Knowledge

Pho regulon

Source đź“ť

31: 309:
has a protein to protect other periplasmic proteins from low pH environments called the Asr protein. The gene responsible for this protein is PhoB-dependent, and can only be turned on when the Pho regulon is activated by low Pi concentration. Synthesis of the Asr protein imparts acid shock resistance
234:
Because bacteria use the Pho regulon to maintain homeostasis of Pi, it has the added effect of being used to control other genes. Many of the other genes activated or repressed by the Pho regulon cause virulence in bacterial pathogens. Three ways that this regulon effects virulence and pathogenicity
314:
enabling it to survive in environments like the stomach which has a low pH. Many acid tolerance genes are induced by more than just the low pH environment and require other environmental signals to be present in order to be activated. These specific nutrients being present or in low concentrations,
288:
are a mixture of microorganisms, layered together and usually adhered to a surface. The advantages of a biofilm include resistance to environmental stresses, antibiotics, and the ability to more easily obtain nutrients. PhoB is used to enhance biofilm formation in environments where Pi is not in
144:
seven total proteins are used to detect intracellular levels of inorganic phosphate along with transfusing that signal appropriately. Of the seven proteins, one is a metal binding protein (PhoU) and four are phosphate-specific transporters (Pst S, Pst C, Pst A, and Pst B). The transcriptional
221:
binds its transcription regulator, PhoP and the histidine kinase, PhoR to the Pho-regulon gene which induces a production of teichuronic acid. Furthermore, recent studies have suggested the critical role that techoic acid plays in the cell wall of
112:. This occurs when the cell senses low concentrations of phosphate within its internal environment causing the response regulator to be phosphorylated inducing an overall decrease in gene transcription. This mechanism is ubiquitous within 157:
which can use both inorganic and organic phosphate, as well as naturally occurring or synthetic phosphates (Phn). Several enzymes breakdown the compounds of the alternative phosphates, allowing the organism to use the phosphate via the
276:
promoter and stopping the ToxR regulon from being activated. Evidence supporting Pi as the signal is given by how the regulon is not repressed under high Pi conditions. The regulatory cascade is only repressed under low Pi conditions.
271:
is activated when Pi is low to prevent the production of toxins. It could be activated by other signals in the environment, but it has been shown that PhoB directly inhibits the toxins production by binding to the
297:
This is not always the effect of the Pho regulon as for other species in different environments it is more advantageous to not be in biofilm when Pi is low. In these cases PhoB represses biofilm formation.
83:
within the cell. Under low nutrient availability, the Pho regulon helps the cell survive and thrive despite a depletion of phosphate within the environment. When this occurs, phosphate starvation-inducible
74:
that are capable of phosphate assimilation in addition to extracting inorganic phosphate from organic sources. This is an essential process since phosphate plays an important role in cellular membranes,
600:
Liu, Wei; Hulett, F. Marion (1998). "Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site".
153:
Although inorganic phosphate is primarily used in the Pho regulon system, there are several species of bacteria that can utilize varying forms of phosphate. One example is seen in
66:
as an operating system for the bacterial strain, and was later identified in other species. The Pho system is composed of various components including extracellular
108:(PhoB/PhoR) on the cytoplasmic side of the membrane. These proteins bind to upstream promoters in the pho regulon in order to induce a general change in 250:, a toxin released to kill both microbes and mammalian cells alike. The pyocyanin production occurs when activated by PhoB. This implies that 651: 217:
also shares some similarities when encountering low intracellular phosphate concentrations. Under phosphate-starved conditions
254:
uses the low Pi as a signal that the host has been damaged and to start producing toxin to improve chances of its survival.
226:
by acting as a phosphate reservoir and storing the necessary amount of inorganic phosphate in phosphate-starved conditions.
170: 17: 97: 667:"Teichoic Acid Is an Essential Polymer in Bacillus subtilis That Is Functionally Distinct from Teichuronic Acid" 854: 849: 136:
Depletion of inorganic phosphate within the cell is required for activation of the Pho regulon in most
145:
response regulator PhoR activates PhoB when it senses low intracellular inorganic phosphate levels.
194: 109: 180:
can use either one of the pathways to cleave the C-P bond found in the alternative phosphates.
176: 164: 789:"The Acid-Inducible asr Gene in Escherichia coli: Transcriptional Control by the phoBR Operon" 787:
Sužiedėlienė, Edita; Sužiedėlis, Kęstutis; Garbenčiūtė, Vaida; Normark, Staffan (April 1999).
645: 535:
Monds, Russell D.; Newell, Peter D.; Schwartzman, Julia A.; O'Toole, George A. (2006-03-01).
548: 209:, the transcriptional response regulator (PhoB/PhoR) retain the same function they play in 246:
is a known opportunistic pathogen. One of its virulence factors is its ability to produce
8: 665:
Bhavsar, Amit P.; Erdman, Laura K.; Schertzer, Jeffrey W.; Brown, Eric D. (2004-12-01).
552: 761: 728: 633: 577: 536: 514: 449: 414: 316: 105: 699: 666: 369: 336: 826: 821: 808: 788: 766: 748: 744: 704: 686: 682: 625: 617: 582: 564: 506: 498: 454: 436: 374: 356: 352: 200: 71: 804: 729:"PhoB regulates both environmental and virulence gene expression in Vibrio cholerae" 560: 518: 816: 800: 756: 740: 694: 678: 637: 609: 572: 556: 490: 444: 426: 364: 348: 101: 62: 88:) genes activate other proteins that aid in the transport of inorganic phosphate. 263: 76: 613: 174:
use a different pathway called the phosphonatase pathway, whereas the bacterium
52:
is a regulatory mechanism used for the conservation and management of inorganic
57: 494: 481:
Vershinina, O. A.; Znamenskaya, L. V. (2002). "The Pho Regulons of Bacteria".
843: 812: 752: 690: 621: 568: 502: 440: 431: 360: 117: 830: 770: 708: 586: 510: 458: 629: 378: 786: 159: 137: 113: 80: 289:
sufficient supply. This has been shown in multiple microbes including
104:
sensor protein (PhoR) within the inner membrane and a transcriptional
30: 727:
Pratt, Jason T.; Ismail, Ayman M.; Camilli, Andrew (September 2010).
247: 53: 537:"Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1" 267:
has its toxin genes repressed by PhoB. It is thought that PhoB in
534: 285: 125: 48: 67: 235:
are toxin production, biofilm formation, and acid tolerance.
121: 34:
Regulation of inorganic phosphate within the cellular system.
664: 229: 188:
Although the Pho regulon system is most widely studied in
415:"The Pho regulon: a huge regulatory network in bacteria" 183: 480: 726: 530: 528: 841: 192:it is found in other bacterial species such as 525: 148: 131: 412: 335:Wanner, B. L.; Chang, B. D. (December 1987). 337:"The phoBR operon in Escherichia coli K-12" 334: 140:. In the most commonly studied bacterium, 820: 760: 698: 599: 576: 448: 430: 368: 230:The Pho regulon's effect on pathogenesis 162:pathway. Other species of bacteria like 29: 27:Phosphate regulatory mechanism in cells 14: 842: 541:Applied and Environmental Microbiology 413:Santos-Beneit, Fernando (2015-04-30). 408: 782: 780: 722: 720: 718: 476: 474: 472: 470: 468: 406: 404: 402: 400: 398: 396: 394: 392: 390: 388: 280: 184:Conservation among bacterial species 238: 96:The Pho regulon is controlled by a 24: 650:: CS1 maint: unflagged free DOI ( 25: 866: 777: 715: 465: 385: 301: 745:10.1111/j.1365-2958.2010.07310.x 683:10.1128/JB.186.23.7865-7873.2004 353:10.1128/jb.169.12.5569-5574.1987 805:10.1128/JB.181.7.2084-2093.1999 561:10.1128/AEM.72.3.1910-1924.2006 98:two-component regulatory system 658: 593: 328: 13: 1: 322: 319:, and host-produced factors. 60:. It was first discovered in 7: 614:10.1099/00221287-144-5-1443 149:Alternative phosphate usage 132:Signal transduction pathway 91: 10: 871: 116:-positive, gram-negative, 419:Frontiers in Microbiology 432:10.3389/fmicb.2015.00402 291:Pseudomonas, V. cholera, 793:Journal of Bacteriology 671:Journal of Bacteriology 495:10.1023/a:1020547616096 341:Journal of Bacteriology 207:Pseudomonas fluorescens 195:Pseudomonas fluorescens 733:Molecular Microbiology 244:Pseudomonas aeruginosa 177:Enterobacter aerogenes 171:Salmonella typhimurium 165:Pseudomonas aeruginosa 35: 33: 553:2006ApEnM..72.1910M 855:Bacterial genetics 110:gene transcription 106:response regulator 77:genetic expression 36: 850:Molecular biology 677:(23): 7865–7873. 347:(12): 5569–5574. 281:Biofilm formation 215:Bacillus subtilis 201:Bacillus subtilis 18:Phosphate regulon 16:(Redirected from 862: 835: 834: 824: 799:(7): 2084–2093. 784: 775: 774: 764: 739:(6): 1595–1605. 724: 713: 712: 702: 662: 656: 655: 649: 641: 608:(5): 1443–1450. 597: 591: 590: 580: 547:(3): 1910–1924. 532: 523: 522: 478: 463: 462: 452: 434: 410: 383: 382: 372: 332: 239:Toxin production 190:Escherichia coli 102:histidine kinase 63:Escherichia coli 21: 870: 869: 865: 864: 863: 861: 860: 859: 840: 839: 838: 785: 778: 725: 716: 663: 659: 643: 642: 598: 594: 533: 526: 479: 466: 411: 386: 333: 329: 325: 304: 283: 264:Vibrio cholerae 257:In contrast to 241: 232: 186: 151: 134: 94: 28: 23: 22: 15: 12: 11: 5: 868: 858: 857: 852: 837: 836: 776: 714: 657: 592: 524: 489:(5): 497–511. 464: 384: 326: 324: 321: 303: 302:Acid tolerance 300: 282: 279: 240: 237: 231: 228: 185: 182: 150: 147: 133: 130: 100:composed of a 93: 90: 26: 9: 6: 4: 3: 2: 867: 856: 853: 851: 848: 847: 845: 832: 828: 823: 818: 814: 810: 806: 802: 798: 794: 790: 783: 781: 772: 768: 763: 758: 754: 750: 746: 742: 738: 734: 730: 723: 721: 719: 710: 706: 701: 696: 692: 688: 684: 680: 676: 672: 668: 661: 653: 647: 639: 635: 631: 627: 623: 619: 615: 611: 607: 603: 596: 588: 584: 579: 574: 570: 566: 562: 558: 554: 550: 546: 542: 538: 531: 529: 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 477: 475: 473: 471: 469: 460: 456: 451: 446: 442: 438: 433: 428: 424: 420: 416: 409: 407: 405: 403: 401: 399: 397: 395: 393: 391: 389: 380: 376: 371: 366: 362: 358: 354: 350: 346: 342: 338: 331: 327: 320: 318: 313: 308: 299: 296: 292: 287: 278: 275: 270: 266: 265: 260: 259:P. aeruginosa 255: 253: 252:P. aeruginosa 249: 245: 236: 227: 225: 220: 216: 212: 208: 204: 202: 197: 196: 191: 181: 179: 178: 173: 172: 167: 166: 161: 156: 146: 143: 139: 129: 127: 123: 119: 118:cyanobacteria 115: 111: 107: 103: 99: 89: 87: 82: 78: 73: 69: 65: 64: 59: 55: 51: 50: 45: 41: 32: 19: 796: 792: 736: 732: 674: 670: 660: 646:cite journal 605: 602:Microbiology 601: 595: 544: 540: 486: 483:Microbiology 482: 422: 418: 344: 340: 330: 317:anaerobiosis 311: 306: 305: 294: 290: 284: 273: 268: 262: 258: 256: 251: 243: 242: 233: 224:B. subtilis, 223: 218: 214: 210: 206: 199: 193: 189: 187: 175: 169: 163: 154: 152: 141: 135: 95: 85: 72:transporters 61: 47: 43: 39: 37: 269:V. cholerae 219:B. subtilis 138:prokaryotes 56:within the 844:Categories 323:References 81:metabolism 813:0021-9193 753:0950-382X 691:0021-9193 622:1350-0872 569:0099-2240 503:0026-2617 441:1664-302X 361:0021-9193 248:pyocyanin 160:C-P lyase 54:phosphate 40:Phosphate 831:10094685 771:20659293 709:15547257 587:16517638 519:36152299 511:12449623 459:25983732 295:E. coli. 286:Biofilms 142:E. coli, 92:Function 762:2981138 638:7062262 630:9611818 578:1393216 549:Bibcode 450:4415409 425:: 402. 379:2824439 312:E. coli 307:E. coli 211:E. coli 155:E. coli 126:archaea 68:enzymes 49:regulon 829:  819:  811:  769:  759:  751:  707:  700:529093 697:  689:  636:  628:  620:  585:  575:  567:  517:  509:  501:  457:  447:  439:  377:  370:213987 367:  359:  124:, and 122:yeasts 79:, and 822:93620 634:S2CID 515:S2CID 274:tcpPH 827:PMID 809:ISSN 767:PMID 749:ISSN 705:PMID 687:ISSN 652:link 626:PMID 618:ISSN 583:PMID 565:ISSN 507:PMID 499:ISSN 455:PMID 437:ISSN 375:PMID 357:ISSN 293:and 198:and 168:and 114:gram 70:and 58:cell 38:The 817:PMC 801:doi 797:181 757:PMC 741:doi 695:PMC 679:doi 675:186 610:doi 606:144 573:PMC 557:doi 491:doi 445:PMC 427:doi 365:PMC 349:doi 345:169 310:to 205:In 86:psi 44:Pho 846:: 825:. 815:. 807:. 795:. 791:. 779:^ 765:. 755:. 747:. 737:77 735:. 731:. 717:^ 703:. 693:. 685:. 673:. 669:. 648:}} 644:{{ 632:. 624:. 616:. 604:. 581:. 571:. 563:. 555:. 545:72 543:. 539:. 527:^ 513:. 505:. 497:. 487:71 485:. 467:^ 453:. 443:. 435:. 421:. 417:. 387:^ 373:. 363:. 355:. 343:. 339:. 261:, 213:. 128:. 120:, 46:) 833:. 803:: 773:. 743:: 711:. 681:: 654:) 640:. 612:: 589:. 559:: 551:: 521:. 493:: 461:. 429:: 423:6 381:. 351:: 203:. 84:( 42:( 20:)

Index

Phosphate regulon

regulon
phosphate
cell
Escherichia coli
enzymes
transporters
genetic expression
metabolism
two-component regulatory system
histidine kinase
response regulator
gene transcription
gram
cyanobacteria
yeasts
archaea
prokaryotes
C-P lyase
Pseudomonas aeruginosa
Salmonella typhimurium
Enterobacter aerogenes
Pseudomonas fluorescens
Bacillus subtilis
pyocyanin
Vibrio cholerae
Biofilms
anaerobiosis
"The phoBR operon in Escherichia coli K-12"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑