Knowledge

Pearlite

Source đź“ť

144: 424:
wire drawing (logarithmic strain above 3) leads to pearlitic wires with yield strengths of several gigapascals. It makes pearlite one of the strongest structural bulk materials on earth. Some hypereutectoid pearlitic steel wires, when cold wire drawn to true (logarithmic) strains above 5, can even show a maximal tensile strength above 6 GPa (870 ksi). Although pearlite is used in many engineering applications, the origin of its extreme strength is not well understood. It has been recently shown that cold wire drawing not only strengthens pearlite by refining the lamellae structure, but also simultaneously causes partial chemical decomposition of cementite, associated with an increased carbon content of the ferrite phase, deformation induced lattice defects in ferrite lamellae, and even a structural transition from crystalline to amorphous cementite. The deformation-induced decomposition and microstructural change of cementite is closely related to several other phenomena such as a strong redistribution of carbon and other alloy elements like
342: 36: 350: 746: 331: 423:
Steels with pearlitic (eutectoid composition) or near-pearlitic microstructure (near-eutectoid composition) can be drawn into thin wires. Such wires, often bundled into ropes, are commercially used as piano wires, ropes for suspension bridges, and as steel cord for tire reinforcement. High degrees of
470:
Eutectoid steel can in principle be transformed completely into pearlite; hypoeutectoid steels can also be completely pearlitic if transformed at a temperature below the normal eutectoid. Pearlite can be hard and strong but is not particularly
416:) will form cementite before reaching the eutectoid point. The proportion of ferrite and cementite forming above the eutectoid point can be calculated from the iron/iron—carbide equilibrium phase diagram using the 412:) will contain a corresponding proportion of relatively pure ferrite crystallites that do not participate in the eutectoid reaction and cannot transform into pearlite. Likewise steels with higher carbon content ( 432:
in both the cementite and the ferrite phase; a variation of the deformation accommodation at the phase interfaces due to a change in the carbon concentration gradient at the interfaces; and mechanical alloying.
458:
and thus lacks this pearlescent appearance. It is prepared by more rapid cooling. Unlike pearlite, whose formation involves the diffusion of all atoms, bainite grows by a displacive transformation mechanism.
528:
Li, Y.; Raabe, D.; Herbig, M. J.; Choi, P.P.; Goto, S.; Kostka, A.; Yarita, H.; Bochers, C.; Kirchheim, R. (2014), "Segregation stabilizes nanocrystalline bulk steel with near theoretical strength",
462:
The transformation of pearlite to austenite takes place at lower critical temperature of 723 Â°C (1,333 Â°F). At this temperature pearlite changes to austenite because of nucleation process.
657:
Alvarenga HD, Van de Putte T, Van Steenberge N, Sietsma J, Terryn H (Apr 2009). "Influence of Carbide Morphology and Microstructure on the Kinetics of Superficial Decarburization of C-Mn Steels".
571:
Chen, Y. Z.; Csiszár, G.; Cizek, J.; Westerkamp, S.; Borchers, C.; Ungár, T.; Goto, S.; Liu, F.; Kirchheim, R. (2013-04-10). "Defects in Carbon-Rich Ferrite of Cold-Drawn Pearlitic Steel Wires".
622:
Li, Y.J.; Choi, P.P.; Borchers, C.; Westerkamp, S.; Goto, S.; Raabe, D.; Kirchheim, R. (2011), "Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite",
143: 345:
Atom probe tomography of pearlite. The red dots indicate the positions of carbon atoms. Iron atoms are not shown. The nanotube is shown for size reference.
727: 396:
cools below 723 Â°C (1,333 Â°F) (the eutectoid temperature). Pearlite is a microstructure occurring in many common grades of steels.
512:
Raabe, D.; Choi, P. P.; Li, Y. J.; Kostka, A.; Sauvage, X.; Lecouturier, F.; Hono, K.; Kirchheim, R.; Pippan, R.; Embury, D. (2010),
475:. It can be wear-resistant because of a strong lamellar network of ferrite and cementite. Examples of applications include 100: 119: 72: 218: 79: 444:
and especially the optical effect caused by the scale of the structure made the alternative name more popular.
57: 724: 334: 86: 514:
Metallic composites processed via extreme deformation - Toward the limits of strength in bulk materials
341: 692: 750: 68: 53: 413: 409: 223: 46: 631: 580: 537: 709: 198: 8: 766: 437: 635: 584: 541: 674: 604: 369: 160: 93: 678: 608: 596: 553: 305: 666: 639: 588: 549: 545: 274: 269: 643: 731: 492: 441: 264: 771: 725:
Chapter 15 High-Carbon Steels: Fully Pearlitic Microstructures and Applications
373: 365: 315: 259: 239: 189: 151: 670: 592: 776: 760: 600: 455: 557: 476: 320: 310: 249: 244: 656: 440:
and initially named sorbite, however the similarity of microstructure to
349: 254: 451: 417: 279: 213: 175: 472: 429: 393: 389: 385: 377: 354: 300: 295: 170: 165: 20: 35: 388:. During slow cooling of an iron-carbon alloy, pearlite forms by a 180: 447: 425: 208: 24: 745: 488: 484: 405: 717:
by Sidney H. Avner, second edition, McGraw hill publications.
404:
The eutectoid composition of austenite is approximately 0.8%
381: 135: 480: 450:
is a similar structure with lamellae much smaller than the
330: 570: 372:(or layered) structure composed of alternating layers of 621: 357:
of the iron-carbon phase diagram (near the lower left).
693:"Eutectoid Steel - Engineering Dictionary - EngNet" 60:. Unsourced material may be challenged and removed. 734:by George Krauss, 2005 Edition, ASM International. 527: 511: 758: 721:Steels: Processing, Structure, and Performance 615: 16:Lamellar structure of ferrite and cementite 573:Metallurgical and Materials Transactions A 516:, vol. 35, MRS Bulletin, p. 982 120:Learn how and when to remove this message 650: 348: 340: 329: 759: 521: 710:Comprehensive information on pearlite 505: 337:micrograph of etched pearlite, 2000X. 58:adding citations to reliable sources 29: 715:Introduction to Physical metallurgy 13: 703: 465: 408:; steel with less carbon content ( 14: 788: 738: 436:Pearlite was first identified by 744: 142: 34: 380:(12.5 wt%) that occurs in some 45:needs additional citations for 685: 564: 550:10.1103/PhysRevLett.113.106104 399: 1: 644:10.1016/j.actamat.2011.03.022 498: 7: 10: 793: 288:Other iron-based materials 18: 671:10.1007/s11661-014-2600-y 593:10.1007/s11661-013-1723-x 224:Widmanstätten structures 530:Physical Review Letters 353:Pearlite occurs at the 358: 346: 338: 414:hypereutectoid steels 352: 344: 333: 753:at Wikimedia Commons 659:Metall Mater Trans A 54:improve this article 23:volcanic glass, see 636:2011AcMat..59.3965L 585:2013MMTA...44.3882C 542:2014PhRvL.113j6104L 438:Henry Clifton Sorby 410:hypoeutectoid steel 219:Tempered martensite 730:2012-08-13 at the 359: 347: 339: 749:Media related to 328: 327: 130: 129: 122: 104: 784: 748: 697: 696: 689: 683: 682: 654: 648: 646: 619: 613: 612: 579:(8): 3882–3889. 568: 562: 560: 525: 519: 517: 509: 479:, high strength 275:Weathering steel 270:High-speed steel 146: 132: 131: 125: 118: 114: 111: 105: 103: 62: 38: 30: 792: 791: 787: 786: 785: 783: 782: 781: 757: 756: 741: 732:Wayback Machine 706: 704:Further reading 701: 700: 691: 690: 686: 655: 651: 624:Acta Materialia 620: 616: 569: 565: 526: 522: 510: 506: 501: 468: 466:Eutectoid steel 402: 376:(87.5 wt%) and 265:Stainless steel 190:Microstructures 126: 115: 109: 106: 63: 61: 51: 39: 28: 17: 12: 11: 5: 790: 780: 779: 774: 769: 755: 754: 740: 739:External links 737: 736: 735: 718: 712: 705: 702: 699: 698: 684: 649: 614: 563: 536:(10): 106104, 520: 503: 502: 500: 497: 467: 464: 401: 398: 326: 325: 324: 323: 318: 316:Malleable iron 313: 308: 303: 298: 290: 289: 285: 284: 283: 282: 277: 272: 267: 262: 260:Maraging steel 257: 252: 247: 242: 240:Crucible steel 234: 233: 229: 228: 227: 226: 221: 216: 211: 206: 201: 193: 192: 186: 185: 184: 183: 178: 173: 168: 163: 155: 154: 148: 147: 139: 138: 128: 127: 42: 40: 33: 15: 9: 6: 4: 3: 2: 789: 778: 775: 773: 770: 768: 765: 764: 762: 752: 747: 743: 742: 733: 729: 726: 722: 719: 716: 713: 711: 708: 707: 694: 688: 680: 676: 672: 668: 664: 660: 653: 645: 641: 637: 633: 629: 625: 618: 610: 606: 602: 598: 594: 590: 586: 582: 578: 574: 567: 559: 555: 551: 547: 543: 539: 535: 531: 524: 515: 508: 504: 496: 494: 490: 486: 482: 478: 477:cutting tools 474: 463: 460: 457: 456:visible light 453: 449: 445: 443: 439: 434: 431: 427: 421: 419: 415: 411: 407: 397: 395: 391: 387: 383: 379: 375: 371: 367: 363: 356: 351: 343: 336: 332: 322: 319: 317: 314: 312: 309: 307: 304: 302: 299: 297: 294: 293: 292: 291: 287: 286: 281: 278: 276: 273: 271: 268: 266: 263: 261: 258: 256: 253: 251: 248: 246: 243: 241: 238: 237: 236: 235: 231: 230: 225: 222: 220: 217: 215: 212: 210: 207: 205: 202: 200: 197: 196: 195: 194: 191: 188: 187: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 158: 157: 156: 153: 150: 149: 145: 141: 140: 137: 134: 133: 124: 121: 113: 110:November 2010 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: â€“  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 26: 22: 720: 714: 687: 662: 658: 652: 630:(10): 3965, 627: 623: 617: 576: 572: 566: 533: 529: 523: 513: 507: 469: 461: 446: 435: 422: 403: 392:reaction as 361: 360: 321:Wrought iron 311:Ductile iron 250:Spring steel 245:Carbon steel 203: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 665:: 123–133. 400:Composition 255:Alloy steel 199:Spheroidite 767:Metallurgy 761:Categories 499:References 452:wavelength 418:lever rule 386:cast irons 366:two-phased 306:White iron 280:Tool steel 214:Ledeburite 176:Martensite 80:newspapers 69:"Pearlite" 679:136871961 609:135839236 601:1073-5623 430:manganese 394:austenite 390:eutectoid 378:cementite 355:eutectoid 301:Gray iron 296:Cast iron 171:Cementite 166:Austenite 21:amorphous 751:Pearlite 728:Archived 558:25238372 370:lamellar 362:Pearlite 204:Pearlite 181:Graphite 19:For the 632:Bibcode 581:Bibcode 538:Bibcode 489:chisels 448:Bainite 426:silicon 374:ferrite 232:Classes 209:Bainite 161:Ferrite 94:scholar 25:perlite 677:  607:  599:  556:  491:, and 485:knives 406:carbon 382:steels 152:Phases 136:Steels 96:  89:  82:  75:  67:  772:Steel 675:S2CID 605:S2CID 493:nails 481:wires 473:tough 442:nacre 364:is a 101:JSTOR 87:books 777:Iron 597:ISSN 554:PMID 428:and 384:and 73:news 667:doi 640:doi 589:doi 546:doi 534:113 454:of 335:SEM 56:by 763:: 723:, 673:. 663:46 661:. 638:, 628:59 626:, 603:. 595:. 587:. 577:44 575:. 552:, 544:, 532:, 495:. 487:, 483:, 420:. 368:, 695:. 681:. 669:: 647:. 642:: 634:: 611:. 591:: 583:: 561:. 548:: 540:: 518:. 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 27:.

Index

amorphous
perlite

verification
improve this article
adding citations to reliable sources
"Pearlite"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Steels

Phases
Ferrite
Austenite
Cementite
Martensite
Graphite
Microstructures
Spheroidite
Pearlite
Bainite
Ledeburite
Tempered martensite
Widmanstätten structures
Crucible steel
Carbon steel

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑