Knowledge

Periodic point

Source 📝

704: 969: 416: 1130: 908: 537: 479: 844: 763: 297: 358: 1036: 802: 1161: 593: 160: 97: 1220: 806:
there are a pair of period-2 points which together form an attracting sequence, as well as the non-attracting period-1 points 0 and
854:
one of these repeating sequences is attracting while for others none of them are (with almost all orbits being chaotic).
934: 850:
rises toward 4, there arise groups of periodic points with any positive integer for the period; for some values of
39:
is a point which the system returns to after a certain number of function iterations or a certain amount of time.
917: 370: 1073: 870: 494: 433: 863: 809: 731: 244: 579: 331: 999: 774: 1141: 120: 1210: 322: 67: 36: 48: 8: 1248: 1232: 925: 728:
between 1 and 3, the value 0 is still periodic but is not attracting, while the value
562:; and if both the stable and unstable manifold have nonzero dimension, it is called a 699:{\displaystyle x_{t+1}=rx_{t}(1-x_{t}),\qquad 0\leq x_{t}\leq 1,\qquad 0\leq r\leq 4} 555: 224: 177: 55: 24: 1215: 1172: 28: 716:
between 0 and 1, 0 is the sole periodic point, with period 1 (giving the sequence
1205: 547: 318: 1242: 586: 567: 1195: 20: 1228: 326: 16:
Point which a function/system returns to after some time or iterations
1200: 721: 543: 423: 1227:
This article incorporates material from hyperbolic fixed point on
550:
of a periodic point or fixed point is zero, the point is called a
185: 708:
exhibits periodicity for various values of the parameter
814: 736: 1144: 1076: 1002: 937: 873: 812: 777: 734: 596: 497: 436: 373: 334: 247: 123: 70: 360:is defined, then one says that a periodic point is 1155: 1124: 1030: 963: 902: 838: 796: 765:is an attracting periodic point of period 1. With 757: 698: 531: 473: 410: 352: 291: 154: 91: 223:(this is not to be confused with the notion of a 1240: 1233:Creative Commons Attribution/Share-Alike License 964:{\displaystyle \Phi :\mathbb {R} \times X\to X} 1221:Periodic points of complex quadratic mappings 110:is called periodic point if there exists an 1146: 1027: 945: 878: 207:is a periodic point with the same period 1185:are periodic with the same prime period. 411:{\displaystyle |f_{n}^{\prime }|\neq 1,} 1125:{\displaystyle \Phi (t,x)=\Phi (t+T,x)} 903:{\displaystyle (\mathbb {R} ,X,\Phi ),} 532:{\displaystyle |f_{n}^{\prime }|>1.} 474:{\displaystyle |f_{n}^{\prime }|<1,} 310:. All periodic points are preperiodic. 1241: 42: 857: 191:satisfying the above is called the 13: 1098: 1077: 1003: 938: 891: 839:{\displaystyle {\tfrac {r-1}{r}}.} 513: 452: 389: 345: 14: 1260: 758:{\displaystyle {\tfrac {r-1}{r}}} 292:{\displaystyle f_{n}(x)=f_{m}(x)} 680: 654: 578:A period-one point is called a 353:{\displaystyle f_{n}^{\prime }} 1231:, which is licensed under the 1119: 1101: 1092: 1080: 1031:{\displaystyle \Phi (T,x)=x\,} 1018: 1006: 955: 894: 874: 797:{\displaystyle 1+{\sqrt {6}},} 648: 629: 519: 499: 458: 438: 395: 375: 286: 280: 264: 258: 143: 137: 80: 1: 1156:{\displaystyle \mathbb {R} .} 1056: 1045:with this property is called 769:greater than 3 but less than 864:real global dynamical system 155:{\displaystyle \ f_{n}(x)=x} 7: 1189: 573: 10: 1265: 846:As the value of parameter 554:; if the dimension of its 92:{\displaystyle f:X\to X,} 558:is zero, it is called a 230:If there exist distinct 184:. The smallest positive 1171:then all points on the 1167:Given a periodic point 1062:Given a periodic point 323:differentiable manifold 1157: 1126: 1041:The smallest positive 1032: 965: 904: 840: 798: 759: 700: 533: 475: 412: 354: 293: 156: 93: 1158: 1127: 1033: 966: 905: 841: 799: 760: 701: 534: 476: 413: 355: 294: 157: 94: 1211:Sharkovsky's theorem 1142: 1074: 1000: 935: 871: 810: 775: 732: 594: 495: 434: 371: 332: 245: 203:. If every point in 121: 68: 517: 456: 393: 349: 1153: 1122: 1028: 961: 926:evolution function 900: 836: 831: 794: 755: 753: 696: 529: 503: 471: 442: 408: 379: 350: 335: 289: 152: 89: 43:Iterated functions 25:iterated functions 23:, in the study of 830: 789: 752: 724:all orbits). For 556:unstable manifold 308:preperiodic point 225:periodic function 126: 29:dynamical systems 1256: 1216:Stationary point 1184: 1180: 1170: 1164: 1162: 1160: 1159: 1154: 1149: 1135: 1131: 1129: 1128: 1123: 1069: 1065: 1052: 1044: 1037: 1035: 1034: 1029: 992: 981: 977: 970: 968: 967: 962: 948: 923: 915: 911: 909: 907: 906: 901: 881: 858:Dynamical system 853: 849: 845: 843: 842: 837: 832: 826: 815: 805: 803: 801: 800: 795: 790: 785: 768: 764: 762: 761: 756: 754: 748: 737: 727: 719: 715: 711: 705: 703: 702: 697: 670: 669: 647: 646: 628: 627: 612: 611: 538: 536: 535: 530: 522: 516: 511: 502: 480: 478: 477: 472: 461: 455: 450: 441: 417: 415: 414: 409: 398: 392: 387: 378: 359: 357: 356: 351: 348: 343: 316: 305: 298: 296: 295: 290: 279: 278: 257: 256: 237: 233: 222: 214: 210: 206: 202: 190: 183: 175: 171: 161: 159: 158: 153: 136: 135: 124: 113: 109: 105: 98: 96: 95: 90: 60: 53: 1264: 1263: 1259: 1258: 1257: 1255: 1254: 1253: 1239: 1238: 1192: 1182: 1179: 1175: 1168: 1145: 1143: 1140: 1139: 1137: 1133: 1075: 1072: 1071: 1067: 1063: 1059: 1050: 1042: 1001: 998: 997: 990: 979: 975: 944: 936: 933: 932: 921: 913: 877: 872: 869: 868: 866: 860: 851: 847: 816: 813: 811: 808: 807: 784: 776: 773: 772: 770: 766: 738: 735: 733: 730: 729: 725: 717: 713: 709: 665: 661: 642: 638: 623: 619: 601: 597: 595: 592: 591: 576: 548:stable manifold 518: 512: 507: 498: 496: 493: 492: 457: 451: 446: 437: 435: 432: 431: 394: 388: 383: 374: 372: 369: 368: 344: 339: 333: 330: 329: 314: 303: 274: 270: 252: 248: 246: 243: 242: 235: 231: 220: 212: 208: 204: 200: 188: 181: 173: 170: 166: 131: 127: 122: 119: 118: 111: 107: 103: 69: 66: 65: 58: 51: 45: 17: 12: 11: 5: 1262: 1252: 1251: 1224: 1223: 1218: 1213: 1208: 1203: 1198: 1191: 1188: 1187: 1186: 1177: 1165: 1152: 1148: 1121: 1118: 1115: 1112: 1109: 1106: 1103: 1100: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1058: 1055: 1039: 1038: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 1005: 972: 971: 960: 957: 954: 951: 947: 943: 940: 899: 896: 893: 890: 887: 884: 880: 876: 859: 856: 835: 829: 825: 822: 819: 793: 788: 783: 780: 751: 747: 744: 741: 695: 692: 689: 686: 683: 679: 676: 673: 668: 664: 660: 657: 653: 650: 645: 641: 637: 634: 631: 626: 622: 618: 615: 610: 607: 604: 600: 575: 572: 540: 539: 528: 525: 521: 515: 510: 506: 501: 482: 481: 470: 467: 464: 460: 454: 449: 445: 440: 419: 418: 407: 404: 401: 397: 391: 386: 382: 377: 347: 342: 338: 325:, so that the 319:diffeomorphism 300: 299: 288: 285: 282: 277: 273: 269: 266: 263: 260: 255: 251: 168: 163: 162: 151: 148: 145: 142: 139: 134: 130: 114:>0 so that 100: 99: 88: 85: 82: 79: 76: 73: 44: 41: 33:periodic point 15: 9: 6: 4: 3: 2: 1261: 1250: 1247: 1246: 1244: 1237: 1236: 1234: 1230: 1222: 1219: 1217: 1214: 1212: 1209: 1207: 1204: 1202: 1199: 1197: 1194: 1193: 1174: 1166: 1150: 1116: 1113: 1110: 1107: 1104: 1095: 1089: 1086: 1083: 1061: 1060: 1054: 1049:of the point 1048: 1024: 1021: 1015: 1012: 1009: 996: 995: 994: 989: 985: 958: 952: 949: 941: 931: 930: 929: 927: 919: 897: 888: 885: 882: 865: 855: 833: 827: 823: 820: 817: 791: 786: 781: 778: 749: 745: 742: 739: 723: 706: 693: 690: 687: 684: 681: 677: 674: 671: 666: 662: 658: 655: 651: 643: 639: 635: 632: 624: 620: 616: 613: 608: 605: 602: 598: 589: 588: 583: 581: 571: 569: 565: 561: 557: 553: 549: 545: 526: 523: 508: 504: 491: 490: 489: 487: 468: 465: 462: 447: 443: 430: 429: 428: 426: 425: 405: 402: 399: 384: 380: 367: 366: 365: 363: 340: 336: 328: 324: 320: 311: 309: 283: 275: 271: 267: 261: 253: 249: 241: 240: 239: 228: 226: 218: 199:of the point 198: 194: 187: 179: 149: 146: 140: 132: 128: 117: 116: 115: 86: 83: 77: 74: 71: 64: 63: 62: 61:into itself, 57: 50: 40: 38: 34: 30: 26: 22: 1226: 1225: 1066:with period 1047:prime period 1046: 1040: 987: 983: 973: 861: 707: 590: 587:logistic map 584: 577: 568:saddle point 563: 559: 551: 541: 485: 483: 422: 420: 361: 312: 307: 306:is called a 301: 229: 219:with period 216: 197:least period 196: 193:prime period 192: 164: 101: 46: 32: 18: 1196:Limit cycle 918:phase space 718:0, 0, 0, …, 580:fixed point 421:that it is 21:mathematics 1249:Limit sets 1229:PlanetMath 1206:Stable set 1057:Properties 982:is called 484:and it is 424:attractive 362:hyperbolic 327:derivative 238:such that 215:is called 1201:Limit set 1099:Φ 1078:Φ 1004:Φ 956:→ 950:× 939:Φ 892:Φ 821:− 743:− 691:≤ 685:≤ 672:≤ 659:≤ 636:− 544:dimension 514:′ 486:repelling 453:′ 400:≠ 390:′ 346:′ 81:→ 1243:Category 1190:See also 1181:through 1132:for all 984:periodic 974:a point 862:Given a 722:attracts 574:Examples 217:periodic 102:a point 47:Given a 37:function 1163:⁠ 1138:⁠ 1070:, then 910:⁠ 867:⁠ 804:⁠ 771:⁠ 546:of the 542:If the 211:, then 186:integer 178:iterate 172:is the 54:from a 49:mapping 1176:γ 988:period 720:which 712:. For 564:saddle 552:source 165:where 125:  1173:orbit 986:with 912:with 321:of a 317:is a 302:then 35:of a 924:the 920:and 916:the 585:The 560:sink 524:> 463:< 234:and 31:, a 27:and 1136:in 993:if 978:in 566:or 488:if 427:if 364:if 313:If 227:). 195:or 180:of 176:th 106:in 56:set 19:In 1245:: 1053:. 928:, 582:. 570:. 527:1. 1235:. 1183:x 1178:x 1169:x 1151:. 1147:R 1134:t 1120:) 1117:x 1114:, 1111:T 1108:+ 1105:t 1102:( 1096:= 1093:) 1090:x 1087:, 1084:t 1081:( 1068:T 1064:x 1051:x 1043:T 1025:x 1022:= 1019:) 1016:x 1013:, 1010:T 1007:( 991:T 980:X 976:x 959:X 953:X 946:R 942:: 922:Φ 914:X 898:, 895:) 889:, 886:X 883:, 879:R 875:( 852:r 848:r 834:. 828:r 824:1 818:r 792:, 787:6 782:+ 779:1 767:r 750:r 746:1 740:r 726:r 714:r 710:r 694:4 688:r 682:0 678:, 675:1 667:t 663:x 656:0 652:, 649:) 644:t 640:x 633:1 630:( 625:t 621:x 617:r 614:= 609:1 606:+ 603:t 599:x 520:| 509:n 505:f 500:| 469:, 466:1 459:| 448:n 444:f 439:| 406:, 403:1 396:| 385:n 381:f 376:| 341:n 337:f 315:f 304:x 287:) 284:x 281:( 276:m 272:f 268:= 265:) 262:x 259:( 254:n 250:f 236:m 232:n 221:n 213:f 209:n 205:X 201:x 189:n 182:f 174:n 169:n 167:f 150:x 147:= 144:) 141:x 138:( 133:n 129:f 112:n 108:X 104:x 87:, 84:X 78:X 75:: 72:f 59:X 52:f

Index

mathematics
iterated functions
dynamical systems
function
mapping
set
iterate
integer
periodic function
diffeomorphism
differentiable manifold
derivative
attractive
dimension
stable manifold
unstable manifold
saddle point
fixed point
logistic map
attracts
real global dynamical system
phase space
evolution function
orbit
Limit cycle
Limit set
Stable set
Sharkovsky's theorem
Stationary point
Periodic points of complex quadratic mappings

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.