Knowledge

Phase transition

Source 📝

1322: 479: 114: 342: 420: 699: 1421:, the second derivative of the free energy with the field, changes discontinuously. Under the Ehrenfest classification scheme, there could in principle be third, fourth, and higher-order phase transitions. For example, the Gross–Witten–Wadia phase transition in 2-d lattice quantum chromodynamics is a third-order phase transition. The Curie points of many ferromagnetics is also a third-order transition, as shown by their specific heat having a sudden change in slope. 1335: 5178: 33: 1636:
magnetic phases coexisting, down to the lowest temperature. First reported in the case of a ferromagnetic to anti-ferromagnetic transition, such persistent phase coexistence has now been reported across a variety of first-order magnetic transitions. These include colossal-magnetoresistance manganite materials, magnetocaloric materials, magnetic shape memory materials, and other materials. The interesting feature of these observations of
2280:
properties of phase transitions: the change of macroscopic behavior and the coherence of a system at a critical point. Phase transitions are prominent feature of motor behavior in biological systems. Spontaneous gait transitions, as well as fatigue-induced motor task disengagements, show typical critical behavior as an intimation of the sudden qualitative change of the previously stable motor behavioral pattern.
5070: 576: 1621:
possibilities. On cooling, some liquids vitrify into a glass rather than transform to the equilibrium crystal phase. This happens if the cooling rate is faster than a critical cooling rate, and is attributed to the molecular motions becoming so slow that the molecules cannot rearrange into the crystal positions. This slowing down happens below a glass-formation temperature
2249:, gel to liquid crystalline phase transitions play a critical role in physiological functioning of biomembranes. In gel phase, due to low fluidity of membrane lipid fatty-acyl chains, membrane proteins have restricted movement and thus are restrained in exercise of their physiological role. Plants depend critically on photosynthesis by 1471:. During such a transition, a system either absorbs or releases a fixed (and typically large) amount of energy per volume. During this process, the temperature of the system will stay constant as heat is added: the system is in a "mixed-phase regime" in which some parts of the system have completed the transition and others have not. 1452:
approximations, which had predicted that it has a simple discontinuity at critical temperature. Instead, the exact specific heat had a logarithmic divergence at the critical temperature. In the following decades, the Ehrenfest classification was replaced by a simplified classification scheme that is
1400:
exhibit a discontinuity in the first derivative of the free energy with respect to some thermodynamic variable. The various solid/liquid/gas transitions are classified as first-order transitions because they involve a discontinuous change in density, which is the (inverse of the) first derivative of
2279:
in the salamander retina, bird flocks gene expression networks in Drosophila, and protein folding. However, it is not clear whether or not alternative reasons could explain some of the phenomena supporting arguments for criticality. It has also been suggested that biological organisms share two key
1635:
falls within this range, then there is an interesting possibility that the transition is arrested when it is partial and incomplete. Extending these ideas to first-order magnetic transitions being arrested at low temperatures, resulted in the observation of incomplete magnetic transitions, with two
1606:
state, and its entropy, density, and so on, depend on the thermal history. Therefore, the glass transition is primarily a dynamic phenomenon: on cooling a liquid, internal degrees of freedom successively fall out of equilibrium. Some theoretical methods predict an underlying phase transition in the
1643:
falling within the temperature range over which the transition occurs is that the first-order magnetic transition is influenced by magnetic field, just like the structural transition is influenced by pressure. The relative ease with which magnetic fields can be controlled, in contrast to pressure,
1620:
A disorder-broadened first-order transition occurs over a finite range of temperatures where the fraction of the low-temperature equilibrium phase grows from zero to one (100%) as the temperature is lowered. This continuous variation of the coexisting fractions with temperature raised interesting
2295:
to hydrophobic, causing the former to lie near the globular surface, while the latter lie closer to the globular center. Twenty fractals were discovered in solvent associated surface areas of > 5000 protein segments. The existence of these fractals proves that proteins function near critical
2177:
theory of phase transitions, which states that the thermodynamic properties of a system near a phase transition depend only on a small number of features, such as dimensionality and symmetry, and are insensitive to the underlying microscopic properties of the system. Again, the divergence of the
1694:: each point in the fluid has the same properties, but each point in a crystal does not have the same properties (unless the points are chosen from the lattice points of the crystal lattice). Typically, the high-temperature phase contains more symmetries than the low-temperature phase due to 1424:
In practice, only the first- and second-order phase transitions are typically observed. The second-order phase transition was for a while controversial, as it seems to require two sheets of the Gibbs free energy to osculate exactly, which is so unlikely as to never occur in practice.
1670:, at which the transition between liquid and gas becomes a second-order transition. Near the critical point, the fluid is sufficiently hot and compressed that the distinction between the liquid and gaseous phases is almost non-existent. This is associated with the phenomenon of 1409:, which is the first derivative of the free energy with respect to the external field, is continuous across the transition) but exhibit discontinuity in a second derivative of the free energy. These include the ferromagnetic phase transition in materials such as iron, where the 2299:
In groups of organisms in stress (when approaching critical transitions), correlations tend to increase, while at the same time, fluctuations also increase. This effect is supported by many experiments and observations of groups of people, mice, trees, and grassy plants.
303:. Such a diagram usually depicts states in equilibrium. A phase transition usually occurs when the pressure or temperature changes and the system crosses from one region to another, like water turning from liquid to solid as soon as the temperature drops below the 1972:
The critical exponents are not necessarily the same above and below the critical temperature. When a continuous symmetry is explicitly broken down to a discrete symmetry by irrelevant (in the renormalization group sense) anisotropies, then some exponents (such as
680:). This condition generally stems from the interactions of a large number of particles in a system, and does not appear in systems that are small. Phase transitions can occur for non-thermodynamic systems, where temperature is not a parameter. Examples include: 2172:
More impressively, but understandably from above, they are an exact match for the critical exponents of the ferromagnetic phase transition in uniaxial magnets. Such systems are said to be in the same universality class. Universality is a prediction of the
1757:
and ferromagnetic, can have order parameters for more than one degree of freedom. In such phases, the order parameter may take the form of a complex number, a vector, or even a tensor, the magnitude of which goes to zero at the phase transition.
404:
to equilibrium phase transformation for structural phase transitions. A metastable polymorph which forms rapidly due to lower surface energy will transform to an equilibrium phase given sufficient thermal input to overcome an energetic barrier.
2012:= −0.013 ± 0.003. At least one experiment was performed in the zero-gravity conditions of an orbiting satellite to minimize pressure differences in the sample. This experimental value of α agrees with theoretical predictions based on 1718:
is a measure of the degree of order across the boundaries in a phase transition system; it normally ranges between zero in one phase (usually above the critical point) and nonzero in the other. At the critical point, the order parameter
1599:
far below the melting point of the crystalline phase. This is atypical in several respects. It is not a transition between thermodynamic ground states: it is widely believed that the true ground state is always crystalline. Glass is a
684:, dynamic phase transitions, and topological (structural) phase transitions. In these types of systems other parameters take the place of temperature. For instance, connection probability replaces temperature for percolating networks. 3013:
Kumar, Kranti; Pramanik, A. K.; Banerjee, A.; Chaddah, P.; Roy, S. B.; Park, S.; Zhang, C. L.; Cheong, S.-W. (2006). "Relating supercooling and glass-like arrest of kinetics for phase separated systems: DopedCeFe2and(La,Pr,Ca)MnO3".
5039:, 1991. Very well-written book in "semi-popular" style—not a textbook—aimed at an audience with some training in mathematics and the physical sciences. Explains what scaling in phase transitions is all about, among other things. 1432:
The Ehrenfest classification implicitly allows for continuous phase transformations, where the bonding character of a material changes, but there is no discontinuity in any free energy derivative. An example of this occurs at the
1490:
can broaden a first-order transition. That is, the transformation is completed over a finite range of temperatures, but phenomena like supercooling and superheating survive and hysteresis is observed on thermal cycling.
147:, have identical free energies and therefore are equally likely to exist. Below the boiling point, the liquid is the more stable state of the two, whereas above the boiling point the gaseous form is the more stable. 2149: 2038:
Some model systems do not obey a power-law behavior. For example, mean field theory predicts a finite discontinuity of the heat capacity at the transition temperature, and the two-dimensional Ising model has a
2256:
which are exposed cold environmental temperatures. Thylakoid membranes retain innate fluidity even at relatively low temperatures because of high degree of fatty-acyl disorder allowed by their high content of
1833:, and they have been discovered to have many interesting properties. The phenomena associated with continuous phase transitions are called critical phenomena, due to their association with critical points. 1737:
From a theoretical perspective, order parameters arise from symmetry breaking. When this happens, one needs to introduce one or more extra variables to describe the state of the system. For example, in the
1534:
transition. In contrast to viscosity, thermal expansion and heat capacity of amorphous materials show a relatively sudden change at the glass transition temperature which enables accurate detection using
3537:
Roy, S. B.; Chattopadhyay, M. K.; Chaddah, P.; Moore, J. D.; Perkins, G. K.; Cohen, L. F.; Gschneidner, K. A.; Pecharsky, V. K. (2006). "Evidence of a magnetic glass state in the magnetocaloric material
4757: 2214:
classes. In addition to the critical exponents, there are also universal relations for certain static or dynamic functions of the magnetic fields and temperature differences from the critical value.
1941: 2350:(simultaneous measurement of magnetic and non-magnetic transitions. No temperature limits. Over 2000 °C already performed, theoretical possible up to the highest crystal material, such as 2261:, 18-carbon chain with 3-double bonds. Gel-to-liquid crystalline phase transition temperature of biological membranes can be determined by many techniques including calorimetry, fluorescence, 1429:
replied the criticism by pointing out that the Gibbs free energy surface might have two sheets on one side, but only one sheet on the other side, creating a forked appearance. ( pp. 146--150)
1781:. As the universe expanded and cooled, the vacuum underwent a series of symmetry-breaking phase transitions. For example, the electroweak transition broke the SU(2)×U(1) symmetry of the 533:
transformation, in which a two-component single-phase liquid is cooled and transforms into two solid phases. The same process, but beginning with a solid instead of a liquid is called a
2272:
by recording measurements of the concerned parameter by at series of sample temperatures. A simple method for its determination from 13-C NMR line intensities has also been proposed.
1396:
as a function of other thermodynamic variables. Under this scheme, phase transitions were labeled by the lowest derivative of the free energy that is discontinuous at the transition.
2291:
properties. It has long been known that protein globules are shaped by interactions with water. There are 20 amino acids that form side groups on protein peptide chains range from
4083:
D.Y. Lando and V.B. Teif (2000). "Long-range interactions between ligands bound to a DNA molecule give rise to adsorption with the character of phase transition of the first kind".
4204:
Tkacik, Gasper; Mora, Thierry; Marre, Olivier; Amodei, Dario; Berry II, Michael J.; Bialek, William (2014). "Thermodynamics for a network of neurons: Signatures of criticality".
1413:, which is the first derivative of the free energy with respect to the applied magnetic field strength, increases continuously from zero as the temperature is lowered below the 3360:
Manekar, M. A.; Chaudhary, S.; Chattopadhyay, M. K.; Singh, K. J.; Roy, S. B.; Chaddah, P. (2001). "First-order transition from antiferromagnetism to ferromagnetism inCe(Fe
3674:
Kushwaha, Pallavi; Lakhani, Archana; Rawat, R.; Chaddah, P. (2009). "Low-temperature study of field-induced antiferromagnetic-ferromagnetic transition in Pd-doped Fe-Rh".
2315: 2309: 4600:
Hristovski, R.; Balagué, N. (2010). "Fatigue-induced spontaneous termination point--nonequilibrium phase transitions and critical behavior in quasi-isometric exertion".
2318:
is that when a conflict that is non-violent shifts to a phase of armed conflict, this is a phase transition from latent to manifest phases within the dynamical system.
3075:
Pasquini, G.; Daroca, D. Pérez; Chiliotte, C.; Lozano, G. S.; Bekeris, V. (2008). "Ordered, Disordered, and Coexistent Stable Vortex Lattices inNbSe2Single Crystals".
1991: 3433:
Banerjee, A.; Pramanik, A. K.; Kumar, Kranti; Chaddah, P. (2006). "Coexisting tunable fractions of glassy and equilibrium long-range-order phases in manganites".
3486:
Wu W.; Israel C.; Hur N.; Park S.; Cheong S. W.; de Lozanne A. (2006). "Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet".
2066:, are defined, examining the power law behavior of a measurable physical quantity near the phase transition. Exponents are related by scaling relations, such as 2314:
Phase transitions have been hypothesised to occur in social systems viewed as dynamical systems. A hypothesis proposed in the 1990s and 2000s in the context of
1658:
in an exhaustive way. Phase coexistence across first-order magnetic transitions will then enable the resolution of outstanding issues in understanding glasses.
4875: 4736: 100:, resulting in an abrupt change in volume. The identification of the external conditions at which a transformation occurs defines the phase transition point. 179: 2165:
It is a remarkable fact that phase transitions arising in different systems often possess the same set of critical exponents. This phenomenon is known as
4745: 1366: 1761:
There also exist dual descriptions of phase transitions in terms of disorder parameters. These indicate the presence of line-like excitations such as
1796:
Progressive phase transitions in an expanding universe are implicated in the development of order in the universe, as is illustrated by the work of
3769: 2169:. For example, the critical exponents at the liquid–gas critical point have been found to be independent of the chemical composition of the fluid. 365:
Phase transitions can also occur when a solid changes to a different structure without changing its chemical makeup. In elements, this is known as
88:. During a phase transition of a given medium, certain properties of the medium change as a result of the change of external conditions, such as 5087: 3977:
Lipa, J.; Nissen, J.; Stricker, D.; Swanson, D.; Chui, T. (2003). "Specific heat of liquid helium in zero gravity very near the lambda point".
1789:. This transition is important to explain the asymmetry between the amount of matter and antimatter in the present-day universe, according to 2072: 664:), the heavier water isotopes (O and H) become enriched in the liquid phase while the lighter isotopes (O and H) tend toward the vapor phase. 1507: 546: 121:, showing whether solid ice, liquid water, or gaseous water vapor is the most stable at different combinations of temperature and pressure. 1946:
The heat capacity of amorphous materials has such a behaviour near the glass transition temperature where the universal critical exponent
1852:
of the system while keeping all the other thermodynamic variables fixed and find that the transition occurs at some critical temperature
5025:
Mussardo G., "Statistical Field Theory. An Introduction to Exactly Solved Models of Statistical Physics", Oxford University Press, 2010.
1461:
In the modern classification scheme, phase transitions are divided into two broad categories, named similarly to the Ehrenfest classes:
5115: 2393: 2043:
divergence. However, these systems are limiting cases and an exception to the rule. Real phase transitions exhibit power-law behavior.
583:
shows two concurrent phase changes. The transition from solid to liquid, and gas to liquid (shown by the white condensed water vapour).
1607:
hypothetical limit of infinitely long relaxation times. No direct experimental evidence supports the existence of these transitions.
2027:< 1, the enthalpy stays finite). An example of such behavior is the 3D ferromagnetic phase transition. In the three-dimensional 315:) in such a way that it can be brought past a phase transition point without undergoing a phase transition. The resulting state is 172: 1530:
the phase transition is second-order for both normal-state–mixed-state and mixed-state–superconducting-state transitions) and the
2948: 1666:
In any system containing liquid and gaseous phases, there exists a special combination of pressure and temperature, known as the
1434: 150:
Common transitions between the solid, liquid, and gaseous phases of a single component, due to the effects of temperature and/or
510:
are more complicated than transitions involving a single compound. While chemically pure compounds exhibit a single temperature
1674:, a milky appearance of the liquid due to density fluctuations at all possible wavelengths (including those of visible light). 1359: 549:
reaction consists of change from a liquid and to a combination of a solid and a second liquid, where the two liquids display a
541:
transformation, in which a two-component single-phase solid is heated and transforms into a solid phase and a liquid phase. A
4859: 4549: 3837: 3746: 2840: 2721: 2545: 4926: 1628:, which may depend on the applied pressure. If the first-order freezing transition occurs over a range of temperatures, and 1884: 1734:
system undergoing a phase transition. For liquid/gas transitions, the order parameter is the difference of the densities.
1440:
The first example of a phase transition which did not fit into the Ehrenfest classification was the exact solution of the
3589:
Lakhani, Archana; Banerjee, A.; Chaddah, P.; Chen, X.; Ramanujan, R. V. (2012). "Magnetic glass in shape memory alloy: Ni
2628: 2206:
before the phase transition, as a consequence of lower degree of stability of the initial phase of the system. The large
165: 319:, i.e., less stable than the phase to which the transition would have occurred, but not unstable either. This occurs in 1569: 60:
of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic
4936: 4911: 4903: 2419: 1536: 1352: 1339: 17: 2515: 2000:< 0, the heat capacity has a "kink" at the transition temperature. This is the behavior of liquid helium at the 1544: 393: 370: 336: 1321: 5382: 2265: 2013: 1720: 1667: 1515: 5452: 5377: 5108: 5074: 1104: 656:
occurs during a phase transition, the ratio of light to heavy isotopes in the involved molecules changes. When
460: 232: 5564: 5392: 5018: 2674:
Jaeger, Gregg (1 May 1998). "The Ehrenfest Classification of Phase Transitions: Introduction and Evolution".
2509: 2457: 2425: 2347: 1695: 263: 4849: 4030:
Kleinert, Hagen (1999). "Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions".
5574: 5447: 5192: 5009: 3916:
Leonard, F.; Delamotte, B. (2015). "Critical exponents can be different on the two sides of a transition".
2496: 2469: 1581: 1279: 759: 632: 5630: 5625: 4995: 4635:
Moret, Marcelo; Zebende, Gilney (January 2007). "Amino acid hydrophobicity and accessible surface area".
3191:
Lubchenko, V. Wolynes; Wolynes, Peter G. (2007). "Theory of Structural Glasses and Supercooled Liquids".
2339:(simultaneous measurement of magnetic and non-magnetic transitions. Limited up to about 800–1000 °C) 2227: 1474:
Familiar examples are the melting of ice or the boiling of water (the water does not instantly turn into
522:
resulting in a temperature span where solid and liquid coexist in equilibrium. This is often the case in
299:
For a single component, the most stable phase at different temperatures and pressures can be shown on a
5620: 4915: 1284: 909: 478: 389: 2764: 5101: 3867: 2737:
Gross, David J. (1980), "Possible third-order phase transition in the large N lattice gauge theory",
2645: 1808: 1393: 1174: 849: 669: 661: 4565:
Diedrich, F. J.; Warren, W. H. Jr. (1995). "Why change gaits? Dynamics of the walk-run transition".
2336: 1829:
Continuous phase transitions are easier to study than first-order transitions due to the absence of
5599: 5498: 5128: 2478: 2351: 2276: 2275:
It has been proposed that some biological systems might lie near critical points. Examples include
1790: 1577: 1169: 1164: 690: 681: 2978:
Imry, Y.; Wortis, M. (1979). "Influence of quenched impurities on first-order phase transitions".
1254: 5493: 1750:. However, note that order parameters can also be defined for non-symmetry-breaking transitions. 1426: 1418: 859: 1264: 5518: 5508: 5258: 5253: 4992:
Constitutions of matter : mathematically modelling the most everyday of physical phenomena
4776: 1527: 1249: 1189: 1159: 1109: 829: 719: 557: 428: 96:. This can be a discontinuous change; for example, a liquid may become gas upon heating to its 3736: 3222: 5005: 2408: 2242:, and cooperative ligand binding to DNA and proteins with the character of phase transition. 2174: 1976: 1786: 1523: 1289: 904: 889: 653: 5437: 5197: 5028: 4968: 4821: 4738:
Complexity Theory and Conflict Transformation: An Exploration of Potential and Implications
4701: 4644: 4439: 4382: 4317: 4248: 4049: 3996: 3935: 3882: 3693: 3624: 3555: 3495: 3452: 3391: 3316: 3261: 3210: 3156: 3094: 3033: 2987: 2798: 2786: 2584: 1691: 1671: 879: 769: 519: 514:
between solid and liquid phases, mixtures can either have a single melting point, known as
503: 307:. In exception to the usual case, it is sometimes possible to change the state of a system 289: 81: 2326:
A variety of methods are applied for studying the various effects. Selected examples are:
1840:. The most important one is perhaps the exponent describing the divergence of the thermal 650:
in the laws of physics during the early history of the universe as its temperature cooled.
392:
occurs as one of the many phase transformations in carbon steel and stands as a model for
8: 5412: 5304: 5294: 5207: 5162: 3636: 2434: 2342: 1699: 1554: 1119: 929: 779: 312: 4972: 4825: 4705: 4648: 4542:
Dynamic Patterns: The Self-Organization of Brain and Behavior (Complex Adaptive Systems)
4443: 4386: 4363:
Mora, Thierry; Bialek, William (2011). "Are biological systems poised at criticality?".
4321: 4252: 4167:"Determination of membrane lipid phase transition temperature from 13-C NMR intensities" 4053: 4000: 3939: 3886: 3697: 3628: 3559: 3499: 3456: 3395: 3320: 3265: 3214: 3160: 3098: 3037: 2991: 2790: 2588: 2222:
Phase transitions play many important roles in biological systems. Examples include the
467:. A simplified but highly useful model of magnetic phase transitions is provided by the 135:
Phase transitions commonly refer to when a substance transforms between one of the four
5559: 5488: 5322: 4784: 4717: 4691: 4522: 4496: 4460: 4429: 4417: 4398: 4372: 4340: 4307: 4295: 4271: 4238: 4227:"Social interactions dominate speed control in poising natural flocks near criticality" 4226: 4205: 4108: 4065: 4039: 4012: 3986: 3959: 3925: 3898: 3806: 3763: 3717: 3683: 3656: 3614: 3519: 3468: 3442: 3415: 3381: 3342: 3285: 3234: 3200: 3147:
Ojovan, M.I. (2013). "Ordering and structural changes at the glass-liquid transition".
3126: 3084: 3057: 3023: 2810: 2776: 2691: 2605: 2574: 2562: 2490: 2484: 2357: 2288: 2253: 1841: 1812: 1778: 1766: 1553:
Apart from isolated, simple phase transitions, there exist transition lines as well as
1299: 1259: 1234: 982: 973: 424: 414: 397: 354: 346: 3894: 3464: 2765:"Top eigenvalue of a random matrix: large deviations and third order phase transition" 5589: 5584: 5554: 5513: 5402: 5354: 5339: 5232: 5202: 5042: 4987: 4980: 4956: 4932: 4907: 4855: 4809: 4679: 4660: 4617: 4582: 4545: 4514: 4510: 4465: 4345: 4276: 4186: 4182: 4147: 4143: 4127: 4100: 4069: 3951: 3833: 3826: 3742: 3721: 3709: 3660: 3648: 3640: 3571: 3511: 3407: 3334: 3289: 3277: 3226: 3181:
Gotze, Wolfgang. "Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory."
3168: 3118: 3110: 3061: 3049: 2930: 2912: 2873: 2836: 2814: 2802: 2717: 2695: 2649: 2610: 2563:"Phase diagram for the transition from photonic crystals to dielectric metamaterials" 2541: 2448: 2374: 2001: 1837: 1824: 1782: 1754: 1703: 1687: 1683: 1602: 1487: 1449: 1414: 1229: 1074: 964: 884: 673: 647: 614: 515: 436: 374: 350: 85: 4166: 4112: 4016: 3963: 3902: 3810: 3783:
Clark, J.B.; Hastie, J.W.; Kihlborg, L.H.E.; Metselaar, R.; Thackeray, M.M. (1994).
3472: 3419: 3238: 2629:
Semiconductors and Semimetals. Vol 100. Photonic Crystal Metasurface Optoelectronics
113: 5544: 5167: 5081: 4976: 4899: 4829: 4749: 4709: 4652: 4609: 4574: 4506: 4455: 4451: 4447: 4390: 4335: 4325: 4266: 4256: 4178: 4139: 4096: 4092: 4057: 4004: 3947: 3943: 3890: 3796: 3701: 3632: 3563: 3523: 3503: 3460: 3399: 3346: 3324: 3269: 3218: 3164: 3130: 3106: 3102: 3041: 2995: 2904: 2865: 2794: 2746: 2683: 2600: 2592: 2368: 2239: 1588: 934: 899: 894: 854: 794: 754: 560:, in which a single phase is cooled and separates into two different compositions. 215: 77: 57: 4721: 4526: 4402: 3273: 2390: – Property of some chemical elements to exist in two or more different forms 2283:
The characteristic feature of second order phase transitions is the appearance of
5534: 5387: 5124: 4942: 4802: 4798: 2963: 2503: 2231: 1244: 1194: 1064: 819: 731: 564: 550: 378: 136: 61: 4713: 4613: 2493: – Mathematical theory on behavior of connected clusters in a random graph 2466: – Theory of continuous phase transitions of second order phase transitions 2023:< 1, the heat capacity diverges at the transition temperature (though, since 1844:
by approaching the transition. For instance, let us examine the behavior of the
5332: 5327: 5284: 5217: 5212: 4922: 4883: 4656: 4578: 4061: 4008: 3705: 3567: 3403: 3045: 2893:"The Ehrenfest Classification of Phase Transitions: Introduction and Evolution" 2402: 2258: 1969:. Its actual value depends on the type of phase transition we are considering. 1762: 1519: 1389: 1326: 1294: 1274: 1269: 1224: 1144: 1079: 977: 864: 709: 677: 596: 523: 440: 341: 304: 126: 4948: 4833: 4394: 2536:
Askeland, Donald R.; Haddleton, Frank; Green, Phil; Robertson, Howard (1996).
419: 5614: 5569: 5549: 5472: 5432: 5367: 5299: 5222: 5052: 5036: 4891: 3713: 3644: 3575: 3411: 3114: 3053: 2999: 2916: 2877: 2806: 2463: 2223: 2031:
for uniaxial magnets, detailed theoretical studies have yielded the exponent
1845: 1797: 1743: 1739: 1731: 1727: 1547: 1410: 1005: 986: 968: 869: 789: 636: 511: 444: 382: 300: 140: 130: 97: 4753: 4330: 4261: 3801: 3784: 2750: 2310:
Complex system approach to peace and armed conflict § Phase transitions
1746:, whose direction was spontaneously chosen when the system cooled below the 1199: 139:
to another. At the phase transition point for a substance, for instance the
5594: 5467: 5462: 5457: 5422: 5372: 5289: 4999: 4664: 4621: 4518: 4469: 4349: 4280: 4104: 3955: 3652: 3515: 3338: 3281: 3230: 3122: 2614: 1801: 1596: 1557:, when varying external parameters like the magnetic field or composition. 1445: 1219: 1209: 1179: 1139: 1134: 1114: 959: 939: 799: 621: 491: 324: 320: 268: 251: 5093: 4586: 4190: 4151: 2908: 2687: 435:
Phase transitions can also describe the change between different kinds of
5503: 5397: 5309: 4794: 4790: 4485:"From physics to biology by extending criticality and symmetry breakings" 3991: 3447: 3386: 3205: 3028: 2439: 2330: 2292: 2250: 2235: 2028: 1836:
Continuous phase transitions can be characterized by parameters known as
1830: 1747: 1483: 1475: 1468: 1441: 1304: 1239: 1214: 1184: 1129: 1124: 1056: 698: 657: 545:
reaction is a peritectoid rection, except involving only solid phases. A
542: 495: 468: 456: 452: 89: 4847: 4812:(1974). "The renormalization group in the theory of critical behavior". 2892: 2869: 2596: 2144:{\displaystyle \beta =\gamma /(\delta -1),\quad \nu =\gamma /(2-\eta ).} 617:
in certain metals and ceramics when cooled below a critical temperature.
327:, for example. Metastable states do not appear on usual phase diagrams. 36:
This diagram shows the nomenclature for the different phase transitions.
5442: 5417: 5344: 5314: 5248: 5227: 4044: 3785:"Definitions of terms relating to phase transitions of the solid state" 2262: 2005: 1540: 1531: 1479: 1149: 991: 784: 624:
properties in artificial photonic media as their parameters are varied.
603: 538: 529:
There are also a number of phase transitions involving three phases: a
464: 401: 316: 275: 2833:
Elements of classical thermodynamics: for advanced students of physics
1526:
the phase transition is second-order at zero external field and for a
4418:"Zipf's law and criticality in multivariate data without fine-tuning" 3507: 2442: – Mathematical model of ferromagnetism in statistical mechanics 2387: 2040: 1875: 1511: 1204: 1154: 1027: 874: 774: 592: 534: 482:
A binary phase diagram showing the most stable chemical compounds of
366: 358: 308: 45: 5177: 5033:
Fractals, chaos, power laws : minutes from an infinite paradise
4567:
Journal of Experimental Psychology. Human Perception and Performance
4484: 3329: 3304: 2154:
It can be shown that there are only two independent exponents, e.g.
1506:. They are characterized by a divergent susceptibility, an infinite 32: 5579: 5407: 4128:"C NMR studies of lipid fatty acyl chains of chloroplast membranes" 3930: 2856:
Austin, J. B. (November 1932). "Heat Capacity of Iron - A Review".
2579: 1592: 1573: 764: 607: 530: 483: 244: 151: 93: 4877:
Ice Phase Transition as a sample of finite system phase transition
4696: 4501: 4434: 4377: 4312: 4243: 4210: 3688: 3619: 3359: 3089: 2781: 5539: 5427: 5362: 5279: 5274: 2284: 2202:. Connected to the previous phenomenon is also the phenomenon of 1084: 1069: 1032: 1023: 1018: 507: 455:. Another example is the transition between differently ordered, 227: 41: 1644:
raises the possibility that one can study the interplay between
5148: 5069: 4959:(1974). "The Renormalization Group and the epsilon-Expansion". 4895: 4879:, (Physics Education (India) Volume 32. No. 2, Apr - Jun 2016) 4728: 2535: 1037: 1013: 744: 640: 487: 448: 205: 69: 1818: 1777:
Symmetry-breaking phase transitions play an important role in
575: 5157: 5143: 3074: 2711: 2518: – Field theory involving topological effects in physics 2362: 1042: 739: 628: 580: 200: 144: 118: 65: 27:
Physical process of transition between basic states of matter
4921: 4851:
Chaos, Phase Transitions, Topology Change and Path Integrals
3782: 3536: 3432: 3012: 2396: – Chemical reaction whose product is also its catalyst 4842:
Lectures on Phase Transitions and the Renormalization Group
4680:"Correlations, risk and crisis: From physiology to finance" 4678:
Gorban, A.N.; Smirnova, E.V.; Tyukina, T.A. (August 2010).
3673: 3485: 3868:"Topologically disordered systems at the glass transition" 3588: 2217: 2194:. As a consequence, at a phase transition one may observe 1392:
classified phase transitions based on the behavior of the
5153: 3976: 2269: 1993:, the exponent of the susceptibility) are not identical. 749: 210: 73: 5047:
Introduction to Phase Transitions and Critical Phenomena
4293: 4082: 2935:
Introduction to Phase Transitions and Critical Phenomena
2835:(Repr ed.). Cambridge: Univ. Pr. pp. 140–141. 2428: – Shift of atomic positions in a crystal structure 385:) are all examples of solid to solid phase transitions. 4416:
Schwab, David J; Nemenman, Ilya; Mehta, Pankaj (2014).
3735:
Ivancevic, Vladimir G.; Ivancevic, Tijiana, T. (2008).
2769:
Journal of Statistical Mechanics: Theory and Experiment
2444:
Pages displaying short descriptions of redirect targets
2430:
Pages displaying short descriptions of redirect targets
2398:
Pages displaying short descriptions of redirect targets
2186:
There are also other critical phenomena; e.g., besides
4998:, 1996. Contains a detailed pedagogical discussion of 3854:
Cosmogenesis, The Development of Order in the Universe
2763:
Majumdar, Satya N; Schehr, Grégory (31 January 2014).
2303: 4684:
Physica A: Statistical Mechanics and Its Applications
4677: 4294:
Krotov, D; Dubuis, J O; Gregor, T; Bialek, W (2014).
4224: 4203: 2460: – Noncontact variant of atomic force microscopy 2075: 1979: 1936:{\displaystyle C\propto |T_{\text{c}}-T|^{-\alpha }.} 1887: 1686:
process. For instance, the cooling of a fluid into a
1518:. Examples of second-order phase transitions are the 5049:(Oxford University Press, Oxford and New York 1971). 3530: 3353: 3142: 3140: 2712:
Blundell, Stephen J.; Katherine M. Blundell (2008).
2474:
Pages displaying wikidata descriptions as a fallback
2453:
Pages displaying wikidata descriptions as a fallback
2413:
Pages displaying wikidata descriptions as a fallback
2238:, liquid crystal-like transitions in the process of 2210:
of a continuous phase transition split into smaller
1448:. The exact specific heat differed from the earlier 439:. The most well-known is the transition between the 4848:Ivancevic, Vladimir G; Ivancevic, Tijana T (2008), 4746:
Department of Peace Studies, University of Bradford
4415: 3667: 3582: 4539: 3825: 3734: 3068: 2506: – Thin layer of liquid in a superfluid state 2143: 1985: 1935: 606:geometry on coverage and temperature, such as for 4799:Fundamentals of Multiphase Heat Transfer and Flow 4599: 3137: 3006: 2965:Fundamentals of Multiphase Heat Transfer and Flow 2405: – Major stage of a crystallization process 1950:= 0.59 A similar behavior, but with the exponent 5612: 3915: 3190: 1848:near such a transition. We vary the temperature 676:for some choice of thermodynamic variables (cf. 563:Non-equilibrium mixtures can occur, such as in 4734: 4564: 4171:Journal of Biochemical and Biophysical Methods 2762: 2481: – Different known phase of states matter 1522:transition, superconducting transition (for a 595:between solid and liquid, such as one of the " 556:Separation into multiple phases can occur via 526:, where the two components are isostructural. 451:materials, which occurs at what is called the 396:. Order-disorder transitions such as in alpha- 381:, or from one amorphous structure to another ( 5109: 4482: 4132:Indian Journal of Biochemistry and Biophysics 2650:"Fundamentals of Stable Isotope Geochemistry" 2644: 1360: 400:. As with states of matter, there are also a 173: 4634: 4489:Progress in Biophysics and Molecular Biology 4119: 3866:Ojovan, Michael I.; Lee, William E. (2006). 3768:: CS1 maint: multiple names: authors list ( 2669: 2667: 1726:An example of an order parameter is the net 1610: 1482:mixture of liquid water and vapor bubbles). 1405:are continuous in the first derivative (the 103: 5123: 4954: 4225:Bialek, W; Cavagna, A; Giardina, I (2014). 2560: 2296:points of second-order phase transitions. 2178:correlation length is the essential point. 1819:Critical exponents and universality classes 1384: 377:to another, from a crystalline solid to an 349:, distinguishing between several different 48:, and other related fields like biology, a 5116: 5102: 5057:Statistical Mechanics of Phase Transitions 4362: 3305:"Materials science: Metal turned to glass" 2977: 2707: 2705: 2394:Autocatalytic reactions and order creation 1785:into the U(1) symmetry of the present-day 1706:, which only occurs at low temperatures). 1401:the free energy with respect to pressure. 1367: 1353: 697: 180: 166: 5082:Interactive Phase Transitions on lattices 4781:Basic Notions of Condensed Matter Physics 4695: 4500: 4483:Longo, G.; Montévil, M. (1 August 2011). 4459: 4433: 4376: 4339: 4329: 4311: 4270: 4260: 4242: 4209: 4043: 3990: 3929: 3865: 3800: 3687: 3618: 3446: 3385: 3328: 3252:Greer, A. L. (1995). "Metallic Glasses". 3223:10.1146/annurev.physchem.58.032806.104653 3204: 3088: 3027: 2950:Transport Phenomena in Multiphase Systems 2780: 2664: 2604: 2578: 2451: – apparent change of physical state 1772: 1456: 463:, magnetic structures, such as in cerium 4029: 3823: 2538:The Science and Engineering of Materials 2008:state, for which experiments have found 574: 477: 418: 340: 112: 31: 4164: 4125: 2929: 2830: 2702: 2218:Phase transitions in biological systems 579:A small piece of rapidly melting solid 154:are identified in the following table: 143:, the two phases involved - liquid and 14: 5613: 4808: 3741:. Berlin: Springer. pp. 176–177. 3302: 3146: 2890: 2858:Industrial & Engineering Chemistry 2855: 2673: 1958:, applies for the correlation length. 1453:able to incorporate such transitions. 369:, whereas in compounds it is known as 84:and the states of matter have uniform 5097: 4763:from the original on 26 November 2022 3251: 2897:Archive for History of Exact Sciences 2736: 2676:Archive for History of Exact Sciences 2365:(measurement of magnetic transitions) 2333:(measurement of magnetic transitions) 2181: 1406: 3875:Journal of Physics: Condensed Matter 3607:Journal of Physics: Condensed Matter 3435:Journal of Physics: Condensed Matter 2826: 2824: 2411: – materials science phenomenon 1965:is positive. This is different with 1615: 5002:'s solution of the 2-D Ising Model. 4916:physik.fu-berlin.de readable online 3193:Annual Review of Physical Chemistry 2540:. Chapman & Hall. p. 286. 2304:Phase transitions in social systems 1709: 1564:. They are continuous but break no 1550:of second-order phase transitions. 1435:supercritical liquid–gas boundaries 108: 24: 4904:World Scientific (Singapore, 1989) 4770: 2422: – Thermoanalytical technique 2046:Several other critical exponents, 1682:Phase transitions often involve a 1661: 1379: 423:A phase diagram showing different 25: 5642: 5063: 5022:, Pergamon Press, 3rd Ed. (1994). 4928:Critical Properties of φ-Theories 2953:, Elsevier, Burlington, MA, 2006, 2821: 2561:Rybin, M.V.; et al. (2015). 2512: – Process in quantum optics 2420:Differential scanning calorimetry 1568:. The most famous example is the 1560:Several transitions are known as 1537:differential scanning calorimetry 668:Phase transitions occur when the 570: 520:liquidus and solidus temperatures 427:in the same crystal structure of 5176: 5068: 5059:, Oxford University Press, 1992. 4888:Gauge Fields in Condensed Matter 4511:10.1016/j.pbiomolbio.2011.03.005 3169:10.1016/j.jnoncrysol.2013.10.016 2799:10.1088/1742-5468/2014/01/P01012 2516:Topological quantum field theory 2487: – Crystal growth technique 2472: – crystal growth technique 1753:Some phase transitions, such as 1742:phase, one must provide the net 1698:, with the exception of certain 1562:infinite-order phase transitions 1334: 1333: 1320: 394:displacive phase transformations 337:Polymorphism (materials science) 286: 284: 255: 236: 4671: 4628: 4593: 4558: 4533: 4476: 4409: 4356: 4287: 4218: 4197: 4158: 4076: 4023: 3970: 3909: 3859: 3846: 3817: 3776: 3728: 3479: 3426: 3296: 3245: 3184: 3175: 2971: 2956: 2941: 2923: 2884: 2849: 2321: 2266:electron paramagnetic resonance 2108: 2014:variational perturbation theory 1486:and Michael Wortis showed that 117:A simplified phase diagram for 4491:. Systems Biology and Cancer. 4452:10.1103/PhysRevLett.113.068102 4365:Journal of Statistical Physics 4296:"Morphogenesis at criticality" 4097:10.1080/07391102.2000.10506578 3948:10.1103/PhysRevLett.115.200601 3637:10.1088/0953-8984/24/38/386004 3107:10.1103/PhysRevLett.100.247003 2968:, Springer, New York, NY, 2020 2756: 2730: 2638: 2621: 2554: 2529: 2135: 2123: 2102: 2090: 1917: 1895: 1595:and other liquids that can be 1582:two-dimensional electron gases 1570:Kosterlitz–Thouless transition 1504:"continuous phase transitions" 1403:Second-order phase transitions 13: 1: 5565:Macroscopic quantum phenomena 5019:Course of Theoretical Physics 3274:10.1126/science.267.5206.1947 2523: 2510:Superradiant phase transition 2458:Kelvin probe force microscope 2426:Diffusionless transformations 2348:Perturbed angular correlation 1702:(e.g. the formation of heavy 1696:spontaneous symmetry breaking 1565: 1497:Second-order phase transition 1465:First-order phase transitions 1398:First-order phase transitions 587:Other phase changes include: 330: 5575:Order and disorder (physics) 4981:10.1016/0370-1573(74)90023-4 4925:; Verena Schulte-Frohlinde. 4874:M.R. Khoshbin-e-Khoshnazar, 4844:, Perseus Publishing (1992). 4735:Diane Hendrick (June 2009), 4183:10.1016/0165-022X(90)90097-V 4144:10.1016/0165-022X(91)90019-S 3832:. Harvard University Press. 2891:Jaeger, Gregg (1 May 1998). 2627:Eds. Zhou, W., and Fan. S., 2497:Continuum percolation theory 2470:Laser-heated pedestal growth 502:Phase transitions involving 345:A phase diagram showing the 7: 4996:University of Chicago Press 4714:10.1016/j.physa.2010.03.035 4614:10.1016/j.humov.2010.05.004 4540:Kelso, J. A. Scott (1995). 3895:10.1088/0953-8984/18/50/007 3465:10.1088/0953-8984/18/49/L02 2962:Faghri, A., and Zhang, Y., 2947:Faghri, A., and Zhang, Y., 2831:Pippard, Alfred B. (1981). 2716:. Oxford University Press. 2714:Concepts in Thermal Physics 2380: 2208:static universality classes 2004:from a normal state to the 1677: 1514:decay of correlations near 473: 408: 10: 5647: 5014:Statistical Physics Part 1 4657:10.1103/PhysRevE.75.011920 4579:10.1037/0096-1523.21.1.183 4062:10.1103/PhysRevD.60.085001 4009:10.1103/PhysRevB.68.174518 3856:, Oxford Univ. Press, 1991 3824:Chaisson, Eric J. (2001). 3789:Pure and Applied Chemistry 3706:10.1103/PhysRevB.80.174413 3568:10.1103/PhysRevB.74.012403 3404:10.1103/PhysRevB.64.104416 3046:10.1103/PhysRevB.73.184435 2937:. Oxford: Clarendon Press. 2307: 1822: 910:Spin gapless semiconductor 633:Bose–Einstein condensation 412: 390:martensitic transformation 334: 124: 5527: 5481: 5353: 5267: 5241: 5185: 5174: 5136: 4834:10.1103/revmodphys.46.597 4395:10.1007/s10955-011-0229-4 1809:relational order theories 1611:Characteristic properties 1578:quantum phase transitions 1467:are those that involve a 1394:thermodynamic free energy 850:Electronic band structure 682:quantum phase transitions 670:thermodynamic free energy 662:equilibrium fractionation 518:, or they have different 104:Types of phase transition 5600:Thermo-dielectric effect 5499:Enthalpy of vaporization 5193:Bose–Einstein condensate 3000:10.1103/physrevb.19.3580 2479:List of states of matter 2352:tantalum hafnium carbide 2316:peace and armed conflict 1791:electroweak baryogenesis 1584:, belong to this class. 1444:, discovered in 1944 by 1385:Ehrenfest classification 760:Bose–Einstein condensate 691:Condensed matter physics 627:Quantum condensation of 5494:Enthalpy of sublimation 4422:Physical Review Letters 4331:10.1073/pnas.1324186111 4262:10.1073/pnas.1324045111 3802:10.1351/pac199466030577 3077:Physical Review Letters 2751:10.1103/PhysRevD.21.446 2228:coil-globule transition 1986:{\displaystyle \gamma } 1589:liquid–glass transition 1572:in the two-dimensional 1419:magnetic susceptibility 5509:Latent internal energy 5259:Color-glass condensate 4602:Human Movement Science 4085:J. Biomol. Struct. Dyn 2337:Mössbauer spectroscopy 2145: 1987: 1937: 1773:Relevance in cosmology 1723:will usually diverge. 1528:Type-II superconductor 1457:Modern classifications 648:breaking of symmetries 643:is an example of this. 602:The dependence of the 584: 558:spinodal decomposition 499: 432: 429:Manganese monosilicide 373:. The change from one 362: 122: 37: 5319:Magnetically ordered 5077:at Wikimedia Commons 5029:Schroeder, Manfred R. 4805:Switzerland AG, 2020. 4165:YashRoy, R C (1990). 2909:10.1007/s004070050021 2688:10.1007/s004070050021 2567:Nature Communications 2409:Abnormal grain growth 2204:enhanced fluctuations 2196:critical slowing down 2175:renormalization group 2146: 1988: 1938: 1787:electromagnetic field 1700:accidental symmetries 1524:Type-I superconductor 905:Topological insulator 654:Isotope fractionation 639:transition in liquid 578: 481: 422: 344: 116: 76:, and in rare cases, 35: 5198:Fermionic condensate 5088:Universality classes 4945:on 26 February 2008. 4854:, Berlin: Springer, 3738:Complex Nonlinearity 3149:J. Non-Cryst. Solids 2247:biological membranes 2212:dynamic universality 2073: 1977: 1885: 1870:, the heat capacity 1692:translation symmetry 1672:critical opalescence 1591:is observed in many 1555:multicritical points 923:Electronic phenomena 770:Fermionic condensate 82:thermodynamic system 5413:Chemical ionization 5305:Programmable matter 5295:Quantum spin liquid 5163:Supercritical fluid 4973:1974PhR....12...75W 4902:", pp. 1–742, 4898:; Disorder Fields, 4826:1974RvMP...46..597F 4706:2010PhyA..389.3193G 4649:2007PhRvE..75a1920M 4444:2014PhRvL.113f8102S 4387:2011JSP...144..268M 4322:2014PNAS..111.3683K 4253:2014PNAS..111.7212B 4126:Yashroy RC (1987). 4054:1999PhRvD..60h5001K 4001:2003PhRvB..68q4518L 3940:2015PhRvL.115t0601L 3887:2006JPCM...1811507O 3881:(50): 11507–11520. 3698:2009PhRvB..80q4413K 3629:2012JPCM...24L6004L 3560:2006PhRvB..74a2403R 3500:2006NatMa...5..881W 3457:2006JPCM...18L.605B 3396:2001PhRvB..64j4416M 3321:2007Natur.448..758T 3303:Tarjus, G. (2007). 3266:1995Sci...267.1947G 3260:(5206): 1947–1953. 3215:2007ARPC...58..235L 3161:2013JNCS..382...79O 3099:2008PhRvL.100x7003P 3038:2006PhRvB..73r4435K 2992:1979PhRvB..19.3580I 2870:10.1021/ie50275a006 2791:2014JSMTE..01..012M 2597:10.1038/ncomms10102 2589:2015NatCo...610102R 2435:Ehrenfest equations 2343:Neutron diffraction 2254:thylakoid membranes 930:Quantum Hall effect 425:magnetic structures 398:titanium aluminides 188: 86:physical properties 5631:Critical phenomena 5626:Physical phenomena 5560:Leidenfrost effect 5489:Enthalpy of fusion 5254:Quark–gluon plasma 4988:Krieger, Martin H. 4785:Perseus Publishing 2931:Stanley, H. Eugene 2491:Percolation theory 2485:Micro-pulling-down 2358:Raman Spectroscopy 2230:in the process of 2182:Critical phenomena 2141: 1983: 1933: 1842:correlation length 1838:critical exponents 1813:order and disorder 1690:breaks continuous 1508:correlation length 1327:Physics portal 585: 537:transformation. A 500: 433: 415:Magnetic structure 363: 351:crystal structures 347:allotropes of iron 157: 123: 38: 5621:Phase transitions 5608: 5607: 5590:Superheated vapor 5585:Superconductivity 5555:Equation of state 5403:Flash evaporation 5355:Phase transitions 5340:String-net liquid 5233:Photonic molecule 5203:Degenerate matter 5084:with Java applets 5073:Media related to 4900:Phase Transitions 4861:978-3-540-79356-4 4690:(16): 3193–3217. 4637:Physical Review E 4551:978-0-262-61131-2 4306:(10): 3683–3688. 4237:(20): 7212–7217. 4032:Physical Review D 3979:Physical Review B 3839:978-0-674-00342-2 3748:978-3-540-79357-1 3676:Physical Review B 3548:Physical Review B 3374:Physical Review B 3315:(7155): 758–759. 3016:Physical Review B 2864:(11): 1225–1235. 2842:978-0-521-09101-5 2739:Physical Review D 2723:978-0-19-856770-7 2547:978-0-412-53910-7 2449:Jamming (physics) 2375:X-ray diffraction 2192:critical dynamics 2002:lambda transition 1906: 1825:critical exponent 1783:electroweak field 1704:virtual particles 1688:crystalline solid 1684:symmetry breaking 1616:Phase coexistence 1603:quenched disorder 1488:quenched disorder 1415:Curie temperature 1377: 1376: 1075:Granular material 843:Electronic phases 620:The emergence of 615:superconductivity 613:The emergence of 516:congruent melting 437:magnetic ordering 375:crystal structure 297: 296: 159:Phase transitions 18:Phase transitions 16:(Redirected from 5638: 5545:Compressed fluid 5180: 5125:States of matter 5118: 5111: 5104: 5095: 5094: 5072: 4984: 4946: 4941:. Archived from 4871: 4870: 4868: 4840:Goldenfeld, N., 4837: 4765: 4764: 4762: 4743: 4732: 4726: 4725: 4699: 4675: 4669: 4668: 4632: 4626: 4625: 4597: 4591: 4590: 4562: 4556: 4555: 4537: 4531: 4530: 4504: 4480: 4474: 4473: 4463: 4437: 4413: 4407: 4406: 4380: 4360: 4354: 4353: 4343: 4333: 4315: 4291: 4285: 4284: 4274: 4264: 4246: 4222: 4216: 4215: 4213: 4201: 4195: 4194: 4162: 4156: 4155: 4123: 4117: 4116: 4080: 4074: 4073: 4047: 4027: 4021: 4020: 3994: 3992:cond-mat/0310163 3974: 3968: 3967: 3933: 3913: 3907: 3906: 3872: 3863: 3857: 3850: 3844: 3843: 3831: 3828:Cosmic Evolution 3821: 3815: 3814: 3804: 3780: 3774: 3773: 3767: 3759: 3757: 3755: 3732: 3726: 3725: 3691: 3671: 3665: 3664: 3622: 3586: 3580: 3579: 3534: 3528: 3527: 3508:10.1038/nmat1743 3488:Nature Materials 3483: 3477: 3476: 3450: 3448:cond-mat/0611152 3430: 3424: 3423: 3389: 3387:cond-mat/0012472 3357: 3351: 3350: 3332: 3300: 3294: 3293: 3249: 3243: 3242: 3208: 3206:cond-mat/0607349 3188: 3182: 3179: 3173: 3172: 3144: 3135: 3134: 3092: 3072: 3066: 3065: 3031: 3029:cond-mat/0602627 3010: 3004: 3003: 2986:(7): 3580–3585. 2975: 2969: 2960: 2954: 2945: 2939: 2938: 2927: 2921: 2920: 2888: 2882: 2881: 2853: 2847: 2846: 2828: 2819: 2818: 2784: 2760: 2754: 2753: 2734: 2728: 2727: 2709: 2700: 2699: 2671: 2662: 2661: 2659: 2657: 2642: 2636: 2634:, Elsevier, 2019 2625: 2619: 2618: 2608: 2582: 2558: 2552: 2551: 2533: 2475: 2454: 2445: 2431: 2414: 2399: 2369:Thermogravimetry 2240:DNA condensation 2188:static functions 2150: 2148: 2147: 2142: 2122: 2089: 1992: 1990: 1989: 1984: 1942: 1940: 1939: 1934: 1929: 1928: 1920: 1908: 1907: 1904: 1898: 1874:typically has a 1710:Order parameters 1545:phenomenological 1502:are also called 1499: 1498: 1369: 1362: 1355: 1342: 1337: 1336: 1329: 1325: 1324: 935:Spin Hall effect 825:Phase transition 795:Luttinger liquid 732:States of matter 715:Phase transition 701: 687: 686: 591:Transition to a 189: 182: 175: 168: 156: 137:states of matter 109:States of matter 62:states of matter 58:physical process 50:phase transition 21: 5646: 5645: 5641: 5640: 5639: 5637: 5636: 5635: 5611: 5610: 5609: 5604: 5535:Baryonic matter 5523: 5477: 5448:Saturated fluid 5388:Crystallization 5349: 5323:Antiferromagnet 5263: 5237: 5181: 5172: 5132: 5122: 5066: 4949:readable online 4939: 4923:Kleinert, Hagen 4866: 4864: 4862: 4803:Springer Nature 4773: 4771:Further reading 4768: 4760: 4741: 4733: 4729: 4676: 4672: 4633: 4629: 4598: 4594: 4563: 4559: 4552: 4538: 4534: 4481: 4477: 4414: 4410: 4361: 4357: 4292: 4288: 4223: 4219: 4202: 4198: 4163: 4159: 4124: 4120: 4081: 4077: 4028: 4024: 3975: 3971: 3918:Phys. Rev. Lett 3914: 3910: 3870: 3864: 3860: 3851: 3847: 3840: 3822: 3818: 3781: 3777: 3761: 3760: 3753: 3751: 3749: 3733: 3729: 3672: 3668: 3604: 3600: 3596: 3592: 3587: 3583: 3545: 3541: 3535: 3531: 3494:(11): 881–886. 3484: 3480: 3431: 3427: 3371: 3367: 3363: 3358: 3354: 3330:10.1038/448758a 3301: 3297: 3250: 3246: 3189: 3185: 3180: 3176: 3145: 3138: 3073: 3069: 3011: 3007: 2976: 2972: 2961: 2957: 2946: 2942: 2928: 2924: 2889: 2885: 2854: 2850: 2843: 2829: 2822: 2761: 2757: 2735: 2731: 2724: 2710: 2703: 2672: 2665: 2655: 2653: 2643: 2639: 2626: 2622: 2559: 2555: 2548: 2534: 2530: 2526: 2521: 2504:Superfluid film 2473: 2452: 2443: 2429: 2412: 2397: 2383: 2324: 2312: 2306: 2277:neural networks 2232:protein folding 2226:formation, the 2220: 2184: 2118: 2085: 2074: 2071: 2070: 1978: 1975: 1974: 1921: 1916: 1915: 1903: 1899: 1894: 1886: 1883: 1882: 1869: 1858: 1827: 1821: 1775: 1755:superconducting 1716:order parameter 1712: 1680: 1664: 1662:Critical points 1657: 1650: 1642: 1634: 1627: 1618: 1613: 1539:measurements. 1496: 1495: 1459: 1427:Cornelis Gorter 1407:order parameter 1387: 1382: 1380:Classifications 1373: 1332: 1319: 1318: 1311: 1310: 1309: 1099: 1091: 1090: 1089: 1065:Amorphous solid 1059: 1049: 1048: 1047: 1026: 1008: 998: 997: 996: 985: 983:Antiferromagnet 976: 974:Superparamagnet 967: 954: 953:Magnetic phases 946: 945: 944: 924: 916: 915: 914: 844: 836: 835: 834: 820:Order parameter 814: 813:Phase phenomena 806: 805: 804: 734: 724: 672:of a system is 573: 565:supersaturation 551:miscibility gap 524:solid solutions 476: 417: 411: 379:amorphous solid 339: 333: 311:(as opposed to 197: 194: 186: 133: 111: 106: 80:. A phase of a 28: 23: 22: 15: 12: 11: 5: 5644: 5634: 5633: 5628: 5623: 5606: 5605: 5603: 5602: 5597: 5592: 5587: 5582: 5577: 5572: 5567: 5562: 5557: 5552: 5547: 5542: 5537: 5531: 5529: 5525: 5524: 5522: 5521: 5516: 5514:Trouton's rule 5511: 5506: 5501: 5496: 5491: 5485: 5483: 5479: 5478: 5476: 5475: 5470: 5465: 5460: 5455: 5450: 5445: 5440: 5435: 5430: 5425: 5420: 5415: 5410: 5405: 5400: 5395: 5390: 5385: 5383:Critical point 5380: 5375: 5370: 5365: 5359: 5357: 5351: 5350: 5348: 5347: 5342: 5337: 5336: 5335: 5330: 5325: 5317: 5312: 5307: 5302: 5297: 5292: 5287: 5285:Liquid crystal 5282: 5277: 5271: 5269: 5265: 5264: 5262: 5261: 5256: 5251: 5245: 5243: 5239: 5238: 5236: 5235: 5230: 5225: 5220: 5218:Strange matter 5215: 5213:Rydberg matter 5210: 5205: 5200: 5195: 5189: 5187: 5183: 5182: 5175: 5173: 5171: 5170: 5165: 5160: 5151: 5146: 5140: 5138: 5134: 5133: 5121: 5120: 5113: 5106: 5098: 5092: 5091: 5090:from Sklogwiki 5085: 5065: 5064:External links 5062: 5061: 5060: 5050: 5040: 5026: 5023: 5010:Lifshitz, E.M. 5003: 4985: 4952: 4937: 4919: 4881: 4872: 4860: 4845: 4838: 4820:(4): 597–616. 4814:Rev. Mod. Phys 4806: 4788: 4777:Anderson, P.W. 4772: 4769: 4767: 4766: 4727: 4670: 4627: 4608:(4): 483–493. 4592: 4573:(1): 183–202. 4557: 4550: 4532: 4495:(2): 340–347. 4475: 4408: 4371:(2): 268–302. 4355: 4286: 4217: 4196: 4177:(4): 353–356. 4157: 4138:(6): 177–178. 4118: 4091:(5): 903–911. 4075: 4045:hep-th/9812197 4022: 3985:(17): 174518. 3969: 3924:(20): 200601. 3908: 3858: 3852:David Layzer, 3845: 3838: 3816: 3795:(3): 577–594. 3775: 3747: 3727: 3682:(17): 174413. 3666: 3613:(38): 386004. 3602: 3598: 3594: 3590: 3581: 3543: 3539: 3529: 3478: 3425: 3380:(10): 104416. 3369: 3365: 3361: 3352: 3295: 3244: 3183: 3174: 3136: 3083:(24): 247003. 3067: 3022:(18): 184435. 3005: 2970: 2955: 2940: 2922: 2883: 2848: 2841: 2820: 2755: 2745:(2): 446–453, 2729: 2722: 2701: 2663: 2637: 2620: 2553: 2546: 2527: 2525: 2522: 2520: 2519: 2513: 2507: 2501: 2500: 2499: 2488: 2482: 2476: 2467: 2461: 2455: 2446: 2437: 2432: 2423: 2417: 2416: 2415: 2403:Crystal growth 2400: 2391: 2384: 2382: 2379: 2378: 2377: 2372: 2366: 2360: 2355: 2354:4215 °C.) 2345: 2340: 2334: 2323: 2320: 2305: 2302: 2259:linolenic acid 2219: 2216: 2190:there is also 2183: 2180: 2152: 2151: 2140: 2137: 2134: 2131: 2128: 2125: 2121: 2117: 2114: 2111: 2107: 2104: 2101: 2098: 2095: 2092: 2088: 2084: 2081: 2078: 1982: 1944: 1943: 1932: 1927: 1924: 1919: 1914: 1911: 1902: 1897: 1893: 1890: 1867: 1856: 1823:Main article: 1820: 1817: 1774: 1771: 1721:susceptibility 1711: 1708: 1679: 1676: 1668:critical point 1663: 1660: 1655: 1648: 1640: 1632: 1625: 1617: 1614: 1612: 1609: 1478:, but forms a 1458: 1455: 1390:Paul Ehrenfest 1386: 1383: 1381: 1378: 1375: 1374: 1372: 1371: 1364: 1357: 1349: 1346: 1345: 1344: 1343: 1330: 1313: 1312: 1308: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1227: 1222: 1217: 1212: 1207: 1202: 1197: 1192: 1187: 1182: 1177: 1172: 1167: 1162: 1157: 1152: 1147: 1142: 1137: 1132: 1127: 1122: 1117: 1112: 1107: 1101: 1100: 1097: 1096: 1093: 1092: 1088: 1087: 1082: 1080:Liquid crystal 1077: 1072: 1067: 1061: 1060: 1055: 1054: 1051: 1050: 1046: 1045: 1040: 1035: 1030: 1021: 1016: 1010: 1009: 1006:Quasiparticles 1004: 1003: 1000: 999: 995: 994: 989: 980: 971: 965:Superdiamagnet 962: 956: 955: 952: 951: 948: 947: 943: 942: 937: 932: 926: 925: 922: 921: 918: 917: 913: 912: 907: 902: 897: 892: 890:Thermoelectric 887: 885:Superconductor 882: 877: 872: 867: 865:Mott insulator 862: 857: 852: 846: 845: 842: 841: 838: 837: 833: 832: 827: 822: 816: 815: 812: 811: 808: 807: 803: 802: 797: 792: 787: 782: 777: 772: 767: 762: 757: 752: 747: 742: 736: 735: 730: 729: 726: 725: 723: 722: 717: 712: 706: 703: 702: 694: 693: 666: 665: 660:condenses (an 651: 644: 625: 618: 611: 610:on iron (110). 600: 597:liquid crystal 572: 571:Other examples 569: 475: 472: 461:incommensurate 410: 407: 332: 329: 305:freezing point 295: 294: 292: 287: 285: 283: 279: 278: 273: 271: 266: 261: 257: 256: 254: 249: 247: 242: 238: 237: 235: 230: 225: 223: 219: 218: 213: 208: 203: 198: 195: 192: 185: 184: 177: 170: 162: 127:vapor pressure 110: 107: 105: 102: 26: 9: 6: 4: 3: 2: 5643: 5632: 5629: 5627: 5624: 5622: 5619: 5618: 5616: 5601: 5598: 5596: 5593: 5591: 5588: 5586: 5583: 5581: 5578: 5576: 5573: 5571: 5570:Mpemba effect 5568: 5566: 5563: 5561: 5558: 5556: 5553: 5551: 5550:Cooling curve 5548: 5546: 5543: 5541: 5538: 5536: 5533: 5532: 5530: 5526: 5520: 5517: 5515: 5512: 5510: 5507: 5505: 5502: 5500: 5497: 5495: 5492: 5490: 5487: 5486: 5484: 5480: 5474: 5473:Vitrification 5471: 5469: 5466: 5464: 5461: 5459: 5456: 5454: 5451: 5449: 5446: 5444: 5441: 5439: 5438:Recombination 5436: 5434: 5433:Melting point 5431: 5429: 5426: 5424: 5421: 5419: 5416: 5414: 5411: 5409: 5406: 5404: 5401: 5399: 5396: 5394: 5391: 5389: 5386: 5384: 5381: 5379: 5378:Critical line 5376: 5374: 5371: 5369: 5368:Boiling point 5366: 5364: 5361: 5360: 5358: 5356: 5352: 5346: 5343: 5341: 5338: 5334: 5331: 5329: 5326: 5324: 5321: 5320: 5318: 5316: 5313: 5311: 5308: 5306: 5303: 5301: 5300:Exotic matter 5298: 5296: 5293: 5291: 5288: 5286: 5283: 5281: 5278: 5276: 5273: 5272: 5270: 5266: 5260: 5257: 5255: 5252: 5250: 5247: 5246: 5244: 5240: 5234: 5231: 5229: 5226: 5224: 5221: 5219: 5216: 5214: 5211: 5209: 5206: 5204: 5201: 5199: 5196: 5194: 5191: 5190: 5188: 5184: 5179: 5169: 5166: 5164: 5161: 5159: 5155: 5152: 5150: 5147: 5145: 5142: 5141: 5139: 5135: 5130: 5126: 5119: 5114: 5112: 5107: 5105: 5100: 5099: 5096: 5089: 5086: 5083: 5080: 5079: 5078: 5076: 5075:Phase changes 5071: 5058: 5054: 5053:Yeomans J. M. 5051: 5048: 5044: 5043:H. E. Stanley 5041: 5038: 5037:W. H. Freeman 5034: 5030: 5027: 5024: 5021: 5020: 5015: 5011: 5007: 5004: 5001: 4997: 4993: 4989: 4986: 4982: 4978: 4974: 4970: 4967:(2): 75–199. 4966: 4962: 4958: 4953: 4950: 4944: 4940: 4938:981-02-4659-5 4934: 4930: 4929: 4924: 4920: 4917: 4913: 4912:9971-5-0210-0 4909: 4905: 4901: 4897: 4893: 4892:Superfluidity 4889: 4885: 4882: 4880: 4878: 4873: 4863: 4857: 4853: 4852: 4846: 4843: 4839: 4835: 4831: 4827: 4823: 4819: 4815: 4811: 4807: 4804: 4800: 4796: 4792: 4789: 4786: 4782: 4778: 4775: 4774: 4759: 4755: 4751: 4747: 4740: 4739: 4731: 4723: 4719: 4715: 4711: 4707: 4703: 4698: 4693: 4689: 4685: 4681: 4674: 4666: 4662: 4658: 4654: 4650: 4646: 4643:(1): 011920. 4642: 4638: 4631: 4623: 4619: 4615: 4611: 4607: 4603: 4596: 4588: 4584: 4580: 4576: 4572: 4568: 4561: 4553: 4547: 4544:. MIT Press. 4543: 4536: 4528: 4524: 4520: 4516: 4512: 4508: 4503: 4498: 4494: 4490: 4486: 4479: 4471: 4467: 4462: 4457: 4453: 4449: 4445: 4441: 4436: 4431: 4428:(6): 068102. 4427: 4423: 4419: 4412: 4404: 4400: 4396: 4392: 4388: 4384: 4379: 4374: 4370: 4366: 4359: 4351: 4347: 4342: 4337: 4332: 4327: 4323: 4319: 4314: 4309: 4305: 4301: 4297: 4290: 4282: 4278: 4273: 4268: 4263: 4258: 4254: 4250: 4245: 4240: 4236: 4232: 4228: 4221: 4212: 4207: 4200: 4192: 4188: 4184: 4180: 4176: 4172: 4168: 4161: 4153: 4149: 4145: 4141: 4137: 4133: 4129: 4122: 4114: 4110: 4106: 4102: 4098: 4094: 4090: 4086: 4079: 4071: 4067: 4063: 4059: 4055: 4051: 4046: 4041: 4038:(8): 085001. 4037: 4033: 4026: 4018: 4014: 4010: 4006: 4002: 3998: 3993: 3988: 3984: 3980: 3973: 3965: 3961: 3957: 3953: 3949: 3945: 3941: 3937: 3932: 3927: 3923: 3919: 3912: 3904: 3900: 3896: 3892: 3888: 3884: 3880: 3876: 3869: 3862: 3855: 3849: 3841: 3835: 3830: 3829: 3820: 3812: 3808: 3803: 3798: 3794: 3790: 3786: 3779: 3771: 3765: 3750: 3744: 3740: 3739: 3731: 3723: 3719: 3715: 3711: 3707: 3703: 3699: 3695: 3690: 3685: 3681: 3677: 3670: 3662: 3658: 3654: 3650: 3646: 3642: 3638: 3634: 3630: 3626: 3621: 3616: 3612: 3608: 3585: 3577: 3573: 3569: 3565: 3561: 3557: 3554:(1): 012403. 3553: 3549: 3533: 3525: 3521: 3517: 3513: 3509: 3505: 3501: 3497: 3493: 3489: 3482: 3474: 3470: 3466: 3462: 3458: 3454: 3449: 3444: 3440: 3436: 3429: 3421: 3417: 3413: 3409: 3405: 3401: 3397: 3393: 3388: 3383: 3379: 3375: 3356: 3348: 3344: 3340: 3336: 3331: 3326: 3322: 3318: 3314: 3310: 3306: 3299: 3291: 3287: 3283: 3279: 3275: 3271: 3267: 3263: 3259: 3255: 3248: 3240: 3236: 3232: 3228: 3224: 3220: 3216: 3212: 3207: 3202: 3198: 3194: 3187: 3178: 3170: 3166: 3162: 3158: 3154: 3150: 3143: 3141: 3132: 3128: 3124: 3120: 3116: 3112: 3108: 3104: 3100: 3096: 3091: 3086: 3082: 3078: 3071: 3063: 3059: 3055: 3051: 3047: 3043: 3039: 3035: 3030: 3025: 3021: 3017: 3009: 3001: 2997: 2993: 2989: 2985: 2981: 2974: 2967: 2966: 2959: 2952: 2951: 2944: 2936: 2932: 2926: 2918: 2914: 2910: 2906: 2902: 2898: 2894: 2887: 2879: 2875: 2871: 2867: 2863: 2859: 2852: 2844: 2838: 2834: 2827: 2825: 2816: 2812: 2808: 2804: 2800: 2796: 2792: 2788: 2783: 2778: 2775:(1): P01012. 2774: 2770: 2766: 2759: 2752: 2748: 2744: 2740: 2733: 2725: 2719: 2715: 2708: 2706: 2697: 2693: 2689: 2685: 2681: 2677: 2670: 2668: 2651: 2647: 2646:Carol Kendall 2641: 2635: 2632: 2631: 2624: 2616: 2612: 2607: 2602: 2598: 2594: 2590: 2586: 2581: 2576: 2572: 2568: 2564: 2557: 2549: 2543: 2539: 2532: 2528: 2517: 2514: 2511: 2508: 2505: 2502: 2498: 2495: 2494: 2492: 2489: 2486: 2483: 2480: 2477: 2471: 2468: 2465: 2464:Landau theory 2462: 2459: 2456: 2450: 2447: 2441: 2438: 2436: 2433: 2427: 2424: 2421: 2418: 2410: 2407: 2406: 2404: 2401: 2395: 2392: 2389: 2386: 2385: 2376: 2373: 2371:(very common) 2370: 2367: 2364: 2361: 2359: 2356: 2353: 2349: 2346: 2344: 2341: 2338: 2335: 2332: 2329: 2328: 2327: 2319: 2317: 2311: 2301: 2297: 2294: 2290: 2286: 2281: 2278: 2273: 2271: 2267: 2264: 2260: 2255: 2252: 2248: 2243: 2241: 2237: 2233: 2229: 2225: 2224:lipid bilayer 2215: 2213: 2209: 2205: 2201: 2197: 2193: 2189: 2179: 2176: 2170: 2168: 2163: 2161: 2157: 2138: 2132: 2129: 2126: 2119: 2115: 2112: 2109: 2105: 2099: 2096: 2093: 2086: 2082: 2079: 2076: 2069: 2068: 2067: 2065: 2061: 2057: 2053: 2049: 2044: 2042: 2036: 2034: 2030: 2026: 2022: 2017: 2015: 2011: 2007: 2003: 1999: 1994: 1980: 1970: 1968: 1964: 1961:The exponent 1959: 1957: 1953: 1949: 1930: 1925: 1922: 1912: 1909: 1900: 1891: 1888: 1881: 1880: 1879: 1877: 1873: 1866: 1862: 1855: 1851: 1847: 1846:heat capacity 1843: 1839: 1834: 1832: 1826: 1816: 1814: 1810: 1805: 1803: 1799: 1798:Eric Chaisson 1794: 1792: 1788: 1784: 1780: 1770: 1768: 1764: 1759: 1756: 1751: 1749: 1745: 1744:magnetization 1741: 1740:ferromagnetic 1735: 1733: 1732:ferromagnetic 1729: 1728:magnetization 1724: 1722: 1717: 1707: 1705: 1701: 1697: 1693: 1689: 1685: 1675: 1673: 1669: 1659: 1654: 1647: 1639: 1631: 1624: 1608: 1605: 1604: 1598: 1594: 1590: 1585: 1583: 1579: 1575: 1571: 1567: 1563: 1558: 1556: 1551: 1549: 1546: 1542: 1538: 1533: 1529: 1525: 1521: 1520:ferromagnetic 1517: 1513: 1509: 1505: 1501: 1492: 1489: 1485: 1481: 1477: 1472: 1470: 1466: 1462: 1454: 1451: 1447: 1443: 1438: 1436: 1430: 1428: 1422: 1420: 1416: 1412: 1411:magnetization 1408: 1404: 1399: 1395: 1391: 1370: 1365: 1363: 1358: 1356: 1351: 1350: 1348: 1347: 1341: 1331: 1328: 1323: 1317: 1316: 1315: 1314: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1105:Van der Waals 1103: 1102: 1095: 1094: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1062: 1058: 1053: 1052: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1025: 1022: 1020: 1017: 1015: 1012: 1011: 1007: 1002: 1001: 993: 990: 988: 984: 981: 979: 975: 972: 970: 966: 963: 961: 958: 957: 950: 949: 941: 938: 936: 933: 931: 928: 927: 920: 919: 911: 908: 906: 903: 901: 900:Ferroelectric 898: 896: 895:Piezoelectric 893: 891: 888: 886: 883: 881: 878: 876: 873: 871: 870:Semiconductor 868: 866: 863: 861: 858: 856: 853: 851: 848: 847: 840: 839: 831: 828: 826: 823: 821: 818: 817: 810: 809: 801: 798: 796: 793: 791: 790:Superfluidity 788: 786: 783: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 737: 733: 728: 727: 721: 718: 716: 713: 711: 708: 707: 705: 704: 700: 696: 695: 692: 689: 688: 685: 683: 679: 675: 671: 663: 659: 655: 652: 649: 645: 642: 638: 634: 630: 626: 623: 619: 616: 612: 609: 605: 601: 598: 594: 590: 589: 588: 582: 577: 568: 566: 561: 559: 554: 552: 548: 544: 540: 536: 532: 527: 525: 521: 517: 513: 512:melting point 509: 505: 497: 493: 492:mixing ratios 490:at different 489: 485: 480: 471: 470: 466: 462: 458: 454: 450: 446: 442: 441:ferromagnetic 438: 430: 426: 421: 416: 406: 403: 399: 395: 391: 386: 384: 380: 376: 372: 368: 360: 357:(α-iron) and 356: 352: 348: 343: 338: 328: 326: 322: 318: 314: 313:adiabatically 310: 306: 302: 301:phase diagram 293: 291: 290:Recombination 288: 281: 280: 277: 274: 272: 270: 267: 265: 262: 259: 258: 253: 250: 248: 246: 243: 240: 239: 234: 231: 229: 226: 224: 221: 220: 217: 214: 212: 209: 207: 204: 202: 199: 191: 190: 183: 178: 176: 171: 169: 164: 163: 160: 155: 153: 148: 146: 142: 141:boiling point 138: 132: 131:phase diagram 128: 120: 115: 101: 99: 98:boiling point 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 34: 30: 19: 5595:Superheating 5468:Vaporization 5463:Triple point 5458:Supercooling 5423:Lambda point 5373:Condensation 5290:Time crystal 5268:Other states 5208:Quantum Hall 5067: 5056: 5046: 5035:, New York: 5032: 5017: 5016:, vol. 5 of 5013: 5006:Landau, L.D. 4991: 4964: 4960: 4943:the original 4927: 4906:; Paperback 4896:Vortex lines 4887: 4884:Kleinert, H. 4876: 4865:, retrieved 4850: 4841: 4817: 4813: 4810:Fisher, M.E. 4780: 4737: 4730: 4687: 4683: 4673: 4640: 4636: 4630: 4605: 4601: 4595: 4570: 4566: 4560: 4541: 4535: 4492: 4488: 4478: 4425: 4421: 4411: 4368: 4364: 4358: 4303: 4299: 4289: 4234: 4230: 4220: 4199: 4174: 4170: 4160: 4135: 4131: 4121: 4088: 4084: 4078: 4035: 4031: 4025: 3982: 3978: 3972: 3921: 3917: 3911: 3878: 3874: 3861: 3853: 3848: 3827: 3819: 3792: 3788: 3778: 3752:. Retrieved 3737: 3730: 3679: 3675: 3669: 3610: 3606: 3584: 3551: 3547: 3532: 3491: 3487: 3481: 3441:(49): L605. 3438: 3434: 3428: 3377: 3373: 3355: 3312: 3308: 3298: 3257: 3253: 3247: 3196: 3192: 3186: 3177: 3152: 3148: 3080: 3076: 3070: 3019: 3015: 3008: 2983: 2980:Phys. Rev. B 2979: 2973: 2964: 2958: 2949: 2943: 2934: 2925: 2903:(1): 51–81. 2900: 2896: 2886: 2861: 2857: 2851: 2832: 2772: 2768: 2758: 2742: 2738: 2732: 2713: 2682:(1): 51–81. 2679: 2675: 2654:. Retrieved 2640: 2633: 2630: 2623: 2570: 2566: 2556: 2537: 2531: 2325: 2322:Experimental 2313: 2298: 2282: 2274: 2246: 2244: 2221: 2211: 2207: 2203: 2199: 2195: 2191: 2187: 2185: 2171: 2167:universality 2166: 2164: 2159: 2155: 2153: 2063: 2059: 2055: 2051: 2047: 2045: 2037: 2032: 2024: 2020: 2018: 2009: 1997: 1996:For −1 < 1995: 1971: 1966: 1962: 1960: 1955: 1951: 1947: 1945: 1871: 1864: 1860: 1853: 1849: 1835: 1828: 1806: 1802:David Layzer 1795: 1776: 1760: 1752: 1736: 1725: 1715: 1713: 1681: 1665: 1652: 1645: 1637: 1629: 1622: 1619: 1601: 1586: 1561: 1559: 1552: 1503: 1494: 1493: 1473: 1464: 1463: 1460: 1446:Lars Onsager 1439: 1431: 1423: 1402: 1397: 1388: 1235:von Klitzing 940:Kondo effect 824: 800:Time crystal 780:Fermi liquid 714: 674:non-analytic 667: 622:metamaterial 586: 562: 555: 528: 501: 496:temperatures 457:commensurate 445:paramagnetic 434: 387: 371:polymorphism 364: 325:supercooling 321:superheating 309:diabatically 298: 269:Condensation 252:Vaporization 158: 149: 134: 54:phase change 53: 49: 39: 29: 5504:Latent heat 5453:Sublimation 5398:Evaporation 5333:Ferromagnet 5328:Ferrimagnet 5310:Dark matter 5242:High energy 4955:Kogut, J.; 4890:, Vol. I, " 3199:: 235–266. 2440:Ising Model 2331:Hall effect 2293:hydrophilic 2251:chloroplast 2236:DNA melting 2200:speeding up 2041:logarithmic 2029:Ising model 2019:For 0 < 1954:instead of 1831:latent heat 1748:Curie point 1597:supercooled 1580:, e.g., in 1516:criticality 1484:Yoseph Imry 1469:latent heat 1442:Ising model 1057:Soft matter 978:Ferromagnet 658:water vapor 543:peritectoid 469:Ising Model 453:Curie point 383:polyamorphs 233:Sublimation 161:of matter ( 90:temperature 5615:Categories 5519:Volatility 5482:Quantities 5443:Regelation 5418:Ionization 5393:Deposition 5345:Superglass 5315:Antimatter 5249:QCD matter 5228:Supersolid 5223:Superfluid 5186:Low energy 4791:Faghri, A. 4754:Q126669745 3931:1508.07852 3754:12 October 2580:1507.08901 2524:References 2308:See also: 2289:scale-free 2263:spin label 2035:≈ +0.110. 2006:superfluid 1878:behavior: 1566:symmetries 1541:Lev Landau 1532:superfluid 1450:mean-field 1200:Louis Néel 1190:Schrieffer 1098:Scientists 992:Spin glass 987:Metamagnet 969:Paramagnet 785:Supersolid 637:superfluid 604:adsorption 547:monotectic 539:peritectic 465:antimonide 447:phases of 413:See also: 402:metastable 353:including 335:See also: 331:Structural 317:metastable 276:Ionization 264:Deposition 125:See also: 4961:Phys. Rep 4957:Wilson, K 4795:Zhang, Y. 4697:0905.0129 4502:1103.1833 4435:1310.0448 4378:1012.2242 4313:1309.2614 4244:1307.5563 4211:1407.5946 4070:117436273 3764:cite book 3722:119165221 3714:1098-0121 3689:0911.4552 3661:206037831 3645:0953-8984 3620:1206.2024 3576:1098-0121 3412:0163-1829 3290:220105648 3155:: 79–86. 3115:0031-9007 3090:0803.0307 3062:117080049 3054:1098-0121 2917:1432-0657 2878:0019-7866 2815:119122520 2807:1742-5468 2782:1311.0580 2696:121525126 2573:: 10102. 2388:Allotropy 2133:η 2130:− 2116:γ 2110:ν 2097:− 2094:δ 2083:γ 2077:β 1981:γ 1926:α 1923:− 1910:− 1892:∝ 1876:power law 1807:See also 1779:cosmology 1512:power law 1480:turbulent 1300:Wetterich 1280:Abrikosov 1195:Josephson 1165:Van Vleck 1155:Luttinger 1028:Polariton 960:Diamagnet 880:Conductor 875:Semimetal 860:Insulator 775:Fermi gas 599:" phases. 593:mesophase 535:eutectoid 504:solutions 367:allotropy 361:(γ-iron). 359:austenite 56:) is the 46:chemistry 5580:Spinodal 5528:Concepts 5408:Freezing 4867:14 March 4758:archived 4750:Wikidata 4665:17358197 4622:20619908 4519:21419157 4470:25148352 4350:24516161 4281:24785504 4113:23837885 4105:10798534 4017:55646571 3964:22181730 3956:26613426 3903:96326822 3811:95616565 3653:22927562 3516:17028576 3473:98145553 3420:16851501 3339:17700684 3282:17770105 3239:46089564 3231:17067282 3123:18643617 2933:(1971). 2656:10 April 2648:(2004). 2615:26626302 2381:See also 2287:in some 2285:fractals 1863:is near 1793:theory. 1678:Symmetry 1593:polymers 1574:XY model 1510:, and a 1340:Category 1285:Ginzburg 1260:Laughlin 1220:Kadanoff 1175:Shockley 1160:Anderson 1115:von Laue 765:Bose gas 631:fluids ( 608:hydrogen 531:eutectic 508:mixtures 484:titanium 474:Mixtures 449:magnetic 409:Magnetic 245:Freezing 152:pressure 94:pressure 5540:Binodal 5428:Melting 5363:Boiling 5280:Crystal 5275:Colloid 5000:Onsager 4969:Bibcode 4822:Bibcode 4787:(1997). 4702:Bibcode 4645:Bibcode 4587:7707029 4461:5142845 4440:Bibcode 4383:Bibcode 4341:3956198 4318:Bibcode 4272:4034227 4249:Bibcode 4191:2365951 4152:3428918 4050:Bibcode 3997:Bibcode 3936:Bibcode 3883:Bibcode 3694:Bibcode 3625:Bibcode 3556:Bibcode 3524:9036412 3496:Bibcode 3453:Bibcode 3392:Bibcode 3347:4410586 3317:Bibcode 3262:Bibcode 3254:Science 3211:Bibcode 3157:Bibcode 3131:1568288 3095:Bibcode 3034:Bibcode 2988:Bibcode 2787:Bibcode 2606:4686770 2585:Bibcode 1859:. When 1769:lines. 1576:. Many 1543:gave a 1290:Leggett 1265:Störmer 1250:Bednorz 1210:Giaever 1180:Bardeen 1170:Hubbard 1145:Peierls 1135:Onsager 1085:Polymer 1070:Colloid 1033:Polaron 1024:Plasmon 1019:Exciton 635:). The 629:bosonic 355:ferrite 282:Plasma 241:Liquid 228:Melting 42:physics 5168:Plasma 5149:Liquid 4935:  4910:  4858:  4793:, and 4752:  4722:276956 4720:  4663:  4620:  4585:  4548:  4527:723820 4525:  4517:  4468:  4458:  4403:703231 4401:  4348:  4338:  4279:  4269:  4189:  4150:  4111:  4103:  4068:  4015:  3962:  3954:  3901:  3836:  3809:  3745:  3720:  3712:  3659:  3651:  3643:  3574:  3522:  3514:  3471:  3418:  3410:  3345:  3337:  3309:Nature 3288:  3280:  3237:  3229:  3129:  3121:  3113:  3060:  3052:  2915:  2876:  2839:  2813:  2805:  2720:  2694:  2652:. USGS 2613:  2603:  2544:  2062:, and 1767:defect 1763:vortex 1548:theory 1417:. The 1338:  1305:Perdew 1295:Parisi 1255:Müller 1245:Rohrer 1240:Binnig 1230:Wilson 1225:Fisher 1185:Cooper 1150:Landau 1038:Magnon 1014:Phonon 855:Plasma 755:Plasma 745:Liquid 710:Phases 678:phases 641:helium 488:nickel 222:Solid 216:Plasma 206:Liquid 78:plasma 72:, and 70:liquid 5158:Vapor 5144:Solid 5137:State 4761:(PDF) 4742:(PDF) 4718:S2CID 4692:arXiv 4523:S2CID 4497:arXiv 4430:arXiv 4399:S2CID 4373:arXiv 4308:arXiv 4239:arXiv 4206:arXiv 4109:S2CID 4066:S2CID 4040:arXiv 4013:S2CID 3987:arXiv 3960:S2CID 3926:arXiv 3899:S2CID 3871:(PDF) 3807:S2CID 3718:S2CID 3684:arXiv 3657:S2CID 3615:arXiv 3520:S2CID 3469:S2CID 3443:arXiv 3416:S2CID 3382:arXiv 3343:S2CID 3286:S2CID 3235:S2CID 3201:arXiv 3127:S2CID 3085:arXiv 3058:S2CID 3024:arXiv 2811:S2CID 2777:arXiv 2692:S2CID 2575:arXiv 2363:SQUID 1765:- or 1730:in a 1476:vapor 1205:Esaki 1130:Bloch 1125:Debye 1120:Bragg 1110:Onnes 1043:Roton 740:Solid 581:argon 201:Solid 145:vapor 119:water 66:solid 5129:list 5008:and 4933:ISBN 4908:ISBN 4894:and 4869:2013 4856:ISBN 4661:PMID 4618:PMID 4583:PMID 4546:ISBN 4515:PMID 4466:PMID 4346:PMID 4300:PNAS 4277:PMID 4231:PNAS 4187:PMID 4148:PMID 4101:PMID 3952:PMID 3834:ISBN 3770:link 3756:2014 3743:ISBN 3710:ISSN 3649:PMID 3641:ISSN 3572:ISSN 3512:PMID 3408:ISSN 3366:0.04 3362:0.96 3335:PMID 3278:PMID 3227:PMID 3119:PMID 3111:ISSN 3050:ISSN 2913:ISSN 2874:ISSN 2837:ISBN 2803:ISSN 2773:2014 2718:ISBN 2658:2014 2611:PMID 2542:ISBN 2268:and 2234:and 2158:and 1811:and 1800:and 1651:and 1587:The 1275:Tsui 1270:Yang 1215:Kohn 1140:Mott 646:The 506:and 494:and 486:and 443:and 388:The 323:and 260:Gas 196:From 129:and 52:(or 5154:Gas 4977:doi 4830:doi 4710:doi 4688:389 4653:doi 4610:doi 4575:doi 4507:doi 4493:106 4456:PMC 4448:doi 4426:113 4391:doi 4369:144 4336:PMC 4326:doi 4304:111 4267:PMC 4257:doi 4235:111 4179:doi 4140:doi 4093:doi 4058:doi 4005:doi 3944:doi 3922:115 3891:doi 3797:doi 3702:doi 3633:doi 3605:". 3564:doi 3546:". 3504:doi 3461:doi 3400:doi 3372:". 3325:doi 3313:448 3270:doi 3258:267 3219:doi 3165:doi 3153:382 3103:doi 3081:100 3042:doi 2996:doi 2905:doi 2866:doi 2795:doi 2747:doi 2684:doi 2601:PMC 2593:doi 2270:NMR 2245:In 2198:or 1714:An 830:QCP 750:Gas 720:QCP 459:or 211:Gas 92:or 74:gas 40:In 5617:: 5156:/ 5055:, 5045:, 5031:, 5012:, 4994:, 4990:, 4975:. 4965:12 4963:. 4951:). 4931:. 4886:, 4828:. 4818:46 4816:. 4801:, 4797:, 4783:, 4779:, 4756:, 4748:, 4744:, 4716:. 4708:. 4700:. 4686:. 4682:. 4659:. 4651:. 4641:75 4639:. 4616:. 4606:29 4604:. 4581:. 4571:21 4569:. 4521:. 4513:. 4505:. 4487:. 4464:. 4454:. 4446:. 4438:. 4424:. 4420:. 4397:. 4389:. 4381:. 4367:. 4344:. 4334:. 4324:. 4316:. 4302:. 4298:. 4275:. 4265:. 4255:. 4247:. 4233:. 4229:. 4185:. 4175:20 4173:. 4169:. 4146:. 4136:24 4134:. 4130:. 4107:. 4099:. 4089:17 4087:. 4064:. 4056:. 4048:. 4036:60 4034:. 4011:. 4003:. 3995:. 3983:68 3981:. 3958:. 3950:. 3942:. 3934:. 3920:. 3897:. 3889:. 3879:18 3877:. 3873:. 3805:. 3793:66 3791:. 3787:. 3766:}} 3762:{{ 3716:. 3708:. 3700:. 3692:. 3680:80 3678:. 3655:. 3647:. 3639:. 3631:. 3623:. 3611:24 3609:. 3603:12 3601:Sn 3599:38 3597:Mn 3593:Co 3591:45 3570:. 3562:. 3552:74 3550:. 3542:Ge 3538:Gd 3518:. 3510:. 3502:. 3490:. 3467:. 3459:. 3451:. 3439:18 3437:. 3414:. 3406:. 3398:. 3390:. 3378:64 3376:. 3364:Al 3341:. 3333:. 3323:. 3311:. 3307:. 3284:. 3276:. 3268:. 3256:. 3233:. 3225:. 3217:. 3209:. 3197:58 3195:. 3163:. 3151:. 3139:^ 3125:. 3117:. 3109:. 3101:. 3093:. 3079:. 3056:. 3048:. 3040:. 3032:. 3020:73 3018:. 2994:. 2984:19 2982:. 2911:. 2901:53 2899:. 2895:. 2872:. 2862:24 2860:. 2823:^ 2809:. 2801:. 2793:. 2785:. 2771:. 2767:. 2743:21 2741:, 2704:^ 2690:. 2680:53 2678:. 2666:^ 2609:. 2599:. 2591:. 2583:. 2569:. 2565:. 2162:. 2058:, 2054:, 2050:, 2016:. 1815:. 1804:. 1437:. 567:. 553:. 193:To 187:) 68:, 64:: 44:, 5131:) 5127:( 5117:e 5110:t 5103:v 4983:. 4979:: 4971:: 4947:( 4918:) 4914:( 4836:. 4832:: 4824:: 4724:. 4712:: 4704:: 4694:: 4667:. 4655:: 4647:: 4624:. 4612:: 4589:. 4577:: 4554:. 4529:. 4509:: 4499:: 4472:. 4450:: 4442:: 4432:: 4405:. 4393:: 4385:: 4375:: 4352:. 4328:: 4320:: 4310:: 4283:. 4259:: 4251:: 4241:: 4214:. 4208:: 4193:. 4181:: 4154:. 4142:: 4115:. 4095:: 4072:. 4060:: 4052:: 4042:: 4019:. 4007:: 3999:: 3989:: 3966:. 3946:: 3938:: 3928:: 3905:. 3893:: 3885:: 3842:. 3813:. 3799:: 3772:) 3758:. 3724:. 3704:: 3696:: 3686:: 3663:. 3635:: 3627:: 3617:: 3595:5 3578:. 3566:: 3558:: 3544:4 3540:5 3526:. 3506:: 3498:: 3492:5 3475:. 3463:: 3455:: 3445:: 3422:. 3402:: 3394:: 3384:: 3370:2 3368:) 3349:. 3327:: 3319:: 3292:. 3272:: 3264:: 3241:. 3221:: 3213:: 3203:: 3171:. 3167:: 3159:: 3133:. 3105:: 3097:: 3087:: 3064:. 3044:: 3036:: 3026:: 3002:. 2998:: 2990:: 2919:. 2907:: 2880:. 2868:: 2845:. 2817:. 2797:: 2789:: 2779:: 2749:: 2726:. 2698:. 2686:: 2660:. 2617:. 2595:: 2587:: 2577:: 2571:6 2550:. 2160:η 2156:ν 2139:. 2136:) 2127:2 2124:( 2120:/ 2113:= 2106:, 2103:) 2100:1 2091:( 2087:/ 2080:= 2064:η 2060:ν 2056:δ 2052:γ 2048:β 2033:α 2025:α 2021:α 2010:α 1998:α 1967:α 1963:ν 1956:α 1952:ν 1948:α 1931:. 1918:| 1913:T 1905:c 1901:T 1896:| 1889:C 1872:C 1868:c 1865:T 1861:T 1857:c 1854:T 1850:T 1656:c 1653:T 1649:g 1646:T 1641:g 1638:T 1633:g 1630:T 1626:g 1623:T 1500:s 1368:e 1361:t 1354:v 498:. 431:. 181:e 174:t 167:v 20:)

Index

Phase transitions

physics
chemistry
physical process
states of matter
solid
liquid
gas
plasma
thermodynamic system
physical properties
temperature
pressure
boiling point

water
vapor pressure
phase diagram
states of matter
boiling point
vapor
pressure
Phase transitions
v
t
e
Solid
Liquid
Gas

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.