Knowledge

Penman–Monteith equation

Source 📝

518: 168: 22: 848:. It is defined as the evapotranpiration for " hypothetical reference crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s m-1 and an albedo of 0.23." This reference surface is defined to represent "an extensive surface of green grass of uniform height, actively growing, completely shading the ground and with adequate water". The corresponding equation is: 513:{\displaystyle {\overset {\text{Energy flux rate}}{\lambda _{v}E={\frac {\Delta (R_{n}-G)+\rho _{a}c_{p}\left(\delta e\right)g_{a}}{\Delta +\gamma \left(1+g_{a}/g_{s}\right)}}}}~\iff ~{\overset {\text{Volume flux rate}}{ET={\frac {\Delta (R_{n}-G)+\rho _{a}c_{p}\left(\delta e\right)g_{a}}{\left(\Delta +\gamma \left(1+g_{a}/g_{s}\right)\right)L_{v}}}}}} 1113:
equation was developed as a substitute for the Penman-Monteith equation to remove dependence on observations. For Priestley–Taylor, only radiation (irradiance) observations are required. This is done by removing the aerodynamic terms from the Penman-Monteith equation and adding an empirically derived
1137:
The underlying concept behind the Priestley–Taylor model is that an air mass moving above a vegetated area with abundant water would become saturated with water. In these conditions, the actual evapotranspiration would match the Penman rate of reference evapotranspiration. However, observations
99:, yet are often not emphasized in results because the precision of this component is often weak relative to more directly measured phenomena, e.g., rain and stream flow. In addition to weather uncertainties, the Penman-Monteith equation is sensitive to vegetation-specific parameters, e.g., 1185:, is not a closed box but constantly brings in dry air from higher up in the atmosphere towards the surface. As water evaporates more readily into a dry atmosphere, evapotranspiration is enhanced. This explains the larger-than-unity value of the Priestley-Taylor parameter 984: 827:
While the Penman-Monteith method is widely considered accurate for practical purposes and is recommended by the Food and Agriculture Organization of the United Nations, errors when compared to direct measurement or other techniques can range from -9 to 40%.
788: 818:
concentration in the air, that is to say plant reaction to external factors. Different models exist to link the stomatal conductance to these vegetation characteristics, like the ones from P.G. Jarvis (1976) or Jacobs et al. (1996).
1138:
revealed that actual evaporation was 1.26 times greater than reference evaporation. Therefore, the equation for actual evaporation was found by taking reference evapotranspiration and multiplying it by
841:
To avoid the inherent complexity of determining stomatal and atmospheric conductance, the Food and Agriculture Organization proposed in 1998 a simplified equation for the reference evapotranspiration
1158:. The assumption here is for vegetation with an abundant water supply (i.e. the plants have low moisture stress). Areas like arid regions with high moisture stress are estimated to have higher 854: 648: 1205:. The proper equilibrium of the system has been derived. It involves the characteristics of the interface of the atmospheric boundary layer and the overlying free atmosphere. 1181:
The assumption that an air mass moving over a vegetated surface with abundant water saturates has been questioned later. The atmosphere's lowest and most turbulent part, the
1203: 1176: 1156: 1132: 675: 1062:
N.B.: The coefficients 0.408 and 900 are not unitless but account for the conversion from energy values to equivalent water depths: radiation = 0.408 radiation .
79:(ET) from meteorological data as a replacement for direct measurement of evapotranspiration. The equation is widely used, and was derived by the United Nations 1573:
van Heerwaarden, C. C.; et al. (2009). "Interactions between dry-air entrainment, surface evaporation and convective boundary layer development".
40: 1618: 1342:
Jarvis, P. (1976). "The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field".
807:
accounts for aerodynamic effects like the zero plane displacement height and the roughness length of the surface. The stomatal conductance
1435: 1514: 1255: 1506: 1090: 979:{\displaystyle ET_{o}={\frac {0.408\Delta (R_{n}-G)+{\frac {900}{T}}\gamma u_{2}\delta e}{\Delta +\gamma (1+0.34u_{2})}}} 1369:
Jacobs, C.M.J (1996). "Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions".
80: 58: 1648: 1478: 1461: 1250:. FAO Irrigation and drainage paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations. 1069:
can then be used to evaluate the evapotranspiration rate ET from unstressed plants through crop coefficients K
1312: 150:
effects, and salinity). Models of native vegetation cannot assume crop management to avoid recurring stress.
36: 1271:
Keith Beven (1979). "A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates".
531: 797:
refers to the resistance to flux from a vegetation canopy to the extent of some defined boundary layer.
1182: 1397: 543:= Volumetric latent heat of vaporization. The energy required per unit volume of water vaporized. ( 1051: 783:{\displaystyle g_{a}={\tfrac {1}{r_{a}}}~~\And ~~g_{s}={\tfrac {1}{r_{s}}}={\tfrac {1}{r_{c}}}} 658: 635: 1439: 1188: 1161: 1141: 1117: 1582: 1539: 1282: 1273: 8: 999:Δ = Rate of change of saturation specific humidity with air temperature. (Pa K) 569:Δ = Rate of change of saturation specific humidity with air temperature. (Pa K) 1586: 1543: 1530:
Culf, A. (1994). "Equilibrium evaporation beneath a growing convective boundary layer".
1286: 1638: 1633: 1598: 1555: 76: 1643: 1602: 1559: 1510: 1483: 1462:"On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters" 1417: 1382: 1324: 1294: 1251: 1243: 1590: 1547: 1473: 1409: 1378: 1351: 1290: 1093:
modify the standard Penman-Monteith equation for use with an hourly time step. The
107: 1505:. ASCE Manuals and Reports on Engineering Practices. Vol. 70. New York, NY: 1344:
Philosophical Transactions of the Royal Society of London. B, Biological Sciences
127: 1413: 1245: 1041: 814:
accounts for the effect of leaf density (Leaf Area Index), water stress, and CO
622: 1627: 1487: 1421: 1218: 1214: 1101:-integrated hydrologic models estimating ET using Penman-Monteith equations. 598: 147: 139: 96: 1500: 1355: 1328: 1247:
Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements
1221:. Penman published his equation in 1948, and Monteith revised it in 1965. 996:= Reference evapotranspiration, Water volume evapotranspired (mm day) 1551: 1094: 1009: 579: 114:) account for differences between specific vegetation modeled and a 1594: 1244:
Richard G. Allen; Luis S. Pereira; Dirk Raes; Martin Smith (1998).
1018:= Ground heat flux (MJ m day), usually equivalent to zero on a day 534:. The energy required per unit mass of water vaporized. (J g) 95:
Evapotranspiration contributions are significant in a watershed's
1398:"A discussion on and alternative to the Penman–Monteith equation" 611: 143: 126:) account for reductions in ET due to environmental stress (e.g. 669:
Note: Often, resistances are used rather than conductivities.
100: 1479:
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
588:= Ground heat flux (W m), usually difficult to measure 131: 1501:
M. E. Jensen, R. D. Burman & R. G. Allen, ed. (1990).
1098: 762: 740: 693: 558:= Mass water evapotranspiration rate (g s m) 1575:
Quarterly Journal of the Royal Meteorological Society
1191: 1164: 1144: 1120: 857: 678: 171: 1503:
Evapotranspiration and Irrigation Water Requirement
31:
may be too technical for most readers to understand
1197: 1170: 1150: 1126: 978: 836: 782: 512: 1460:Priestley, C. H. B.; Taylor, R. J. (1972-02-01). 1625: 1317:Symposia of the Society for Experimental Biology 1572: 1459: 1012:(MJ m day), the external source of energy flux 831: 582:(W m), the external source of energy flux 83:for modeling reference evapotranspiration ET 1270: 638:of air, atmospheric conductance (m s) 564:= Water volume evapotranspired (mm s) 336: 332: 1477: 59:Learn how and when to remove this message 43:, without removing the technical details. 1395: 1310: 1626: 1368: 1341: 41:make it understandable to non-experts 1529: 1306: 1304: 1239: 1237: 1235: 1233: 1065:This reference evapotranspiration ET 15: 1507:American Society of Civil Engineers 1371:Agricultural and Forest Meteorology 1104: 1091:American Society of Civil Engineers 13: 939: 880: 717: 601:capacity of air (J kg K) 436: 355: 270: 194: 122:) standard. Stress coefficients (K 14: 1660: 1612: 1301: 1230: 81:Food and Agriculture Organization 20: 1566: 1523: 1033:= Wind speed at 2m height (m/s) 837:FAO 56 Penman-Monteith equation 649:surface or stomatal conductance 90: 1494: 1453: 1428: 1396:Widmoser, Peter (2009-04-01). 1389: 1362: 1335: 1264: 970: 948: 902: 883: 377: 358: 333: 216: 197: 1: 1402:Agricultural Water Management 1313:"Evaporation and environment" 1224: 1084: 1438:. 2007-07-03. Archived from 1383:10.1016/0168-1923(95)02295-3 1295:10.1016/0022-1694(79)90130-6 1213:The equation is named after 1089:The standard methods of the 800:The atmospheric conductance 116:reference evapotranspiration 7: 1436:"Hydrology Models in GRASS" 1414:10.1016/j.agwat.2008.10.003 1024:= Air temperature at 2m (K) 832:Variations and alternatives 822: 532:Latent heat of vaporization 160:Evaporation and Environment 153: 103:resistance or conductance. 10: 1665: 1619:Derivation of the equation 1532:Boundary-Layer Meteorology 1208: 1183:atmospheric boundary layer 647:= Conductivity of stoma, 1311:Monteith, J. L. (1965). 73:Penman-Monteith equation 1649:Meteorological concepts 1198:{\displaystyle \alpha } 1171:{\displaystyle \alpha } 1151:{\displaystyle \alpha } 1127:{\displaystyle \alpha } 1466:Monthly Weather Review 1356:10.1098/rstb.1976.0035 1199: 1172: 1152: 1128: 1052:Psychrometric constant 980: 784: 659:Psychrometric constant 514: 1200: 1173: 1153: 1129: 981: 785: 515: 1274:Journal of Hydrology 1189: 1162: 1142: 1118: 855: 676: 169: 1587:2009QJRMS.135.1277V 1544:1994BoLMe..70...37C 1287:1979JHyd...44..169B 162:, the equation is: 1581:(642): 1277–1291. 1552:10.1007/BF00712522 1195: 1168: 1148: 1124: 976: 780: 778: 756: 709: 510: 77:evapotranspiration 1516:978-0-87262-763-5 1257:978-92-5-104219-9 1114:constant factor, 974: 916: 777: 755: 725: 722: 716: 713: 708: 550:= 2453 MJ m) 508: 507: 502: 339: 331: 327: 326: 321: 108:crop coefficients 106:Various forms of 75:approximates net 69: 68: 61: 1656: 1607: 1606: 1570: 1564: 1563: 1527: 1521: 1520: 1498: 1492: 1491: 1481: 1457: 1451: 1450: 1448: 1447: 1432: 1426: 1425: 1393: 1387: 1386: 1377:(2–4): 111–134. 1366: 1360: 1359: 1350:(927): 593–610. 1339: 1333: 1332: 1308: 1299: 1298: 1281:(3–4): 169–190. 1268: 1262: 1261: 1241: 1204: 1202: 1201: 1196: 1177: 1175: 1174: 1169: 1157: 1155: 1154: 1149: 1133: 1131: 1130: 1125: 1111:Priestley–Taylor 1105:Priestley–Taylor 985: 983: 982: 977: 975: 973: 969: 968: 937: 930: 929: 917: 909: 895: 894: 875: 870: 869: 789: 787: 786: 781: 779: 776: 775: 763: 757: 754: 753: 741: 735: 734: 723: 720: 714: 711: 710: 707: 706: 694: 688: 687: 519: 517: 516: 511: 509: 506:Volume flux rate 505: 504: 503: 501: 500: 499: 490: 486: 485: 481: 480: 479: 470: 465: 464: 429: 428: 427: 418: 414: 402: 401: 392: 391: 370: 369: 353: 341: 337: 329: 328: 325:Energy flux rate 324: 323: 322: 320: 319: 315: 314: 313: 304: 299: 298: 268: 267: 266: 257: 253: 241: 240: 231: 230: 209: 208: 192: 184: 183: 173: 64: 57: 53: 50: 44: 24: 23: 16: 1664: 1663: 1659: 1658: 1657: 1655: 1654: 1653: 1624: 1623: 1615: 1610: 1571: 1567: 1528: 1524: 1517: 1499: 1495: 1458: 1454: 1445: 1443: 1434: 1433: 1429: 1394: 1390: 1367: 1363: 1340: 1336: 1309: 1302: 1269: 1265: 1258: 1242: 1231: 1227: 1211: 1190: 1187: 1186: 1163: 1160: 1159: 1143: 1140: 1139: 1119: 1116: 1115: 1107: 1097:is one of many 1087: 1080: 1076: 1072: 1068: 1058:≈ 66 Pa K) 1031: 1007: 995: 964: 960: 938: 925: 921: 908: 890: 886: 876: 874: 865: 861: 856: 853: 852: 847: 839: 834: 825: 817: 813: 806: 796: 771: 767: 761: 749: 745: 739: 730: 726: 702: 698: 692: 683: 679: 677: 674: 673: 665:≈ 66 Pa K) 646: 633: 609: 596: 577: 549: 542: 529: 495: 491: 475: 471: 466: 460: 456: 449: 445: 435: 431: 430: 423: 419: 407: 403: 397: 393: 387: 383: 365: 361: 354: 352: 342: 340: 309: 305: 300: 294: 290: 283: 279: 269: 262: 258: 246: 242: 236: 232: 226: 222: 204: 200: 193: 191: 179: 175: 174: 172: 170: 167: 166: 158:Per Monteith's 156: 137: 128:soil saturation 125: 121: 113: 93: 86: 65: 54: 48: 45: 37:help improve it 34: 25: 21: 12: 11: 5: 1662: 1652: 1651: 1646: 1641: 1636: 1622: 1621: 1614: 1613:External links 1611: 1609: 1608: 1595:10.1002/qj.431 1565: 1538:(1–2): 34–49. 1522: 1515: 1493: 1452: 1442:on 3 July 2007 1427: 1408:(4): 711–721. 1388: 1361: 1334: 1300: 1263: 1256: 1228: 1226: 1223: 1210: 1207: 1194: 1167: 1147: 1123: 1106: 1103: 1086: 1083: 1078: 1074: 1070: 1066: 1060: 1059: 1045: 1042:vapor pressure 1034: 1029: 1025: 1019: 1013: 1005: 1000: 997: 993: 987: 986: 972: 967: 963: 959: 956: 953: 950: 947: 944: 941: 936: 933: 928: 924: 920: 915: 912: 907: 904: 901: 898: 893: 889: 885: 882: 879: 873: 868: 864: 860: 845: 838: 835: 833: 830: 824: 821: 815: 811: 804: 794: 791: 790: 774: 770: 766: 760: 752: 748: 744: 738: 733: 729: 719: 705: 701: 697: 691: 686: 682: 667: 666: 652: 644: 639: 631: 626: 623:vapor pressure 615: 607: 602: 594: 589: 583: 575: 570: 566: 565: 559: 552: 551: 547: 540: 535: 527: 521: 520: 498: 494: 489: 484: 478: 474: 469: 463: 459: 455: 452: 448: 444: 441: 438: 434: 426: 422: 417: 413: 410: 406: 400: 396: 390: 386: 382: 379: 376: 373: 368: 364: 360: 357: 351: 348: 345: 335: 318: 312: 308: 303: 297: 293: 289: 286: 282: 278: 275: 272: 265: 261: 256: 252: 249: 245: 239: 235: 229: 225: 221: 218: 215: 212: 207: 203: 199: 196: 190: 187: 182: 178: 155: 152: 135: 123: 119: 111: 92: 89: 84: 67: 66: 28: 26: 19: 9: 6: 4: 3: 2: 1661: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1631: 1629: 1620: 1617: 1616: 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1569: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1526: 1518: 1512: 1508: 1504: 1497: 1489: 1485: 1480: 1475: 1471: 1467: 1463: 1456: 1441: 1437: 1431: 1423: 1419: 1415: 1411: 1407: 1403: 1399: 1392: 1384: 1380: 1376: 1372: 1365: 1357: 1353: 1349: 1345: 1338: 1330: 1326: 1322: 1318: 1314: 1307: 1305: 1296: 1292: 1288: 1284: 1280: 1276: 1275: 1267: 1259: 1253: 1249: 1248: 1240: 1238: 1236: 1234: 1229: 1222: 1220: 1219:John Monteith 1216: 1215:Howard Penman 1206: 1192: 1184: 1179: 1165: 1145: 1135: 1121: 1112: 1102: 1100: 1096: 1092: 1082: 1063: 1057: 1053: 1049: 1046: 1044:deficit (kPa) 1043: 1039: 1035: 1032: 1026: 1023: 1020: 1017: 1014: 1011: 1004: 1001: 998: 992: 989: 988: 965: 961: 957: 954: 951: 945: 942: 934: 931: 926: 922: 918: 913: 910: 905: 899: 896: 891: 887: 877: 871: 866: 862: 858: 851: 850: 849: 844: 829: 820: 810: 803: 798: 772: 768: 764: 758: 750: 746: 742: 736: 731: 727: 703: 699: 695: 689: 684: 680: 672: 671: 670: 664: 660: 656: 653: 650: 643: 640: 637: 630: 627: 624: 620: 616: 613: 606: 603: 600: 599:Specific heat 593: 590: 587: 584: 581: 574: 571: 568: 567: 563: 560: 557: 554: 553: 546: 539: 536: 533: 526: 523: 522: 496: 492: 487: 482: 476: 472: 467: 461: 457: 453: 450: 446: 442: 439: 432: 424: 420: 415: 411: 408: 404: 398: 394: 388: 384: 380: 374: 371: 366: 362: 349: 346: 343: 316: 310: 306: 301: 295: 291: 287: 284: 280: 276: 273: 263: 259: 254: 250: 247: 243: 237: 233: 227: 223: 219: 213: 210: 205: 201: 188: 185: 180: 176: 165: 164: 163: 161: 151: 149: 148:air pollution 145: 141: 140:soil moisture 133: 129: 117: 109: 104: 102: 98: 97:water balance 88: 82: 78: 74: 63: 60: 52: 42: 38: 32: 29:This article 27: 18: 17: 1578: 1574: 1568: 1535: 1531: 1525: 1502: 1496: 1472:(2): 81–92. 1469: 1465: 1455: 1444:. Retrieved 1440:the original 1430: 1405: 1401: 1391: 1374: 1370: 1364: 1347: 1343: 1337: 1320: 1316: 1278: 1272: 1266: 1246: 1212: 1180: 1136: 1110: 1108: 1088: 1064: 1061: 1055: 1047: 1037: 1027: 1021: 1015: 1002: 990: 842: 840: 826: 808: 801: 799: 792: 668: 662: 654: 641: 636:Conductivity 628: 625:deficit (Pa) 618: 604: 591: 585: 572: 561: 555: 544: 537: 524: 159: 157: 115: 105: 94: 91:Significance 72: 70: 55: 46: 30: 1323:: 205–234. 614:(kg m) 49:August 2024 1628:Categories 1446:2022-02-21 1225:References 1095:SWAT model 1085:Variations 1010:irradiance 651:(m s) 610:= dry air 580:irradiance 118:(RET or ET 1639:Hydrology 1634:Equations 1603:123228410 1560:123108265 1488:1520-0493 1422:0378-3774 1193:α 1166:α 1146:α 1122:α 946:γ 940:Δ 932:δ 919:γ 897:− 881:Δ 718:& 443:γ 437:Δ 409:δ 385:ρ 372:− 356:Δ 334:⟺ 277:γ 271:Δ 248:δ 224:ρ 211:− 195:Δ 177:λ 1644:Agronomy 1178:values. 1073:: ET = K 823:Accuracy 154:Equation 142:induces 130:reduces 101:stomatal 1583:Bibcode 1540:Bibcode 1329:5321565 1283:Bibcode 1209:History 793:where r 612:density 134:-zone O 35:Please 1601:  1558:  1513:  1486:  1420:  1327:  1254:  1056:γ 1008:= Net 724:  721:  715:  712:  663:γ 578:= Net 338:  330:  138:, low 1599:S2CID 1556:S2CID 878:0.408 1511:ISBN 1484:ISSN 1418:ISSN 1325:PMID 1252:ISBN 1217:and 1109:The 1077:* ET 958:0.34 144:wilt 132:root 71:The 1591:doi 1579:135 1548:doi 1474:doi 1470:100 1410:doi 1379:doi 1352:doi 1348:273 1291:doi 1099:GIS 911:900 39:to 1630:: 1597:. 1589:. 1577:. 1554:. 1546:. 1536:70 1534:. 1509:. 1482:. 1468:. 1464:. 1416:. 1406:96 1404:. 1400:. 1375:80 1373:. 1346:. 1321:19 1319:. 1315:. 1303:^ 1289:. 1279:44 1277:. 1232:^ 1134:. 1081:. 1050:= 1040:= 991:ET 843:ET 657:= 634:= 621:= 597:= 562:ET 530:= 146:, 110:(K 87:. 1605:. 1593:: 1585:: 1562:. 1550:: 1542:: 1519:. 1490:. 1476:: 1449:. 1424:. 1412:: 1385:. 1381:: 1358:. 1354:: 1331:. 1297:. 1293:: 1285:: 1260:. 1079:0 1075:c 1071:c 1067:0 1054:( 1048:γ 1038:e 1036:δ 1030:2 1028:u 1022:T 1016:G 1006:n 1003:R 994:0 971:) 966:2 962:u 955:+ 952:1 949:( 943:+ 935:e 927:2 923:u 914:T 906:+ 903:) 900:G 892:n 888:R 884:( 872:= 867:o 863:T 859:E 846:0 816:2 812:s 809:g 805:a 802:g 795:c 773:c 769:r 765:1 759:= 751:s 747:r 743:1 737:= 732:s 728:g 704:a 700:r 696:1 690:= 685:a 681:g 661:( 655:γ 645:s 642:g 632:a 629:g 619:e 617:δ 608:a 605:ρ 595:p 592:c 586:G 576:n 573:R 556:E 548:v 545:L 541:v 538:L 528:v 525:λ 497:v 493:L 488:) 483:) 477:s 473:g 468:/ 462:a 458:g 454:+ 451:1 447:( 440:+ 433:( 425:a 421:g 416:) 412:e 405:( 399:p 395:c 389:a 381:+ 378:) 375:G 367:n 363:R 359:( 350:= 347:T 344:E 317:) 311:s 307:g 302:/ 296:a 292:g 288:+ 285:1 281:( 274:+ 264:a 260:g 255:) 251:e 244:( 238:p 234:c 228:a 220:+ 217:) 214:G 206:n 202:R 198:( 189:= 186:E 181:v 136:2 124:s 120:0 112:c 85:0 62:) 56:( 51:) 47:( 33:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message
evapotranspiration
Food and Agriculture Organization
water balance
stomatal
crop coefficients
soil saturation
root
soil moisture
wilt
air pollution
Latent heat of vaporization
irradiance
Specific heat
density
vapor pressure
Conductivity
surface or stomatal conductance
Psychrometric constant
irradiance
vapor pressure
Psychrometric constant
American Society of Civil Engineers
SWAT model
GIS
atmospheric boundary layer
Howard Penman
John Monteith

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.