Knowledge

Photoelectric effect

Source 📝

1627: 484: 347: 129: 1932: 1770: 1348:, where a spark would be seen upon detection of electromagnetic waves. He placed the apparatus in a darkened box to see the spark better. However, he noticed that the maximum spark length was reduced when inside the box. A glass panel placed between the source of electromagnetic waves and the receiver absorbed ultraviolet radiation that assisted the electrons in jumping across the gap. When removed, the spark length would increase. He observed no decrease in spark length when he replaced the glass with quartz, as 1421:. These particles later became known as the electrons. Thomson enclosed a metal plate (a cathode) in a vacuum tube, and exposed it to high-frequency radiation. It was thought that the oscillating electromagnetic fields caused the atoms' field to resonate and, after reaching a certain amplitude, caused subatomic corpuscles to be emitted, and current to be detected. The amount of this current varied with the intensity and color of the radiation. Larger radiation intensity or frequency would produce more current. 1328: 269:, it is likely to be ejected. If the photon energy is too low, the electron is unable to escape the material. Since an increase in the intensity of low-frequency light will only increase the number of low-energy photons, this change in intensity will not create any single photon with enough energy to dislodge an electron. Moreover, the energy of the emitted electrons will not depend on the intensity of the incoming light of a given frequency, but only on the energy of the individual photons. 1565: 6457: 5292: 32: 5304: 1371:. He allowed ultraviolet light to fall on a freshly cleaned zinc plate and observed that the zinc plate became uncharged if initially negatively charged, positively charged if initially uncharged, and more positively charged if initially positively charged. From these observations he concluded that some negatively charged particles were emitted by the zinc plate when exposed to ultraviolet light. 1465:
experiments needed to be done on freshly cut metal so that the pure metal was observed, but it oxidized in a matter of minutes even in the partial vacuums he used. The current emitted by the surface was determined by the light's intensity, or brightness: doubling the intensity of the light doubled the number of electrons emitted from the surface.
313:
energy barrier to photoemission is usually increased by nonconductive oxide layers on metal surfaces, so most practical experiments and devices based on the photoelectric effect use clean metal surfaces in evacuated tubes. Vacuum also helps observing the electrons since it prevents gases from impeding their flow between the electrodes.
6001: 1335:
demonstrating the photoelectric effect. When the electroscope disk is negatively charged with excess electrons, the gold leaves mutually repel. If high-energy light (such as ultraviolet) is then shone on the disk, electrons are emitted by the photoelectric effect and the leaf repulsion ceases. But if
312:
Even though photoemission can occur from any material, it is most readily observed from metals and other conductors. This is because the process produces a charge imbalance which, if not neutralized by current flow, results in the increasing potential barrier until the emission completely ceases. The
1653:
light of a known energy and measuring the kinetic energies of the photoelectrons. The distribution of electron energies is valuable for studying quantum properties of these systems. It can also be used to determine the elemental composition of the samples. For solids, the kinetic energy and emission
1718:
model. Some materials such as gallium arsenide have an effective electron affinity that is below the level of the conduction band. In these materials, electrons that move to the conduction band all have sufficient energy to be emitted from the material, so the film that absorbs photons can be quite
1544:
The photoelectric effect helped to propel the then-emerging concept of wave–particle duality in the nature of light. Light simultaneously possesses the characteristics of both waves and particles, each being manifested according to the circumstances. The effect was impossible to understand in terms
288:
as a free particle. Because electrons in a material occupy many different quantum states with different binding energies, and because they can sustain energy losses on their way out of the material, the emitted electrons will have a range of kinetic energies. The electrons from the highest occupied
1390:
with results reported in six publications. Stoletov invented a new experimental setup which was more suitable for a quantitative analysis of the photoeffect. He discovered a direct proportionality between the intensity of light and the induced photoelectric current (the first law of photoeffect or
1576:
inside the envelope. The photo cathode contains combinations of materials such as cesium, rubidium, and antimony specially selected to provide a low work function, so when illuminated even by very low levels of light, the photocathode readily releases electrons. By means of a series of electrodes
1801:
is also more likely. Compton scattering and pair production are examples of two other competing mechanisms. Even if the photoelectric effect is the favoured reaction for a particular interaction of a single photon with a bound electron, the result is also subject to quantum statistics and is not
1436:
when ultraviolet radiation falls on one of them. As soon as ultraviolet radiation is stopped, the current also stops. This initiated the concept of photoelectric emission. The discovery of the ionization of gases by ultraviolet light was made by Philipp Lenard in 1900. As the effect was produced
1105:
Electron propagation to the surface in which some electrons may be scattered because of interactions with other constituents of the solid. Electrons that originate deeper in the solid are much more likely to suffer collisions and emerge with altered energy and momentum. Their mean-free path is a
1081:
The electronic properties of ordered, crystalline solids are determined by the distribution of the electronic states with respect to energy and momentum—the electronic band structure of the solid. Theoretical models of photoemission from solids show that this distribution is, for the most part,
1464:
Lenard observed the variation in electron energy with light frequency using a powerful electric arc lamp which enabled him to investigate large changes in intensity. However, Lenard's results were qualitative rather than quantitative because of the difficulty in performing the experiments: the
1484:
of energy. In 1905, Albert Einstein published a paper advancing the hypothesis that light energy is carried in discrete quantized packets to explain experimental data from the photoelectric effect. Einstein theorized that the energy in each quantum of light was equal to the frequency of light
381:
increases with an increase in the positive voltage, as more and more electrons are directed onto the electrode. When no additional photoelectrons can be collected, the photoelectric current attains a saturation value. This current can only increase with the increase of the intensity of light.
1501:
for "his discovery of the law of the photoelectric effect", and Millikan was awarded the Nobel Prize in 1923 for "his work on the elementary charge of electricity and on the photoelectric effect". In quantum perturbation theory of atoms and solids acted upon by electromagnetic radiation, the
385:
An increasing negative voltage prevents all but the highest-energy electrons from reaching the collector. When no current is observed through the tube, the negative voltage has reached the value that is high enough to slow down and stop the most energetic photoelectrons of kinetic energy
1731:
exposed to sunlight to develop a positive charge. This can be a major problem, as other parts of the spacecraft are in shadow which will result in the spacecraft developing a negative charge from nearby plasmas. The imbalance can discharge through delicate electrical components. The
1665:
measurements are usually performed in a high-vacuum environment, because the electrons would be scattered by gas molecules if they were present. However, some companies are now selling products that allow photoemission in air. The light source can be a laser, a discharge tube, or a
225:(eV) light quanta, corresponding to short-wavelength visible or ultraviolet light. In extreme cases, emissions are induced with photons approaching zero energy, like in systems with negative electron affinity and the emission from excited states, or a few hundred keV photons for 1468:
Initial investigation of the photoelectric effect in gasses by Lenard were followed up by J. J. Thomson and then more decisively by Frederic Palmer Jr. The gas photoemission was studied and showed very different characteristics than those at first attributed to it by Lenard.
956:
rise linearly with the frequency, and have no dependence on the number of photons and the intensity of the impinging monochromatic light. Einstein's formula, however simple, explained all the phenomenology of the photoelectric effect, and had far-reaching consequences in the
470:
of crystalline solids. In materials without macroscopic order, the distribution of electrons tends to peak in the direction of polarization of linearly polarized light. The experimental technique that can measure these distributions to infer the material's properties is
453:
An increase in the intensity of the same monochromatic light (so long as the intensity is not too high), which is proportional to the number of photons impinging on the surface in a given time, increases the rate at which electrons are ejected—the photoelectric current
1532:
Einstein's work predicted that the energy of individual ejected electrons increases linearly with the frequency of the light. The precise relationship had not at that time been tested. By 1905 it was known that the energy of photoelectrons increases with increasing
1263:, investigated the effects produced by light on electrified bodies and developed the first practical photoelectric cells that could be used to measure the intensity of light. They arranged metals with respect to their power of discharging negative electricity: 198:—regardless of the light's intensity or duration of exposure. Because a low-frequency beam at a high intensity does not build up the energy required to produce photoelectrons, as would be the case if light's energy accumulated over time from a continuous wave, 1545:
of the classical wave description of light, as the energy of the emitted electrons did not depend on the intensity of the incident radiation. Classical theory predicted that the electrons would 'gather up' energy over a period of time, and then be emitted.
996:
higher than the electron's binding energy. The distribution of kinetic energies thus reflects the distribution of the binding energies of the electrons in the atomic, molecular or crystalline system: an electron emitted from the state at binding energy
458:
but the kinetic energy of the photoelectrons and the stopping voltage remain the same. For a given metal and frequency of incident radiation, the rate at which photoelectrons are ejected is directly proportional to the intensity of the incident light.
1901:
is a number which varies between 4 and 5. The photoelectric effect rapidly decreases in significance in the gamma-ray region of the spectrum, with increasing photon energy. It is also more likely from elements with high atomic number. Consequently,
1517:, and showed how they explained the blackbody radiation spectrum. His explanation in terms of absorption of discrete quanta of light agreed with experimental results. It explained why the energy of photoelectrons was not dependent on incident light 1502:
photoelectric effect is still commonly analyzed in terms of waves; the two approaches are equivalent because photon or wave absorption can only happen between quantized energy levels whose energy difference is that of the energy of photon.
1323:
the effects with ordinary light were too small to be measurable. The order of the metals for this effect was the same as in Volta's series for contact-electricity, the most electropositive metals giving the largest photo-electric effect.
1806:
of the interaction, σ. This has been found to be a function of the atomic number of the target atom and photon energy. In a crude approximation, for photon energies above the highest atomic binding energy, the cross section is given by:
1497:'s highly accurate measurements of the Planck constant from the photoelectric effect supported Einstein's model, even though a corpuscular theory of light was for Millikan, at the time, "quite unthinkable". Einstein was awarded the 1921 1760:
rover observed dust deposition on lunar rocks as high as about 28 cm. It is thought that the smallest particles are repelled kilometers from the surface and that the particles move in "fountains" as they charge and discharge.
1705:
coated screen, converting the electrons back into photons. Intensification of the signal is achieved either through acceleration of the electrons or by increasing the number of electrons through secondary emissions, such as with a
350:
Schematic of the experiment to demonstrate the photoelectric effect. Filtered, monochromatic light of a certain wavelength strikes the emitting electrode (E) inside a vacuum tube. The collector electrode (C) is biased to a voltage
1641:
Because the kinetic energy of the emitted electrons is exactly the energy of the incident photon minus the energy of the electron's binding within an atom, molecule or solid, the binding energy can be determined by shining a
1658:
in terms of the allowed binding energies and momenta of the electrons. Modern instruments for angle-resolved photoemission spectroscopy are capable of measuring these quantities with a precision better than 1 meV and 0.1°.
1117:, and suffers from the momentum loss in the direction perpendicular to the surface. Because the binding energy of electrons in solids is conveniently expressed with respect to the highest occupied state at the Fermi energy 446:. Increasing the frequency of the incident beam increases the maximum kinetic energy of the emitted photoelectrons, and the stopping voltage has to increase. The number of emitted electrons may also change because the 1884: 1637:) experiment. Helium discharge lamp shines ultraviolet light onto the sample in ultra-high vacuum. Hemispherical electron analyzer measures the distribution of ejected electrons with respect to energy and momentum. 1382:
played an important part in the phenomenon, and the emission was influenced by oxidation, humidity, and the degree of polishing of the surface. It was at the time unclear whether fatigue is absent in a vacuum.
1207:
treats the effect as a coherent process of photoexcitation into the final state of a finite crystal for which the wave function is free-electron-like outside of the crystal, but has a decaying envelope inside.
5565: 1752:. This manifests itself almost like an "atmosphere of dust", visible as a thin haze and blurring of distant features, and visible as a dim glow after the sun has set. This was first photographed by the 1378:, the researchers from the start showed the complexity of the phenomenon of photoelectric fatigue—the progressive diminution of the effect observed upon fresh metallic surfaces. According to Hallwachs, 954: 826: 1090:
Inner photoelectric effect in the bulk of the material that is a direct optical transition between an occupied and an unoccupied electronic state. This effect is subject to quantum-mechanical
194:
of the emitted electrons, with sufficiently dim light resulting in a delayed emission. The experimental results instead show that electrons are dislodged only when the light exceeds a certain
377:
A positive external voltage is used to direct the photoemitted electrons onto the collector. If the frequency and the intensity of the incident radiation are fixed, the photoelectric current
265:, which is proportional to the frequency of the light. In the photoemission process, when an electron within some material absorbs the energy of a photon and acquires more energy than its 1677:
is a typical electron energy analyzer. It uses an electric field between two hemispheres to change (disperse) the trajectories of incident electrons depending on their kinetic energies.
462:
The time lag between the incidence of radiation and the emission of a photoelectron is very small, less than 10 second. Angular distribution of the photoelectrons is highly dependent on
1710:. Sometimes a combination of both methods is used. Additional kinetic energy is required to move an electron out of the conduction band and into the vacuum level. This is known as the 5602: 1395:). He measured the dependence of the intensity of the photo electric current on the gas pressure, where he found the existence of an optimal gas pressure corresponding to a maximum 660: 1197: 2840: 1744:
Light from the Sun hitting lunar dust causes it to become positively charged from the photoelectric effect. The charged dust then repels itself and lifts off the surface of the
1071: 861: 764: 316:
As sunlight, due to atmosphere's absorption, does not provide much ultraviolet light, the light rich in ultraviolet rays used to be obtained by burning magnesium or from an
890:
is the threshold frequency for the given material. Above that frequency, the maximum kinetic energy of the photoelectrons as well as the stopping voltage in the experiment
466:(the direction of the electric field) of the incident light, as well as the emitting material's quantum properties such as atomic and molecular orbital symmetries and the 1144:, and the difference to the free-space (vacuum) energy is the work function of the surface, the kinetic energy of the electrons emitted from solids is usually written as 1406:
Many substances besides metals discharge negative electricity under the action of ultraviolet light. G. C. Schmidt and O. Knoblauch compiled a list of these substances.
973:. When light quanta deliver more than this amount of energy to an individual electron, the electron may be emitted into free space with excess (kinetic) energy that is 614: 888: 724: 1437:
across several centimeters of air and yielded a greater number of positive ions than negative, it was natural to interpret the phenomenon, as J. J. Thomson did, as a
237:. Study of the photoelectric effect led to important steps in understanding the quantum nature of light and electrons and influenced the formation of the concept of 1142: 1022: 994: 704: 587: 520: 1777:
value for the process on the right becomes larger than the cross section for the process on the left. For calcium (Z=20), Compton scattering starts to dominate at
540: 6068: 1344:
observed the photoelectric effect and reported on the production and reception of electromagnetic waves. The receiver in his apparatus consisted of a coil with a
1480:
suggested in his "On the Law of Distribution of Energy in the Normal Spectrum" paper that the energy carried by electromagnetic waves could only be released in
680: 560: 3660: 3415:
Thomson, J. J. (1907). "On the Ionisation of Gases by Ultra-Violet Light and on the evidence as to the Structure of Light afforded by its Electrical Effects".
2013: 1736:
created by the photoelectric effect is self-limiting, because a higher charged object does not give up its electrons as easily as a lower charged object does.
1489:. A photon above a threshold frequency has the required energy to eject a single electron, creating the observed effect. This was a step in the development of 6372: 1541:
of the light. However, the manner of the increase was not experimentally determined until 1914 when Millikan showed that Einstein's prediction was correct.
1521:. This was a theoretical leap, but the concept was strongly resisted at first because it contradicted the wave theory of light that followed naturally from 1073:. This distribution is one of the main characteristics of the quantum system, and can be used for further studies in quantum chemistry and quantum physics. 6397: 4252: 5983: 5619: 4243: 53: 46: 1113:
Electron escape through the surface barrier into free-electron-like states of the vacuum. In this step the electron loses energy in the amount of the
1432:
investigated the phenomenon of photoelectric emission in detail. Lenard observed that a current flows through an evacuated glass tube enclosing two
284:—or none at all. Part of the acquired energy is used to liberate the electron from its atomic binding, and the rest contributes to the electron's 4158: 3169: 3153: 3137: 3097: 566:. In the range of kinetic energies of the electrons that are removed from their varying atomic bindings by the absorption of a photon of energy 6008: 4167: 4273: 5197: 4874: 1813: 6325: 2613:
Damascelli, Andrea; Shen, Zhi-Xun; Hussain, Zahid (2003-04-17). "Angle-resolved photoemission spectroscopy of the cuprate superconductors".
769: 1203:
There are cases where the three-step model fails to explain peculiarities of the photoelectron intensity distributions. The more elaborate
4843: 4679: 1581:
to provide a readily detectable output current. Photomultipliers are still commonly used wherever low levels of light must be detected.
435:
The current-voltage curve is sigmoidal, but its exact shape depends on the experimental geometry and the electrode material properties.
6402: 5928: 4552: 4192: 2006: 5958: 5818: 5660: 1634: 1630: 1617: 1513:, named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light". The paper proposed a simple description of 472: 6442: 5723: 5670: 5014: 2062: 96: 355:
that can be set to attract the emitted electrons, when positive, or prevent any of them from reaching the collector when negative.
6331: 5342: 4981: 4976: 4310: 68: 893: 6186: 5582: 4721: 4214: 2341: 1674: 4261: 1249:
while testing the metal for its high resistance properties in conjunction with his work involving submarine telegraph cables.
5597: 3860: 3767: 3311: 2871: 2774: 2528: 2499: 1999: 75: 5680: 5675: 1453:
of individual emitted electrons was independent of the applied light intensity. This appeared to be at odds with Maxwell's
619: 5753: 5738: 5607: 5019: 1094:
for dipole transitions. The hole left behind the electron can give rise to secondary electron emission, or the so-called
3524:"Ueber das Gesetz der Energieverteilung im Normalspectrum (On the Law of Distribution of Energy in the Normal Spectrum)" 2150: 1336:
the light used has insufficient energy to stimulate electron emission, the leaves stay separated regardless of duration.
6392: 6215: 6057: 5898: 5035: 4387: 1626: 1367:
on the effect of light, and especially of ultraviolet light, on charged bodies. Hallwachs connected a zinc plate to an
82: 6076: 5953: 5163: 5098: 5040: 4537: 4122: 4068: 3787: 3746: 3726: 3705: 3681: 2849: 2757:
Vesselinka Petrova-Koch; Rudolf Hezel; Adolf Goetzberger (2009). "Milestones of Solar Conversion and Photovoltaics".
2597: 2396: 2134: 495:
proposed a theory of the photoelectric effect using a concept that light consists of tiny packets of energy known as
483: 281: 115: 1604:" used a screen charged by the photoelectric effect to transform an optical image into a scanned electronic signal. 729: 367:
transparent to ultraviolet light, an emitting electrode (E) exposed to the light, and a collector (C) whose voltage
6191: 5655: 5634: 5168: 4931: 4412: 2412:
Zhang, Q. (1996). "Intensity dependence of the photoelectric effect induced by a circularly polarized laser beam".
1621: 1577:(dynodes) at ever-higher potentials, these electrons are accelerated and substantially increased in number through 346: 3893: 6236: 5182: 4689: 4547: 4428: 2327: 1237:
was instrumental in showing a strong relationship between light and electronic properties of materials. In 1873,
64: 4365: 2669:
Sobota, Jonathan A.; He, Yu; Shen, Zhi-Xun (2021). "Angle-resolved photoemission studies of quantum materials".
6046: 5918: 5307: 5133: 4659: 4453: 4402: 6488: 5811: 5685: 5650: 4966: 3982:
Timothy J. Stubbs; Richard R. Vondrak; William M. Farrell (2006). "A dynamic fountain model for lunar dust".
3800:
Weaver, J. H.; Margaritondo, G. (1979). "Solid-State Photoelectron Spectroscopy with Synchrotron Radiation".
3648:
we understand the photoeffect as being the result of a classical field falling on a quantized atomic electron
2027: 3615: 1714:
of the photocathode and is another barrier to photoemission other than the forbidden band, explained by the
1098:, which may be visible even when the primary photoelectron does not leave the material. In molecular solids 6024: 5913: 5908: 5748: 5718: 5577: 5550: 5253: 5233: 4613: 4372: 958: 2981: 6181: 6140: 6084: 5933: 5858: 5728: 5695: 5665: 5629: 5335: 5143: 4618: 4303: 4282: 1147: 325: 3905: 3640: 682:
is the minimum energy required to remove an electron from the surface of the material. It is called the
6503: 6483: 6108: 5923: 5774: 5614: 5502: 5153: 5006: 4995: 4869: 4716: 4674: 4654: 3594: 3335: 2520: 1697:
tube cause the ejection of photoelectrons due to the photoelectric effect. These are accelerated by an
1662: 1613: 1505:
Albert Einstein's mathematical description of how the photoelectric effect was caused by absorption of
1027: 179: 833: 6518: 6016: 5963: 5943: 4633: 4567: 4542: 4382: 4205: 2047: 1655: 1417:. Thomson deduced that the ejected particles, which he called corpuscles, were of the same nature as 467: 359:
The classical setup to observe the photoelectric effect includes a light source, a set of filters to
250: 238: 152: 4141: 3095:
Stoletov, A. (1888). "Sur une sorte de courants electriques provoques par les rayons ultraviolets".
3080:
Stoletov. C. R. cvi. pp. 1149, 1593; cvii. p. 91; cviii. p. 1241; Physikalische Revue, Bd. i., 1892.
2081: 969:
Electrons that are bound in atoms, molecules and solids each occupy distinct states of well-defined
171:
to draw inferences about the properties of atoms, molecules and solids. The effect has found use in
6493: 6461: 6412: 6407: 6387: 6377: 6337: 6032: 5888: 5804: 5441: 5068: 5050: 4941: 4787: 4774: 4769: 4669: 4270: 2544:
Berglund, C. N.; Spicer, W. E. (1964-11-16). "Photoemission Studies of Copper and Silver: Theory".
1749: 1107: 186:
to electrons, which would then be emitted when they accumulate enough energy. An alteration in the
160: 89: 6513: 6498: 6417: 5158: 5078: 4956: 4926: 4684: 4664: 4593: 4479: 4474: 4443: 4438: 2042: 1803: 1774: 1494: 289:
states will have the highest kinetic energy. In metals, those electrons will be emitted from the
266: 42: 280:, in quantum systems all of the energy from one photon is absorbed—if the process is allowed by 6508: 6349: 6257: 6229: 6132: 5991: 5743: 5592: 5328: 5296: 5138: 5108: 5073: 5060: 4946: 4522: 4512: 4407: 4296: 4114: 4108: 4060: 1510: 1498: 592: 866: 709: 6422: 6382: 6222: 6171: 6166: 6092: 5903: 5883: 5873: 5703: 5572: 5380: 5113: 5103: 5083: 4936: 4759: 4562: 4360: 4084:
Davisson, C. M. (1965). "Interaction of gamma-radiation with matter". In Kai Siegbahn (ed.).
1667: 1526: 1256: 164: 4189: 3918:
Criswell D.R. (1973). "Horizon-Glow and the Motion of Lunar Dust". In R. J. L. Grard (ed.).
2866:. Science Museum, London, and National Museum of American History, Smithsonian Institution. 1386:
In the period from 1888 until 1891, a detailed analysis of the photoeffect was performed by
1102:
are excited in this step and may be visible as satellite lines in the final electron energy.
128: 6301: 6250: 6243: 6196: 5841: 5540: 5405: 5148: 5128: 5123: 5118: 5093: 5088: 4603: 4532: 4377: 4221: 4089: 3991: 3954: 3809: 3535: 3496: 3447: 3241: 3020: 2941: 2902: 2811: 2731: 2688: 2589: 2553: 2460: 2423: 2285: 2240: 2192: 2052: 1654:
angle distribution of the photoelectrons is measured for the complete determination of the
1473: 1454: 1120: 1000: 976: 689: 569: 502: 463: 159:. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in 525: 8: 5492: 5467: 5446: 4802: 4782: 4749: 4557: 4493: 4433: 4392: 3876: 3385: 3196: 1982: 1707: 1698: 1522: 1458: 1226: 246: 187: 20: 4093: 3995: 3958: 3813: 3539: 3500: 3451: 3245: 3024: 2945: 2906: 2815: 2735: 2692: 2557: 2464: 2427: 2289: 2244: 2196: 6264: 6148: 6124: 5968: 5851: 5846: 5733: 5512: 5477: 5410: 4838: 4797: 4744: 4517: 4397: 4149: 4017: 3833: 3465: 3366: 3329: 3212: 2893: 2780: 2704: 2678: 2648: 2622: 2183: 2126: 2032: 1963: 1956: 1931: 1790: 1733: 1578: 1387: 1364: 665: 545: 321: 277: 3401: 2369: 1773:
Plot of photon energies calculated for a given element (atomic number Z) at which the
329: 6355: 5781: 5713: 5708: 5535: 5507: 5400: 4864: 4859: 4792: 4588: 4527: 4458: 4448: 4215:
Concerning an Heuristic Point of View Toward the Emission and Transformation of Light
4118: 4064: 4054: 3981: 3856: 3825: 3783: 3763: 3742: 3722: 3701: 3677: 3317: 3307: 3036: 2957: 2867: 2845: 2784: 2770: 2708: 2652: 2640: 2593: 2524: 2495: 2435: 2414: 2392: 2130: 1802:
guaranteed. The probability of the photoelectric effect occurring is measured by the
1769: 1711: 1694: 1589: 1490: 1425: 1392: 1356: 1320: 1242: 1230: 487:
Diagram of the maximum kinetic energy as a function of the frequency of light on zinc
242: 168: 156: 4021: 3943:"Weak Dust Activity Near a Geologically Young Surface Revealed by Chang'E-3 Mission" 3837: 3349:
Wheaton, Bruce R. (1978). "Philipp Lenard and the Photoelectric Effect, 1889-1911".
2756: 408:. Since the work done by the retarding potential in stopping the electron of charge 6313: 6295: 5973: 5497: 5375: 4921: 4905: 4889: 4879: 4350: 4218:" to read an English translation of Einstein's 1905 paper. (Retrieved: 2014 Apr 11) 4007: 3999: 3962: 3923: 3817: 3576: 3543: 3504: 3469: 3455: 3397: 3358: 3249: 3208: 3122: 3028: 2949: 2910: 2819: 2762: 2739: 2696: 2632: 2561: 2491: 2468: 2431: 2293: 2248: 2200: 1753: 1690: 1597: 1238: 340: 296:
When the photoelectron is emitted into a solid rather than into a vacuum, the term
241:. Other phenomena where light affects the movement of electric charges include the 230: 211: 1086:
for ultraviolet and soft X-ray excitation decomposes the effect into these steps:
6343: 6275: 6040: 5948: 5893: 5863: 5827: 5769: 5624: 5487: 5451: 5370: 4833: 4764: 4277: 4196: 3927: 3821: 2700: 2451: 2449:
Bubb, F. (1924). "Direction of Ejection of Photo-Electrons by Polarized X-rays".
2276: 2231: 1975: 1798: 1601: 1559: 1486: 1222: 563: 492: 199: 6283: 3941:
Yan Q.; Zhang X.; Xie L.; Guo D.; Li Y.; Xu Y.; Xiao Z.; Di K.; Xiao L. (2019).
3508: 2766: 450:
that each photon results in an emitted electron is a function of photon energy.
438:
For a given metal surface, there exists a certain minimum frequency of incident
6100: 5878: 5243: 5218: 4884: 4736: 4638: 4628: 4598: 4355: 4281:". Open Source Distributed Learning Content Management and Assessment System. ( 3853:
Fundamentals of Spacecraft Charging: Spacecraft Interactions with Space Plasmas
2889:"Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung" 2057: 1429: 1341: 1091: 970: 285: 191: 4003: 3698:
Physics for Scientists and Engineers With Modern Physics: A Strategic Approach
3580: 3135:
Stoletov, A. (1888). "Sur les courants actino-electriqies au travers deTair".
3126: 2636: 2565: 1327: 6477: 6319: 6289: 6176: 5545: 4828: 4818: 4731: 4623: 4340: 4319: 3548: 3523: 3253: 3040: 3032: 2961: 2953: 2914: 2761:. Springer Series in Optical Sciences. Vol. 140. Springer. pp. 1–. 2644: 2222: 2204: 2037: 1894: 1686: 1643: 1414: 1410: 1360: 1252: 1234: 683: 360: 262: 234: 226: 4171:". Department of Physics and Astronomy, Arizona State University, Tempe, AZ. 4162:". Physics 2000. University of Colorado, Boulder, Colorado. (page not found) 4088:. Vol. 1. Amsterdam: North-Holland Publishing Company. pp. 37–78. 4012: 3661:
On a Heuristic Viewpoint Concerning the Emission and Transformation of Light
3321: 2743: 1564: 766:
the formula for the maximum kinetic energy of the ejected electrons becomes
206:
propagating through space, but a swarm of discrete energy packets, known as
6427: 6307: 5587: 5482: 5395: 5385: 5273: 5228: 4961: 3829: 2472: 2252: 1989: 1757: 1573: 1418: 1396: 1368: 1332: 1095: 222: 4181: 2298: 2267: 1719:
thick. These materials are known as negative electron affinity materials.
6432: 6116: 5938: 5436: 5268: 5238: 5213: 4971: 4608: 4583: 3967: 3942: 3646:. Coral Gables, FL: Center for Theoretical Physics, University of Miami. 3636: 2986:
Annual Report Of The Board Of Regents Of The Smithsonian Institution 1913
2799: 2627: 2388: 1650: 447: 364: 337: 290: 203: 172: 3922:. 6th Eslab Symposium. Noordwijk, the Netherlands: Springer, Dordrecht. 3564: 3370: 3306:. Buchwald, Jed Z., Warwick, Andrew. Cambridge, Mass.: MIT Press. 2001. 2355: 1525:'s equations of electromagnetism, and more generally, the assumption of 1457:, which predicted that the electron energy would be proportional to the 542:
of the corresponding electromagnetic wave. The proportionality constant
442:
below which no photoelectrons are emitted. This frequency is called the
6437: 5560: 5426: 4754: 4726: 4504: 2800:"Effect of Light on Selenium during the passage of an Electric Current" 2722:
Mahan, G. D. (1970-12-01). "Theory of Photoemission in Simple Metals".
2313: 1879:{\displaystyle \sigma =\mathrm {constant} \cdot {\frac {Z^{n}}{E^{3}}}} 1728: 1593: 1477: 1400: 1260: 273: 175:
specialized for light detection and precisely timed electron emission.
1764: 5045: 4951: 4823: 4035: 3460: 3362: 2824: 1907: 1433: 1345: 1284: 1268: 439: 307: 276:
as long as this is followed by an immediate re-emission, like in the
195: 3485:"Volume Ionization Produced by Light of Extremely Short Wave-Length" 3484: 3435: 3229: 3110: 3009:"Ueber den Einfluss des Lichtes auf electrostatisch geladene Körper" 3008: 2929: 2888: 2178: 31: 16:
Emission of electrons when electromagnetic radiation hits a material
5431: 5258: 5248: 5223: 4227: 2683: 2083:
December 18, 1926: Gilbert Lewis coins "photon" in letter to Nature
1715: 1702: 1300: 1288: 1264: 1246: 317: 148: 136:
from a metal plate accompanied by the absorption of light quanta –
133: 5796: 3855:(illustrated ed.). Princeton University Press. pp. 1–6. 5555: 5263: 4142:
http://www.astronomycast.com/2014/02/ep-335-photoelectric-effect/
3719:
The Road to Reality: A Complete Guide to the Laws of the Universe
1506: 1312: 1280: 1233:. Though not equivalent to the photoelectric effect, his work on 964: 863:
is required for the photoelectric effect to occur. The frequency
496: 261:
The photons of a light beam have a characteristic energy, called
5320: 4288: 3151:
Stoletov, A. (1888). "Suite des recherches actino-electriques".
1785:
When photon energies are as high as the electron rest energy of
5390: 4234: 4176: 3762:, ISSI Scientific Report 009, ESA Communications, pp. 365–408, 3565:"Centennial Focus: Millikan's Measurement of Planck's Constant" 1572:
These are extremely light-sensitive vacuum tubes with a coated
1450: 1349: 1316: 1296: 1276: 1099: 207: 183: 137: 3167:
Stoletov, A. (1889). "Sur les phénomÚnes actino-électriques".
1355:
The discoveries by Hertz led to a series of investigations by
300:
is often used, and emission into a vacuum is distinguished as
5365: 5351: 3111:"On a kind of electric current produced by ultra-violet rays" 2861: 1646: 1379: 1272: 333: 218: 2841:
Asimov's Biographical Encyclopedia of Science and Technology
1082:
preserved in the photoelectric effect. The phenomenological
3780:
Television: An International History of the Formative Years
1745: 1308: 1304: 1292: 949:{\textstyle V_{o}={\frac {h}{e}}\left(\nu -\nu _{o}\right)} 4256:". The Physics Education Technology (PhET) project. (Java) 3940: 3182:
Stoletov, A. (1889). "АĐșŃ‚ĐžĐœĐŸ-ŃĐ»Đ”ĐșтрОчДсĐșОД ĐžŃŃĐ»Đ”ĐŽĐŸĐČaĐœĐžŃ".
2759:
High-Efficient Low-Cost Photovoltaics: Recent Developments
4222:
http://www.chemistryexplained.com/Ru-Sp/Solar-Cells.html
3197:"Sur les courants actino-électriques dans l'air raréfié" 3920:
Photon and Particle Interactions with Surfaces in Space
2586:
Photoelectron Spectroscopy: Principles and Applications
2097: 4200:". Physics 320 Laboratory, Davidson College, Davidson. 3758:
Timothy, J. Gethyn (2010) in Huber, Martin C.E. (ed.)
2988:. Washington, DC: Smithsonian Institution. p. 239 2485: 1076: 896: 821:{\displaystyle K_{\max }=h\left(\nu -\nu _{o}\right).} 182:, which predicts that continuous light waves transfer 6069:
Die Grundlagen der Einsteinschen RelativitÀts-Theorie
3739:
Basic Concepts in Relativity and Early Quantum Theory
3674:
Basic Concepts in Relativity and Early Quantum Theory
3386:"L'ionisation de l'air par la lumiĂšre ultra-violette" 3293:. (1900). New York: Dodd, Mead & Company. p. 659. 2975: 2973: 2971: 2750: 2612: 2517:
Quantum Mechanics for Applied Physics and Engineering
2486:
Mee, C.; Crundell, M.; Arnold, B.; Brown, W. (2011).
1816: 1150: 1123: 1030: 1003: 979: 869: 836: 772: 732: 712: 692: 668: 622: 595: 572: 548: 528: 505: 3304:
Histories of the electron: the birth of microphysics
1914: = 82) is preferred and most widely used. 393:. This value of the retarding voltage is called the 2268:"A Direct Photoelectric Determination of Planck's " 1765:
Competing processes and photoemission cross section
4177:Grains of Mystique: Quantum Physics for the Layman 4086:Alpha-, Beta- and Gamma-ray Spectroscopy: Volume 1 3799: 3131:; abstract in Beibl. Ann. d. Phys. 12, 605, 1888). 2968: 2864:Instruments of Science: An Historical Encyclopedia 1878: 1191: 1136: 1065: 1016: 988: 948: 882: 855: 820: 758: 718: 698: 674: 654: 608: 581: 554: 534: 514: 308:Experimental observation of photoelectric emission 6002:Investigations on the Theory of Brownian Movement 3163:(Abstract in Beibl. Ann. d. Phys. 12, 723, 1888). 3147:(Abstract in Beibl. Ann. d. Phys. 12, 723, 1888). 1910:shields, which is the principal reason why lead ( 6475: 2314:"MBScientific electron analysers and UV sources" 778: 628: 601: 272:While free electrons can absorb any energy when 5005: 4106: 3184:Journal of the Russian Physico-chemical Society 3062:Hoor, Repertorium des Physik, xxv. p. 91, 1889. 1685:Photons hitting a thin film of alkali metal or 6009:Relativity: The Special and the General Theory 3414: 2930:"Ueber sehr schnelle electrische Schwingungen" 2543: 2216: 2214: 965:Photoemission from atoms, molecules and solids 217:Emission of conduction electrons from typical 5812: 5336: 5198:List of countries by photovoltaics production 4875:Solar-Powered Aircraft Developments Solar One 4304: 3917: 3266:Schmidt, G. C. (1898) Wied. Ann. Uiv. p. 708. 3071:Bighi, C. R. cvi. p. 1349; cvii. p. 559, 1888 2855: 2579: 2577: 2575: 2382: 2007: 1607: 1399:; this property was used for the creation of 4077: 4052: 3194: 3181: 3166: 3150: 3134: 3094: 2668: 2508: 2172: 2170: 1596:used the photoelectric effect. For example, 1537:of incident light and is independent of the 499:or light quanta. Each packet carries energy 4680:Photovoltaic thermal hybrid solar collector 3752: 3351:Historical Studies in the Physical Sciences 3088: 3086: 3053:Hallwachs, Wied. Ann. xxxiii. p. 301, 1888. 2211: 1756:probes in the 1960s, and most recently the 1485:multiplied by a constant, later called the 5819: 5805: 5343: 5329: 4553:Copper indium gallium selenide solar cells 4311: 4297: 3641:"The photoelectric effect without photons" 3635: 2572: 2342:"SPECS ARPES system with PHOIBOS analyzer" 2014: 2000: 478: 4182:Einstein Demystifies Photoelectric Effect 4100: 4046: 4011: 3966: 3547: 3459: 3436:"Ionisation of Air by Ultra-violet Light" 3275: 3227: 3006: 2982:"Recent developments in electromagnetism" 2823: 2797: 2791: 2682: 2626: 2405: 2297: 2167: 1793:, may occur. Above twice this energy, at 1631:Angle-resolved photoemission spectroscopy 1618:Angle-resolved photoemission spectroscopy 742: 639: 473:angle-resolved photoemission spectroscopy 116:Learn how and when to remove this message 6443:Emergency Committee of Atomic Scientists 5015:Grid-connected photovoltaic power system 4083: 3629: 3108: 3083: 2862:Robert Bud; Deborah Jean Warner (1998). 2514: 2265: 2220: 2063:Timeline of atomic and subatomic physics 1768: 1625: 1563: 1326: 686:of the surface and is sometimes denoted 482: 345: 190:of light would theoretically change the 127: 4982:Victorian Model Solar Vehicle Challenge 4977:Hunt-Winston School Solar Car Challenge 4209:". Physics 252, University of Virginia. 3348: 2114: 1680: 1441:upon the particles present in the gas. 178:The experimental results disagree with 6476: 6187:Albert Einstein World Award of Science 4036:"XCOM: Photon Cross Sections Database" 3899: 3887: 3869: 3793: 3692: 3690: 3562: 3521: 3482: 3433: 2583: 2176: 2123:Physics for Scientists & Engineers 2120: 1229:while studying the effect of light on 522:that is proportional to the frequency 52:Please improve this article by adding 5800: 5324: 4292: 3772: 3731: 3711: 3666: 3587: 3427: 3408: 3383: 3377: 3284: 3260: 3221: 3074: 3065: 3056: 3047: 2979: 2927: 2886: 2880: 2832: 2721: 2664: 2662: 2411: 726:. If the work function is written as 256: 202:proposed that a beam of light is not 5303: 3687: 3278:Zeitschrift fĂŒr Physikalische Chemie 3230:"Über die lichtelektrische ErmĂŒdung" 2448: 2442: 2179:"Ueber die lichtelektrische Wirkung" 2151:"The Photoelectric Effect | Physics" 1727:The photoelectric effect will cause 655:{\displaystyle K_{\max }=h\,\nu -W.} 25: 5826: 5020:List of photovoltaic power stations 4110:Radiation Detection and Measurement 3850: 3700:, Pearson-Addison-Wesley, p. 1224, 1553: 1548: 1192:{\displaystyle E_{k}=h\nu -W-E_{B}} 1077:Models of photoemission from solids 13: 6216:Albert Einstein: Creator and Rebel 5929:Einstein–Infeld–Hoffmann equations 5899:Einstein relation (kinetic theory) 5036:Rooftop photovoltaic power station 4439:Polycrystalline silicon (multi-Si) 4388:Third-generation photovoltaic cell 4059:. Malabar, Fla.: Krieger. p.  2659: 2385:Schaum's Outline of Modern Physics 2356:"Lumeras UV and VUV laser systems" 2334: 1845: 1842: 1839: 1836: 1833: 1830: 1827: 1824: 1449:In 1902, Lenard observed that the 1413:investigated ultraviolet light in 693: 14: 6530: 6077:The Einstein Theory of Relativity 5350: 5041:Building-integrated photovoltaics 4538:Carbon nanotubes in photovoltaics 4444:Monocrystalline silicon (mono-Si) 4318: 4174:Haberkern, Thomas, and N Deepak " 4134: 3616:"The Nobel Prize in Physics 1923" 3595:"The Nobel Prize in Physics 1921" 2320: 2306: 1675:concentric hemispherical analyzer 1066:{\displaystyle E_{k}=h\nu -E_{B}} 6456: 6455: 6192:Einstein Prize for Laser Science 5302: 5291: 5290: 4413:Polarizing organic photovoltaics 4228:http://sensorse.com/page4en.html 3908:. spacedaily.com, July 14, 2000. 3894:Bell, Trudy E., "Moon fountains" 3213:10.1051/jphystap:018900090046800 2488:International A/AS Level Physics 2383:Gautreau, R.; Savin, W. (1999). 1930: 1622:X-ray photoelectron spectroscopy 1584: 959:development of quantum mechanics 856:{\displaystyle \nu >\nu _{o}} 830:Kinetic energy is positive, and 30: 6237:Einstein: His Life and Universe 4548:Cadmium telluride photovoltaics 4429:List of semiconductor materials 4028: 3975: 3934: 3911: 3844: 3663:." Annalen der Physik 17 (1905) 3653: 3608: 3556: 3515: 3476: 3402:10.1051/radium:0190800508024001 3342: 3296: 3269: 3000: 2921: 2715: 2606: 2537: 2479: 2376: 2362: 2348: 1781:=0.08 MeV and ceases at 12 MeV. 1529:of energy in physical systems. 1444: 1216: 1110:dependent on electron's energy. 5859:Mass–energy equivalence (E=mc) 4660:Incremental conductance method 4454:Copper indium gallium selenide 4403:Thermodynamic efficiency limit 3906:Dust gets a charge in a vacuum 3280:. Vol. xxix. p. 527. 2259: 2143: 2090: 2074: 1352:does not absorb UV radiation. 759:{\displaystyle W=h\,\nu _{o},} 374:can be externally controlled. 1: 4967:South African Solar Challenge 4247:" Open Source Physics project 3563:Holton, Gerald (1999-04-22). 2934:Annalen der Physik und Chemie 2068: 2028:Anomalous photovoltaic effect 1722: 589:, the highest kinetic energy 54:secondary or tertiary sources 4614:Photovoltaic mounting system 4226:Photo-electric transducers: 3947:Geophysical Research Letters 3928:10.1007/978-94-010-2647-5_36 3822:10.1126/science.206.4415.151 3639:; Scully, Marlan O. (1968). 2701:10.1103/RevModPhys.93.025006 2436:10.1016/0375-9601(96)00259-9 2370:"Light sources of the world" 2223:"A Direct Determination of " 1739: 1424:During the years 1886–1902, 1115:work function of the surface 7: 6182:Albert Einstein Peace Prize 5959:Unsuccessful investigations 4619:Maximum power point tracker 4244:HTML 5 JavaScript simulator 4113:. New York: Wiley. p.  3509:10.1103/PhysRevSeriesI.32.1 3291:The International Year Book 3007:Hallwachs, Wilhelm (1888). 2767:10.1007/978-3-540-79359-5_1 2328:"Scienta Omicron ARPES Lab" 1917: 1509:of light was in one of his 1024:is found at kinetic energy 251:photoelectrochemical effect 10: 6535: 6109:Picasso at the Lapin Agile 6047:Russell–Einstein Manifesto 5919:Bose–Einstein correlations 5615:X-Ray Fluorescence Imaging 5503:Anomalous X-ray scattering 4870:Solar panels on spacecraft 4717:Solar-powered refrigerator 4675:Concentrated photovoltaics 4655:Perturb and observe method 4434:Crystalline silicon (c-Si) 3984:Advances in Space Research 3760:Observing Photons in Space 3696:Knight, Randall D. (2004) 2521:Courier Dover Publications 1663:Photoelectron spectroscopy 1614:Photoemission spectroscopy 1611: 1608:Photoelectron spectroscopy 1557: 1223:Alexandre Edmond Becquerel 1211: 419:, the following must hold 180:classical electromagnetism 151:from a material caused by 18: 6451: 6365: 6274: 6205: 6159: 6056: 6017:The Meaning of Relativity 5982: 5834: 5762: 5694: 5643: 5528: 5521: 5460: 5419: 5358: 5286: 5206: 5190: 5181: 5059: 5028: 4994: 4914: 4898: 4852: 4811: 4709: 4702: 4647: 4576: 4568:Heterojunction solar cell 4543:Dye-sensitized solar cell 4503: 4492: 4467: 4421: 4383:Multi-junction solar cell 4373:Nominal power (Watt-peak) 4333: 4326: 4004:10.1016/j.asr.2005.04.048 3581:10.1103/physrevfocus.3.23 3483:Palmer, Frederic (1911). 3434:Palmer, Frederic (1908). 3127:10.1080/14786448808628270 2671:Reviews of Modern Physics 2637:10.1103/RevModPhys.75.473 2615:Reviews of Modern Physics 2566:10.1103/PhysRev.136.A1030 2155:courses.lumenlearning.com 1656:electronic band structure 1275:of potassium and sodium, 1259:(1855–1923), students in 609:{\displaystyle K_{\max }} 468:electronic band structure 153:electromagnetic radiation 6408:Albert Einstein Archives 6338:Bernhard Caesar Einstein 6085:Relics: Einstein's Brain 6033:The Evolution of Physics 5914:Bose–Einstein statistics 5909:Bose–Einstein condensate 5889:Einstein field equations 5442:Synchrotron light source 5051:Strasskirchen Solar Park 4942:American Solar Challenge 4788:Solar-powered flashlight 4775:Solar-powered calculator 4770:Solar cell phone charger 4459:Amorphous silicon (a-Si) 4262:The Photoelectric Effect 4206:The Photoelectric Effect 4190:The Photoelectric effect 4187:Department of Physics, " 4168:The Photoelectric Effect 4107:Knoll, Glenn F. (1999). 3881:Arizona State University 3549:10.1002/andp.19013090310 3254:10.1002/andp.19073280807 3033:10.1002/andp.18882690206 2954:10.1002/andp.18872670707 2915:10.1002/andp.18872670827 2887:Hertz, Heinrich (1887). 2515:Fromhold, A. T. (1991). 2205:10.1002/andp.19023130510 1925:Light–matter interaction 1750:electrostatic levitation 1472:In 1900, while studying 883:{\displaystyle \nu _{o}} 719:{\displaystyle \varphi } 562:has become known as the 161:condensed matter physics 19:Not to be confused with 6418:Einstein Papers Project 5934:Einstein–de Haas effect 5461:Interaction with matter 5420:Sources and instruments 4957:Frisian Solar Challenge 4927:List of solar car teams 4685:Space-based solar power 4665:Constant voltage method 4594:Solar charge controller 4480:Timeline of solar cells 4475:Growth of photovoltaics 3896:, NASA.gov, 2005-03-30. 3737:Resnick, Robert (1972) 3672:Resnick, Robert (1972) 3109:Stoletov, M.A. (1888). 2744:10.1103/PhysRevB.2.4334 1789:, yet another process, 1476:, the German physicist 1225:discovered the related 479:Theoretical explanation 343:light sources prevail. 320:. At the present time, 6350:Thomas Martin Einstein 6258:Introducing Relativity 6230:Einstein for Beginners 6133:Einstein and Eddington 5924:Einstein–Cartan theory 5593:Diffraction tomography 4947:Formula Sun Grand Prix 4779:Solar-powered fountain 4722:Solar air conditioning 4523:Quantum dot solar cell 4513:Nanocrystal solar cell 4408:Sun-free photovoltaics 3717:Penrose, Roger (2005) 3334:: CS1 maint: others ( 3276:Knoblauch, O. (1899). 3228:Hallwachs, W. (1907). 3115:Philosophical Magazine 2980:Bloch, Eugene (1914). 2473:10.1103/PhysRev.23.137 2253:10.1103/PhysRev.4.73.2 2121:Serway, R. A. (1990). 1970:High-energy phenomena: 1880: 1782: 1638: 1569: 1511:Annus Mirabilis papers 1499:Nobel Prize in Physics 1337: 1193: 1138: 1067: 1018: 990: 950: 884: 857: 822: 760: 720: 700: 676: 656: 610: 583: 556: 536: 516: 488: 356: 330:radio-frequency plasma 302:external photoemission 298:internal photoemission 140: 65:"Photoelectric effect" 41:relies excessively on 6423:Einstein refrigerator 6413:Einstein's Blackboard 6292:(second wife; cousin) 6223:Einstein and Religion 6172:Albert Einstein Medal 6167:Albert Einstein Award 6025:The World as I See It 5964:Wave–particle duality 5944:Bohr–Einstein debates 5904:Cosmological constant 5884:Equivalence principle 5874:Einstein coefficients 5704:X-ray crystallography 5573:Soft x-ray microscopy 5541:Panoramic radiography 5381:Synchrotron radiation 4937:World Solar Challenge 4760:Photovoltaic keyboard 4690:PV system performance 4563:Perovskite solar cell 4361:Solar cell efficiency 4150:Wave-Particle Duality 4053:Evans, R. D. (1955). 3877:"Spacecraft charging" 3417:Proc. Camb. Phil. Soc 3195:Stoletov, A. (1890). 2299:10.1103/PhysRev.7.355 2266:Millikan, R. (1916). 2221:Millikan, R. (1914). 2048:Wave–particle duality 1951:Mid-energy phenomena: 1939:Low-energy phenomena: 1881: 1772: 1668:synchrotron radiation 1629: 1592:in the early days of 1567: 1527:infinite divisibility 1330: 1194: 1139: 1137:{\displaystyle E_{F}} 1068: 1019: 1017:{\displaystyle E_{B}} 991: 989:{\displaystyle h\nu } 951: 885: 858: 823: 761: 721: 701: 699:{\displaystyle \Phi } 677: 657: 611: 584: 582:{\displaystyle h\nu } 557: 537: 517: 515:{\displaystyle h\nu } 486: 349: 239:wave–particle duality 131: 6489:Electrical phenomena 6302:Hans Albert Einstein 6251:I Am Albert Einstein 6197:Einstein Prize (APS) 5869:Photoelectric effect 5842:Theory of relativity 5473:Photoelectric effect 5406:Characteristic X-ray 5207:Individual producers 4915:Solar vehicle racing 4604:Solar micro-inverter 4533:Plasmonic solar cell 4378:Thin-film solar cell 4346:Photoelectric effect 4271:Applet: Photo Effect 4253:Photoelectric Effect 4159:Photoelectric effect 3968:10.1029/2019GL083611 3851:Lai, Shu T. (2011). 3778:Burns, R. W. (1998) 3522:Planck, Max (1901). 2098:"X-Ray Data Booklet" 2053:Photomagnetic effect 1945:Photoelectric effect 1906:materials make good 1814: 1701:where they strike a 1681:Night vision devices 1474:black-body radiation 1455:wave theory of light 1148: 1121: 1028: 1001: 977: 894: 867: 834: 770: 730: 710: 690: 666: 620: 593: 570: 546: 535:{\displaystyle \nu } 526: 503: 145:photoelectric effect 5954:Thought experiments 5493:Photodisintegration 5468:Rayleigh scattering 5447:Free-electron laser 4803:Solar traffic light 4783:Solar-powered radio 4750:Solar-powered watch 4558:Printed solar panel 4393:Solar cell research 4094:1965abgs.conf...37D 3996:2006AdSpR..37...59S 3959:2019GeoRL..46.9405Y 3814:1979Sci...206..151W 3637:Lamb, Willis E. Jr. 3540:1901AnP...309..553P 3501:1911PhRvI..32....1P 3452:1908Natur..77..582P 3246:1907AnP...328..459H 3201:Journal de Physique 3025:1888AnP...269..301H 2946:1887AnP...267..421H 2907:1887AnP...267..983H 2816:1873Natur...7R.303. 2736:1970PhRvB...2.4334M 2693:2021RvMP...93b5006S 2584:HĂŒfner, S. (2003). 2558:1964PhRv..136.1030B 2552:(4A): A1030–A1044. 2465:1924PhRv...23..137B 2428:1996PhLA..216..125Z 2290:1916PhRv....7..355M 2245:1914PhRv....4R..73M 2197:1902AnP...313..149L 2177:Lenard, P. (1902). 2043:Photo–Dember effect 1983:Photodisintegration 1708:micro-channel plate 1699:electrostatic field 1523:James Clerk Maxwell 1374:With regard to the 1365:Aleksander Stoletov 1227:photovoltaic effect 444:threshold frequency 326:noble-gas discharge 322:mercury-vapor lamps 247:photovoltaic effect 147:is the emission of 21:Photovoltaic effect 6403:Things named after 6265:Subtle is the Lord 6088:(1994 documentary) 6080:(1923 documentary) 6072:(1922 documentary) 5969:Gravitational wave 5852:General relativity 5847:Special relativity 5734:X-ray reflectivity 5513:X-ray fluorescence 5478:Compton scattering 5411:High-energy X-rays 4839:The Quiet Achiever 4798:Solar street light 4745:Solar-powered pump 4518:Organic solar cell 4398:Thermophotovoltaic 4366:Quantum efficiency 4276:2010-03-14 at the 4203:Fowler, Michael, " 4195:2009-08-01 at the 4056:The Atomic Nucleus 3618:. Nobel Foundation 3597:. Nobel Foundation 3528:Annalen der Physik 3384:Bloch, E. (1908). 3234:Annalen der Physik 3013:Annalen der Physik 2928:Hertz, H. (1887). 2894:Annalen der Physik 2838:Asimov, A. (1964) 2798:Smith, W. (1873). 2391:. pp. 60–61. 2184:Annalen der Physik 2033:Compton scattering 1964:Compton scattering 1957:Thomson scattering 1876: 1791:Compton scattering 1783: 1639: 1590:Video camera tubes 1579:secondary emission 1570: 1495:Robert A. Millikan 1461:of the radiation. 1388:Aleksandr Stoletov 1338: 1231:electrolytic cells 1189: 1134: 1063: 1014: 986: 946: 880: 853: 818: 756: 716: 696: 672: 652: 606: 579: 552: 532: 512: 489: 395:stopping potential 357: 334:ultraviolet lasers 257:Emission mechanism 173:electronic devices 141: 6504:Energy conversion 6484:Quantum mechanics 6471: 6470: 6373:Awards and honors 6356:Siegbert Einstein 6244:Einstein's Cosmos 5794: 5793: 5790: 5789: 5782:X-ray lithography 5714:Backscatter X-ray 5709:X-ray diffraction 5536:X-ray radiography 5508:X-ray diffraction 5401:Siegbahn notation 5318: 5317: 5282: 5281: 5177: 5176: 4990: 4989: 4865:Mauro Solar Riser 4860:Electric aircraft 4793:Solar-powered fan 4698: 4697: 4589:Balance of system 4577:System components 4528:Hybrid solar cell 4488: 4487: 4449:Cadmium telluride 4165:ACEPT W3 Group, " 4144:". AstronomyCast. 3953:(16): 9405–9413. 3862:978-0-691-12947-1 3808:(4415): 151–156. 3768:978-92-9221-938-3 3741:, Wiley, p. 138, 3721:, Knopf, p. 502, 3676:, Wiley, p. 137, 3313:978-0-262-26948-3 2873:978-0-8153-1561-2 2776:978-3-540-79358-8 2730:(11): 4334–4350. 2724:Physical Review B 2530:978-0-486-66741-6 2501:978-0-340-94564-3 2415:Physics Letters A 2372:. 24 August 2017. 2024: 2023: 1874: 1712:electron affinity 1695:image intensifier 1689:material such as 1491:quantum mechanics 1426:Wilhelm Hallwachs 1357:Wilhelm Hallwachs 1243:photoconductivity 918: 675:{\displaystyle W} 555:{\displaystyle h} 282:quantum mechanics 169:quantum chemistry 157:ultraviolet light 132:Photoemission of 126: 125: 118: 100: 6526: 6519:Electrochemistry 6459: 6458: 6358:(distant cousin) 6352:(great-grandson) 6314:Hermann Einstein 6296:Lieserl Einstein 5974:Tea leaf paradox 5821: 5814: 5807: 5798: 5797: 5620:X-ray holography 5526: 5525: 5498:Radiation damage 5345: 5338: 5331: 5322: 5321: 5306: 5305: 5294: 5293: 5188: 5187: 5029:Building-mounted 5007:PV power station 5003: 5002: 4932:Solar challenges 4922:Solar car racing 4890:Solar Challenger 4880:Gossamer Penguin 4707: 4706: 4501: 4500: 4351:Solar irradiance 4331: 4330: 4313: 4306: 4299: 4290: 4289: 4259:Fendt, Walter, " 4153:". HyperPhysics. 4140:Astronomy Cast " 4129: 4128: 4104: 4098: 4097: 4081: 4075: 4074: 4050: 4044: 4043: 4032: 4026: 4025: 4015: 4013:2060/20050175993 3979: 3973: 3972: 3970: 3938: 3932: 3931: 3915: 3909: 3903: 3897: 3891: 3885: 3884: 3873: 3867: 3866: 3848: 3842: 3841: 3797: 3791: 3776: 3770: 3756: 3750: 3735: 3729: 3715: 3709: 3694: 3685: 3670: 3664: 3657: 3651: 3650: 3645: 3633: 3627: 3626: 3624: 3623: 3612: 3606: 3605: 3603: 3602: 3591: 3585: 3584: 3560: 3554: 3553: 3551: 3519: 3513: 3512: 3480: 3474: 3473: 3463: 3461:10.1038/077582b0 3431: 3425: 3424: 3412: 3406: 3405: 3381: 3375: 3374: 3363:10.2307/27757381 3346: 3340: 3339: 3333: 3325: 3300: 3294: 3288: 3282: 3281: 3273: 3267: 3264: 3258: 3257: 3225: 3219: 3216: 3191: 3178: 3162: 3146: 3130: 3106: 3090: 3081: 3078: 3072: 3069: 3063: 3060: 3054: 3051: 3045: 3044: 3004: 2998: 2997: 2995: 2993: 2977: 2966: 2965: 2925: 2919: 2918: 2884: 2878: 2877: 2859: 2853: 2836: 2830: 2829: 2827: 2825:10.1038/007303e0 2795: 2789: 2788: 2754: 2748: 2747: 2719: 2713: 2712: 2686: 2666: 2657: 2656: 2630: 2628:cond-mat/0208504 2610: 2604: 2603: 2581: 2570: 2569: 2541: 2535: 2534: 2523:. pp. 5–6. 2512: 2506: 2505: 2492:Hodder Education 2483: 2477: 2476: 2446: 2440: 2439: 2409: 2403: 2402: 2387:(2nd ed.). 2380: 2374: 2373: 2366: 2360: 2359: 2352: 2346: 2345: 2338: 2332: 2331: 2324: 2318: 2317: 2310: 2304: 2303: 2301: 2263: 2257: 2256: 2218: 2209: 2208: 2174: 2165: 2164: 2162: 2161: 2147: 2141: 2140: 2129:. p. 1150. 2125:(3rd ed.). 2118: 2112: 2111: 2109: 2108: 2094: 2088: 2087: 2078: 2016: 2009: 2002: 1934: 1922: 1921: 1885: 1883: 1882: 1877: 1875: 1873: 1872: 1863: 1862: 1853: 1848: 1796: 1788: 1754:Surveyor program 1691:gallium arsenide 1598:Philo Farnsworth 1554:Photomultipliers 1549:Uses and effects 1255:(1854–1920) and 1239:Willoughby Smith 1198: 1196: 1195: 1190: 1188: 1187: 1160: 1159: 1143: 1141: 1140: 1135: 1133: 1132: 1084:three-step model 1072: 1070: 1069: 1064: 1062: 1061: 1040: 1039: 1023: 1021: 1020: 1015: 1013: 1012: 995: 993: 992: 987: 971:binding energies 955: 953: 952: 947: 945: 941: 940: 939: 919: 911: 906: 905: 889: 887: 886: 881: 879: 878: 862: 860: 859: 854: 852: 851: 827: 825: 824: 819: 814: 810: 809: 808: 782: 781: 765: 763: 762: 757: 752: 751: 725: 723: 722: 717: 705: 703: 702: 697: 681: 679: 678: 673: 661: 659: 658: 653: 632: 631: 615: 613: 612: 607: 605: 604: 588: 586: 585: 580: 561: 559: 558: 553: 541: 539: 538: 533: 521: 519: 518: 513: 341:insertion device 212:Gilbert N. Lewis 210:—term coined by 121: 114: 110: 107: 101: 99: 58: 34: 26: 6534: 6533: 6529: 6528: 6527: 6525: 6524: 6523: 6494:Albert Einstein 6474: 6473: 6472: 6467: 6447: 6398:Religious views 6393:Political views 6361: 6346:(granddaughter) 6344:Evelyn Einstein 6332:Robert Einstein 6326:Eduard Einstein 6270: 6207: 6201: 6155: 6125:Einstein's Gift 6059: 6052: 5993:Annus mirabilis 5978: 5949:Teleparallelism 5894:Einstein radius 5864:Brownian motion 5830: 5828:Albert Einstein 5825: 5795: 5786: 5770:X-ray astronomy 5758: 5690: 5639: 5625:X-ray telescope 5517: 5488:Photoionization 5456: 5452:X-ray nanoprobe 5415: 5371:Absorption edge 5359:Characteristics 5354: 5349: 5319: 5314: 5278: 5202: 5173: 5055: 5024: 4997: 4986: 4910: 4899:Water transport 4894: 4848: 4834:Solar golf cart 4807: 4765:Solar road stud 4694: 4648:System concepts 4643: 4572: 4495: 4484: 4463: 4417: 4322: 4317: 4278:Wayback Machine 4197:Wayback Machine 4137: 4132: 4125: 4105: 4101: 4082: 4078: 4071: 4051: 4047: 4034: 4033: 4029: 3980: 3976: 3939: 3935: 3916: 3912: 3904: 3900: 3892: 3888: 3875: 3874: 3870: 3863: 3849: 3845: 3798: 3794: 3782:, IET, p. 358, 3777: 3773: 3757: 3753: 3736: 3732: 3716: 3712: 3695: 3688: 3671: 3667: 3658: 3654: 3643: 3634: 3630: 3621: 3619: 3614: 3613: 3609: 3600: 3598: 3593: 3592: 3588: 3561: 3557: 3520: 3516: 3489:Physical Review 3481: 3477: 3432: 3428: 3413: 3409: 3382: 3378: 3347: 3343: 3327: 3326: 3314: 3302: 3301: 3297: 3289: 3285: 3274: 3270: 3265: 3261: 3226: 3222: 3091: 3084: 3079: 3075: 3070: 3066: 3061: 3057: 3052: 3048: 3005: 3001: 2991: 2989: 2978: 2969: 2926: 2922: 2901:(8): 983–1000. 2885: 2881: 2874: 2860: 2856: 2837: 2833: 2796: 2792: 2777: 2755: 2751: 2720: 2716: 2667: 2660: 2611: 2607: 2600: 2582: 2573: 2546:Physical Review 2542: 2538: 2531: 2513: 2509: 2502: 2494:. p. 241. 2484: 2480: 2452:Physical Review 2447: 2443: 2410: 2406: 2399: 2381: 2377: 2368: 2367: 2363: 2354: 2353: 2349: 2340: 2339: 2335: 2326: 2325: 2321: 2312: 2311: 2307: 2277:Physical Review 2264: 2260: 2232:Physical Review 2219: 2212: 2175: 2168: 2159: 2157: 2149: 2148: 2144: 2137: 2119: 2115: 2106: 2104: 2096: 2095: 2091: 2080: 2079: 2075: 2071: 2020: 1976:Pair production 1920: 1868: 1864: 1858: 1854: 1852: 1823: 1815: 1812: 1811: 1799:pair production 1794: 1786: 1767: 1742: 1725: 1683: 1624: 1612:Main articles: 1610: 1602:Image dissector 1587: 1568:Photomultiplier 1562: 1560:Photomultiplier 1556: 1551: 1487:Planck constant 1447: 1219: 1214: 1183: 1179: 1155: 1151: 1149: 1146: 1145: 1128: 1124: 1122: 1119: 1118: 1108:universal curve 1092:selection rules 1079: 1057: 1053: 1035: 1031: 1029: 1026: 1025: 1008: 1004: 1002: 999: 998: 978: 975: 974: 967: 935: 931: 924: 920: 910: 901: 897: 895: 892: 891: 874: 870: 868: 865: 864: 847: 843: 835: 832: 831: 804: 800: 793: 789: 777: 773: 771: 768: 767: 747: 743: 731: 728: 727: 711: 708: 707: 691: 688: 687: 667: 664: 663: 627: 623: 621: 618: 617: 600: 596: 594: 591: 590: 571: 568: 567: 564:Planck constant 547: 544: 543: 527: 524: 523: 504: 501: 500: 481: 432: 425: 418: 407: 392: 373: 354: 310: 259: 243:photoconductive 221:requires a few 200:Albert Einstein 122: 111: 105: 102: 59: 57: 51: 47:primary sources 35: 24: 17: 12: 11: 5: 6532: 6522: 6521: 6516: 6514:Photochemistry 6511: 6506: 6501: 6499:Heinrich Hertz 6496: 6491: 6486: 6469: 6468: 6466: 6465: 6452: 6449: 6448: 6446: 6445: 6440: 6435: 6430: 6425: 6420: 6415: 6410: 6405: 6400: 6395: 6390: 6385: 6380: 6375: 6369: 6367: 6363: 6362: 6360: 6359: 6353: 6347: 6341: 6335: 6329: 6323: 6317: 6311: 6305: 6299: 6293: 6287: 6280: 6278: 6272: 6271: 6269: 6268: 6261: 6254: 6247: 6240: 6233: 6226: 6219: 6211: 6209: 6203: 6202: 6200: 6199: 6194: 6189: 6184: 6179: 6174: 6169: 6163: 6161: 6157: 6156: 6154: 6153: 6145: 6137: 6136:(2008 TV film) 6129: 6121: 6113: 6105: 6101:Young Einstein 6097: 6093:Insignificance 6089: 6081: 6073: 6064: 6062: 6054: 6053: 6051: 6050: 6044: 6041:Why Socialism? 6037: 6029: 6021: 6013: 6005: 5998: 5988: 5986: 5980: 5979: 5977: 5976: 5971: 5966: 5961: 5956: 5951: 5946: 5941: 5936: 5931: 5926: 5921: 5916: 5911: 5906: 5901: 5896: 5891: 5886: 5881: 5879:Einstein solid 5876: 5871: 5866: 5861: 5856: 5855: 5854: 5849: 5838: 5836: 5832: 5831: 5824: 5823: 5816: 5809: 5801: 5792: 5791: 5788: 5787: 5785: 5784: 5779: 5778: 5777: 5766: 5764: 5760: 5759: 5757: 5756: 5751: 5746: 5741: 5736: 5731: 5726: 5721: 5716: 5711: 5706: 5700: 5698: 5692: 5691: 5689: 5688: 5683: 5678: 5673: 5668: 5663: 5658: 5653: 5647: 5645: 5641: 5640: 5638: 5637: 5632: 5627: 5622: 5617: 5612: 5611: 5610: 5605: 5600: 5590: 5585: 5580: 5575: 5570: 5569: 5568: 5563: 5553: 5548: 5543: 5538: 5532: 5530: 5523: 5519: 5518: 5516: 5515: 5510: 5505: 5500: 5495: 5490: 5485: 5480: 5475: 5470: 5464: 5462: 5458: 5457: 5455: 5454: 5449: 5444: 5439: 5434: 5429: 5423: 5421: 5417: 5416: 5414: 5413: 5408: 5403: 5398: 5393: 5388: 5383: 5378: 5373: 5368: 5362: 5360: 5356: 5355: 5348: 5347: 5340: 5333: 5325: 5316: 5315: 5313: 5312: 5300: 5287: 5284: 5283: 5280: 5279: 5277: 5276: 5271: 5266: 5261: 5256: 5251: 5246: 5244:Solar Frontier 5241: 5236: 5231: 5226: 5221: 5219:Hanwha Q CELLS 5216: 5210: 5208: 5204: 5203: 5201: 5200: 5194: 5192: 5185: 5179: 5178: 5175: 5174: 5172: 5171: 5166: 5164:United Kingdom 5161: 5156: 5151: 5146: 5141: 5136: 5131: 5126: 5121: 5116: 5111: 5106: 5101: 5099:Czech Republic 5096: 5091: 5086: 5081: 5076: 5071: 5065: 5063: 5057: 5056: 5054: 5053: 5048: 5043: 5038: 5032: 5030: 5026: 5025: 5023: 5022: 5017: 5011: 5009: 5000: 4992: 4991: 4988: 4987: 4985: 4984: 4979: 4974: 4969: 4964: 4959: 4954: 4949: 4944: 4939: 4934: 4929: 4924: 4918: 4916: 4912: 4911: 4909: 4908: 4902: 4900: 4896: 4895: 4893: 4892: 4887: 4885:Qinetiq Zephyr 4882: 4877: 4872: 4867: 4862: 4856: 4854: 4850: 4849: 4847: 4846: 4841: 4836: 4831: 4826: 4821: 4815: 4813: 4812:Land transport 4809: 4808: 4806: 4805: 4800: 4795: 4790: 4785: 4780: 4777: 4772: 4767: 4762: 4757: 4752: 4747: 4742: 4739: 4737:Solar backpack 4734: 4729: 4724: 4719: 4713: 4711: 4704: 4700: 4699: 4696: 4695: 4693: 4692: 4687: 4682: 4677: 4672: 4667: 4662: 4657: 4651: 4649: 4645: 4644: 4642: 4641: 4639:Synchronverter 4636: 4631: 4629:Solar shingles 4626: 4621: 4616: 4611: 4606: 4601: 4599:Solar inverter 4596: 4591: 4586: 4580: 4578: 4574: 4573: 4571: 4570: 4565: 4560: 4555: 4550: 4545: 4540: 4535: 4530: 4525: 4520: 4515: 4509: 4507: 4498: 4490: 4489: 4486: 4485: 4483: 4482: 4477: 4471: 4469: 4465: 4464: 4462: 4461: 4456: 4451: 4446: 4441: 4436: 4431: 4425: 4423: 4419: 4418: 4416: 4415: 4410: 4405: 4400: 4395: 4390: 4385: 4380: 4375: 4370: 4369: 4368: 4358: 4356:Solar constant 4353: 4348: 4343: 4337: 4335: 4328: 4324: 4323: 4316: 4315: 4308: 4301: 4293: 4287: 4286: 4266: 4257: 4248: 4231: 4230: 4224: 4219: 4210: 4201: 4185: 4172: 4163: 4154: 4145: 4136: 4135:External links 4133: 4131: 4130: 4123: 4099: 4076: 4069: 4045: 4027: 3974: 3933: 3910: 3898: 3886: 3868: 3861: 3843: 3792: 3771: 3751: 3730: 3710: 3686: 3665: 3659:Einstein, A. " 3652: 3628: 3607: 3586: 3555: 3514: 3475: 3426: 3407: 3376: 3341: 3312: 3295: 3283: 3268: 3259: 3240:(8): 459–516. 3220: 3218: 3217: 3192: 3186:(in Russian). 3179: 3170:Comptes Rendus 3164: 3154:Comptes Rendus 3148: 3138:Comptes Rendus 3132: 3107:(Reprinted in 3098:Comptes Rendus 3082: 3073: 3064: 3055: 3046: 3019:(2): 301–312. 2999: 2967: 2940:(7): 421–448. 2920: 2879: 2872: 2854: 2831: 2790: 2775: 2749: 2714: 2658: 2621:(2): 473–541. 2605: 2598: 2571: 2536: 2529: 2507: 2500: 2478: 2459:(2): 137–143. 2441: 2404: 2397: 2375: 2361: 2347: 2333: 2319: 2305: 2284:(3): 355–388. 2258: 2210: 2191:(5): 149–198. 2166: 2142: 2135: 2113: 2089: 2072: 2070: 2067: 2066: 2065: 2060: 2058:Photochemistry 2055: 2050: 2045: 2040: 2035: 2030: 2022: 2021: 2019: 2018: 2011: 2004: 1996: 1993: 1992: 1986: 1985: 1979: 1978: 1972: 1971: 1967: 1966: 1960: 1959: 1953: 1952: 1948: 1947: 1941: 1940: 1936: 1935: 1927: 1926: 1919: 1916: 1887: 1886: 1871: 1867: 1861: 1857: 1851: 1847: 1844: 1841: 1838: 1835: 1832: 1829: 1826: 1822: 1819: 1795:1.022 MeV 1766: 1763: 1741: 1738: 1724: 1721: 1682: 1679: 1609: 1606: 1586: 1583: 1558:Main article: 1555: 1552: 1550: 1547: 1446: 1443: 1430:Philipp Lenard 1393:Stoletov's law 1342:Heinrich Hertz 1218: 1215: 1213: 1210: 1205:one-step model 1201: 1200: 1186: 1182: 1178: 1175: 1172: 1169: 1166: 1163: 1158: 1154: 1131: 1127: 1111: 1103: 1078: 1075: 1060: 1056: 1052: 1049: 1046: 1043: 1038: 1034: 1011: 1007: 985: 982: 966: 963: 944: 938: 934: 930: 927: 923: 917: 914: 909: 904: 900: 877: 873: 850: 846: 842: 839: 817: 813: 807: 803: 799: 796: 792: 788: 785: 780: 776: 755: 750: 746: 741: 738: 735: 715: 695: 671: 651: 648: 645: 642: 638: 635: 630: 626: 603: 599: 578: 575: 551: 531: 511: 508: 480: 477: 430: 423: 416: 405: 390: 371: 361:monochromatize 352: 309: 306: 286:kinetic energy 278:Compton effect 267:binding energy 258: 255: 227:core electrons 192:kinetic energy 124: 123: 38: 36: 29: 15: 9: 6: 4: 3: 2: 6531: 6520: 6517: 6515: 6512: 6510: 6509:Photovoltaics 6507: 6505: 6502: 6500: 6497: 6495: 6492: 6490: 6487: 6485: 6482: 6481: 6479: 6464: 6463: 6454: 6453: 6450: 6444: 6441: 6439: 6436: 6434: 6431: 6429: 6426: 6424: 6421: 6419: 6416: 6414: 6411: 6409: 6406: 6404: 6401: 6399: 6396: 6394: 6391: 6389: 6386: 6384: 6381: 6379: 6376: 6374: 6371: 6370: 6368: 6364: 6357: 6354: 6351: 6348: 6345: 6342: 6339: 6336: 6333: 6330: 6327: 6324: 6321: 6320:Maja Einstein 6318: 6315: 6312: 6309: 6306: 6303: 6300: 6297: 6294: 6291: 6290:Elsa Einstein 6288: 6285: 6282: 6281: 6279: 6277: 6273: 6267: 6266: 6262: 6260: 6259: 6255: 6253: 6252: 6248: 6246: 6245: 6241: 6239: 6238: 6234: 6232: 6231: 6227: 6225: 6224: 6220: 6218: 6217: 6213: 6212: 6210: 6204: 6198: 6195: 6193: 6190: 6188: 6185: 6183: 6180: 6178: 6177:Kalinga Prize 6175: 6173: 6170: 6168: 6165: 6164: 6162: 6158: 6151: 6150: 6146: 6144:(2017 series) 6143: 6142: 6138: 6135: 6134: 6130: 6127: 6126: 6122: 6119: 6118: 6114: 6111: 6110: 6106: 6103: 6102: 6098: 6095: 6094: 6090: 6087: 6086: 6082: 6079: 6078: 6074: 6071: 6070: 6066: 6065: 6063: 6061: 6055: 6048: 6045: 6042: 6038: 6035: 6034: 6030: 6027: 6026: 6022: 6019: 6018: 6014: 6011: 6010: 6006: 6003: 5999: 5996: 5994: 5990: 5989: 5987: 5985: 5981: 5975: 5972: 5970: 5967: 5965: 5962: 5960: 5957: 5955: 5952: 5950: 5947: 5945: 5942: 5940: 5937: 5935: 5932: 5930: 5927: 5925: 5922: 5920: 5917: 5915: 5912: 5910: 5907: 5905: 5902: 5900: 5897: 5895: 5892: 5890: 5887: 5885: 5882: 5880: 5877: 5875: 5872: 5870: 5867: 5865: 5862: 5860: 5857: 5853: 5850: 5848: 5845: 5844: 5843: 5840: 5839: 5837: 5833: 5829: 5822: 5817: 5815: 5810: 5808: 5803: 5802: 5799: 5783: 5780: 5776: 5773: 5772: 5771: 5768: 5767: 5765: 5761: 5755: 5752: 5750: 5747: 5745: 5742: 5740: 5737: 5735: 5732: 5730: 5727: 5725: 5722: 5720: 5717: 5715: 5712: 5710: 5707: 5705: 5702: 5701: 5699: 5697: 5693: 5687: 5684: 5682: 5679: 5677: 5674: 5672: 5669: 5667: 5664: 5662: 5659: 5657: 5654: 5652: 5649: 5648: 5646: 5642: 5636: 5633: 5631: 5628: 5626: 5623: 5621: 5618: 5616: 5613: 5609: 5606: 5604: 5601: 5599: 5596: 5595: 5594: 5591: 5589: 5586: 5584: 5581: 5579: 5576: 5574: 5571: 5567: 5564: 5562: 5559: 5558: 5557: 5554: 5552: 5549: 5547: 5546:Tomosynthesis 5544: 5542: 5539: 5537: 5534: 5533: 5531: 5527: 5524: 5520: 5514: 5511: 5509: 5506: 5504: 5501: 5499: 5496: 5494: 5491: 5489: 5486: 5484: 5481: 5479: 5476: 5474: 5471: 5469: 5466: 5465: 5463: 5459: 5453: 5450: 5448: 5445: 5443: 5440: 5438: 5435: 5433: 5430: 5428: 5425: 5424: 5422: 5418: 5412: 5409: 5407: 5404: 5402: 5399: 5397: 5394: 5392: 5389: 5387: 5384: 5382: 5379: 5377: 5376:Moseley's law 5374: 5372: 5369: 5367: 5364: 5363: 5361: 5357: 5353: 5352:X-ray science 5346: 5341: 5339: 5334: 5332: 5327: 5326: 5323: 5311: 5310: 5301: 5299: 5298: 5289: 5288: 5285: 5275: 5272: 5270: 5267: 5265: 5262: 5260: 5257: 5255: 5252: 5250: 5247: 5245: 5242: 5240: 5237: 5235: 5232: 5230: 5227: 5225: 5222: 5220: 5217: 5215: 5212: 5211: 5209: 5205: 5199: 5196: 5195: 5193: 5189: 5186: 5184: 5180: 5170: 5167: 5165: 5162: 5160: 5157: 5155: 5152: 5150: 5147: 5145: 5142: 5140: 5137: 5135: 5132: 5130: 5127: 5125: 5122: 5120: 5117: 5115: 5112: 5110: 5107: 5105: 5102: 5100: 5097: 5095: 5092: 5090: 5087: 5085: 5082: 5080: 5077: 5075: 5072: 5070: 5067: 5066: 5064: 5062: 5058: 5052: 5049: 5047: 5044: 5042: 5039: 5037: 5034: 5033: 5031: 5027: 5021: 5018: 5016: 5013: 5012: 5010: 5008: 5004: 5001: 4999: 4993: 4983: 4980: 4978: 4975: 4973: 4970: 4968: 4965: 4963: 4960: 4958: 4955: 4953: 4950: 4948: 4945: 4943: 4940: 4938: 4935: 4933: 4930: 4928: 4925: 4923: 4920: 4919: 4917: 4913: 4907: 4904: 4903: 4901: 4897: 4891: 4888: 4886: 4883: 4881: 4878: 4876: 4873: 4871: 4868: 4866: 4863: 4861: 4858: 4857: 4855: 4853:Air transport 4851: 4845: 4842: 4840: 4837: 4835: 4832: 4830: 4829:Solar roadway 4827: 4825: 4822: 4820: 4819:Solar vehicle 4817: 4816: 4814: 4810: 4804: 4801: 4799: 4796: 4794: 4791: 4789: 4786: 4784: 4781: 4778: 4776: 4773: 4771: 4768: 4766: 4763: 4761: 4758: 4756: 4753: 4751: 4748: 4746: 4743: 4740: 4738: 4735: 4733: 4732:Solar charger 4730: 4728: 4725: 4723: 4720: 4718: 4715: 4714: 4712: 4708: 4705: 4701: 4691: 4688: 4686: 4683: 4681: 4678: 4676: 4673: 4671: 4668: 4666: 4663: 4661: 4658: 4656: 4653: 4652: 4650: 4646: 4640: 4637: 4635: 4632: 4630: 4627: 4625: 4624:Solar tracker 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4597: 4595: 4592: 4590: 4587: 4585: 4582: 4581: 4579: 4575: 4569: 4566: 4564: 4561: 4559: 4556: 4554: 4551: 4549: 4546: 4544: 4541: 4539: 4536: 4534: 4531: 4529: 4526: 4524: 4521: 4519: 4516: 4514: 4511: 4510: 4508: 4506: 4502: 4499: 4497: 4491: 4481: 4478: 4476: 4473: 4472: 4470: 4466: 4460: 4457: 4455: 4452: 4450: 4447: 4445: 4442: 4440: 4437: 4435: 4432: 4430: 4427: 4426: 4424: 4420: 4414: 4411: 4409: 4406: 4404: 4401: 4399: 4396: 4394: 4391: 4389: 4386: 4384: 4381: 4379: 4376: 4374: 4371: 4367: 4364: 4363: 4362: 4359: 4357: 4354: 4352: 4349: 4347: 4344: 4342: 4341:Photovoltaics 4339: 4338: 4336: 4332: 4329: 4325: 4321: 4320:Photovoltaics 4314: 4309: 4307: 4302: 4300: 4295: 4294: 4291: 4284: 4280: 4279: 4275: 4272: 4267: 4264: 4263: 4258: 4255: 4254: 4249: 4246: 4245: 4240: 4239: 4238: 4237: 4236: 4229: 4225: 4223: 4220: 4217: 4216: 4211: 4208: 4207: 4202: 4199: 4198: 4194: 4191: 4186: 4183: 4179: 4178: 4173: 4170: 4169: 4164: 4161: 4160: 4155: 4152: 4151: 4146: 4143: 4139: 4138: 4126: 4124:0-471-49545-X 4120: 4116: 4112: 4111: 4103: 4095: 4091: 4087: 4080: 4072: 4070:0-89874-414-8 4066: 4062: 4058: 4057: 4049: 4042:. 2009-09-17. 4041: 4037: 4031: 4023: 4019: 4014: 4009: 4005: 4001: 3997: 3993: 3989: 3985: 3978: 3969: 3964: 3960: 3956: 3952: 3948: 3944: 3937: 3929: 3925: 3921: 3914: 3907: 3902: 3895: 3890: 3882: 3878: 3872: 3864: 3858: 3854: 3847: 3839: 3835: 3831: 3827: 3823: 3819: 3815: 3811: 3807: 3803: 3796: 3789: 3788:0-85296-914-7 3785: 3781: 3775: 3769: 3765: 3761: 3755: 3748: 3747:0-471-71702-9 3744: 3740: 3734: 3728: 3727:0-679-45443-8 3724: 3720: 3714: 3707: 3706:0-8053-8685-8 3703: 3699: 3693: 3691: 3683: 3682:0-471-71702-9 3679: 3675: 3669: 3662: 3656: 3649: 3642: 3638: 3632: 3617: 3611: 3596: 3590: 3582: 3578: 3574: 3570: 3566: 3559: 3550: 3545: 3541: 3537: 3533: 3529: 3525: 3518: 3510: 3506: 3502: 3498: 3494: 3490: 3486: 3479: 3471: 3467: 3462: 3457: 3453: 3449: 3446:(2008): 582. 3445: 3441: 3437: 3430: 3422: 3418: 3411: 3403: 3399: 3395: 3391: 3387: 3380: 3372: 3368: 3364: 3360: 3356: 3352: 3345: 3337: 3331: 3323: 3319: 3315: 3309: 3305: 3299: 3292: 3287: 3279: 3272: 3263: 3255: 3251: 3247: 3243: 3239: 3235: 3231: 3224: 3214: 3210: 3206: 3202: 3198: 3193: 3189: 3185: 3180: 3176: 3172: 3171: 3165: 3160: 3156: 3155: 3149: 3144: 3140: 3139: 3133: 3128: 3124: 3120: 3116: 3112: 3104: 3100: 3099: 3093: 3092: 3089: 3087: 3077: 3068: 3059: 3050: 3042: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3003: 2987: 2983: 2976: 2974: 2972: 2963: 2959: 2955: 2951: 2947: 2943: 2939: 2935: 2931: 2924: 2916: 2912: 2908: 2904: 2900: 2896: 2895: 2890: 2883: 2875: 2869: 2865: 2858: 2851: 2850:0-385-04693-6 2847: 2844:, Doubleday, 2843: 2842: 2835: 2826: 2821: 2817: 2813: 2809: 2805: 2801: 2794: 2786: 2782: 2778: 2772: 2768: 2764: 2760: 2753: 2745: 2741: 2737: 2733: 2729: 2725: 2718: 2710: 2706: 2702: 2698: 2694: 2690: 2685: 2680: 2677:(2): 025006. 2676: 2672: 2665: 2663: 2654: 2650: 2646: 2642: 2638: 2634: 2629: 2624: 2620: 2616: 2609: 2601: 2599:3-540-41802-4 2595: 2591: 2587: 2580: 2578: 2576: 2567: 2563: 2559: 2555: 2551: 2547: 2540: 2532: 2526: 2522: 2518: 2511: 2503: 2497: 2493: 2489: 2482: 2474: 2470: 2466: 2462: 2458: 2454: 2453: 2445: 2437: 2433: 2429: 2425: 2421: 2417: 2416: 2408: 2400: 2398:0-07-024830-3 2394: 2390: 2386: 2379: 2371: 2365: 2357: 2351: 2343: 2337: 2329: 2323: 2315: 2309: 2300: 2295: 2291: 2287: 2283: 2279: 2278: 2273: 2271: 2262: 2254: 2250: 2246: 2242: 2238: 2234: 2233: 2228: 2226: 2217: 2215: 2206: 2202: 2198: 2194: 2190: 2186: 2185: 2180: 2173: 2171: 2156: 2152: 2146: 2138: 2136:0-03-030258-7 2132: 2128: 2124: 2117: 2103: 2099: 2093: 2085: 2084: 2077: 2073: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2038:Dember effect 2036: 2034: 2031: 2029: 2026: 2025: 2017: 2012: 2010: 2005: 2003: 1998: 1997: 1995: 1994: 1991: 1988: 1987: 1984: 1981: 1980: 1977: 1974: 1973: 1969: 1968: 1965: 1962: 1961: 1958: 1955: 1954: 1950: 1949: 1946: 1943: 1942: 1938: 1937: 1933: 1929: 1928: 1924: 1923: 1915: 1913: 1909: 1905: 1900: 1896: 1895:atomic number 1892: 1869: 1865: 1859: 1855: 1849: 1820: 1817: 1810: 1809: 1808: 1805: 1804:cross section 1800: 1792: 1780: 1776: 1775:cross section 1771: 1762: 1759: 1755: 1751: 1747: 1737: 1735: 1734:static charge 1730: 1720: 1717: 1713: 1709: 1704: 1700: 1696: 1692: 1688: 1687:semiconductor 1678: 1676: 1671: 1669: 1664: 1660: 1657: 1652: 1648: 1645: 1644:monochromatic 1636: 1632: 1628: 1623: 1619: 1615: 1605: 1603: 1599: 1595: 1591: 1585:Image sensors 1582: 1580: 1575: 1566: 1561: 1546: 1542: 1540: 1536: 1530: 1528: 1524: 1520: 1516: 1515:energy quanta 1512: 1508: 1503: 1500: 1496: 1492: 1488: 1483: 1479: 1475: 1470: 1466: 1462: 1460: 1456: 1452: 1442: 1440: 1435: 1431: 1427: 1422: 1420: 1416: 1415:Crookes tubes 1412: 1411:J. J. Thomson 1407: 1404: 1402: 1398: 1394: 1389: 1384: 1381: 1377: 1372: 1370: 1366: 1362: 1361:Augusto Righi 1358: 1353: 1351: 1347: 1343: 1334: 1329: 1325: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1253:Johann Elster 1250: 1248: 1244: 1240: 1236: 1235:photovoltaics 1232: 1228: 1224: 1209: 1206: 1184: 1180: 1176: 1173: 1170: 1167: 1164: 1161: 1156: 1152: 1129: 1125: 1116: 1112: 1109: 1104: 1101: 1097: 1093: 1089: 1088: 1087: 1085: 1074: 1058: 1054: 1050: 1047: 1044: 1041: 1036: 1032: 1009: 1005: 983: 980: 972: 962: 960: 942: 936: 932: 928: 925: 921: 915: 912: 907: 902: 898: 875: 871: 848: 844: 840: 837: 828: 815: 811: 805: 801: 797: 794: 790: 786: 783: 774: 753: 748: 744: 739: 736: 733: 713: 685: 684:work function 669: 649: 646: 643: 640: 636: 633: 624: 597: 576: 573: 565: 549: 529: 509: 506: 498: 494: 485: 476: 474: 469: 465: 460: 457: 451: 449: 445: 441: 436: 433: 429: 426: =  422: 415: 411: 404: 400: 396: 389: 383: 380: 375: 370: 366: 363:the light, a 362: 348: 344: 342: 339: 335: 331: 328:UV lamps and 327: 323: 319: 314: 305: 303: 299: 294: 292: 287: 283: 279: 275: 270: 268: 264: 263:photon energy 254: 252: 248: 244: 240: 236: 235:atomic number 232: 228: 224: 223:electron-volt 220: 215: 213: 209: 205: 201: 197: 193: 189: 185: 181: 176: 174: 170: 166: 162: 158: 154: 150: 146: 139: 135: 130: 120: 117: 109: 98: 95: 91: 88: 84: 81: 77: 74: 70: 67: â€“  66: 62: 61:Find sources: 55: 49: 48: 44: 39:This article 37: 33: 28: 27: 22: 6460: 6428:Einsteinhaus 6308:Pauline Koch 6286:(first wife) 6284:Mileva Marić 6263: 6256: 6249: 6242: 6235: 6228: 6221: 6214: 6147: 6139: 6131: 6123: 6115: 6107: 6099: 6091: 6083: 6075: 6067: 6031: 6023: 6015: 6007: 5992: 5868: 5644:Spectroscopy 5588:Ptychography 5522:Applications 5483:Auger effect 5472: 5386:Water window 5308: 5295: 5274:Yingli Solar 5254:Sungen Solar 5229:Motech Solar 5183:PV companies 5144:South Africa 4962:Solar Splash 4703:Applications 4634:Solar mirror 4494:Photovoltaic 4345: 4269: 4260: 4251: 4242: 4233: 4232: 4213: 4204: 4188: 4184:, Chapter 3. 4175: 4166: 4157: 4148: 4109: 4102: 4085: 4079: 4055: 4048: 4039: 4030: 3990:(1): 59–66. 3987: 3983: 3977: 3950: 3946: 3936: 3919: 3913: 3901: 3889: 3880: 3871: 3852: 3846: 3805: 3801: 3795: 3779: 3774: 3759: 3754: 3738: 3733: 3718: 3713: 3697: 3673: 3668: 3655: 3647: 3631: 3620:. Retrieved 3610: 3599:. Retrieved 3589: 3572: 3568: 3558: 3531: 3527: 3517: 3492: 3491:. Series I. 3488: 3478: 3443: 3439: 3429: 3420: 3416: 3410: 3393: 3389: 3379: 3354: 3350: 3344: 3303: 3298: 3290: 3286: 3277: 3271: 3262: 3237: 3233: 3223: 3204: 3200: 3187: 3183: 3174: 3168: 3158: 3152: 3142: 3136: 3121:(160): 317. 3118: 3117:. Series 5. 3114: 3102: 3096: 3076: 3067: 3058: 3049: 3016: 3012: 3002: 2990:. Retrieved 2985: 2937: 2933: 2923: 2898: 2892: 2882: 2863: 2857: 2839: 2834: 2810:(173): 303. 2807: 2803: 2793: 2758: 2752: 2727: 2723: 2717: 2674: 2670: 2618: 2614: 2608: 2585: 2549: 2545: 2539: 2516: 2510: 2487: 2481: 2456: 2450: 2444: 2422:(1–5): 125. 2419: 2413: 2407: 2384: 2378: 2364: 2350: 2336: 2322: 2308: 2281: 2275: 2269: 2261: 2239:(1): 73–75. 2236: 2230: 2224: 2188: 2182: 2158:. Retrieved 2154: 2145: 2122: 2116: 2105:. Retrieved 2101: 2092: 2082: 2076: 1990:Photofission 1944: 1911: 1903: 1898: 1890: 1888: 1787:511 keV 1784: 1778: 1743: 1726: 1684: 1672: 1661: 1640: 1588: 1574:photocathode 1571: 1543: 1538: 1534: 1531: 1518: 1514: 1504: 1481: 1471: 1467: 1463: 1448: 1445:20th century 1439:Hertz effect 1438: 1423: 1419:cathode rays 1408: 1405: 1397:photocurrent 1385: 1376:Hertz effect 1375: 1373: 1369:electroscope 1354: 1339: 1333:electroscope 1251: 1220: 1217:19th century 1204: 1202: 1114: 1096:Auger effect 1083: 1080: 968: 829: 490: 464:polarization 461: 455: 452: 443: 437: 434: 427: 420: 413: 409: 402: 398: 394: 387: 384: 378: 376: 368: 358: 315: 311: 301: 297: 295: 271: 260: 245:effect, the 233:with a high 216: 177: 144: 142: 112: 103: 93: 86: 79: 72: 60: 40: 6433:Einsteinium 6206:Books about 6152:(2023 film) 6149:Oppenheimer 6128:(2003 play) 6120:(1994 film) 6112:(1993 play) 6104:(1988 film) 6096:(1985 film) 5939:EPR paradox 5437:Synchrotron 5269:Trina Solar 5214:First Solar 5154:Switzerland 5134:Netherlands 4972:Tour de Sol 4670:Fill factor 4609:Solar cable 4584:Solar panel 4505:Solar cells 4147:Nave, R., " 3495:(1): 1–22. 3357:: 299–322. 2389:McGraw-Hill 2102:xdb.lbl.gov 1493:. In 1914, 1401:solar cells 1257:Hans Geitel 1241:discovered 448:probability 365:vacuum tube 338:synchrotron 291:Fermi level 165:solid state 6478:Categories 6438:Max Talmey 6340:(grandson) 6298:(daughter) 6058:In popular 5696:Scattering 5561:Helical CT 5427:X-ray tube 5191:By country 5061:By country 4996:Generation 4906:Solar boat 4755:Solar Tuki 4741:Solar tree 4727:Solar lamp 4710:Appliances 4334:Technology 3622:2015-03-29 3601:2008-10-09 3534:(3): 553. 3396:(8): 240. 2684:2008.02378 2160:2024-07-08 2107:2020-06-20 2069:References 1729:spacecraft 1723:Spacecraft 1594:television 1478:Max Planck 1434:electrodes 1331:Gold leaf 1261:Heidelberg 401:potential 274:irradiated 249:, and the 76:newspapers 43:references 5069:Australia 5046:Solar Ark 4952:Solar Cup 4844:Sunmobile 4824:Solar car 4422:Materials 4265:". (Java) 3390:Le Radium 3330:cite book 3041:1521-3889 2962:0003-3804 2785:108793685 2709:221006368 2653:118433150 2645:0034-6861 1908:gamma-ray 1850:⋅ 1818:σ 1758:Chang'e 3 1740:Moon dust 1539:intensity 1535:frequency 1519:intensity 1459:intensity 1409:In 1897, 1346:spark gap 1340:In 1887, 1285:magnesium 1269:potassium 1221:In 1839, 1177:− 1171:− 1168:ν 1051:− 1048:ν 984:ν 933:ν 929:− 926:ν 872:ν 845:ν 838:ν 802:ν 798:− 795:ν 745:ν 714:φ 694:Φ 644:− 641:ν 577:ν 530:ν 510:ν 491:In 1905, 440:radiation 332:sources, 214:in 1926. 196:frequency 188:intensity 149:electrons 134:electrons 106:July 2024 6462:Category 6388:Memorial 6334:(cousin) 6322:(sister) 6316:(father) 6310:(mother) 6208:Einstein 6043:" (1949) 6004:" (1905) 5432:Betatron 5297:Category 5259:Sunpower 5249:Solyndra 5224:JA Solar 5159:Thailand 5079:Bulgaria 4327:Concepts 4274:Archived 4193:Archived 4022:56226020 3838:23594185 3830:17801770 3371:27757381 3322:62183406 2590:Springer 2127:Saunders 1918:See also 1716:band gap 1703:phosphor 1670:source. 1359:, Hoor, 1301:platinum 1289:thallium 1265:rubidium 1247:selenium 493:Einstein 318:arc lamp 231:elements 155:such as 6366:Related 6060:culture 5835:Physics 5775:History 5529:Imaging 5309:Commons 5264:Suntech 5139:Romania 5109:Germany 5074:Belgium 4998:systems 4468:History 4235:Applets 4212:Go to " 4090:Bibcode 3992:Bibcode 3955:Bibcode 3810:Bibcode 3802:Science 3569:Physics 3536:Bibcode 3497:Bibcode 3470:4028617 3448:Bibcode 3242:Bibcode 3207:: 468. 3177:: 1241. 3145:: 1593. 3105:: 1149. 3021:Bibcode 2942:Bibcode 2903:Bibcode 2812:Bibcode 2732:Bibcode 2689:Bibcode 2554:Bibcode 2461:Bibcode 2424:Bibcode 2286:Bibcode 2241:Bibcode 2193:Bibcode 1893:is the 1482:packets 1321:mercury 1313:cadmium 1281:lithium 1212:History 1100:phonons 497:photons 399:cut off 208:photons 138:photons 90:scholar 6276:Family 6160:Prizes 6141:Genius 6049:(1955) 6036:(1938) 6028:(1934) 6020:(1922) 6012:(1916) 5997:(1905) 5995:papers 5763:Others 5724:GISAXS 5396:L-edge 5391:K-edge 5114:Greece 5104:France 5084:Canada 4496:system 4121:  4067:  4020:  3859:  3836:  3828:  3786:  3766:  3745:  3725:  3704:  3680:  3575:: 23. 3468:  3440:Nature 3423:: 417. 3369:  3320:  3310:  3190:: 159. 3039:  2960:  2870:  2848:  2804:Nature 2783:  2773:  2707:  2651:  2643:  2596:  2527:  2498:  2395:  2133:  1693:in an 1620:, and 1507:quanta 1451:energy 1350:quartz 1319:, and 1317:carbon 1297:copper 1295:; for 1277:sodium 662:Here, 336:, and 219:metals 204:a wave 184:energy 167:, and 92:  85:  78:  71:  63:  6383:House 6378:Brain 6328:(son) 6304:(son) 5984:Works 5754:EDXRD 5676:XANES 5671:EXAFS 5661:ARPES 5608:3DXRD 5366:X-ray 5239:Sharp 5149:Spain 5129:Japan 5124:Italy 5119:India 5094:China 5089:Chile 4018:S2CID 3834:S2CID 3644:(PDF) 3466:S2CID 3367:JSTOR 3175:CVIII 3161:: 91. 2992:2 May 2781:S2CID 2705:S2CID 2679:arXiv 2649:S2CID 2623:arXiv 1902:high- 1889:Here 1647:X-ray 1635:ARPES 1380:ozone 1273:alloy 97:JSTOR 83:books 6117:I.Q. 5739:RIXS 5729:WAXS 5719:SAXS 5630:DFXM 5598:XDCT 5583:STXM 5578:XPCI 5566:XACT 4283:Java 4119:ISBN 4065:ISBN 4040:NIST 3857:ISBN 3826:PMID 3784:ISBN 3764:ISBN 3743:ISBN 3723:ISBN 3702:ISBN 3678:ISBN 3336:link 3318:OCLC 3308:ISBN 3159:CVII 3037:ISSN 2994:2020 2958:ISSN 2868:ISBN 2846:ISBN 2771:ISBN 2641:ISSN 2594:ISBN 2525:ISBN 2496:ISBN 2393:ISBN 2131:ISBN 1897:and 1746:Moon 1673:The 1600:'s " 1428:and 1363:and 1309:iron 1305:lead 1293:zinc 1291:and 841:> 431:max. 143:The 69:news 5744:XRS 5686:XFH 5681:EDS 5666:AES 5656:XPS 5651:XAS 5635:DXA 5603:DCT 5551:CDI 5234:REC 4180:". 4061:712 4008:hdl 4000:doi 3963:doi 3924:doi 3818:doi 3806:206 3577:doi 3544:doi 3505:doi 3456:doi 3398:doi 3359:doi 3250:doi 3238:328 3209:doi 3143:CVI 3123:doi 3103:CVI 3029:doi 3017:269 2950:doi 2938:267 2911:doi 2899:267 2820:doi 2763:doi 2740:doi 2697:doi 2633:doi 2562:doi 2550:136 2469:doi 2432:doi 2420:216 2294:doi 2249:doi 2227:."" 2201:doi 2189:313 1748:by 1649:or 1245:in 779:max 706:or 629:max 616:is 602:max 412:is 397:or 391:max 229:in 45:to 6480:: 5749:XS 5556:CT 5169:US 4117:. 4115:49 4063:. 4038:. 4016:. 4006:. 3998:. 3988:37 3986:. 3961:. 3951:46 3949:. 3945:. 3879:. 3832:. 3824:. 3816:. 3804:. 3689:^ 3571:. 3567:. 3542:. 3530:. 3526:. 3503:. 3493:32 3487:. 3464:. 3454:. 3444:77 3442:. 3438:. 3421:14 3419:. 3392:. 3388:. 3365:. 3353:. 3332:}} 3328:{{ 3316:. 3248:. 3236:. 3232:. 3203:. 3199:. 3188:21 3173:. 3157:. 3141:. 3119:26 3113:. 3101:. 3085:^ 3035:. 3027:. 3015:. 3011:. 2984:. 2970:^ 2956:. 2948:. 2936:. 2932:. 2909:. 2897:. 2891:. 2818:. 2806:. 2802:. 2779:. 2769:. 2738:. 2726:. 2703:. 2695:. 2687:. 2675:93 2673:. 2661:^ 2647:. 2639:. 2631:. 2619:75 2617:. 2592:. 2588:. 2574:^ 2560:. 2548:. 2519:. 2490:. 2467:. 2457:23 2455:. 2430:. 2418:. 2292:. 2280:. 2274:. 2272:"" 2247:. 2235:. 2229:. 2213:^ 2199:. 2187:. 2181:. 2169:^ 2153:. 2100:. 1797:, 1779:hυ 1651:UV 1616:, 1403:. 1315:, 1311:, 1307:, 1303:, 1299:, 1287:, 1283:, 1279:, 1271:, 1267:, 961:. 475:. 456:I— 421:eV 414:eV 324:, 304:. 293:. 253:. 163:, 56:. 6039:" 6000:" 5820:e 5813:t 5806:v 5344:e 5337:t 5330:v 4312:e 4305:t 4298:v 4285:) 4268:" 4250:" 4241:" 4156:" 4127:. 4096:. 4092:: 4073:. 4024:. 4010:: 4002:: 3994:: 3971:. 3965:: 3957:: 3930:. 3926:: 3883:. 3865:. 3840:. 3820:: 3812:: 3790:. 3749:. 3708:. 3684:. 3625:. 3604:. 3583:. 3579:: 3573:3 3552:. 3546:: 3538:: 3532:4 3511:. 3507:: 3499:: 3472:. 3458:: 3450:: 3404:. 3400:: 3394:5 3373:. 3361:: 3355:9 3338:) 3324:. 3256:. 3252:: 3244:: 3215:. 3211:: 3205:9 3129:. 3125:: 3043:. 3031:: 3023:: 2996:. 2964:. 2952:: 2944:: 2917:. 2913:: 2905:: 2876:. 2852:. 2828:. 2822:: 2814:: 2808:7 2787:. 2765:: 2746:. 2742:: 2734:: 2728:2 2711:. 2699:: 2691:: 2681:: 2655:. 2635:: 2625:: 2602:. 2568:. 2564:: 2556:: 2533:. 2504:. 2475:. 2471:: 2463:: 2438:. 2434:: 2426:: 2401:. 2358:. 2344:. 2330:. 2316:. 2302:. 2296:: 2288:: 2282:7 2270:h 2255:. 2251:: 2243:: 2237:4 2225:h 2207:. 2203:: 2195:: 2163:. 2139:. 2110:. 2086:. 2015:e 2008:t 2001:v 1912:Z 1904:Z 1899:n 1891:Z 1870:3 1866:E 1860:n 1856:Z 1846:t 1843:n 1840:a 1837:t 1834:s 1831:n 1828:o 1825:c 1821:= 1633:( 1199:. 1185:B 1181:E 1174:W 1165:h 1162:= 1157:k 1153:E 1130:F 1126:E 1059:B 1055:E 1045:h 1042:= 1037:k 1033:E 1010:B 1006:E 981:h 943:) 937:o 922:( 916:e 913:h 908:= 903:o 899:V 876:o 849:o 816:. 812:) 806:o 791:( 787:h 784:= 775:K 754:, 749:o 740:h 737:= 734:W 670:W 650:. 647:W 637:h 634:= 625:K 598:K 574:h 550:h 507:h 428:K 424:o 417:o 410:e 406:o 403:V 388:K 379:I 372:C 369:V 353:C 351:V 119:) 113:( 108:) 104:( 94:· 87:· 80:· 73:· 50:. 23:.

Index

Photovoltaic effect

references
primary sources
secondary or tertiary sources
"Photoelectric effect"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

electrons
photons
electrons
electromagnetic radiation
ultraviolet light
condensed matter physics
solid state
quantum chemistry
electronic devices
classical electromagnetism
energy
intensity
kinetic energy
frequency
Albert Einstein
a wave
photons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑