948:. 1925:. 1915:. 1885:^ 338:. 219:, 198:, 187:. 1987:. 1968:. 1964:: 1956:: 1933:. 1909:: 1722:. 1717:i 1701:0 1697:E 1683:= 1678:r 1674:L 1650:0 1647:= 1642:2 1638:L 1634:= 1629:3 1625:C 1621:= 1616:2 1612:C 1591:1 1588:= 1583:1 1579:C 1558:0 1555:= 1496:, 1484:) 1479:r 1471:, 1466:i 1458:( 1452:= 1437:, 1425:) 1420:r 1412:, 1407:i 1399:( 1393:= 1367:, 1362:2 1357:) 1350:2 1335:4 1329:( 1318:+ 1313:2 1302:2 1289:= 1284:3 1280:C 1241:) 1235:3 1230:) 1218:2 1212:( 1194:( 1184:+ 1179:2 1168:2 1151:, 1148:0 1142:) 1137:r 1124:i 1116:( 1085:+ 1080:2 1069:2 1053:{ 1048:= 1043:2 1039:C 1026:, 1008:+ 1003:2 992:2 976:1 973:= 968:1 964:C 937:, 933:] 927:2 922:) 910:2 904:( 899:) 894:r 881:i 873:( 861:1 857:[ 847:+ 842:2 831:2 819:i 803:0 799:E 788:2 775:= 770:2 766:L 742:, 738:) 732:2 725:+ 710:) 706:| 702:) 697:r 684:i 676:( 666:| 659:1 656:( 651:3 647:C 643:+ 631:) 626:r 613:i 605:( 594:2 590:C 586:+ 581:1 577:C 572:( 566:i 550:0 546:E 532:= 527:1 523:L 497:2 493:L 470:1 466:L 442:, 437:2 433:L 429:+ 424:1 420:L 416:= 411:r 407:L 381:r 377:L 354:0 350:E 326:) 320:, 317:0 314:[ 272:2 58:) 54:( 50:. 44:. 20:)

Index

Oren–Nayar Reflectance Model
clarify the content
Shree K. Nayar
reflectivity
diffuse reflection
rough surfaces

Reflectance
diffuse
specular
computer vision
computer graphics
Lambertian
Lambert's Law
Johann Heinrich Lambert
computer vision
Rough surfaces
retina
pixels
macroscopic
aggregate

moon
Shree K. Nayar
human vision
computer vision
shape from shading
photometric stereo

Torrance

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.