Knowledge

Perfect set property

Source đź“ť

97:
of a perfect set and a countable set. In particular, every uncountable Polish space has the perfect set property, and can be written as the disjoint union of a perfect set and a countable
450: 361: 291: 318: 258: 231: 200: 165: 120:
but not the axiom of choice, every set of reals has the perfect set property, so the use of the axiom of choice is necessary. Every
389: 469: 416: 327: 47:
subset (Kechris 1995, p. 150). Note that having the perfect set property is not the same as being a
55: 117: 266: 296: 236: 209: 178: 143: 21: 373: 67: 108:
implies the existence of sets of reals that do not have the perfect set property, such as
8: 113: 385: 203: 321: 89:
have the perfect set property in a particularly strong form: any closed subset of
381: 105: 71: 168: 129: 125: 94: 63: 62:
form a Polish space, a set of reals with the perfect set property cannot be a
463: 124:
has the perfect set property. It follows from the existence of sufficiently
109: 37: 121: 29: 261: 172: 59: 48: 44: 17: 82: 41: 98: 453:". Fundamenta Mathematicae vol. 137, iss. 3, pp.187--199 (1991). 412: 25: 54:
As nonempty perfect sets in a Polish space always have the
233:
with itself, any closed set is the disjoint union of an
419: 330: 299: 269: 239: 212: 181: 146: 444: 355: 312: 285: 252: 225: 194: 159: 461: 74:of reals has the cardinality of the continuum. 445:{\displaystyle \omega _{1}^{\omega _{1}}} 413:A Cantor-Bendixson theorem for the space 356:{\displaystyle \omega _{1}^{\omega _{1}}} 372: 462: 320:-closedness of a set is defined via a 13: 274: 135: 14: 481: 378:Classical Descriptive Set Theory 286:{\displaystyle \leq \aleph _{1}} 116:, which satisfies all axioms of 70:, stated in the form that every 93:may be written uniquely as the 405: 132:has the perfect set property. 1: 366: 398: 56:cardinality of the continuum 7: 313:{\displaystyle \omega _{1}} 253:{\displaystyle \omega _{1}} 226:{\displaystyle \omega _{1}} 195:{\displaystyle \omega _{1}} 160:{\displaystyle \omega _{1}} 10: 486: 260:-perfect set and a set of 167:be the least uncountable 79:Cantor–Bendixson theorem 470:Descriptive set theory 446: 357: 314: 287: 254: 227: 196: 161: 22:descriptive set theory 447: 374:Kechris, Alexander S. 358: 315: 288: 255: 228: 197: 162: 417: 380:, Berlin, New York: 328: 324:in which members of 297: 267: 237: 210: 179: 144: 68:continuum hypothesis 34:perfect set property 441: 352: 442: 420: 353: 331: 310: 283: 250: 223: 192: 171:. In an analog of 157: 85:of a Polish space 391:978-1-4612-8692-9 204:cartesian product 175:derived from the 477: 454: 451: 449: 448: 443: 440: 439: 438: 428: 409: 394: 362: 360: 359: 354: 351: 350: 349: 339: 322:topological game 319: 317: 316: 311: 309: 308: 292: 290: 289: 284: 282: 281: 259: 257: 256: 251: 249: 248: 232: 230: 229: 224: 222: 221: 201: 199: 198: 193: 191: 190: 166: 164: 163: 158: 156: 155: 36:if it is either 485: 484: 480: 479: 478: 476: 475: 474: 460: 459: 458: 457: 434: 430: 429: 424: 418: 415: 414: 410: 406: 401: 392: 382:Springer-Verlag 369: 345: 341: 340: 335: 329: 326: 325: 304: 300: 298: 295: 294: 277: 273: 268: 265: 264: 244: 240: 238: 235: 234: 217: 213: 211: 208: 207: 186: 182: 180: 177: 176: 151: 147: 145: 142: 141: 138: 136:Generalizations 126:large cardinals 114:Solovay's model 106:axiom of choice 72:uncountable set 12: 11: 5: 483: 473: 472: 456: 455: 437: 433: 427: 423: 411:J. Väänänen, " 403: 402: 400: 397: 396: 395: 390: 368: 365: 348: 344: 338: 334: 307: 303: 280: 276: 272: 247: 243: 220: 216: 189: 185: 154: 150: 137: 134: 130:projective set 112:. However, in 110:Bernstein sets 95:disjoint union 64:counterexample 9: 6: 4: 3: 2: 482: 471: 468: 467: 465: 452: 435: 431: 425: 421: 408: 404: 393: 387: 383: 379: 375: 371: 370: 364: 346: 342: 336: 332: 323: 305: 301: 278: 270: 263: 245: 241: 218: 214: 205: 187: 183: 174: 170: 152: 148: 133: 131: 127: 123: 119: 115: 111: 107: 102: 100: 96: 92: 88: 84: 80: 75: 73: 69: 65: 61: 57: 52: 50: 46: 43: 39: 35: 31: 27: 23: 19: 407: 377: 363:are played. 139: 122:analytic set 103: 90: 86: 81:states that 78: 76: 53: 33: 30:Polish space 18:mathematical 15: 262:cardinality 173:Baire space 128:that every 83:closed sets 49:perfect set 367:References 58:, and the 432:ω 422:ω 399:Citations 343:ω 333:ω 302:ω 275:ℵ 271:≤ 242:ω 215:ω 184:ω 149:ω 40:or has a 38:countable 20:field of 464:Category 376:(1995), 293:, where 99:open set 42:nonempty 32:has the 169:ordinal 66:to the 45:perfect 16:In the 388:  202:-fold 26:subset 60:reals 28:of a 386:ISBN 140:Let 104:The 77:The 24:, a 206:of 466:: 384:, 118:ZF 101:. 51:. 436:1 426:1 347:1 337:1 306:1 279:1 246:1 219:1 188:1 153:1 91:X 87:X

Index

mathematical
descriptive set theory
subset
Polish space
countable
nonempty
perfect
perfect set
cardinality of the continuum
reals
counterexample
continuum hypothesis
uncountable set
closed sets
disjoint union
open set
axiom of choice
Bernstein sets
Solovay's model
ZF
analytic set
large cardinals
projective set
ordinal
Baire space
cartesian product
cardinality
topological game
Kechris, Alexander S.
Springer-Verlag

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑