Knowledge

Photodissociation

Source 📝

550:) for this reaction is 102 kilocalories per mole. Since the energy of light at 700 nm is about 40 kilocalories per mole of photons, approximately 320 kilocalories of light energy are available for the reaction. Therefore, approximately one-third of the available light energy is captured as NADPH during photolysis and electron transfer. An equal amount of ATP is generated by the resulting proton gradient. Oxygen as a byproduct is of no further use to the reaction and thus released into the atmosphere. 1226: 1647:
within the Milky Way within the past billion years. No such metallicity biases are known for short gamma-ray bursts. Thus, depending on their local rate and beaming properties, the possibility for a nearby event to have had a large impact on Earth at some point in geological time may still be significant.
569:
According to Fleming there is direct evidence that remarkably long-lived wavelike electronic quantum coherence plays an important part in energy transfer processes during photosynthesis, which can explain the extreme efficiency of the energy transfer because it enables the system to sample all the
1646:
There are strong indications that long gamma-ray bursts preferentially or exclusively occur in regions of low metallicity. Because the Milky Way has been metal-rich since before the Earth formed, this effect may diminish or even eliminate the possibility that a long gamma-ray burst has occurred
332:
and thus exits photosystem II. In order to repeat the reaction, the electron in the reaction center needs to be replenished. This occurs by oxidation of water in the case of oxygenic photosynthesis. The electron-deficient reaction center of photosystem II (P680*) is the strongest
1301:, the expected rate (for long GRBs) is about one burst every 100,000 to 1,000,000 years. Only a few percent of these would be beamed toward Earth. Estimates of rates of short GRBs are even more uncertain because of the unknown beaming fraction, but are probably comparable. 1659:
spectral range usually are not energetic enough for direct photodissociation of molecules. However, after absorption of multiple infrared photons a molecule may gain internal energy to overcome its barrier for dissociation. Multiple-photon dissociation (MPD;
815: 518: 363:
ions as cofactors. Two water molecules are complexed by the manganese cluster, which then undergoes a series of four electron removals (oxidations) to replenish the reaction center of photosystem II. At the end of this cycle, free oxygen
209: 2156:
D. M. Monahan; L. Whaley-Mayda; A. Ishizaki; G. R. Fleming (2015). "Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes".
2261:
Elisabetta Collini; Cathy Y. Wong; Krystyna E. Wilk; Paul M. G. Curmi; Paul Brumer; Gregory D. Scholes (4 February 2010), "Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature",
281:
describes the photosynthetic energy transfer process as one in which excitation energy hops from light-capturing pigment molecules to reaction center molecules step-by-step down the molecular energy ladder.
979: 903: 665:
In these reactions the dissociation occurs in the electronically excited state. After proton transfer and relaxation to the electronic ground state, the proton and acid recombine to form the
1583: 1635:; the direct UV irradiation from the burst combined with additional solar UV radiation passing through the diminished ozone layer could then have potentially significant impacts on the 660: 301:
of red algae absorb blue-green light which penetrates deeper into water than red light, enabling them to photosynthesize in deep waters. Each absorbed photon causes the formation of an
1672:, or by long interaction times of the molecule with the radiation field without the possibility for rapid cooling, e.g. by collisions. The latter method allows even for MPD induced by 1210: 1510: 1458: 1143: 1409: 1366: 1060:
can exist for a long time. Photodissociation is the main path by which molecules are broken down. Photodissociation rates are important in the study of the composition of
722: 546: 411: 1974:
R. Tempelaar; T. L. C. Jansen; J. Knoester (2014). "Vibrational Beatings Conceal Evidence of Electronic Coherence in the FMO Light-Harvesting Complex".
562:
and his co-workers which includes the possibility that photosynthetic energy transfer might involve quantum oscillations, explaining its unusually high
371:) is generated and the hydrogen of the water molecules has been converted to four protons released into the thylakoid lumen (Dolai's S-state diagrams). 126: 570:
potential energy pathways, with low loss, and choose the most efficient one. This claim has, however, since been proven wrong in several publications.
1048:, photodissociation is one of the major processes through which molecules are broken down (but new molecules are being formed). Because of the 2409: 1639:
and potentially trigger a mass extinction. The authors estimate that one such burst is expected per billion years, and hypothesize that the
2208: 1750:"Virtual Issue on Photodissociation: From Fundamental Dynamics and Spectroscopy to Photochemistry in Planetary Atmospheres and in Space" 88:
energies corresponding to visible, UV, or VUV light are typically required, whereas IR photons may be sufficiently energetic to detach
1677: 929: 374:
These protons, as well as additional protons pumped across the thylakoid membrane coupled with the electron transport chain, form a
1294:, a volume encompassing many billions of galaxies, this suggests that gamma-ray bursts must be exceedingly rare events per galaxy. 2235: 394:
where they are energized again by light. They are passed down another electron transport chain and finally combine with the
1640: 2621: 2498: 1304:
A gamma-ray burst in the Milky Way, if close enough to Earth and beamed toward it, could have significant effects on the
830: 57:. It is defined as the interaction of one or more photons with one target molecule that dissociates into two fragments. 2455: 1247: 305:(an electron excited to a higher energy state) in the pigment molecule. The energy of the exciton is transferred to a 2856: 2762: 2402: 1873: 1840: 1661: 1273: 1255: 2233:
Gregory D. Scholes (7 January 2010), "Quantum-coherent electronic energy transfer: Did Nature think of it first?",
1297:
Measuring the exact rate of gamma-ray bursts is difficult, but for a galaxy of approximately the same size as the
328:
events. The energized electron (exciton) of P680 is captured by a primary electron acceptor of the photosynthetic
2069: 1516: 2670: 2665: 2475: 1724: 1251: 605: 1149: 1010:), splitting them into individual oxygen atoms (atomic oxygen). The atomic oxygen then combines with unbroken 2835: 2830: 1956: 1464: 1415: 1089: 2876: 2395: 676: 1889:
Engel, Gregory S.; Calhoun, Tessa R.; Read, Elizabeth L.; Ahn, Tae-Kyu; Mančal, Tomáš; Cheng, Yuan-Chung;
313:, where P stands for pigment and 680 for its absorption maximum at 680 nm) in the reaction center of 2861: 1372: 1329: 2800: 2490: 581: 2527: 2427: 1828: 563: 318: 253:). This is the process which returns oxygen to Earth's atmosphere. Photolysis of water occurs in the 105: 810:{\displaystyle {\ce {O3}}+h\nu \longrightarrow {\ce {O2 + O(^1D)}}\quad \lambda <320{\text{ nm}}} 2757: 1236: 329: 77: 577:, which in early 2010 published research results that indicate that some marine algae make use of 2871: 2866: 2805: 2606: 2117:"The role of the environment time scale in light-harvesting efficiency and coherent oscillations" 1240: 513:{\displaystyle {\ce {2H2O + 2NADP+}}+8{\text{ photons}}\longrightarrow {\ce {2NADPH + 2H+ + O2}}} 345: 2560: 2260: 1865: 383: 286: 285:
The effectiveness of photons of different wavelengths depends on the absorption spectra of the
219: 2212: 528: 2790: 2722: 2580: 2570: 1890: 909: 574: 2785: 2513: 2273: 2166: 2128: 1906: 1895:"Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems" 1761: 1725:"Photochemical reaction - Photosensitization, Light Activation, Photoproducts | Britannica" 1673: 1665: 379: 93: 8: 2795: 2727: 2712: 2655: 1669: 1291: 1053: 700: 334: 20: 2277: 2170: 2141: 2132: 2116: 1910: 1765: 2820: 2590: 2419: 2297: 2097: 2045: 2022: 2010: 1938: 1061: 1029: 985: 705: 278: 61: 1858: 1803: 687:
Photolysis occurs in the atmosphere as part of a series of reactions by which primary
2815: 2810: 2772: 2717: 2636: 2552: 2289: 2190: 2182: 2089: 2050: 1991: 1930: 1922: 1869: 1836: 1785: 1777: 578: 294: 50: 42: 2155: 2101: 1942: 1749: 1290:
per day. Because gamma-ray bursts are visible to distances encompassing most of the
2747: 2696: 2650: 2301: 2281: 2264: 2244: 2174: 2136: 2081: 2040: 2032: 1983: 1914: 1769: 1689: 821: 573:
This approach has been further investigated by Gregory Scholes and his team at the
223: 204:{\displaystyle {\ce {H2A}}+2{\text{ photons}}\longrightarrow {\ce {2e- + 2H+ + A}}} 69: 2008: 2825: 2737: 2686: 1308:. The absorption of radiation in the atmosphere would cause photodissociation of 1287: 596: 375: 2085: 999:
is created by ultraviolet light striking oxygen molecules containing two oxygen
2532: 2521: 1699: 1694: 1664:
with infrared radiation) can be achieved by applying high-power lasers, e.g. a
696: 559: 314: 258: 113: 1894: 1835:(7th ed.). San Francisco: Pearson – Benjamin Cummings. pp. 186–191. 820:
which generates an excited oxygen atom which can react with water to give the
2850: 2780: 2752: 2660: 2611: 2585: 1926: 1781: 1773: 1704: 391: 337:
yet discovered, which allows it to break apart molecules as stable as water.
116:. The general reaction of photosynthetic photolysis can be given in terms of 109: 81: 2387: 2070:"Exciton Structure and Energy Transfer in the Fenna−Matthews− Olson Complex" 2732: 2538: 2445: 2435: 2293: 2194: 2093: 2054: 1995: 1934: 1789: 1313: 1057: 1045: 1033: 996: 1032:
are broken down in the upper atmosphere to form ozone-destroying chlorine
405:. Thus, the net oxidation reaction of water photolysis can be written as: 19:
This article is about the chemical process. For the nuclear reaction, see
2691: 2626: 1632: 992: 713: 692: 306: 290: 266: 262: 65: 2285: 1918: 1864:(7th ed.). New York: W.H. Freeman and Company Publishers. pp.  1636: 298: 2248: 2186: 2178: 2036: 1987: 1973: 348:
of photosystem II. This protein-bound inorganic complex contains four
242:) serves as a substrate for photolysis resulting in the generation of 2742: 1305: 1298: 917: 913: 688: 672: 666: 592: 349: 341: 293:
absorb light in the violet-blue and red parts of the spectrum, while
254: 46: 1225: 1172: 1115: 618: 324:
Photolysis during photosynthesis occurs in a series of light-driven
2067: 1656: 1309: 395: 360: 321:. P680 can also directly absorb a photon at a suitable wavelength. 243: 215: 73: 2027: 1855: 1804:"Photolysis - Definition and Examples - Biology Online Dictionary" 2009:
N. Christenson; H. F. Kauffmann; T. Pullerits; T. Mancal (2012).
356: 302: 2068:
E. Thyrhaug; K. Zidek; J. Dostal; D. Bina; D. Zigmantas (2016).
2011:"Origin of Long-Lived Coherences in Light-Harvesting Complexes" 1628: 1076: 1049: 974:{\displaystyle {\ce {NO2}}+h\nu \longrightarrow {\ce {NO + O}}} 117: 89: 85: 54: 1071:
Examples of photodissociation in the interstellar medium are (
2645: 1597: 1317: 1286:
Currently orbiting satellites detect an average of about one
1018: 402: 325: 16:
Chemical reaction in which a compound is broken down by light
584:(EET) to enhance the efficiency of their energy harnessing. 1065: 1000: 387: 310: 60:
Here, “light” is broadly defined as radiation spanning the
1627:
According to a 2004 study, a GRB at a distance of about a
995:
is also caused by photodissociation. Ozone in the Earth's
712:
The two most important photodissociation reactions in the
382:
and thus the generation of chemical energy in the form of
2465: 2114: 1856:
Raven, Peter H.; Ray F. Evert; Susan E. Eichhorn (2005).
1571: 1555: 1535: 1479: 1430: 1387: 1344: 1192: 1164: 1104: 944: 869: 764: 737: 506: 430: 352: 141: 1827: 1748:
Vallance, Claire; Orr-Ewing, Andrew J. (2023-07-20).
1519: 1467: 1418: 1375: 1332: 1152: 1092: 932: 833: 725: 608: 531: 414: 129: 234:) to sulfur (S). In oxygenic photosynthesis, water ( 1888: 1808:
Biology Articles, Tutorials & Dictionary Online
916:of hydrocarbons in the atmosphere and so acts as a 898:{\displaystyle {\ce {O(^1D) + H2O -> 2 ^{*}OH}}} 595:are molecules that upon light absorption undergo a 2232: 1857: 1577: 1504: 1452: 1403: 1360: 1204: 1137: 1028:. In addition, photolysis is the process by which 973: 897: 809: 654: 540: 512: 214:The chemical nature of "A" depends on the type of 203: 1747: 2848: 1650: 1215: 682: 587: 99: 675:are a convenient source to induce pH jumps in 2417: 2403: 1957:"Quantum secrets of photosynthesis revealed" 1643:could have been the result of such a burst. 1578:{\displaystyle {\ce {2NH3 -> 3H2 + N2}}} 1254:. Unsourced material may be challenged and 699:react to form secondary pollutants such as 401:and protons outside the thylakoids to form 2410: 2396: 2340: 655:{\displaystyle {\ce {AH -> A^- + H^+}}} 53:are broken down by absorption of light or 2140: 2044: 2026: 1678:blackbody infrared radiative dissociation 1544: 1524: 1491: 1445: 1396: 1353: 1274:Learn how and when to remove this message 1205:{\displaystyle {\ce {CH4 -> CH3 + H}}} 881: 482: 472: 442: 419: 272: 183: 166: 108:or light phase or photochemical phase or 96:or to fragment supramolecular complexes. 1505:{\displaystyle {\ce {H2O -> 2H + O}}} 1453:{\displaystyle {\ce {CO2 -> C + 2O}}} 1316:that would act as a catalyst to destroy 1138:{\displaystyle {\ce {H2O -> H + OH}}} 558:In 2007 a quantum model was proposed by 2351: 1821: 297:capture other wavelengths as well. The 2849: 2436:Unimolecular nucleophilic substitution 2362: 984:is a key reaction in the formation of 2446:Bimolecular nucleophilic substitution 2391: 2307: 2236:Journal of Physical Chemistry Letters 2115:A. G. Dijkstra; Y. Tanimura (2012). 1849: 1641:Ordovician-Silurian extinction event 1631:could destroy up to half of Earth's 1252:adding citations to reliable sources 1219: 2499:Electrophilic aromatic substitution 1893:; Fleming, Graham R. (2007-04-12). 1754:The Journal of Physical Chemistry A 1404:{\displaystyle {\ce {O2 -> 2O}}} 1361:{\displaystyle {\ce {N2 -> 2N}}} 908:The hydroxyl radical is central to 13: 2466:Nucleophilic internal substitution 2456:Nucleophilic aromatic substitution 2313: 1949: 1323:The atmospheric photodissociation 532: 14: 2888: 1882: 553: 1224: 378:across the membrane that drives 340:The water-splitting reaction is 2622:Lindemann–Hinshelwood mechanism 2373: 2329: 2318: 2254: 2226: 2201: 2149: 2108: 2061: 1039: 792: 386:(ATP). The electrons reach the 2671:Outer sphere electron transfer 2666:Inner sphere electron transfer 2476:Nucleophilic acyl substitution 2002: 1967: 1796: 1741: 1717: 1538: 1485: 1433: 1390: 1347: 957: 875: 852: 840: 787: 775: 750: 465: 159: 1: 2836:Diffusion-controlled reaction 2335: 2142:10.1088/1367-2630/14/7/073027 1710: 1651:Multiple-photon dissociation 1216:Atmospheric gamma-ray bursts 683:Photolysis in the atmosphere 677:ultrafast laser spectroscopy 588:Photoinduced proton transfer 100:Photolysis in photosynthesis 7: 2491:Electrophilic substitutions 2368: 2357: 2346: 2324: 2086:10.1021/acs.jpclett.6b00534 1683: 10: 2893: 2801:Energy profile (chemistry) 2763:More O'Ferrall–Jencks plot 2428:Nucleophilic substitutions 2379: 1075:is the energy of a single 582:electronic energy transfer 335:biological oxidizing agent 104:Photolysis is part of the 18: 2831:Michaelis–Menten kinetics 2771: 2705: 2679: 2635: 2599: 2551: 2512: 2489: 2426: 1831:; Reece, Jane B. (2005). 893: 319:resonance energy transfer 2857:Concepts in astrophysics 2758:Potential energy surface 2637:Electron/Proton transfer 2522:Unimolecular elimination 2209:"Scholes Group Research" 1774:10.1021/acs.jpca.3c03975 888: 882: 541:{\displaystyle \Delta G} 523:The free energy change ( 330:electron transport chain 106:light-dependent reaction 78:electromagnetic spectrum 62:vacuum ultraviolet (VUV) 2806:Transition state theory 2607:Intramolecular reaction 2533:Bimolecular elimination 923:Secondly the reaction: 599:to form the photobase. 346:oxygen-evolving complex 287:photosynthetic pigments 2600:Unimolecular reactions 2561:Electrophilic addition 1891:Blankenship, Robert E. 1655:Single photons in the 1579: 1506: 1454: 1405: 1362: 1206: 1139: 975: 899: 811: 656: 542: 514: 384:adenosine triphosphate 273:Energy transfer models 220:Purple sulfur bacteria 205: 94:coordination complexes 2791:Rate-determining step 2723:Reactive intermediate 2581:Free-radical addition 2571:Nucleophilic addition 2514:Elimination reactions 1676:, a technique called 1580: 1507: 1455: 1406: 1363: 1207: 1140: 991:The formation of the 976: 910:atmospheric chemistry 900: 812: 657: 575:University of Toronto 543: 515: 206: 2786:Equilibrium constant 1674:black-body radiation 1666:carbon dioxide laser 1596:(consumes up to 400 1517: 1465: 1416: 1373: 1330: 1248:improve this section 1150: 1090: 930: 912:as it initiates the 831: 723: 606: 529: 412: 380:photophosphorylation 279:semi-classical model 127: 2877:Reaction mechanisms 2796:Reaction coordinate 2728:Radical (chemistry) 2713:Elementary reaction 2656:Grotthuss mechanism 2420:reaction mechanisms 2286:10.1038/nature08811 2278:2010Natur.463..644C 2171:2015JChPh.143f5101M 2133:2012NJPh...14g3027D 2074:J. Phys. Chem. Lett 1982:(45): 12865–12872. 1919:10.1038/nature05678 1911:2007Natur.446..782E 1766:2023JPCA..127.5767V 1670:free-electron laser 1573: 1557: 1537: 1481: 1432: 1389: 1346: 1292:observable universe 1194: 1179: 1166: 1122: 1106: 1062:interstellar clouds 1054:interstellar medium 946: 871: 766: 739: 701:peroxyacyl nitrates 625: 508: 432: 390:reaction center of 143: 21:Photodisintegration 2862:Chemical reactions 2821:Arrhenius equation 2591:Oxidative addition 2553:Addition reactions 2314:Podsiadlowski 2004 1729:www.britannica.com 1575: 1561: 1545: 1525: 1502: 1469: 1450: 1420: 1401: 1377: 1358: 1334: 1202: 1182: 1154: 1135: 1094: 986:tropospheric ozone 971: 934: 895: 859: 807: 754: 727: 706:Photochemical smog 652: 538: 510: 496: 420: 295:accessory pigments 201: 131: 39:photofragmentation 35:photodecomposition 2844: 2843: 2816:Activated complex 2811:Activation energy 2773:Chemical kinetics 2718:Reaction dynamics 2617:Photodissociation 2249:10.1021/jz900062f 2179:10.1063/1.4928068 2037:10.1021/jp304649c 2021:(25): 7449–7454. 1988:10.1021/jp510074q 1905:(7137): 782–786. 1860:Biology of Plants 1829:Campbell, Neil A. 1760:(28): 5767–5771. 1564: 1548: 1528: 1500: 1494: 1484: 1472: 1448: 1438: 1423: 1399: 1380: 1356: 1337: 1284: 1283: 1276: 1200: 1185: 1180: 1157: 1133: 1127: 1123: 1109: 1097: 969: 963: 937: 889: 887: 886: 885: 874: 862: 851: 837: 805: 786: 772: 757: 730: 644: 631: 626: 612: 499: 486: 475: 463: 446: 435: 423: 289:in the organism. 277:The conventional 199: 187: 170: 157: 146: 134: 51:chemical compound 43:chemical reaction 27:Photodissociation 2884: 2748:Collision theory 2697:Matrix isolation 2651:Harpoon reaction 2528:E1cB-elimination 2412: 2405: 2398: 2389: 2388: 2382: 2377: 2371: 2366: 2360: 2355: 2349: 2344: 2338: 2333: 2327: 2322: 2316: 2311: 2305: 2304: 2258: 2252: 2251: 2230: 2224: 2223: 2221: 2220: 2211:. Archived from 2205: 2199: 2198: 2153: 2147: 2146: 2144: 2112: 2106: 2105: 2080:(9): 1653–1660. 2065: 2059: 2058: 2048: 2030: 2015:J. Phys. Chem. B 2006: 2000: 1999: 1976:J. Phys. Chem. B 1971: 1965: 1964: 1953: 1947: 1946: 1886: 1880: 1879: 1863: 1853: 1847: 1846: 1825: 1819: 1818: 1816: 1815: 1800: 1794: 1793: 1745: 1739: 1738: 1736: 1735: 1721: 1690:Flash photolysis 1584: 1582: 1581: 1576: 1574: 1572: 1569: 1562: 1556: 1553: 1546: 1536: 1533: 1526: 1511: 1509: 1508: 1503: 1501: 1498: 1492: 1482: 1480: 1477: 1470: 1459: 1457: 1456: 1451: 1449: 1446: 1436: 1431: 1428: 1421: 1410: 1408: 1407: 1402: 1400: 1397: 1388: 1385: 1378: 1367: 1365: 1364: 1359: 1357: 1354: 1345: 1342: 1335: 1279: 1272: 1268: 1265: 1259: 1228: 1220: 1211: 1209: 1208: 1203: 1201: 1198: 1193: 1190: 1183: 1181: 1168: 1165: 1162: 1155: 1144: 1142: 1141: 1136: 1134: 1131: 1125: 1124: 1111: 1107: 1105: 1102: 1095: 1082: 1074: 1056:, molecules and 1027: 1016: 1009: 980: 978: 977: 972: 970: 967: 961: 947: 945: 942: 935: 904: 902: 901: 896: 894: 883: 872: 870: 867: 860: 855: 849: 848: 847: 835: 822:hydroxyl radical 816: 814: 813: 808: 806: 803: 791: 790: 784: 783: 782: 770: 765: 762: 755: 740: 738: 735: 728: 661: 659: 658: 653: 651: 650: 649: 642: 637: 636: 629: 627: 614: 610: 579:quantum-coherent 549: 547: 545: 544: 539: 519: 517: 516: 511: 509: 507: 504: 497: 492: 491: 484: 473: 464: 461: 453: 452: 451: 444: 433: 431: 428: 421: 400: 370: 252: 241: 233: 224:hydrogen sulfide 210: 208: 207: 202: 200: 197: 193: 192: 185: 176: 175: 168: 158: 155: 147: 144: 142: 139: 132: 66:ultraviolet (UV) 2892: 2891: 2887: 2886: 2885: 2883: 2882: 2881: 2847: 2846: 2845: 2840: 2826:Eyring equation 2767: 2738:Stereochemistry 2701: 2687:Solvent effects 2675: 2631: 2595: 2576: 2566: 2547: 2542: 2508: 2504: 2485: 2481: 2471: 2461: 2451: 2441: 2422: 2416: 2386: 2385: 2378: 2374: 2367: 2363: 2356: 2352: 2345: 2341: 2334: 2330: 2323: 2319: 2312: 2308: 2272:(7281): 644–7, 2259: 2255: 2231: 2227: 2218: 2216: 2207: 2206: 2202: 2154: 2150: 2113: 2109: 2066: 2062: 2007: 2003: 1972: 1968: 1955: 1954: 1950: 1887: 1883: 1876: 1854: 1850: 1843: 1826: 1822: 1813: 1811: 1802: 1801: 1797: 1746: 1742: 1733: 1731: 1723: 1722: 1718: 1713: 1686: 1653: 1620: 1613: 1606: 1595: 1570: 1565: 1554: 1549: 1534: 1529: 1520: 1518: 1515: 1514: 1478: 1473: 1468: 1466: 1463: 1462: 1429: 1424: 1419: 1417: 1414: 1413: 1386: 1381: 1376: 1374: 1371: 1370: 1343: 1338: 1333: 1331: 1328: 1327: 1288:gamma-ray burst 1280: 1269: 1263: 1260: 1245: 1229: 1218: 1191: 1186: 1167: 1163: 1158: 1153: 1151: 1148: 1147: 1110: 1103: 1098: 1093: 1091: 1088: 1087: 1080: 1072: 1042: 1026: 1022: 1015: 1011: 1008: 1004: 960: 943: 938: 933: 931: 928: 927: 868: 863: 843: 839: 838: 834: 832: 829: 828: 802: 778: 774: 773: 763: 758: 753: 736: 731: 726: 724: 721: 720: 697:nitrogen oxides 685: 645: 641: 632: 628: 613: 609: 607: 604: 603: 597:proton transfer 590: 556: 530: 527: 526: 524: 505: 500: 487: 483: 468: 460: 447: 443: 429: 424: 415: 413: 410: 409: 398: 376:proton gradient 369: 365: 275: 251: 247: 244:diatomic oxygen 239: 235: 231: 227: 188: 184: 171: 167: 162: 154: 140: 135: 130: 128: 125: 124: 102: 76:regions of the 24: 17: 12: 11: 5: 2890: 2880: 2879: 2874: 2872:Photosynthesis 2869: 2867:Photochemistry 2864: 2859: 2842: 2841: 2839: 2838: 2833: 2828: 2823: 2818: 2813: 2808: 2803: 2798: 2793: 2788: 2783: 2777: 2775: 2769: 2768: 2766: 2765: 2760: 2755: 2750: 2745: 2740: 2735: 2730: 2725: 2720: 2715: 2709: 2707: 2706:Related topics 2703: 2702: 2700: 2699: 2694: 2689: 2683: 2681: 2680:Medium effects 2677: 2676: 2674: 2673: 2668: 2663: 2658: 2653: 2648: 2642: 2640: 2633: 2632: 2630: 2629: 2624: 2619: 2614: 2609: 2603: 2601: 2597: 2596: 2594: 2593: 2588: 2583: 2578: 2574: 2568: 2564: 2557: 2555: 2549: 2548: 2546: 2545: 2540: 2536: 2530: 2525: 2518: 2516: 2510: 2509: 2507: 2506: 2502: 2495: 2493: 2487: 2486: 2484: 2483: 2479: 2473: 2469: 2463: 2459: 2453: 2449: 2443: 2439: 2432: 2430: 2424: 2423: 2415: 2414: 2407: 2400: 2392: 2384: 2383: 2372: 2361: 2350: 2339: 2328: 2317: 2306: 2253: 2225: 2200: 2148: 2107: 2060: 2001: 1966: 1948: 1881: 1874: 1848: 1841: 1820: 1795: 1740: 1715: 1714: 1712: 1709: 1708: 1707: 1702: 1700:Photochemistry 1697: 1695:Photocatalysis 1692: 1685: 1682: 1652: 1649: 1622: 1621: 1618: 1615: 1611: 1608: 1604: 1601: 1593: 1586: 1585: 1568: 1560: 1552: 1543: 1540: 1532: 1523: 1512: 1497: 1490: 1487: 1476: 1460: 1444: 1441: 1435: 1427: 1411: 1395: 1392: 1384: 1368: 1352: 1349: 1341: 1282: 1281: 1232: 1230: 1223: 1217: 1214: 1213: 1212: 1197: 1189: 1178: 1175: 1171: 1161: 1145: 1130: 1121: 1118: 1114: 1101: 1041: 1038: 1024: 1013: 1006: 982: 981: 966: 959: 956: 953: 950: 941: 906: 905: 892: 880: 877: 866: 858: 854: 846: 842: 818: 817: 801: 798: 795: 789: 781: 777: 769: 761: 752: 749: 746: 743: 734: 684: 681: 663: 662: 648: 640: 635: 624: 621: 617: 589: 586: 560:Graham Fleming 555: 554:Quantum models 552: 537: 534: 521: 520: 503: 495: 490: 481: 478: 471: 467: 459: 456: 450: 441: 438: 427: 418: 367: 315:photosystem II 274: 271: 249: 237: 229: 212: 211: 196: 191: 182: 179: 174: 165: 161: 153: 150: 138: 114:photosynthesis 101: 98: 82:covalent bonds 15: 9: 6: 4: 3: 2: 2889: 2878: 2875: 2873: 2870: 2868: 2865: 2863: 2860: 2858: 2855: 2854: 2852: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2814: 2812: 2809: 2807: 2804: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2781:Rate equation 2779: 2778: 2776: 2774: 2770: 2764: 2761: 2759: 2756: 2754: 2753:Arrow pushing 2751: 2749: 2746: 2744: 2741: 2739: 2736: 2734: 2731: 2729: 2726: 2724: 2721: 2719: 2716: 2714: 2711: 2710: 2708: 2704: 2698: 2695: 2693: 2690: 2688: 2685: 2684: 2682: 2678: 2672: 2669: 2667: 2664: 2662: 2661:Marcus theory 2659: 2657: 2654: 2652: 2649: 2647: 2644: 2643: 2641: 2638: 2634: 2628: 2625: 2623: 2620: 2618: 2615: 2613: 2612:Isomerization 2610: 2608: 2605: 2604: 2602: 2598: 2592: 2589: 2587: 2586:Cycloaddition 2584: 2582: 2579: 2572: 2569: 2562: 2559: 2558: 2556: 2554: 2550: 2544: 2537: 2534: 2531: 2529: 2526: 2523: 2520: 2519: 2517: 2515: 2511: 2500: 2497: 2496: 2494: 2492: 2488: 2477: 2474: 2467: 2464: 2457: 2454: 2447: 2444: 2437: 2434: 2433: 2431: 2429: 2425: 2421: 2413: 2408: 2406: 2401: 2399: 2394: 2393: 2390: 2381: 2376: 2370: 2365: 2359: 2354: 2348: 2343: 2337: 2336:Thorsett 1995 2332: 2326: 2321: 2315: 2310: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2266: 2257: 2250: 2246: 2242: 2238: 2237: 2229: 2215:on 2018-09-30 2214: 2210: 2204: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2165:(6): 065101. 2164: 2160: 2159:J. Chem. Phys 2152: 2143: 2138: 2134: 2130: 2127:(7): 073027. 2126: 2122: 2118: 2111: 2103: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2064: 2056: 2052: 2047: 2042: 2038: 2034: 2029: 2024: 2020: 2016: 2012: 2005: 1997: 1993: 1989: 1985: 1981: 1977: 1970: 1963:. 2007-04-12. 1962: 1958: 1952: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1885: 1877: 1875:0-7167-1007-2 1871: 1867: 1862: 1861: 1852: 1844: 1842:0-8053-7171-0 1838: 1834: 1830: 1824: 1809: 1805: 1799: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1744: 1730: 1726: 1720: 1716: 1706: 1705:Photohydrogen 1703: 1701: 1698: 1696: 1693: 1691: 1688: 1687: 1681: 1679: 1675: 1671: 1667: 1663: 1658: 1648: 1644: 1642: 1638: 1634: 1630: 1625: 1624:(incomplete) 1616: 1609: 1602: 1599: 1591: 1590: 1589: 1566: 1558: 1550: 1541: 1530: 1521: 1513: 1495: 1488: 1474: 1461: 1442: 1439: 1425: 1412: 1393: 1382: 1369: 1350: 1339: 1326: 1325: 1324: 1321: 1319: 1315: 1312:, generating 1311: 1307: 1302: 1300: 1295: 1293: 1289: 1278: 1275: 1267: 1257: 1253: 1249: 1243: 1242: 1238: 1233:This section 1231: 1227: 1222: 1221: 1195: 1187: 1176: 1173: 1169: 1159: 1146: 1128: 1119: 1116: 1112: 1099: 1086: 1085: 1084: 1079:of frequency 1078: 1069: 1067: 1063: 1059: 1058:free radicals 1055: 1051: 1047: 1037: 1035: 1034:free radicals 1031: 1020: 1002: 998: 994: 989: 987: 964: 954: 951: 948: 939: 926: 925: 924: 921: 919: 915: 911: 890: 878: 864: 856: 844: 827: 826: 825: 823: 799: 796: 793: 779: 767: 759: 747: 744: 741: 732: 719: 718: 717: 716:are firstly: 715: 710: 708: 707: 702: 698: 694: 690: 680: 679:experiments. 678: 674: 670: 668: 646: 638: 633: 622: 619: 615: 602: 601: 600: 598: 594: 585: 583: 580: 576: 571: 567: 565: 561: 551: 535: 501: 493: 488: 479: 476: 469: 462: photons 457: 454: 448: 439: 436: 425: 416: 408: 407: 406: 404: 397: 393: 392:photosystem I 389: 385: 381: 377: 372: 362: 358: 354: 351: 347: 343: 338: 336: 331: 327: 322: 320: 316: 312: 308: 304: 300: 296: 292: 288: 283: 280: 270: 268: 264: 260: 259:cyanobacteria 256: 245: 225: 221: 217: 194: 189: 180: 177: 172: 163: 156: photons 151: 148: 136: 123: 122: 121: 119: 115: 111: 110:Hill reaction 107: 97: 95: 91: 87: 83: 79: 75: 74:infrared (IR) 71: 67: 63: 58: 56: 52: 48: 44: 40: 36: 32: 28: 22: 2733:Molecularity 2616: 2375: 2364: 2353: 2342: 2331: 2320: 2309: 2269: 2263: 2256: 2240: 2234: 2228: 2217:. Retrieved 2213:the original 2203: 2162: 2158: 2151: 2124: 2120: 2110: 2077: 2073: 2063: 2018: 2014: 2004: 1979: 1975: 1969: 1960: 1951: 1902: 1898: 1884: 1859: 1851: 1832: 1823: 1812:. Retrieved 1810:. 2021-11-03 1807: 1798: 1757: 1753: 1743: 1732:. Retrieved 1728: 1719: 1654: 1645: 1626: 1623: 1588:would yield 1587: 1322: 1314:nitric oxide 1303: 1296: 1285: 1270: 1261: 1246:Please help 1234: 1070: 1068:are formed. 1046:astrophysics 1043: 1040:Astrophysics 997:stratosphere 990: 983: 922: 907: 819: 711: 704: 693:hydrocarbons 686: 671: 664: 591: 572: 568: 557: 522: 373: 339: 323: 291:Chlorophylls 284: 276: 269:and plants. 263:chloroplasts 213: 103: 59: 38: 34: 30: 26: 25: 2692:Cage effect 2627:RRKM theory 2543:elimination 2369:Stanek 2006 2358:Wanjek 2005 2347:Melott 2004 2325:Guetta 2006 2121:New J. Phys 1633:ozone layer 1264:August 2014 993:ozone layer 714:troposphere 307:chlorophyll 299:phycobilins 267:green algae 80:. To break 2851:Categories 2380:Ejzak 2007 2243:(1): 2–8, 2219:2010-03-23 1814:2024-05-24 1734:2024-05-24 1711:References 1637:food chain 1629:kiloparsec 1600:molecules) 1017:to create 689:pollutants 673:Photoacids 593:Photoacids 564:efficiency 309:molecule ( 255:thylakoids 31:photolysis 2743:Catalysis 2639:reactions 2028:1201.6325 1927:0028-0836 1782:1089-5639 1614:(nominal) 1607:(nominal) 1539:⟶ 1486:⟶ 1434:⟶ 1391:⟶ 1348:⟶ 1306:biosphere 1299:Milky Way 1235:does not 1177:ν 1120:ν 1064:in which 958:⟶ 955:ν 918:detergent 914:oxidation 891:⋅ 876:⟶ 794:λ 751:⟶ 748:ν 667:photoacid 634:− 623:ν 533:Δ 466:⟶ 350:manganese 342:catalyzed 326:oxidation 173:− 160:⟶ 47:molecules 45:in which 2294:20130647 2195:26277167 2102:26355154 2094:27082631 2055:22642682 1996:25321492 1961:phys.org 1943:13865546 1935:17429397 1790:37469270 1684:See also 1680:(BIRD). 1657:infrared 1310:nitrogen 1170:→ 1113:→ 804: nm 691:such as 616:→ 396:coenzyme 361:chloride 261:and the 222:oxidize 216:organism 2302:4369439 2274:Bibcode 2187:1407273 2167:Bibcode 2129:Bibcode 2046:3789255 1907:Bibcode 1866:115–127 1833:Biology 1762:Bibcode 1668:, or a 1256:removed 1241:sources 1052:of the 669:again. 548:⁠ 525:⁠ 357:calcium 355:, plus 344:by the 303:exciton 118:photons 90:ligands 70:visible 55:photons 2418:Basic 2300:  2292:  2265:Nature 2193:  2185:  2100:  2092:  2053:  2043:  1994:  1941:  1933:  1925:  1899:Nature 1872:  1839:  1788:  1780:  1077:photon 1050:vacuum 703:. See 86:photon 72:, and 2646:Redox 2482:Acyl) 2298:S2CID 2098:S2CID 2023:arXiv 1939:S2CID 1662:IRMPD 1598:ozone 1318:ozone 1066:stars 1019:ozone 1001:atoms 474:NADPH 403:NADPH 92:from 49:of a 41:is a 37:, or 2535:(E2) 2524:(E1) 2290:PMID 2191:PMID 2183:OSTI 2090:PMID 2051:PMID 1992:PMID 1931:PMID 1923:ISSN 1870:ISBN 1837:ISBN 1786:PMID 1778:ISSN 1239:any 1237:cite 1030:CFCs 797:< 695:and 445:NADP 399:NADP 388:P700 359:and 353:ions 317:via 311:P680 120:as: 2505:Ar) 2462:Ar) 2282:doi 2270:463 2245:doi 2175:doi 2163:143 2137:doi 2082:doi 2041:PMC 2033:doi 2019:116 1984:doi 1980:118 1915:doi 1903:446 1770:doi 1758:127 1250:by 1083:): 1044:In 800:320 265:of 257:of 112:of 2853:: 2573:(A 2563:(A 2501:(S 2478:(S 2472:i) 2468:(S 2458:(S 2452:2) 2448:(S 2442:1) 2438:(S 2296:, 2288:, 2280:, 2268:, 2239:, 2189:. 2181:. 2173:. 2161:. 2135:. 2125:14 2123:. 2119:. 2096:. 2088:. 2076:. 2072:. 2049:. 2039:. 2031:. 2017:. 2013:. 1990:. 1978:. 1959:. 1937:. 1929:. 1921:. 1913:. 1901:. 1897:. 1868:. 1806:. 1784:. 1776:. 1768:. 1756:. 1752:. 1727:. 1617:CO 1610:CH 1603:CH 1592:NO 1527:NH 1422:CO 1320:. 1184:CH 1156:CH 1132:OH 1073:hν 1036:. 1021:, 988:. 962:NO 936:NO 920:. 884:OH 824:: 709:. 611:AH 566:. 218:. 84:, 68:, 64:, 33:, 29:, 2577:) 2575:N 2567:) 2565:E 2541:i 2539:E 2503:E 2480:N 2470:N 2460:N 2450:N 2440:N 2411:e 2404:t 2397:v 2284:: 2276:: 2247:: 2241:1 2222:. 2197:. 2177:: 2169:: 2145:. 2139:: 2131:: 2104:. 2084:: 2078:7 2057:. 2035:: 2025:: 1998:. 1986:: 1945:. 1917:: 1909:: 1878:. 1845:. 1817:. 1792:. 1772:: 1764:: 1737:. 1619:2 1612:4 1605:2 1594:2 1567:2 1563:N 1559:+ 1551:2 1547:H 1542:3 1531:3 1522:2 1499:O 1496:+ 1493:H 1489:2 1483:O 1475:2 1471:H 1447:O 1443:2 1440:+ 1437:C 1426:2 1398:O 1394:2 1383:2 1379:O 1355:N 1351:2 1340:2 1336:N 1277:) 1271:( 1266:) 1262:( 1258:. 1244:. 1199:H 1196:+ 1188:3 1174:h 1160:4 1129:+ 1126:H 1117:h 1108:O 1100:2 1096:H 1081:ν 1025:3 1023:O 1014:2 1012:O 1007:2 1005:O 1003:( 968:O 965:+ 952:h 949:+ 940:2 879:2 873:O 865:2 861:H 857:+ 853:) 850:D 845:1 841:( 836:O 788:) 785:D 780:1 776:( 771:O 768:+ 760:2 756:O 745:h 742:+ 733:3 729:O 647:+ 643:H 639:+ 630:A 620:h 536:G 502:2 498:O 494:+ 489:+ 485:H 480:2 477:+ 470:2 458:8 455:+ 449:+ 440:2 437:+ 434:O 426:2 422:H 417:2 368:2 366:O 364:( 250:2 248:O 246:( 240:O 238:2 236:H 232:S 230:2 228:H 226:( 198:A 195:+ 190:+ 186:H 181:2 178:+ 169:e 164:2 152:2 149:+ 145:A 137:2 133:H 23:.

Index

Photodisintegration
chemical reaction
molecules
chemical compound
photons
vacuum ultraviolet (VUV)
ultraviolet (UV)
visible
infrared (IR)
electromagnetic spectrum
covalent bonds
photon
ligands
coordination complexes
light-dependent reaction
Hill reaction
photosynthesis
photons
organism
Purple sulfur bacteria
hydrogen sulfide
diatomic oxygen
thylakoids
cyanobacteria
chloroplasts
green algae
semi-classical model
photosynthetic pigments
Chlorophylls
accessory pigments

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑